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Dense hydrogen in the sky and in the lab

before full metallization of H is reached171. The mag-
nitude of electrical conductivity, along with the planet’s 
magnetic field strength and luminosity, can be used to 
estimate the internal ohmic dissipation and provide 
constraints for structure and dynamical models172–177.

Jupiter’s magnetic field is the strongest in the Solar 
System (excluding that of the Sun), and its surface field 
strength is 4–20 G (REFS178,179). Recently, the Juno space-
craft revealed that Jupiter’s magnetic field has an intense 
isolated magnetic spot near the equator with a negative 
magnetic anomaly. In addition, an intense and relatively 
narrow band of positive flux near 45 degrees latitude in 
the northern hemisphere has been found, together with 
a rather smooth magnetic field in the southern hem-
isphere. Furthermore, the north–south asymmetry in 
Jupiter’s magnetic field structure could be explained by 
the existence of a diluted core179.

Saturn’s magnetic field, which has a surface field 
strength of 0.2–0.5 G (REFS180–182), is nearly perfectly 
symmetrical with respect to the spin- axis183. The char-
acter of Saturn’s magnetic field could be a result of He 
rain, which could create a stable (against convection) 
layer below/above the dynamo. A stable deep interior 
could also be a result of composition gradients and 
non- adiabatic interiors.

Understanding the processes that lead to magnetic- 
field generation and their outcomes requires good 
knowledge of the associated thermodynamics and 
the feedback on the magnetic field and vice versa. 
Present- day understanding of the dynamo process is 

still limited, and as a result, the magnetic fields can only 
be used to set some bounds on the material properties 
and heat transport inside the planets. This, however, may 
change in the future.

Challenges and outlook
Although the giant planets and the behaviour of ele-
ments at planetary conditions are not yet completely 
understood, we expect progress in the near future. 
Upcoming experiments and theoretical models are 
expected to provide a deeper understanding of phase 
transitions, mixtures and immiscibilities. We also fore-
see improvements in numerical calculations, given the 
increasing computation power and the development of 
new numerical techniques. In particular, we expect that 
future experiments will resolve the disagreement on 
the metallization conditions of H and obtain consistent 
results from the various methods. In addition, it would 
be desirable to make experiments on H–He mixtures, 
to investigate the demixing of He in H. Another topic 
that is expected to blossom in the future is supercon-
ductivity. Although superconductivity has yet to be 
found in pure H, the hypothesis of superconductive H 
has directed the search for superconductivity in H- rich 
materials184,185.

In this Review, we have focused on Jupiter and 
Saturn and have not discussed the ice giants Uranus  
and Neptune. The ice planets are key to understand-
ing planet formation and for the characterization of 
intermediate planets around other stars. Because these 
planets are thought to consist of volatiles such as water, 
methane and ammonia, experimental data focusing on 
these materials would be valuable. In addition, the influ-
ence of H–He on the mixtures of these materials and the 
role of carbon is yet to be determined.

We also expect progress in understanding the inter-
nal structures of Jupiter and Saturn, given the ongoing 
efforts in processing and interpretation of recent data 
from the Juno and Cassini missions, and the devel-
opment of more comprehensive structure models. In 
addition, upcoming and future space missions will play 
a key role in better constraining the interiors of the gas 
giants. The planned ESA JUICE mission will reveal 
further information on Jupiter, and a potential Saturn 
probe mission will provide constraints on Saturn’s 
atmospheric composition and the immiscibility of He 
in H and the process of phase separation. Nevertheless, 
it is now realized that the interiors of giant planets are 
far more complex than previously thought. To under-
stand them better, improvements in the H and H–He 
EOS are required but insufficient. We suggest that 
future studies should concentrate on phase transitions 
of pure elements and mixtures as well as their physi-
cal properties such as thermal diffusivity, electrical 
conductivity and opacity. These properties can then 
be used to further constrain models for giant planet 
formation, evolution and structure. The link between 
planetary interiors and high- pressure physics is clear, 
and we believe that the future holds great promise in 
this direction.
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Fig. 5 | Sketches of the internal structures of Jupiter and Saturn. Typical pressures and 
temperatures at each layer are indicated. The simplest structure models have well-defined 
layers and distinct cores (left of each schematic), but more recent models have composition 
gradients and cores that are less well defined. Figure adapted from REF.169,Oxford Research 
Encyclopedias: Planetary Science edited by Read (2008) FIG. 5 from “The Interiors of Jupiter 
and Saturn” by Helled. By permission of Oxford University Press.
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Figure 1 | Schematics of indirect- and direct-drive ICF. Typical targets used in laser-driven ICF are indirectly driven (upper left) or directly driven (upper
right). In either case, a spherical capsule is prepared at t=0with a layer of DT fuel on its inside surface. As the capsule surface absorbs energy and ablates,
pressure accelerates the shell of remaining ablator and DT fuel inwards—an implosion. By the time the shell is at approximately one-fifth of its initial radius
it is travelling at a speed of many hundreds of kilometres per second. By the time the implosion reaches minimum radius, a hotspot of DT has formed,
surrounded by colder and denser DT fuel.

fuel13. In these implosions, self-heating from fusion α-particles has
been estimated to enhance the plasma thermal energy, leading to
a doubling of the fusion yield16–18. Ignition-scale implosions on the
NIF use the indirect-drive approach3, where the laser irradiates the
inner walls of a high-Z metal enclosure (hohlraum) to produce
X-rays. The spherical capsule, approximately 1mm in radius, is
positioned inside the hohlraum and consists of an outer plastic
(or other low-Z material) shell (the ablator) enclosing an inner
layer of cryogenic solid DT (Fig. 1). The X-rays incident on
the capsule outer surface cause mass ablation off that surface,
leading to an inward momentum input (rocket effect) driving the
implosion. In the best-performing indirect-drive implosions on
the NIF (the so-called ‘High-Foot’ targets13,16), the DT mass has
been accelerated with 1.9MJ of ultraviolet light to about 360–
380 km s−1, reaching a fuel kinetic energy of about 12 kJ and
producing about 26 kJ of fusion energy. At present, low-mode
(in spherical harmonics Ym

!
(θ , φ), modes ! and m! 4 are ‘low’)

asymmetries in the X-ray drive are believed to be the leading,
but not the only, cause of performance degradation in indirect
drive. Improvements in implosion symmetry, X-ray conversion
and capsule hydrodynamic stability are thought to be within
reach and sufficient for a significant step forward in implosion
performance. The experimental campaign to achieve ignition on
the NIF is a collaborative effort between the institutional partners
Lawrence Livermore National Laboratory, University of Rochester,
Los Alamos National Laboratory and Sandia National Laboratories,
as well as other collaborators such as General Atomics, whichmakes
the fusion targets, and the Massachusetts Institute of Technology,
which develops nuclear diagnostics. A laser facility with capabilities
similar to the NIF, the Laser MegaJoule19, is being built at present
near Bordeaux (France) by the French Atomic Energy Agency
(Commissariat à l’Energie Atomique, CEA).

In addition to the indirect-drive effort at the NIF, the US laser-
fusion programme also relies on the direct-drive approach, mostly
developed on the OMEGA laser20 at the Laboratory for Laser
Energetics (LLE) of the University of Rochester and the Nike laser21
at the Naval Research Laboratory (NRL). Outside the US, important
research work in direct drive is conducted at Osaka University in
Japan, the Research Center for Laser Fusion in China, the University
of Bordeaux in France, the University of Rome in Italy, and smaller
efforts throughout Europe (including Russia) and Asia. In direct
drive, the spherical shell is directly irradiated by the laser incident
on the capsule outer surface. With respect to indirect drive, direct
drive exhibits higher conversion efficiency from laser energy to
shell kinetic energy, thereby allowing an implosion of greater DT
fuel mass. A disadvantage of direct drive is the reduced uniformity
of the illumination. Whereas the bath of X-rays in the hohlraum
is free of small-scale nonuniformities, laser beams exhibit speckle
patterns with large variations in laser intensity. In direct drive, this
leads to imprinting of small-scale laser-intensity patterns on the
target surface22–24. During the implosion, hydrodynamic instabilities
drive the rapid growth of such nonuniformities, leading to reduced
final compression and, in some cases, breakup of the shell while
in flight. Similarly to indirect drive, the implosion performance
of directly driven targets can also be degraded by low-mode
asymmetries. In direct drive, low-mode asymmetries are seeded
mostly by the finite number of overlapping incident laser beams and
the power imbalance between beams (so, in the direct-drive context,
‘low modes’ are ! and m ! 10). Another source of degradation
comes from the laser–plasma instabilities25 occurring when the
laser light interacts with the ablated plasma. These instabilities
can limit the absorption of the laser energy and accelerate plasma
electrons that can reach the DT fuel. Energetic (hot) electrons can
heat up the DT fuel layer while in flight (preheating26), thereby
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Superconductivity in metallic hydrogen 
 Wigner and Huntington 1935, Ashcroft 1968, …

Combining the excitation energies with the Green-Kubo
formula, they calculated the electrical conductivity of hydro-
gen based entirely on QMC; these calculations do not suffer
from self-interaction errors but suffer from other limitations,
notably the numerical difficulty in obtaining accurate prop-
erties of excited states because of the QMC sign problem, and
large finite cell size effects. However, good agreement with
the limited data from shock experiments measurements was
obtained (Weir, Mitchell, and Nellis, 1996).

C. Quantum phases of high-pressure hydrogen

Because of the light proton mass, dense hydrogen
may exhibit coherent quantum protonic phases at low
temperatures. Two interesting possibilities that have been
theoretically predicted are superconductivity and a low- or
zero-temperature quantum fluid.

1. Superconductivity

Ashcroft (1968) predicted that high-pressure hydrogen
would be a high-temperature superconductor. Within the
framework of the Bardeen-Cooper-Schrieffer (BCS) theory
(Bardeen, Cooper, and Schrieffer, 1957), three key arguments
support this prediction: (i) the light proton mass causes the
vibrational energy scale of the phonons to be remarkably high
(e.g., h!i=kB ! 2100 K near 500 GPa), where h!i is the
average phonon frequency, and thus is the prefactor in the
expression for the critical temperature Tc (see below);
(ii) since the electron-ion interaction is simply the bare
Coulomb attraction, electron-phonon coupling should be
strong; and (iii) at high pressures, the electronic density of
states at the Fermi surface should be large and the Coulomb
repulsion between electrons should be relatively low, typical
of high-density systems.

These essential ideas are highlighted in McMillan’s esti-
mate for Tc (McMillan, 1968), which including the correction
by Dynes (1972) can be written as

kBTc ¼
h!i
1:2

exp
!
# 1:04ð1þ !Þ

!#"'ð1þ 0:62!Þ

"
; (48)

where ! is the electron-phonon-induced interaction and "' is
the renormalized Coulomb repulsion. It is easy to see that if
h!i and ! are both high, while "' is low, then Tc will be high
as well.

Within standard ab initio methods, such as DFT, one can
calculate both h!i and ! (Savrasov and Savrasov, 1996), and
further "' can be safely approximated as 0.1 in the atomic
phase of high-pressure hydrogen (Richardson and Ashcroft,
1997). Note that this latter approximation does not work
within the molecular phase, as will be discussed below.
Note also that important corrections to Eq. (48) should be
included (Carbotte, 1990) for strong-coupling superconduc-
tors using the Allen-Dynes equation (Allen and Dynes, 1975);
see also a recent reparametrization for hydrogen (Szczesniak
and Jarosik, 2009).

Ever since the original prediction (Ashcroft, 1968) of
high-Tc superconductivity, there have been several such
efforts to predict Tc. However, since Tc is sensitive to the
presumed crystal structure (Whitmore, Carbotte, and Shukla,
1979), these have varied widely. We limit the discussion to
some of the most promising structures for the molecular and
atomic phases, as discussed in Secs. IV.A.1 and IV.A.6, the
Cmca, I41=amd, and R-3m structures; for a discussion
of the older and other predictions, see McMahon and
Ceperley (2011b).

Recently, McMahon and Ceperley (2011b, 2012) applied
these techniques to investigate superconductivity in the
atomic I41=amd and R-3m structures from 500 GPa
to 3.5 TPa. Calculated values of Tc from this work are
shown in Fig. 16. As can be seen, the Tc values are indeed
remarkably high. Near the molecular-to-atomic transition
(( 500 GPa), Tc ( 311 K. With increasing pressure, ! in-
creases, and together with the increase in phonon frequencies
causes Tc to increase to (360 K near 0.8–1 TPa. After the
first (predicted) atomic-atomic structural phase transforma-
tion (i.e., I41=amd ! R-3m), a large jump in ! occurs due to
the high phonon density of states at low frequencies in the
ensuing structure, which causes Tc to increase beyond 400 K.

In the (metallic) molecular phase, the situation becomes
especially interesting (but also more complex), as described
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FIG. 16 (color online). Values of Tc for atomic metallic hydrogen
calculated using various formulas, as discussed by McMahon
and Ceperley (2011b, 2012). Adapted from McMahon and
Ceperley, 2012.

FIG. 15 (color online). Electrical conductivity of hydrogen as a
function of temperature and density. From Holst, French, and
Redmer, 2011.
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Light ion mass => higher vibrational energy scale  ⟨ω⟩

Bare electron-ion interaction => stronger e-p interaction  λ

High density => relatively weaker e-e interaction μ*
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atomic phases, as discussed in Secs. IV.A.1 and IV.A.6, the
Cmca, I41=amd, and R-3m structures; for a discussion
of the older and other predictions, see McMahon and
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BCS theory

three phases, I, II, and III, meet.29 However, for the next two decades,
the highest pressures to which hydrogenwas subjectedwere limited to
about 300 GPa at low temperatures30,31 and only 160 GPa at room
temperature, owing to the diffusive and reactive nature of thematerial
in a dense state.32

It took almost 25 years from the discovery of phase III to the
observation of phases IV of hydrogen and deuterium.10,33 If phase III
is compressed at 300 K, it transforms into phase IV at around 230
GPa. Phase IV is thought to be entropy-driven and is arguably
(together with phase V, described below) the most unusual phase of
hydrogen. Even though the structure of phase IV is not known, on the
basis of Raman spectroscopy combined with theoretical structural
searches, it has been speculated that it is made up of alternating layers
consisting of six-atom rings and free-like molecules.10,34 The inter-
atomic distances in the ring are around 0.82 Å, leading to a vibrational
frequency of around 2700 cm−1, which is significantly reduced
compared with that under ambient conditions, while the atoms in the
free-likemolecules have a vibrational frequency close to 4200 cm−1. A
recent x-ray diffraction study27 has demonstrated the persistence of
hcp symmetry into phase IV, despite the observed fundamental
changes in optical properties.

If phase IV is further compressed at 300 K, it gradually trans-
forms into phase V,9 with the transformation lasting over a range of
50–60 GPa, starting at 275 GPa and effectively finishing at above 325
GPa. Interestingly, owing to the differences in quantum mechanical
properties between hydrogen and deuterium, phase V has not been
observed in the latter. Phase V has been speculated to be a partially
purely atomic state and a precursor to a fully metallic and atomic
state.9

III. DISSOCIATION ANDMETALLIZATION

Building on the earlier prediction by Wigner and Huntington,8

Abrikosov,35 and others,36,37 Ashcroft theorized in his seminal pa-
per38 that if the hydrogen molecule is dissociated and a purely atomic
alkali-metal-like solid is formed, this solid could exhibit room
temperature superconductivity. In fact, the first experiments to break
the hydrogen bond were attempted by Langmuir39 more than 100
years ago. They demonstrated that extreme conditions are indeed
needed to do so; for example, the H2 molecule dissociates only to a
minor extent at high temperatures (at 3000 K, the degree of disso-
ciation is around 10%).40 Another mechanism to break the hydrogen

bond is to employ another thermodynamic variable, namely, pres-
sure, exactly as Wigner and Huntington suggested some years after
the Langmuir experiments. However, the proposed high-pressure
route to an atomic metallic state has proved to be one of the great
experimental challenges in high-pressure physics, and, despite
technological advances, this theoretical prediction has yet to be ex-
perimentally confirmed. Hydrogen is expected to become metallic
and also nonmolecular, but the pressure at which this occurs is not
known precisely, nor is it known whether metallization and disso-
ciation occur simultaneously. However, the recent discovery and
study of phase V has provided the first experimental suggestion that
dissociation will be accompanied by metallization and that both
effects happen simultaneously and gradually as pressure is increased.9

The insulator-to-metal transition in liquid deuterium has re-
cently been claimed to have been observed in shock-wave experi-
ments.14,15 However, the observed metallic liquid state of deuterium
exists at relatively high temperatures (roughly around and above
1000K15), which is not the ground liquid state of the system predicted
theoretically. In this paper, we focus only on metallic states of hy-
drogen (and deuterium) and their properties at “low” temperatures,
namely, around and below 300 K.

Shortly after hydrogen was solidified in the diamond anvil cell, it
was studied by Raman spectroscopy to around 66 GPa.41 This study
found that the intramolecular vibrational frequency of hydrogen in-
creases with pressure up to 33 GPa, but then starts to decrease as more
pressure is applied. Since vibrational frequency is a measure of H–H
bonding strength, one can easily extrapolate that at some very high
pressure, the bond will be broken and molecular hydrogen can trans-
form into an alkali-like free-electron metal similar to Li or Na. As
pointed out by Sharma et al.,41 “the increase in frequency becomes less
and finally decreases at approximately 330 kbar, as the molecular bonds
are weakening. Eventually when molecular hydrogen transforms to the
predicted atomic (metallic) state, the molecular bonds will be broken.”

Although the sample environment of the diamond anvil cell is
restricting, there are several probes that can be used to evaluate the
degree of “metallicity.” However, all of these probes have their
limitations, which, taken together with the small linear size (2–3 μm)
of the hydrogen samples required to reach pressures above 350 GPa,
can easily lead to misinterpretation of the data, and in turn to er-
roneous claims of metallization.

The very first claim of hydrogen metallization was made in 1989
by a group from the Geophysical Laboratory at the Carnegie Institute,

FIG. 2.Artistic representation of the gaseous and solid states of hydrogen under different pressures at room temperature (300 K): (a) gaseousmolecular state; (b) phase I, with hcp
structure; (c) phase IV, with mixed molecular and atomic state; (d) purely atomic and metallic state.
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FIG. 4. The H4 rectangle, R = 3.2843a0. Coupled cluster meth-
ods incorrectly predict a cusp and energy minimum at ! = 90◦,
while the FermiNet approach agrees with exact FCI results.

errors arising from the basis set extrapolation used for the FCI
energies.

D. The nitrogen molecule

A problem more relevant to real chemistry that troubles
coupled cluster methods is the dissociation of the nitrogen
molecule. The triple bond is challenging to describe accu-
rately and the stretched N2 molecule has several low-lying
excited states, leading to errors when using single-reference
coupled cluster methods [52]. Experimental values for the
dissociation potential have been reconstructed from spectro-
scopic measurements using the Morse/long-range potential
[53]. These closely match calculations using the r12-MR-
ACPF method [54], which is highly accurate but scales
factorially. A comparison between unrestricted CCSD(T),
the FermiNet, and these high-accuracy methods is given in
Fig. 5. The total FermiNet error is significantly smaller than
UCCSD(T), and in the region of largest UCCSD(T) error the
FermiNet reaches accuracy comparable to r12-MR-ACPF but
scales much more favorably with system size. Increasing the
number of determinants in the FermiNet improves perfor-
mance up to a point but not beyond 32 determinants, again
suggesting that the bottleneck to performance is not size-
consistency. While coupled cluster could in theory be made
more accurate by extending to full triples or quadruples, or us-
ing multireference methods, CCSD(T) is generally considered
the largest coupled cluster approximation that can reasonably
scale beyond small molecules. This shows that, without any
specific tuning to the system of interest, the FermiNet is a
clear improvement over single-reference coupled cluster for
modeling a strongly correlated real-world chemical system.

E. The hydrogen chain

Finally, we investigated the performance of the FermiNet
on the evenly spaced linear hydrogen chain. The hydrogen
chain is of great interest as a system that bridges model
Hamiltonians and real material systems and may undergo an

FIG. 5. The dissociation curve for the nitrogen triple-bond. The
difference from experimental data [53] is given in the main panel.
In the region of largest UCCSD(T) error, the FermiNet prediction is
comparable to highly accurate r12-MR-ACPF results [54].

insulator-to-metal transition as the separation of the atoms is
decreased. Consequently, results obtained using a wide range
of many-electron methods have been rigorously evaluated and
compared [55]. We compare the performance of the FermiNet
against many of these methods in Fig. 6. Of the two projector
QMC methods studied by Motta et al., AFQMC gave slightly
better results than lattice regularized DMC and so we omit the
latter for clarity. Without changing the network architecture
or hyperparameters, we are again able to outperform coupled

FIG. 6. The H10 chain. All energies except the FermiNet are
taken from Motta et al. (2017) [55]. The absolute energies (inset)
cannot be distinguished by eye. The difference from highly accurate
MRCI+Q+F12 results are shown in the main panel, where the
shaded region indicates an estimate of the basis-set extrapolation er-
ror. The errors in the coupled cluster and conventional VMC energies
are large at medium atomic separations but the FermiNet remains
comparable to AFQMC at all separations. See also Appendix E for
data on larger separations.

033429-9

DeepMind, Pfau et al, PRR 2020 
 Simons collaboration, Motta el al, PRX 2017

Hydrogen chain
Hydrogen chain is one of the simplest models in condensed matter
research. Despite its simplicity, thehydrogen chain is a challenging and
interesting system, serving as a benchmark system for electronic
structure methods and featuring intriguing correlated phenomena25.
The calculated energy of the periodic H10 chain as a function of the
bond length is shown in Fig. 2a. The results from lattice-regularized
diffusion Monte Carlo (LR-DMC) and traditional VMC are also plotted
for comparison25. We can see that our results nearly coincide with the
LR-DMC results and significantly outperform traditional VMC (see
Supplementary Table 3). In Fig. 2b, the energy of hydrogen chains of
different atom numbers are calculated for extrapolation to the ther-
modynamic limit (TDL). The shaded bar in Fig. 2b illustrates the
extrapolated energy of the periodic hydrogen chain at TDL from
auxiliary field quantum Monte Carlo (AFQMC), which is considered as
the current state-of-the-art along with LR-DMC. Our TDL result is
comparable with both AFQMC and LR-DMC (see Supplementary
Table 4).

Graphene
Graphene is arguably the most famous two-dimensional system
(Fig. 2c) receiving broad attention in the past two decades for its
mechanical, electronic, and chemical applications26. Here we carry out
simulations to estimate its cohesive energy, which measures the
strength of C-C chemical bonding and long-range dispersion interac-
tions. The calculations are performed on a 2 × 2 supercell of graphene
using twist average boundary condition (TABC)27 in conjunction with
structure factor S(k) correction28 (see Supplementary Fig. 3) to reduce
the finite-size error. The calculated results are plotted in Fig. 2d along
with the experimental value29, and it shows thatour neural network can
dealwith graphene verywell, producing a cohesive energy of graphene
within 0.1 eV/atom to the experimental reference (see Supplementary
Table 6). We also plotted the results with periodic boundary condi-
tions (PBC), namely the Γ point-only result, which deviates from the
experiment data by 1.25 eV/atom.

Lithium hydride crystal
For a three-dimensional system, we consider the LiH crystal with a
rock-salt structure (Fig. 2e), another benchmark system for accurate ab
initio methods6,30,31. Despite consisting of only simple elements, LiH
represents typical ionic and covalent bonds upon changing the lattice
constants. Using our neural network, we first simulate the equation of
the state of LiH on a 2 × 2 × 2 supercell, as shown in Fig. 2f. In addition,
we employ a standard finite-size correction based on Hartree–Fock
calculations of a large supercell (see Supplementary Fig. 5). In Fig. 2fwe
also show the Birch–Murnaghan fitting to the equation of state, based
on which we can obtain thermodynamic quantities such as the cohe-
sive energy, the bulk modulus, and the equilibrium lattice constant of
LiH. As shown in the inset, our results on the thermodynamic quan-
tities agree very well with experimental data30 (see Supplementary
Table 8, 9).

For further validation, we have also computed directly the
3 × 3 × 3 supercell of LiH at its equilibrium length of 4.061Å, which
contains 108 electrons. To the best of our knowledge, this is the largest
electronic system computed using a high-quality neural network
ansatz. The 3 × 3 × 3 supercell calculation predicts the total energy per
unit cell of LiH is −8.160Hartree and the cohesive energy per unit cell is
−4.770 eV after thefinite-size correction (see SupplementaryTable 10),
which is also very close to the experimental value −4.759 eV30.

Homogeneous electron gas
In addition to the solids containing nuclei, our computational frame-
work can also apply straightforwardly to model systems such as
homogeneous electron gas (HEG). HEG has been studied for a long
time to understand the fundamental behavior ofmetals and electronic
phase transitions32. Several seminal ab initio works have reported the
energy of HEG at different densities21,22,32–35. Recently two other works
have extended neural network ansatz to study HEG21,22. Although our
computational framework is independently designed for solids, the
network structure between this work and refs. 21, 22 employ similar
ideas. Different physics-inspired envelope functions and periodic

a

b

c

d

e

f

g

h

Fig. 2 | Calculated results of neural network. Our results are all labeled as Net.
Statistical errors are negligible for the presented data. a H10 dissociation curve is
plotted. b energy of different hydrogen chain sizes N, the bond length of the
hydrogen chain is fixed at 1.8 Bohr. LR-DMC and VMC both use the cc-pVTZ basis
set, and the one-body Jastrow function uses orbitals from LDA calculations. AFQMC
is pushed to complete the basis limit. All the comparison results are taken from ref.
25. c Structure of graphene. d the cohesive energy per atom of Γ point and finite-
size error corrected result is plotted. Experiment cohesive energy is from ref. 29.
Graphene is calculated at its equilibrium length 1.421Å. e Structure of rock-salt

lithium hydride crystal. f Equation of state of LiH crystal is plotted, fitted
Birch–Murnaghanparameters and experimental data are also given. HF corrections
are calculated using cc-pVDZ basis, and EHF

1 is approximated by EHF
N=8. The arrows

denote the corresponding HF corrections. g Plot of homogeneous electron gas
system. h Correlation error of 54-electrons HEG systems at different rs. Correlation
error is defined as [1 − (E − EHF)/(Eref − EHF)] × 100%, and EHF is taken from ref. 33.
DCD, BF-VMC, and TC-FCIQMC results are displayed for comparison, and BF-DMC
data were used as reference33,34.

Article https://doi.org/10.1038/s41467-022-35627-1
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in the evolved configuration changed its sign, that state was discarded. Otherwise,
it could be held (this hypothesis was called “fixed nodes”). The sample obtained in
this way represented a faithful sample of the ground state, and could therefore be
used to calculate the average values representing the system properties. In fact, one
was excluding configurations corresponding to zero value of the evolved quantum
state which corresponded to an approximately zero probability. This source of error
could be evaluated and corrected with a further procedure.

These methods, known as “fixed-node” and “released-node”, as well as their
related codes, were developed by Ceperley and discussed with Alder between
September 1978 and May 1979. During the spring of 1979, the programme started
running on a computer and gave its first results. The paper which summed them up
was published the following year; in the final lines, beside the credits, usual inAlder’s
papers, given to Mary Ann Mansigh for her assistance in the computation stage, the
authors explicitly acknowledged their debt to Malvin Kalos, «for numerous useful
discussions», but mostly «for inspiring the present work».

The paper by Ceperley and Alder showed the huge potentials of the Quantum
Monte Carlo method and gained immediate resonance, above all thanks to the impact
it had upon the community of physicists, whowere working on the density functional
theory (DFT) to compute the electronic configuration. From then on, it remained a
milestone: in 2003, in a list of the most significant papers published in Physical
Review Letters, written on the occasion of the fiftieth anniversary of this journal, this
paper was in third place as regards the number of citations.

Provided one gets a great deal of machine time, Alder and Ceperley stated, one
can achieve a precise solution of the problem of the ground state, not only for an
electron system, but also for any fermion system. It is therefore natural that the next
step was the application of this method to a more realistic problem than the electron
gas model. «After I finished the electron gas calculations», Ceperley recalls, «with
Berni’s urging, I began to work on many-body hydrogen in 1980. An electron gas
is not directly realized in any material, it’s an idealized model, while hydrogen is
a real material. With the hydrogen calculation we wanted to address experimental
predictions, not just compare with theory. Our hydrogen calculation was the first
many-electron calculation of a material to lead to important predictions».

Interest in the properties of high-pressure hydrogen was generally quite strong at
Livermore, because of its relevance for the calculations of thermonuclear explosives
and for the first studies on inertial-confinement fusion. Alder had worked on this
kind of problem since his arrival at the laboratory.

The elements needed to face this challenge were ready. There were a few compli-
cations to be solved, related to the fact that the system under study was an aggregate
of two fermionic components, one of which (i.e., protons) was about two thousand
times more massive than the other. This situation featured a double scale of the
pseudo-dynamics used in the method followed for the calculation. Protons “move”
much more slowly than electrons, and since the elementary integration step is given
by the electrons’ “motion”, one has to follow the system for thousands of steps before
protons move significantly. As a consequence, there was a really heavy demand on
computing time: «You may need to have millions of time steps before the proton’s

158 7 Quantum Systems and Critical Phenomena

Berni Alder and David Ceperley in a relaxed moment during a conference
on many-body physics in Mexico, January 1981 (D. Ceperley)

The 1980 paper merged the results obtained by Ceperley in the approximate
simulations of the previous year, as well as the huge amount of work he had done
in the year he had spent at Berkeley. In this period, thanks to direct interaction with
Mary Ann Mansigh, Ceperley had become an expert in creating fine-tuned codes
which could run on Cray-1 to minimize errors and calculation time, and he had
developed and implemented in effective algorithms the ideas for a proper treatment
of the peculiarities of the calculation of the ground state of a fermion system, i.e.,
the sign problem, arising from the anti-symmetry of the wave functions.

This was a version of Diffusion Monte Carlo, in which one starts with a trial
wave function (either positive or negative) which one would like to sample and
evolve (i.e., asymptotically project upon the ground state). The procedure consisted
in Monte Carlo sampling an ensemble of configurations from their probability, given
by the initial state, and letting them evolve. If the initial wave function, calculated

FCC lattice ground state energy 
Ceperley and Alder, Physica 1981

Mexico City, 1981



: Restricted path integral Monte CarloT ≳ TF

Limited to high temperature low density region by the Fermion sign problem

Stat-Mech problem of ring-polymers

Path integral picture of molecular 
hydrogen at low density 

 
Pink and blue 

paths are up 
and down 
electrons. 

 
Smaller pink 

dots are 
protons, 40 
times 
smaller. 

Why? 
Mp/Me=1836 
 
T=5000K 
 
 
 

Pierleoni et al, PRL 1994

Z = ∬ dXdR ⟨X, R |e−Ĥ/kBT |X, R⟩
Simplified H Phase Diagram 



: a classical-quantum coupled system0 < T ≪ TF

: classical proton configuration  X
: Born-Oppenheimer energy surfaceE(X)

Solve  by DFT/VMC/QMC/…E(X)

Needs a fast and accurate many-body solver 
as it is called repeatedly in the inner loop 

E(X) = min
ψX

⟨ψX | Ĥ |ψX⟩
⟨ψX |ψX⟩

Quantum

Tricky to sample unbiasedly with 
inaccurate or noisy energy estimates

min {1, exp [ E(X) − E(X′ )
kBT ]}

Pierleoni et al, PRL 2004, Attaccalite et al, PRL 2008

Sample  with classical Monte 
Carlo/Molecular dynamics 

X

Classical



: Debate on the liquid-liquid transition0 < T ≪ TF

Mazzola et al 
Nat. Comm. 2014

Where is the transition point ?

Algorithmic uncertainties coupled with finite size effect/sampling ergodicity/… 



May or may not address the actual difficulty

Machine learning potential 
fit  with a ML model to DFT/VMC/QMC dataE(X)

Can reach larger system size and more samples
However, accuracy is still limited by (or worse than) DFT/VMC/QMC

input and the output layer are one or more ‘‘hidden layers,’’
each with a certain number of nodes. All nodes in each
layer are connected to the nodes in the adjacent layers by
real-valued weight parameters, which initially are chosen
randomly. For a given set of coordinates the output of the
NN is then given by the expression
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Here, wkij is the weight parameter connecting node j in
layer k with node i in layer k# 1, and wk0j is a bias weight
that is used as an adjustable offset for the activation func-
tions fka. Activation functions are typically nonlinear func-
tions that introduce the capability to fit nonlinear functions
into the NN [5,6]. In the present work the hyperbolic
tangent has been used as an activation function in the
hidden layers, and a linear function for the output layer.
Since the weight parameters initially are chosen randomly,
the output of the NN does not correspond to the correct
total energy, but since the latter is known for a set of points
from DFT calculations, an error function can be con-
structed and minimized to optimize the weight parameters
in an iterative way. The optimized set of weights obtained
can then be used to calculate the potential energy for a new
set of coordinates.

This NN structure has several disadvantages that hinder
its application to high-dimensional PESs. Since all weights
are generally different, the order in which the coordinates
of a configuration are fed into the NN is not arbitrary, and
interchanging the coordinates of two atoms will change the
total energy even if the two atoms are of the same type.
Another limitation related to the fixed structure of the
network is the fact that a NN optimized for a certain
number of degrees of freedom, i.e., number of atoms,
cannot be used to predict energies for a different system
size, since the optimized weights are valid only for a fixed
number of input nodes. Thus, in order to represent PESs
useful for all system sizes, a new NN topology has to be
introduced.

The main idea is to represent the total energy E of the
system as a sum of atomic contributions Ei, an approach
that is typically also used in empirical potentials

 E !
X
i
Ei: (2)

The general structure of this new network topology is
shown schematically in Fig. 2 for a system consisting of
three atoms and all associated degrees of freedom. The
fR"i g represent the Cartesian coordinates " of atom i. In a
first step these coordinates are transformed into a set of
symmetry function values fG!

i g for each atom i. These
symmetry function values describe the energetically rele-
vant local environment of each atom and are subsequently
used as input for the NN. They depend on the positions of
all atoms in the system, as indicated by the dotted arrows.

For each atom in the system there is now a ‘‘standard’’ NN
(cf. Fig. 1), which we call subnet Si and which after the
weight optimization yields the energy contribution Ei to
the total energy E. Summing these energy contributions
then finally yields the total energy of the system. To ensure
the invariance of the total energy with respect to the
interchanging of two atoms the structure of all subnets
and the values of the weight parameters are constrained
to be identical in each Si.

The crucial point is the introduction of a new type of
symmetry function. While other types of symmetry func-
tions have been used before [5], in our approach the
symmetry function values of each atom reflect the local
environment that determines its energy; i.e., two structures
with different energies must yield different sets of symme-
try function values, while identical local environments
must give rise to the same set. Furthermore, the symmetry
function values must be invariant with respect to a rotation
or translation of the system. Finally, the number of sym-
metry functions must be independent of the coordination of
the atom, because the coordination number of an atom can
change in a MD simulation, while the structure of the
subnets must not be changed if the NN is to remain
applicable generally.

Symmetry functions can be constructed from atomic
positions in a way similar to empirical potentials. But
while in the latter case these terms are used to construct
directly the total energy of the system, in the case of the
NN they are used only to describe the structure. The
assignment of the energies to the structures is done in a
second step by the NN.

In order to define the energetically relevant local envi-
ronment we employ a cutoff function fc of the interatomic
distance Rij, which has the form

 fc$Rij% !
8<
:

0:5&
h
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%
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&
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i
for Rij ' Rc;

0 for Rij > Rc:
(3)

 

FIG. 2. Structure of the neural network as applied in this Letter
to a system containing three atoms. The Cartesian coordinates of
atom i are given by R"i . These are transformed to a set of !
symmetry function values G!

i describing the local geometric
environment of atom i, which depends on the positions of all
atoms in the system as indicated by the dotted arrows. The
symmetry function values of atom i then enter the subnet Si
yielding the energy contribution Ei of atom i to the total energy
of the system E. The structure of the subnets corresponds to the
neural network shown in Fig. 1.

PRL 98, 146401 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
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: Debate on the liquid-liquid transition0 < T ≪ TF

Is it first or second order ?

E12 | Nature | Vol 600 | 16 December 2021

Matters arising

On the liquid–liquid phase transition of 
dense hydrogen

Valentin V. Karasiev1ಞᅒ, Joshua Hinz1, S. X. Hu1 & S. B. Trickey2

ARISING FROM B. Cheng et al. Nature https://doi.org/10.1038/s41586-020-2677-y (2020)

Until recently, the consensus theoretical and computational interpre-
tation of the liquid–liquid phase transition (LLPT) of high-pressure 
hydrogen—which has proved challenging to determine—has been that 
it is first order1–5. Cheng et al.6 developed a machine learning potential 
(MLP) that, in larger-than-previous molecular dynamics (MD) simula-
tions, gives a continuous transition instead. We show that the MLP does 
not reproduce our still larger density functional theory MD (DFT-MD) 
calculations as it should. As the MLP is not a faithful surrogate for the 
DFT-MD, the prediction of a supercritical atomic liquid by Cheng et al.6 
is unfounded.

Previous DFT-MD calculations differ but, for example, our prior 
results on 700 ≤ T ≤ 3,000 K are a first-order transition curve along 
320 ≥ P ≥ 70 GPa (ref. 2). Driven by molecular H2 dissociation, transi-
tion signatures include density jumps, qualitative sharp changes in 
ionic pair correlation functions (PCFs), and abrupt dc conductivity 
and reflectivity changes. Coupled-electron ion Monte Carlo (CEIMC)5 
results concur at least roughly. Both DFT-MD and CEIMC results are in 
reasonable agreement with experiment.

The continuous transformation found in ref. 6 has an atomic liquid 
that is supercritical above P ≈ 350 GPa, T ≈ 400 K. The authors attributed 
the marked differences compared with DFT-MD to two causes that the 
MLP is expected to address. One is finite-size effects that foster the 
formation of defective solids, with the common use of NVT dynam-
ics tending to increase defect concentration compared to that from 
the NPT ensemble. The other is much shorter simulation times in the 
DFT-MD and CEIMC calculations than are possible for MLP-MD runs.

Those diagnoses implicate other issues. Most of the MLP training 
was on n ≤ 108 atoms (1,833 512-atom configurations were used out of 
38,716 total (supplementary information of ref. 6)). This raises ques-
tions of large-system transferability. Conceptually, the issue is whether 
a single MLP can represent two chemically distinct regimes (molecular, 
atomic) correctly. An unambiguous test is to do longer DFT-MD runs on 
significantly larger systems. If the MLP-MD represents the underlying 
theory (ab initio MD) faithfully and if the diagnosis from the MLP-MD of 
problems in the earlier DFT-MD results is correct, results from the two 
simulation types should match. To test this, we have carried out much 
larger, longer DFT-MD calculations. The results are consistent with 
earlier DFT-MD calculations, and hence qualitatively different from 
the MLP-MD results. Neither the large-system nor longer-run diagnosis 
given by the MLP-MD is sustained.

Our NPT MD simulations were driven by DFT forces with PBE 
exchange correlation (XC)7. (ref. 6 used PBE to train the MLP). We used 
between 256 and 2,048 atoms per cell. Brillouin zone sampling used 

the Baldereschi mean value point for the simple cubic crystal structure 

( )= , ,1
4

1
4

1
4k 8. Vasp9,10 was used for 1,024- and 2,048-atom systems, 

while the i-PI interface11 with QuantumEspresso12 was used for 256- and 
512-atom systems. The consistency of results between the two confirm 
that the MD code and technical choices (for example, the thermostat 
or the barostat) are inconsequential.

Our new large-system DFT-MD results agree with previous DFT-MD 
and CEIMC simulations2,3,13: there is a sharp molecular-to-atomic transi-
tion. Figure 1 shows the qualitatively different character compared to 
the MLP-MD prediction. Density profiles ρH(T) along isobars are given 
in Fig. 1a. At 350 and 300 GPa, the large-scale DFT-MD ρH(T) values 
jump ≈ 1% near T = 650 K. At 300 GPa, that temperature is above the 
experimental melting temperature Tm (ref. 14). By contrast, the 300 GPa 
MLP-MD isobar has a steep density increase near T = 500 K (in the stable 
solid phase)6 but passes smoothly through both the melt line and the 
LLPT. Except for a systematic offset, the MLP-MD ρH(T) matches the 
DFT-MD ρH(T) in the atomic fluid region.

Figure 1 also shows clearly that there are no important finite-size 
effects on the calculated LLPT. The DFT-MD density profiles on each 
of the isobars (P = 250, 200, 150 and 100 GPa) are almost identical, 
irrespective of atom count (256–2,048 atoms). The MLP-MD profiles are 
qualitatively different. We find the transition character to be insensitive 
to system size while the transition temperature TLLPT is affected only 
modestly. For example, at P = 200 GPa (for which TLLPT is distinctly away 
from the melting line) the change from 256 to 2,048 atoms decreases 
TLLPT by less than 100 K; ρH values jump ≈ 3% in DFT-MD simulations 
for all system sizes. Computational resources limited us to 512 atoms 
for 300 and 350 GPa but that does not vitiate the clear finding on the 
other four isobars: the MLP-DFT does not reproduce the underlying 
DFT-MD. Note that a 512-atom system seems to be the smallest that 
can control finite-size effects. That agrees with ref. 15, which showed 
that four well-defined molecular shells in the PCF of a 3,456-atom sys-
tem were captured well in a 500-atom supercell calculation.

The molar heat capacity from DFT-MD as a function of T is shown 
in Fig. 1b. All of the isobars exhibit divergent heat capacity character 
across the transition. Evidently, finite-size effects on TLLPT are small and 
do not modify that character. To check the possibility that finite-size 
effects trapped our simulations in defective solid configurations, we 
calculated the mean-squared displacement (MSD) of the 512-atom 
systems as a function of time along the 150 and 200 GPa isobars for 
1,100 ≤ T ≤ 1,400 K and 900 ≤ T ≤ 1,200 K respectively. The MSD grows 
near-linearly with time, as is characteristic of a liquid but not a solid (see 
the Supplementary Information for details and figures).
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Δ-machine learning for dense hydrogen 

Tirelli et al, PRB 2022 
Niu et al, PRL 2023 

Δ is expected to be small & smooth  
learn Δ from expensive & accurate 

QMC data  

Ideally, the results will be independent of the reference

E = EDFT + Δ



We would like to try something different
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Turning a sampling problem to an optimization problem 
better leverages the deep learning engine:

Deep variational free energy approach

energy 

Deep generative models unlocks the power of   
the Gibbs–Bogolyubov-Feynman variational principle

F[p] = 𝔼
X∼p(X)

[kBT ln p(X) + E(X)]

A deep variational free energy approach

Li and LW, PRL ‘18
Wu, LW, Zhang, PRL ‘19

≥ − kBT ln Z

entropy 

Additive statistical noises in  do not deteriorate 
stochastic optimization

E(X)



F[p] = 𝔼
X∼p(X)

[kBT ln p(X) + E(X)] E[ψ] = 𝔼
R∼|ψ(R)|2 [ Ĥψ(R)

ψ(R) ]
: ANY neural network that 

respects physical symmetries
ψ: probabilistic models with 

tractable normalization
p

McMillan 1965, Carleo & Troyer Science 2017, Pfau et al, FermiNet, … Gibbs–Bogolyubov-Feynman, Li and LW, PRL ’18, Wu, LW, Zhang, PRL ’19, …

Variational free energy T > 0 Variational ground state energy T = 0

Two kinds of variational Monte Carlo

See talks by Jannes Nys and Markus Heyl



F[p] = 𝔼
X∼p(X)

[E(X) − Eθ(X)] − kBT ln Zθ

A deep variational free energy approach

Why does normalization matter?

p(X) =
e−Eθ(X)/kBT

Zθ

≥ − kBT ln Z

“Boltzmann machine” 
or, energy-based model

Intractable!

Suppose

We have



energy 

Deep generative models unlocks the power of   
the Gibbs–Bogolyubov-Feynman variational principle

F[p] = 𝔼
X∼p(X)

[kBT ln p(X) + E(X)]

A deep variational free energy approach

Direct samplingTractable normalization 

Deep variational free energy approach

Li and LW, PRL ‘18
Wu, LW, Zhang, PRL ‘19

≥ − kBT ln Z
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360 29 — Monte Carlo Methods

where Z =
∫
dxdy P ∗(x) is the volume of the lake. You are provided with a

boat, a satellite navigation system, and a plumbline. Using the navigator, you
can take your boat to any desired location x on the map; using the plumbline
you can measure P ∗(x) at that point. You can also measure the plankton
concentration there.

Problem 1 is to draw 1 cm3 water samples at random from the lake, in
such a way that each sample is equally likely to come from any point within
the lake. Problem 2 is to find the average plankton concentration.

These are difficult problems to solve because at the outset we know nothing
about the depth P ∗(x). Perhaps much of the volume of the lake is contained

Figure 29.3. A slice through a lake
that includes some canyons.

in narrow, deep underwater canyons (figure 29.3), in which case, to correctly
sample from the lake and correctly estimate Φ our method must implicitly
discover the canyons and find their volume relative to the rest of the lake.
Difficult problems, yes; nevertheless, we’ll see that clever Monte Carlo methods
can solve them.

Uniform sampling

Having accepted that we cannot exhaustively visit every location x in the
state space, we might consider trying to solve the second problem (estimating
the expectation of a function φ(x)) by drawing random samples {x(r)}R

r=1

uniformly from the state space and evaluating P ∗(x) at those points. Then
we could introduce a normalizing constant ZR, defined by

ZR =
R∑

r=1

P ∗(x(r)), (29.16)

and estimate Φ =
∫

dNx φ(x)P (x) by

Φ̂ =
R∑

r=1

φ(x(r))
P ∗(x(r))

ZR
. (29.17)

Is anything wrong with this strategy? Well, it depends on the functions φ(x)
and P ∗(x). Let us assume that φ(x) is a benign, smoothly varying function
and concentrate on the nature of P ∗(x). As we learnt in Chapter 4, a high-
dimensional distribution is often concentrated in a small region of the state
space known as its typical set T , whose volume is given by |T | ! 2H(X), where
H(X) is the entropy of the probability distribution P (x). If almost all the
probability mass is located in the typical set and φ(x) is a benign function,
the value of Φ =

∫
dNx φ(x)P (x) will be principally determined by the values

that φ(x) takes on in the typical set. So uniform sampling will only stand
a chance of giving a good estimate of Φ if we make the number of samples
R sufficiently large that we are likely to hit the typical set at least once or
twice. So, how many samples are required? Let us take the case of the Ising
model again. (Strictly, the Ising model may not be a good example, since it
doesn’t necessarily have a typical set, as defined in Chapter 4; the definition
of a typical set was that all states had log probability close to the entropy,
which for an Ising model would mean that the energy is very close to the
mean energy; but in the vicinity of phase transitions, the variance of energy,
also known as the heat capacity, may diverge, which means that the energy
of a random state is not necessarily expected to be very close to the mean
energy.) The total size of the state space is 2N states, and the typical set has
size 2H . So each sample has a chance of 2H/2N of falling in the typical set.

Children randomly throwing pebbles into a square, as in Fig. 1.1, illus-
trate a very simple direct-sampling Monte Carlo algorithm that can be
adapted to a wide range of problems in science and engineering, most
of them quite difficult, some of them discussed in this book. The basic
principles of Monte Carlo computing are nowhere clearer than where it
all started: on the beach, computing .

Fig. 1.1 Children computing the number on the Monte Carlo beach.

Mackay, Information Theory, 
Inference, and Learning Algorithms

Krauth, Statistical Mechanics: 
Algorithms and Computations

entropy 

1 = ∫ dX p(X) 𝔼
X∼p(X)



p(X) = p(x1)p(x2 |x1)p(x3 |x1, x2)⋯

Deep generative models

p(X) = 𝒩(Z) det ( ∂Z
∂X )

“… the murderer is ___”
p(_ | . . . )

Autoregressive model Normalizing flow

Implementation: transformer with causal mask… Implementation: invertible Resnet (backflow)…

Z

X

N (Z)

p
(X

)



Known: (noisy) energy function  
Unknown: samples

Variational free energy

Two sides of the same coin

min
θ

𝕂𝕃(pθ ∥ e−E/kBT)

Known: samples 
Unknown: generating distribution

Maximum likelihood estimation

min
θ

𝕂𝕃(data ∥ pθ)

“learn from data”“learn from Hamiltonian”



Pros and cons 

e−E/kBT

Mode seeking

min
θ

𝕂𝕃(pθ ∥ e−E/kBT)

Mode covering

min
θ

𝕂𝕃(data ∥ pθ)

data

Goodfellow et al, Deep Learning

pθ pθ

Failure mode: local minima Failure mode: hallucination



filling the gap vs pushing the boundary of human knowledge

GPT A human expert
x“Jack of all trades, master of none” — 2302.10724  



Deep variational free energy for dense hydrogen

X

R

p(X)

ψX(R)
F

Geminal 
Network

Normalizing 
Flow

free energy

protons

electrons wavefunction

probability

Xie, Li, Wang, Zhang, LW, 2209.06095

F = 𝔼
X∼p(X) [kBT ln p(X) + 𝔼

R∼|ψX(R)|2 [ ĤψX(R)
ψX(R) ]]



p(X) =
1
L3

det ( ∂Z
∂X )

Normalizing flow for proton distribution

: proton coordinates  X : uniform random variables Z

: an invertible equivariant neural netX ↔ Z

X + NN(X) = Z



Physics intuition for normalizing flow
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𝒩(Z)p(X)
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Lattice field theoryMolecular simulation

Although no reference for this free-energy dif-
ference in the given simulationmodel is known,
the temperature profile admits basic consistency
checks: The x-ray structure is identified as the
most stable structure at temperatures below
330 K. The internal energy and entropy terms of
the free-energy difference (Eq. 1) are both positive
across all temperatures. Therefore, the free-energy
decreases at high temperatures as the entropic

stabilization becomes stronger. A higher configu-
rational entropy of the “O” state is consistent with
its more open loop structure (compare Fig. 5, G
and H) and the higher degree of fluctuations in
the “O” state observed by the analysis in (30).

Discussion and conclusion

Boltzmann generators can overcome rare event-
sampling problems in many-body systems by

generating independent samples from different
metastable states in one shot. We have demon-
strated this for dense and unstructured many-
body systems with up to 892 atoms (over 2600
dimensions) that are placed simultaneously, with
most samples having globally and locally valid
structures and potential energies in the range of
the equilibrium distribution. In contrast to other
generative neural networks, Boltzmann generators

Noé et al., Science 365, eaaw1147 (2019) 6 September 2019 7 of 11

Fig. 5. One-shot sampling of all-atom structures in different
conformations of the BPTI protein. (A) Boltzmann generator for
macromolecules: Backbone atoms are whitened using PCA; side-chain
atoms are described in normalized internal coordinates (crds). (B) BPTI
x-ray crystal structure (PDB: 5PTI). Cysteine disulfide bridges and
aromatic residues are shown for orientation. (C) One-shot Boltzmann
generator sample of all 892 atoms (2670 dimensions) of the BPTI
protein similar to the x-ray structure. (D) Potential energy distribution
from MD simulation (gray) and Boltzmann generator one-shot samples

(blue). (E) Distribution of bonds and angles compared between
MD simulation (black) and Boltzmann generator (blue).
(F) Representative snapshots of four clusters of structures
generated with the Boltzmann generator. Backbone root mean
square deviation from the x-ray structure is given below the
structure (in angstroms). Marked are the x-ray–like structure
“X” and the open structure “O.” (G and H) Magnification of the
most variable parts of the Boltzmann-generated samples from the
“X” and “O” states. Side chains are shown in atomistic resolution.
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Normalizing flow in physics



Geminal network

fX, f↑, f↓ = FermiNet(X, R↑, R↓)

ψX(R) = eJ det G

Gij =

N
2

× M M ×
N
2

f ↑
iμ ∀μ ∈ 1⋯M f↓

jν

∀ν
∈

1⋯
M

⋅ Wμν ⋅

Equivariant features

Jastrow J = ∑
i,μ

fX
iμbμ

Xie, Li, Wang, Zhang, LW, 2209.06095

Captures atomic, molecular,  
and superconducting state

Bouchaud et al, ’88  
Casula et al, ’03 

Lou et al, 2305.06989

Pfau et al, PRR '20
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Simplified H Phase Diagram 
Xie, Li, Wang, Zhang, LW, 2209.06095

Variational free energy of dense hydrogen
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• Our calculation shows even denser equation-of-state compared 
to previous results. The prediction can be systematically 
improved with lowering the variational free energy. 

• The predicted equation of state is relevant for planet modeling, 
where direct access to entropy is welcoming. 

• This is an “uninteresting” point in the phase diagram: a soup of 
H+, e-, and H. No phase transition or other fancy physics.

Discussions

before full metallization of H is reached171. The mag-
nitude of electrical conductivity, along with the planet’s 
magnetic field strength and luminosity, can be used to 
estimate the internal ohmic dissipation and provide 
constraints for structure and dynamical models172–177.

Jupiter’s magnetic field is the strongest in the Solar 
System (excluding that of the Sun), and its surface field 
strength is 4–20 G (REFS178,179). Recently, the Juno space-
craft revealed that Jupiter’s magnetic field has an intense 
isolated magnetic spot near the equator with a negative 
magnetic anomaly. In addition, an intense and relatively 
narrow band of positive flux near 45 degrees latitude in 
the northern hemisphere has been found, together with 
a rather smooth magnetic field in the southern hem-
isphere. Furthermore, the north–south asymmetry in 
Jupiter’s magnetic field structure could be explained by 
the existence of a diluted core179.

Saturn’s magnetic field, which has a surface field 
strength of 0.2–0.5 G (REFS180–182), is nearly perfectly 
symmetrical with respect to the spin- axis183. The char-
acter of Saturn’s magnetic field could be a result of He 
rain, which could create a stable (against convection) 
layer below/above the dynamo. A stable deep interior 
could also be a result of composition gradients and 
non- adiabatic interiors.

Understanding the processes that lead to magnetic- 
field generation and their outcomes requires good 
knowledge of the associated thermodynamics and 
the feedback on the magnetic field and vice versa. 
Present- day understanding of the dynamo process is 

still limited, and as a result, the magnetic fields can only 
be used to set some bounds on the material properties 
and heat transport inside the planets. This, however, may 
change in the future.

Challenges and outlook
Although the giant planets and the behaviour of ele-
ments at planetary conditions are not yet completely 
understood, we expect progress in the near future. 
Upcoming experiments and theoretical models are 
expected to provide a deeper understanding of phase 
transitions, mixtures and immiscibilities. We also fore-
see improvements in numerical calculations, given the 
increasing computation power and the development of 
new numerical techniques. In particular, we expect that 
future experiments will resolve the disagreement on 
the metallization conditions of H and obtain consistent 
results from the various methods. In addition, it would 
be desirable to make experiments on H–He mixtures, 
to investigate the demixing of He in H. Another topic 
that is expected to blossom in the future is supercon-
ductivity. Although superconductivity has yet to be 
found in pure H, the hypothesis of superconductive H 
has directed the search for superconductivity in H- rich 
materials184,185.

In this Review, we have focused on Jupiter and 
Saturn and have not discussed the ice giants Uranus  
and Neptune. The ice planets are key to understand-
ing planet formation and for the characterization of 
intermediate planets around other stars. Because these 
planets are thought to consist of volatiles such as water, 
methane and ammonia, experimental data focusing on 
these materials would be valuable. In addition, the influ-
ence of H–He on the mixtures of these materials and the 
role of carbon is yet to be determined.

We also expect progress in understanding the inter-
nal structures of Jupiter and Saturn, given the ongoing 
efforts in processing and interpretation of recent data 
from the Juno and Cassini missions, and the devel-
opment of more comprehensive structure models. In 
addition, upcoming and future space missions will play 
a key role in better constraining the interiors of the gas 
giants. The planned ESA JUICE mission will reveal 
further information on Jupiter, and a potential Saturn 
probe mission will provide constraints on Saturn’s 
atmospheric composition and the immiscibility of He 
in H and the process of phase separation. Nevertheless, 
it is now realized that the interiors of giant planets are 
far more complex than previously thought. To under-
stand them better, improvements in the H and H–He 
EOS are required but insufficient. We suggest that 
future studies should concentrate on phase transitions 
of pure elements and mixtures as well as their physi-
cal properties such as thermal diffusivity, electrical 
conductivity and opacity. These properties can then 
be used to further constrain models for giant planet 
formation, evolution and structure. The link between 
planetary interiors and high- pressure physics is clear, 
and we believe that the future holds great promise in 
this direction.

Published online 1 September 2020
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Fig. 5 | Sketches of the internal structures of Jupiter and Saturn. Typical pressures and 
temperatures at each layer are indicated. The simplest structure models have well-defined 
layers and distinct cores (left of each schematic), but more recent models have composition 
gradients and cores that are less well defined. Figure adapted from REF.169,Oxford Research 
Encyclopedias: Planetary Science edited by Read (2008) FIG. 5 from “The Interiors of Jupiter 
and Saturn” by Helled. By permission of Oxford University Press.

NATURE REVIEWS | PHYSICS

REV IEWS

  VOLUME 2 | OCTOBER 2020 | 571



p(X) =
1
L3

det ( ∂Z
∂X )

Inject physics knowledge into the flow
Uninformative uniform base distribution

F = 𝔼
X∼p(X)

kBT ln p(X) + 𝔼
R∼|ψX(R)|2 [ ĤψX(R)

ψX(R) ]
Absolute variational free energy for normalized variational density 



p(X) =
e−EML(Z)/kBT

𝒵ML
det ( ∂Z

∂X )

Inject physics knowledge into the flow

F = 𝔼
X∼p(X) [ 𝔼

R∼|ψX(R)|2 [ ĤψX(R)
ψX(R) ] − EML(Z) + kBT ln det ( ∂Z

∂X ) ] − kBT ln 𝒵ML

A more informative base distribution, e.g. a machine learning potential

We are optimizing free energy difference to the machine learning model



Correcting baseline bias in Δ-MLCorrecting base bias with variational optimization
Tirelli et al, PRB 2022



Outlook: quantum protons and finite electronic temperatures

Xie et al, 2105.08644 & 2201.03156

ρ = ∑
n

pn |Ψn⟩⟨Ψn |

Classical probability  pn
Quantum state basis |Ψn⟩

Normalizing flowmasked causal transformer

particle 
coordinates

quasiparticle 
coordinates 

F[ρ] = kBT Tr(ρ ln ρ) + Tr(Hρ)min

Variational density matrix with neural canonical transformations 



“Using AI to accelerate scientific discovery”  talk by Demis Hassabis in 2021“Using AI to accelerate scientific discovery” Demis Hassabis, co-founder and CEO of DeepMind, 2021



Linfeng ZhangHao Xie

github.com/FermiFlow

Thank you!

Han WangZi-Hang Li

fermiflow theory, 2105.08644 
m* of electron gas, 2201.03156 
dense hydrogen, 2209.06095

IOP IAPCM DP/AISI

https://github.com/fermiflow
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