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https://medium.com/@karpathy/software-2-0-a64152b37c35• Computationally homogeneous

Benefits of Software 2.0 

• Simple to bake into silicon

• Constant running time

• Constant memory usage

• Highly portable & agile

• Modules can meld into an optimal whole

• Better than humans 

Andrej Karpathy
Director of AI at Tesla. Previously Research Scientist at OpenAI and PhD student 
at Stanford. I like to train deep neural nets on large datasets.

Writing software 2.0 by gradient search in the program space 

Differentiable Programming



Compose differentiable components to a program 
e.g. a neural network, then optimize with gradient 

The engine of deep learning
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• Accurate to the machine precision 

• Same computational complexity as the function evaluation: 
Baur-Strassen theorem ’83 

• Supports higher order gradients

Advantages of AD: 
�   accurately to machine precision 
 
�

Accuracy of AD can achieve machine precision�

Usual finite difference has truncation and round-off error. 
However, the accuracy of AD can be up to machine precision.�

Advantages of AD: 
�     AD can evaluate arbitrary order derivatives 

Computational Cost of automatic differentiation�

Advantages of automatic differentiation 



Applications of AD 

Sorella and Capriotti  
J. Chem. Phys. ’10

234111-8 S. Sorella and L. Capriotti J. Chem. Phys. 133, 234111 (2010)

components in a system containing several water molecules,
remains approximately four times larger than the cost to com-
pute only the total energy. This factor 4 is a very small cost,
if we consider that the main adjoint instance has to be eval-
uated twice, one for the local energy and the other for the
WF logarithm, and that, on the other hand, VMC is the fastest
method in QMC. For instance, we can evaluate forces within
LRDMC with only a small overhead, as the cost to gener-
ate a new independent configuration within LRDMC is about
ten times larger than VMC, and therefore, for this more ac-
curate method, the cost to compute all force components will
be essentially negligible. Analogous consideration holds dur-
ing an energy optimization. We have to consider that in this
case AAD can be used to compute not only the force com-
ponents, but also all the energy derivatives with respect to all
variational parameters {ci } of the WF, essentially at the same
computational cost, even when the number p of variational
parameters is extremely large.

Though we have not implemented AAD for this general
task, we expect a further speed up (and simplification) of the
code, once AAD will be fully implemented for all possible en-
ergy derivatives. We believe this will become common prac-
tice for future quantum Monte Carlo packages. At present, in
order to have consistent forces within VMC, all variational
parameters have to be optimized,18 and to this purpose we
have used the standard way to compute energy derivatives.

We have applied the efficient evaluation of the forces for
the structural optimization of the water monomer. We have
used energy-consistent pseudopotentials19 only for the oxy-
gen atom. In the calculation we have adopted a huge basis
set to avoid basis superposition errors. The molecular orbitals
are expanded in a primitive basis containing 24s22p10d6f1g
on the oxygen and 6s5p1d on the hydrogen atom. The ex-
ponents of the Gaussians are optimized by minimizing the
energy of a self-consistent DFT calculation within the LDA
approximation.7 The accuracy in the total DFT energy is well
below 1 mHa for the water dimer, implying that we are es-
sentially working with an almost complete basis set. For the
Jastrow factor we have also used a quite large basis, to achieve
similar accuracy in the total energy, within a VMC calculation
on a WF obtained by optimizing the Jastrow over the LDA
Slater determinant. The final optimized basis for the Jastrow
contains a contracted basis 6s5p2d/3s3p1d on the oxygen and
an uncontracted 1s1p basis on the hydrogen atom.

In the following we describe the first application of this
method for optimizing the structure of simple water com-
pounds. The variational parameters of the WF—molecular
orbitals and Jastrow factor—are optimized, by energy mini-
mization, with the method described in Ref. 6. At each step
of optimization, we compute the ionic forces by AAD, and
we employ a standard steepest descent move of the ions
Ra → R′

a:

R′
a = Ra + !τFa, (23)

where !τ = 1/2 a.u. After several hundred iterations both
the variational parameters and the atomic positions fluctuate
around average values, and we use the last few hundred it-
erations to evaluate the error bars and the mean value of the
atomic positions, as illustrated in Fig. 3.

FIG. 3. Oxygen–oxygen distance as a function of the number of iterations for
determining the equilibrium zero-temperature structure of the water dimer.
All the 18 atomic coordinates, as well as about 1000 variational parameters
of the electronic many-body WF are fully optimized with an iterative scheme
(Refs. 6 and 8).

In Table II we show the optimized structure of the wa-
ter monomer. As it is clearly evident our final atomic po-
sitions are almost indistinguishable from the experimental
ones. Generally speaking our calculation appears more accu-
rate than simple mean field DFT methods, and comparable
with state of the art quantum chemistry techniques, such as
CCSD(T). The accuracy of the VMC method has been also
confirmed recently in another context.20

In the dimer structure the situation is slightly different.
As shown in Table III, the oxygen–oxygen distance is in quite
good agreement with experiments, whereas the OHO angle is
overestimated by few degrees. Probably in this case the quan-
tum corrections should affect the hydrogen position between
the two oxygens, because the dimer bond is very weak. Indeed
we have also checked that, with the more accurate LRDMC
calculation, the equilibrium structure obtained by the VMC
method remains stable as all the force components are well
below 10− 3 a.u. On the other hand LRDMC increases the
binding of the dimer by about 1 kCal/mol, showing that, from
the energetic point of view, the LRDMC calculation may be
important, as also confirmed in previous studies.6, 21 All the
above calculations can be done with a relatively small compu-
tational effort (few hours in a 32 processor parallel computer),
and therefore the same type of calculation, with the same level
of accuracy, can be extended to much larger systems contain-
ing several atoms with modern supercomputers.

Stimulated by the above success we have tested the finite-
temperature molecular dynamics simulation introduced some
time ago,1 using 4 water molecules in a cubic box with
4.93 Å side length, mimicking the density of liquid water at
ambient conditions. Since we are interested in static equilib-
rium properties we have used for the oxygen the same mass
of hydrogen. Though the system is very small we have been

TABLE II. VMC optimized structure of the water monomer.

Exp VMC LDAa BLYPa BPa CCSD(T)b

dO H (A) 0.957c 0.954(1) 0.973 0.973 0.974 0.95829
̸ H O H (deg) 104.5d 104.61(10) 104.4 104.6 104.1 104.454

aFrom Ref. 23
bFrom Ref. 24
cFrom Ref. 25
dFrom Ref. 26

Computing force

Tamayo-Mendoza et al 
ACS Cent. Sci. ’18

Variational Hartree-Fock
LEUNG, ABDELHAFEZ, KOCH, AND SCHUSTER PHYSICAL REVIEW A 95, 042318 (2017)
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FIG. 1. Sample computational graph for automatic differentia-
tion. Automatic differentiation utilizes the decomposition of the
multivariable cost function C(u) into its computational graph of
elementary operations, each of which has a known derivative. In
reverse-accumulation mode, all partial derivatives of C are evaluated
in a recursion from the top level (C) back towards the outermost
branches (variables u).

denote subsequent numerical evaluation of the enclosed term.
(Function arguments are suppressed for brevity.)

Automatic differentiation has become a central tool in
machine learning [75] and equally applies to the problem of
optimal control of quantum systems. In this approach, the
gradient of a set of elementary operations is defined and more
complex functions are built as a graph of these operations. The
value of the function is computed by traversing the graph
from inputs to the output, while the gradient is computed
by traversing the graph in reverse via the gradients. This
methodology gives the same numerical accuracy and stability
of analytic gradients without requiring one to derive and
implement analytical gradients specific to each new trial cost
function.

All cost functions summarized in Table I can be conve-
niently expressed in terms of common linear-algebra opera-
tions. Figure 2 shows the network graph of operations in our
software implementation, realizing quantum optimal control
with reverse-mode automatic differentiation. For simplicity,
the graph only shows the calculation of the cost functions C2
and C5. The cost-function contributions C1,C6, and C7 are
treated in a similar manner. The suppression of large control
amplitudes or rapid variations, achieved by C3 and C4, is
simple to include since the calculation of these cost-function
contributions is based on the control signals themselves and
does not involve the time-evolved state or unitary. The host
of steps for gradient evaluation is based on basic matrix
operations such as summation and multiplication.

Reverse-mode automatic differentiation [19] provides an
efficient way to carry out time evolution and cost-function
evaluation by one forward sweep through the computational
graph, and calculation of the full gradient by one backward
sweep. In contrast to forward accumulation, each derivative is
evaluated only once, thus enhancing computational efficiency.
The idea of backward propagation is directly related to the
GRAPE algorithm for quantum optimal control pioneered by
Khaneja and co-workers [2]; see the Appendix. While the
original GRAPE algorithm bases minimization exclusively on
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FIG. 2. Computational network graph for quantum optimal con-
trol. Circular nodes in the graph depict elementary operations with
known derivatives (matrix multiplication, addition, matrix exponen-
tial, trace, inner product, and squared absolute value). Backward
propagation for matrices proceeds by matrix multiplication or, where
specified, by the Hadamard product ◦. In the forward direction,
starting from a set of control parameters uk,j , the computational
graph effects time evolution of a quantum state or unitary, and the
simultaneous computation of the cost function C. The subsequent
“backward propagation” extracts the gradient ∇uC(u) with respect
to all control fields by reverse-mode automatic differentiation. This
algorithm is directly supported by TensorFlow [72], once such a
computational network is specified.

the fidelity of the final evolved unitary or state, advanced cost
functions (such as C5 through C7) require the summation of
cost contributions from each intermediate step during time
evolution of the system. Such cost functions go beyond
the usual GRAPE algorithm, but can be included in the
more general backward propagation scheme described above.
[The Appendix shows analytical forms for gradients for cost
functions that are based on time evolution ({C1,C2,C5}).]

042318-4

Leung et al 
PRA ’17

Quantum optimal control



https://colab.research.google.com/
github/google/jax/blob/master/

notebooks/autodiff_cookbook.ipynb

Understandings of AD
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Reverse versus forward mode

Reverse mode AD: Vector-Jacobian Product of primitives

• Backtrace the computation graph 
• Needs to store intermediate results 
• Efficient for graphs with large fan-in

∂ℒ
∂θ

=
∂ℒ
∂xn

∂xn

∂xn−1
⋯

∂x2

∂x1

∂x1

∂θ

Backpropagation = Reverse mode AD applied to neural networks

vo (J)o × i



Reverse versus forward mode

Forward mode AD: Jacobian-Vector Product of primitives

• Same order with the function evaluation 
• No storage overhead 
• Efficient for graph with large fan-out

∂ℒ
∂θ

=
∂ℒ
∂xn

∂xn

∂xn−1
⋯

∂x2

∂x1

∂x1

∂θ

Less efficient for scalar output, but useful for higher-order derivatives

(J)o × i vi



How to think about AD ?
• AD is modular, and one can control its granularity 

• Benefits of writing customized primitives 

• Reducing memory usage 

• Increasing numerical stability 

• Call to external libraries written agnostically to AD
(or, even a quantum processor)



Example of the primitives

Loop/Condition/Sort/Permutations are also differentiable 

…

~200 functions to cover most of  numpy in HIPS/autograd
https://github.com/HIPS/autograd/blob/master/autograd/numpy/numpy_vjps.py

Primitives with gradients implemented in Autograd�



Differentiable programming tools

HIPS/autograd



Current support for AD*

*as of July 2019

https://giggleliu.github.io/2019/04/02/einsumbp.htmlJin-Guo’s blog post

3.3 software support 43

linalg complex GPU mixed-mode

PyTorch X 7 X 7

TensorFlow X � X 7

Autograd X � 7 7

Jax X � X X
Flux.jl/Zygote.jl 7 X X X

Table 3: Software support for differentiable programming. As of May
2019.



Differentiable Scientific Programming
•  Most linear algebra operations (Eigen, SVD!) are differentiable 

•  Differentiable ray tracer

•  Differentiable Monte Carlo/Tensor Network/Functional RG/
Dynamical Mean Field Theory/Density Functional Theory/
Hartree-Fock/Coupled Cluster/Gutzwiller/ Molecular Dynamics…

•  ODE integrators are differentiable with O(1) memory 

Differentiable fluid simulationsand

Differentiable programming is more than training neural networks

https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
https://people.csail.mit.edu/tzumao/diffrt/
https://arxiv.org/abs/1806.07366
https://rse-lab.cs.washington.edu/papers/spnets2018.pdf


Differentiable Eigensolver

H Ψ = ΨΛ
Forward mode: What happen if H → H + dH Perturbation theory

Reverse mode: How should I change 

?

∂ℒ/∂Ψ ∂ℒ/∂Λand ?
Inverse

perturbation theory!
H given

Hamiltonian engineering via differentiable programming 

https://github.com/wangleiphy/DL4CSRC/tree/master/2-ising See also Fujita et al, PRB ‘18
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Figure 2. (a) The iteration step of TRG. (b) The iteration step of
CTMRG. Each tensor is a node in the computation graph. The prim-
itive functions in the computation graphs are SVD and tensor con-
tractions.

to rescale the tensor elements after each iteration. The com-
putational cost of TRG method scales O(�6) and the memory
cost scales asO(�4). After unrolling the iterations, the compu-
tation graph of the TRG method is similar to the simple chain
graph shown in Fig. 1(a). Within each iteration step, the basic
operations are tensor index permutation, truncated SVD and
tensor contractions. Since each of these operations is di↵er-
entiable, one can backpropagate through the TRG procedure
to compute the derivative of a downstream objective function
with respect to the input tensor.

2. Corner transfer matrix renormalization group

The computation graph of the corner transfer matrix renor-
malization group (CTMRG) [64] has a more interesting topol-
ogy. The goal of CTMRG calculation is to obtain converged
corner and edge tensors which represent the environment de-
grees of freedom of the bulk tensor.

In cases where the bulk tensor has the full symmetry of the
square lattice, the step of one CTMRG iteration is shown in
Fig. 2(b). 1� Contract the bulk tensor with the corner and edge
tensors to form a 4-leg tensor. 2� Perform truncated SVD to
the 4-leg tensor, keeping the singular dimensions up to the
cut o↵ �. Keep the truncated singular matrix as the isomet-
ric projector. 3� Apply the isometry to the 4-leg tensor from
the first step to find a new corner tensor. 4� Apply the same
isometry to find a new edge tensor for the next step. And iter-
ate this procedure until convergence. One sees that the same
bulk tensor with bond dimension d appears in each step of the

CTMRG iteration. Due to this reason, the converged environ-
ment tensors will depend on the bulk tensor in a complicated
way.

Unlike the TRG method [57], the CTMRG approach grows
the system size linearly. So one may need to iterate a bit
more steps to reach convergences in CTMRG. On the other
hand, the computational complexity O(d3�3) and memory
cost O(d2�2) of CTMRG are smaller than the ones of TRG
in terms of the cuto↵ bond dimension.

III. TECHNICAL INGREDIENTS

To compute gradients of a tensor network program using
reverse mode automatic di↵erentiation, one needs to trace the
composition of the primitive functions and propagate the ad-
joint information backward on the computation graph. Thank-
fully, modern di↵erentiable programming frameworks [50–
54] have taken care of tracing and backpropagation for their
basics data structure, di↵erentiable tensors, automatically.

What one needs to focus on is to identify suitable primitives
of tensor network programs and define their vector-Jacobian
products for backpropagation. The key components of tensor
network algorithms are the matrix and tensor algebras. And
there are established results on backward through these op-
erations [68–70]. First of all, it is straightforward to wrap
all BLAS routines as primitives with customized backward
functions. Next, although being less trivial, it is also possible
to derive backward rules for many LAPACK routines such as
the eigensolver, SVD, and QR factorization [68]. By treating
these linear algebra operations as primitives, one can com-
pose a di↵erentiable program with e�cient implementations
of matrix libraries.

There are, however, a few practical obstacles to stable and
scalable implementation of di↵erentiable tensor network pro-
grams. First, the backward for the eigensolver and SVD may
face numerical instability with degeneracy in the eigenvalues
or singular values. Second, the reverse mode automatic di↵er-
entiation may incur large memory consumption, which pre-
vents one from reaching the same bond dimension of an ordi-
nary tensor network program. We present solutions to these
problems in below.

A. Stable backward through linear algebra operations

We present several key results on matrix derivatives involv-
ing linear algebra operations that are relevant to tensor net-
work algorithms. Recall the modular nature of reverse mode
automatic di↵erentiation, one just needs to specify the local
backward function to integrate these components into a di↵er-
entiable program. We will comment on their connections to
physics literature and pay special attention to stable numeri-
cal implementations [39]. For more information, one can refer
to [68–70].

Differentiate through TRG for Ising
Computation graph

ln Zβ Truncated SVD Contraction

AD computes physical observables as high-order gradients
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Figure 2. (a) The iteration step of TRG. (b) The iteration step of
CTMRG. Each tensor is a node in the computation graph. The prim-
itive functions in the computation graphs are SVD and tensor con-
tractions.

to rescale the tensor elements after each iteration. The com-
putational cost of TRG method scales O(�6) and the memory
cost scales asO(�4). After unrolling the iterations, the compu-
tation graph of the TRG method is similar to the simple chain
graph shown in Fig. 1(a). Within each iteration step, the basic
operations are tensor index permutation, truncated SVD and
tensor contractions. Since each of these operations is di↵er-
entiable, one can backpropagate through the TRG procedure
to compute the derivative of a downstream objective function
with respect to the input tensor.

2. Corner transfer matrix renormalization group

The computation graph of the corner transfer matrix renor-
malization group (CTMRG) [64] has a more interesting topol-
ogy. The goal of CTMRG calculation is to obtain converged
corner and edge tensors which represent the environment de-
grees of freedom of the bulk tensor.

In cases where the bulk tensor has the full symmetry of the
square lattice, the step of one CTMRG iteration is shown in
Fig. 2(b). 1� Contract the bulk tensor with the corner and edge
tensors to form a 4-leg tensor. 2� Perform truncated SVD to
the 4-leg tensor, keeping the singular dimensions up to the
cut o↵ �. Keep the truncated singular matrix as the isomet-
ric projector. 3� Apply the isometry to the 4-leg tensor from
the first step to find a new corner tensor. 4� Apply the same
isometry to find a new edge tensor for the next step. And iter-
ate this procedure until convergence. One sees that the same
bulk tensor with bond dimension d appears in each step of the

CTMRG iteration. Due to this reason, the converged environ-
ment tensors will depend on the bulk tensor in a complicated
way.

Unlike the TRG method [57], the CTMRG approach grows
the system size linearly. So one may need to iterate a bit
more steps to reach convergences in CTMRG. On the other
hand, the computational complexity O(d3�3) and memory
cost O(d2�2) of CTMRG are smaller than the ones of TRG
in terms of the cuto↵ bond dimension.

III. TECHNICAL INGREDIENTS

To compute gradients of a tensor network program using
reverse mode automatic di↵erentiation, one needs to trace the
composition of the primitive functions and propagate the ad-
joint information backward on the computation graph. Thank-
fully, modern di↵erentiable programming frameworks [50–
54] have taken care of tracing and backpropagation for their
basics data structure, di↵erentiable tensors, automatically.

What one needs to focus on is to identify suitable primitives
of tensor network programs and define their vector-Jacobian
products for backpropagation. The key components of tensor
network algorithms are the matrix and tensor algebras. And
there are established results on backward through these op-
erations [68–70]. First of all, it is straightforward to wrap
all BLAS routines as primitives with customized backward
functions. Next, although being less trivial, it is also possible
to derive backward rules for many LAPACK routines such as
the eigensolver, SVD, and QR factorization [68]. By treating
these linear algebra operations as primitives, one can com-
pose a di↵erentiable program with e�cient implementations
of matrix libraries.

There are, however, a few practical obstacles to stable and
scalable implementation of di↵erentiable tensor network pro-
grams. First, the backward for the eigensolver and SVD may
face numerical instability with degeneracy in the eigenvalues
or singular values. Second, the reverse mode automatic di↵er-
entiation may incur large memory consumption, which pre-
vents one from reaching the same bond dimension of an ordi-
nary tensor network program. We present solutions to these
problems in below.

A. Stable backward through linear algebra operations

We present several key results on matrix derivatives involv-
ing linear algebra operations that are relevant to tensor net-
work algorithms. Recall the modular nature of reverse mode
automatic di↵erentiation, one just needs to specify the local
backward function to integrate these components into a di↵er-
entiable program. We will comment on their connections to
physics literature and pay special attention to stable numeri-
cal implementations [39]. For more information, one can refer
to [68–70].
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Figure 2. (a) The iteration step of TRG. (b) The iteration step of
CTMRG. Each tensor is a node in the computation graph. The prim-
itive functions in the computation graphs are SVD and tensor con-
tractions.

to rescale the tensor elements after each iteration. The com-
putational cost of TRG method scales O(�6) and the memory
cost scales asO(�4). After unrolling the iterations, the compu-
tation graph of the TRG method is similar to the simple chain
graph shown in Fig. 1(a). Within each iteration step, the basic
operations are tensor index permutation, truncated SVD and
tensor contractions. Since each of these operations is di↵er-
entiable, one can backpropagate through the TRG procedure
to compute the derivative of a downstream objective function
with respect to the input tensor.

2. Corner transfer matrix renormalization group

The computation graph of the corner transfer matrix renor-
malization group (CTMRG) [64] has a more interesting topol-
ogy. The goal of CTMRG calculation is to obtain converged
corner and edge tensors which represent the environment de-
grees of freedom of the bulk tensor.

In cases where the bulk tensor has the full symmetry of the
square lattice, the step of one CTMRG iteration is shown in
Fig. 2(b). 1� Contract the bulk tensor with the corner and edge
tensors to form a 4-leg tensor. 2� Perform truncated SVD to
the 4-leg tensor, keeping the singular dimensions up to the
cut o↵ �. Keep the truncated singular matrix as the isomet-
ric projector. 3� Apply the isometry to the 4-leg tensor from
the first step to find a new corner tensor. 4� Apply the same
isometry to find a new edge tensor for the next step. And iter-
ate this procedure until convergence. One sees that the same
bulk tensor with bond dimension d appears in each step of the

CTMRG iteration. Due to this reason, the converged environ-
ment tensors will depend on the bulk tensor in a complicated
way.

Unlike the TRG method [57], the CTMRG approach grows
the system size linearly. So one may need to iterate a bit
more steps to reach convergences in CTMRG. On the other
hand, the computational complexity O(d3�3) and memory
cost O(d2�2) of CTMRG are smaller than the ones of TRG
in terms of the cuto↵ bond dimension.

III. TECHNICAL INGREDIENTS

To compute gradients of a tensor network program using
reverse mode automatic di↵erentiation, one needs to trace the
composition of the primitive functions and propagate the ad-
joint information backward on the computation graph. Thank-
fully, modern di↵erentiable programming frameworks [50–
54] have taken care of tracing and backpropagation for their
basics data structure, di↵erentiable tensors, automatically.

What one needs to focus on is to identify suitable primitives
of tensor network programs and define their vector-Jacobian
products for backpropagation. The key components of tensor
network algorithms are the matrix and tensor algebras. And
there are established results on backward through these op-
erations [68–70]. First of all, it is straightforward to wrap
all BLAS routines as primitives with customized backward
functions. Next, although being less trivial, it is also possible
to derive backward rules for many LAPACK routines such as
the eigensolver, SVD, and QR factorization [68]. By treating
these linear algebra operations as primitives, one can com-
pose a di↵erentiable program with e�cient implementations
of matrix libraries.

There are, however, a few practical obstacles to stable and
scalable implementation of di↵erentiable tensor network pro-
grams. First, the backward for the eigensolver and SVD may
face numerical instability with degeneracy in the eigenvalues
or singular values. Second, the reverse mode automatic di↵er-
entiation may incur large memory consumption, which pre-
vents one from reaching the same bond dimension of an ordi-
nary tensor network program. We present solutions to these
problems in below.

A. Stable backward through linear algebra operations

We present several key results on matrix derivatives involv-
ing linear algebra operations that are relevant to tensor net-
work algorithms. Recall the modular nature of reverse mode
automatic di↵erentiation, one just needs to specify the local
backward function to integrate these components into a di↵er-
entiable program. We will comment on their connections to
physics literature and pay special attention to stable numeri-
cal implementations [39]. For more information, one can refer
to [68–70].
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Figure 3. Energy density and specific heat of the 2D Ising model.
They are computed by taking the first and second order derivative of
the free energy obtained after 30 TRG iteration steps with a cuto↵
bond dimension � = 30. Solid lines are exact solutions [89].

dimensional tensor network with bond dimension D = 2

Z = . (8)

The bulk tensor is [90]

Tuldr = =

p
�u�l�d�r

2
�mod(u+l�d�r,2), (9)

where �u = e
� + (�1)u

e
��. We contract the infinite tensor

network using the TRG approach discussed in Sec. II B 1. We
use a cut o↵ bond dimension � = 30 and iterate for 30 TRG
steps. Finally, we obtain the partition function Eq. (8) and the
free energy by tracing out the bulk tensor.

Next, we compute the physical observables such as energy
density and specific heat by directly taking derivatives of the
free energy using automatic di↵erentiation, as shown in Fig. 3.
One notices that the energy density shows a kink and the
specific heat exhibits a peak around the critical temperature
�c = ln(1 +

p
2)/2 ⇡ 0.44068679. Unlike numerical di↵er-

entiation, these results are free from the finite di↵erence er-
ror [60, 91]. Accurate computation of higher order derivatives
of the tensor network algorithm will be useful to investigate
thermal and quantum phase transitions. We note that it is in
principle possible to obtain the specific heat by directly com-
puting the energy variance [35, 92], which, however, involves
cumbersome summation of geometric series expressed in term
of tensor networks.

There are alternative ways to compute the specific heat with
automatic di↵erentiation. For example, one can directly com-
pute the energy via using the impurity tensor and then take the
first order derivative to obtain the specific heat. Or, one can
also use forward mode automatic di↵erentiation since there

is only one input parameter � to be di↵erentiated. We have
purposely chosen the present approach to show o↵ the power
of di↵erentiable programming with the reverse mode auto-
matic di↵erentiation technique. Backpropagating through the
whole TRG procedure, and in particular the SVD, allows one
to compute physical observables using higher order deriva-
tives. It is remarkable that this works at all given many of the
degenerate singular values due to the Z2 symmetry of the Ising
model [47]. To obtain correct physical results, it is crucial to
implement the SVD backward function in a numerical stable
way as explained in Sec. III A 2.

B. Gradient based optimization of iPEPS

We consider a variational study of the square lattice antifer-
romagnetic Heisenberg model with the Hamiltonian

H =
X
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We consider an infinite projected entangled pair state (iPEPS)
as the variational ansatz. The variational parameters are the
elements in the iPEPS

A
s

uldr
= , (11)

where s denotes the physical indices, and the remaining in-
dices u, l, d, r are for virtual degrees of freedom of the bond
dimension D. We initialize the tensor elements with random
Gaussian variables. The overlap of the iPEPS forms a tensor
network, where the bulk tensor is the double layer tensor with
bond dimension d = D

2

Tuldr = = . (12)

To contract the infinite tensor network formed by this bulk
tensor we use the CTMRG method reviewed in Sec. II B 2.
We initialize the corner and edge tensors by partially tracing
out legs from the bulk tensor, then perform the CTMRG iter-
ation until we reach convergence in the corner and edge ten-
sors. After contraction, we can evaluate the expected energy
h |H| i/h | i. Due to the translational invariance of the prob-
lem, it is su�cient to consider the expected energy on a bond

L =

,
, (13)

where the black rectangle in Eq. (13) is the Hamiltonian
operator acting on a bond. We have performed a basis
rotation to the Hamiltonian so that the ground state will
have a single site unit cell. We use cuto↵ bond dimension
� = 30, 50, 80, 100, 144, 160 for D = 2, 3, . . . , 7 respectively.

=
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However, TNS calculations are a two-step process,
where the wave function is obtained first and then used
to calculate physical expectation values. This latter step
requires projection onto a 1D MPS basis, whose dimension
for convergence is found to scale approximately as Dmps ≈
4D2. Once D≳ 15, the evaluation step becomes the more
computationally intensive problem, and here we implement
new methodology (outlined in Sec. SII [20]) by which we
extend the accessible D range.
We begin by presenting results from the 3-site-simplex

(3-PESS) ansatz for all accessible D values. The ground-
state energy, E0ðDÞ, of the nearest-neighbor KHAF is
shown in Fig. 1(a). At large D, our estimate lies below
those obtained from all known techniques other than
DMRG studies of specific clusters, which are not an upper
bound. We remark that our E0ðDÞ values are significantly
lower than those of an SU(2)-invariant TNS analysis [19].
We find that E0ðDÞ converges algebraically with D, as on
the Husimi lattice [57], indicating a gapless ground state
[58]. The power-law form E0ðDÞ ¼ e0 þ aD−α, shown in
Fig. 1(b), delivers our best estimate of the ground-state
energy, e0 ¼ −0.43752ð6ÞJ. Figure 1(c) illustrates the
convergence of E0ðDmpsÞ for selected values of D; we
note that this part of the process is not variational and
comment in detail in Sec. SII of the SM [20]. Optimized fits

to a regime of exponential convergence in Dmps were used
to extrapolate towards the values of E0ðDÞ shown in
Figs. 1(a) and 1(b), and to determine the associated error
bars, on the basis of which we limit our claims of reliability
to D ≤ 25.
One key qualitative property of our PESS wave function

is a finite 120° magnetic order at all finite D values, as
shown in Figs. 2(a) and 2(b). The order parameter, MðDÞ,
varies algebraically with 1=D over the available D range,
tending to zero as D → ∞, as required of a spin liquid.
Figure 2(c) illustrates the convergence of MðDmpsÞ for
D ¼ 15 and 20, where an algebraic form was deduced from
the truncation error, and reliable extrapolations to large
Dmps were obtained only for D ≤ 20.
The Husimi lattice provides essential confirmation of our

results. It possesses the same local physics as the kagome
lattice, but less frustration from longer paths, and it allows
PESS calculations up to D ¼ 260, yielding accurate
extrapolations to the large-D limit [57]. It confirms the
crucial qualitative statement that magnetically ordered
states have the lowest energies for spatially infinite systems

FIG. 1. Ground-state energy of the KHAF. (a) E0 as a function
of D, shown for the 3-PESS and simple-update method up to
D ¼ 25, 3-PESS by full update to D ¼ 13, and 9-PESS with
simple update to D ¼ 15. Shown for comparison are results from
other numerical studies. (b) E0ðDÞ for the 3-PESS ansatz, shown
as a function of 1=D and compared with results obtained for the
Husimi lattice [57]. (c) Convergence of E0ðDÞ as a function of
Dmps, shown for several values of D.

(a)

(b)

(c)

FIG. 2. Staggered magnetization of the KHAF at finiteD. (a)M
as a function of D, shown for the 3-PESS and simple-update
method up to D ¼ 20, 3-PESS by full update to D ¼ 13, and
9-PESS with simple update to D ¼ 15. Shown for comparison
are results obtained for the Husimi lattice [57]. (b) M as a
function of 1=D0.588, the power-law form obtained for the Husimi
lattice. (c) Convergence ofMðDÞ as a function ofDmps, shown for
D ¼ 15 and D ¼ 20.
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observables. In this scheme, the contraction of the infinite bra
and ket tensor networks surrounding a unit cell is effectively
represented by introducing a boundary made up of so-called
environment tensors (see Fig. 1). The environment tensors
are constructed via iterative absorption and renormalization
of unit-cell tensors into the boundary tensors in Fig. 1.
Importantly, the accuracy of the contraction is controlled by the
bond dimension of the environment tensors, usually denoted by
χ . For the data presented here, χ was chosen to be larger than
D2 in all cases and large enough to yield negligible variations
in the energies. For a more precise description of the details
involved in the contraction scheme, we refer the reader to
Ref. [34].

C. Optimization

Optimization of the tensors generating the ansatz wave
functions is typically performed using either direct energy
minimization or imaginary-time evolution. Here, we have used
the latter combined with the so-called full update scheme [23].
In the imaginary-time evolution procedure by starting from
some initial state |ψ0⟩ of the form (2) we perform subsequent
projection steps

|ψk+1⟩ = e−τ Ĥ |ψk⟩
∥e−τ Ĥ |ψk⟩∥

, (3)

so provided that the initial state |ψ0⟩ had some overlap with
the ground state of the model enough iterations will eventually
converge to the ground state.

For the data presented it was observed that values below
τ = 0.01 for the imaginary-time evolution did not provide
a significant improvement in the quality of the data. In all
cases, the number of cumulative iterations was such that it
led to values of at least β = 20 and in all cases it was found
to be large enough to achieve convergence of the variational
energies. Here, we point out that lower-cost variants such as
the simple update [41], in which an explicit construction of
the environment is omitted, failed to yield good results in
the Kitaev limit and thus we opted for performing all the
simulations using the full update, in spite of its significantly
larger computational cost [23].

IV. KITAEV LIMIT BENCHMARKS

In the limits ϕ = ± 90◦, the model in Eq. (1) becomes the
well-known Kitaev honeycomb model [14] with equal bond
couplings (B phase). Indeed, even though the interactions on
each bond are of Ising type, the fact that different bonds
correspond to different quantization axes makes the Kitaev
model a highly frustrated one, even classically, since it is
impossible to satisfy all energy constraints simultaneously.
From the exact solution of the Kitaev model [14] it is known
that inside the B phase two different types of excitations
arise: magnetic vortices which are gapped and localized
in the absence of an external magnetic field and gapless
Majorana fermions moving in the static background field of
the vortices. Perhaps more interestingly, these excitations can
be gapped into a topological phase exhibiting non-Abelian
anyonic statistics [14].
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FIG. 2. (Color online) (a) Energy per site and (b) magnetization
as a function of inverse bond dimension. Errors in the energy for the
largest value studied (D = 7) are of the order of 10−4. Magnetization
values are normalized to 1.

From both Kitaev’s seminal paper [14] as well as later
work [42] it can be gathered that the energy per site for
this model at the equal coupling limit considered here is
Esite = −0.3936 independent of the nature of the couplings,
i.e., for both ferromagnetic as well as antiferromagnetic
couplings. Our best variational approximations to the energy
per site are EFM

site = −0.3931 and EAFM
site = −0.3933 with a

bond dimension D = 7 (χ = 60), yielding good agreement
with the exact value (see Fig. 2).

A feature of the Kitaev model is that the ground state
is known to be a Z2 spin liquid and as such develops
no local order parameter. In our case, we find variational
states exhibiting a strongly suppressed magnetization, with
the largest values of the magnetization being around 0.03
and 0.02 in the ferromagnetic and antiferromagnetic cases,
respectively, with a bond dimension D = 4. The level of
symmetry breaking is observed to decrease in general as a
function of increasing D (entanglement), and for our best
variational states the magnetization reaches a minimum of
approximately 0.02 for the ferromagnetic case and 0.01 for
the antiferromagnetic case, with D = 7. See Eqs. (4)–(8) for
our definition of magnetization as well as similar magnetic
order parameters.

The fact that the model is strongly frustrated and exhibits
gapless excitations turns it into a formidable challenge for
numerical methods in general. In what follows, we will show
that iPEPS ansatz wave functions are capable of capturing
the essential features of this model quite well, even in the
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observables. In this scheme, the contraction of the infinite bra
and ket tensor networks surrounding a unit cell is effectively
represented by introducing a boundary made up of so-called
environment tensors (see Fig. 1). The environment tensors
are constructed via iterative absorption and renormalization
of unit-cell tensors into the boundary tensors in Fig. 1.
Importantly, the accuracy of the contraction is controlled by the
bond dimension of the environment tensors, usually denoted by
χ . For the data presented here, χ was chosen to be larger than
D2 in all cases and large enough to yield negligible variations
in the energies. For a more precise description of the details
involved in the contraction scheme, we refer the reader to
Ref. [34].

C. Optimization

Optimization of the tensors generating the ansatz wave
functions is typically performed using either direct energy
minimization or imaginary-time evolution. Here, we have used
the latter combined with the so-called full update scheme [23].
In the imaginary-time evolution procedure by starting from
some initial state |ψ0⟩ of the form (2) we perform subsequent
projection steps

|ψk+1⟩ = e−τ Ĥ |ψk⟩
∥e−τ Ĥ |ψk⟩∥

, (3)

so provided that the initial state |ψ0⟩ had some overlap with
the ground state of the model enough iterations will eventually
converge to the ground state.

For the data presented it was observed that values below
τ = 0.01 for the imaginary-time evolution did not provide
a significant improvement in the quality of the data. In all
cases, the number of cumulative iterations was such that it
led to values of at least β = 20 and in all cases it was found
to be large enough to achieve convergence of the variational
energies. Here, we point out that lower-cost variants such as
the simple update [41], in which an explicit construction of
the environment is omitted, failed to yield good results in
the Kitaev limit and thus we opted for performing all the
simulations using the full update, in spite of its significantly
larger computational cost [23].

IV. KITAEV LIMIT BENCHMARKS

In the limits ϕ = ± 90◦, the model in Eq. (1) becomes the
well-known Kitaev honeycomb model [14] with equal bond
couplings (B phase). Indeed, even though the interactions on
each bond are of Ising type, the fact that different bonds
correspond to different quantization axes makes the Kitaev
model a highly frustrated one, even classically, since it is
impossible to satisfy all energy constraints simultaneously.
From the exact solution of the Kitaev model [14] it is known
that inside the B phase two different types of excitations
arise: magnetic vortices which are gapped and localized
in the absence of an external magnetic field and gapless
Majorana fermions moving in the static background field of
the vortices. Perhaps more interestingly, these excitations can
be gapped into a topological phase exhibiting non-Abelian
anyonic statistics [14].
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FIG. 2. (Color online) (a) Energy per site and (b) magnetization
as a function of inverse bond dimension. Errors in the energy for the
largest value studied (D = 7) are of the order of 10−4. Magnetization
values are normalized to 1.

From both Kitaev’s seminal paper [14] as well as later
work [42] it can be gathered that the energy per site for
this model at the equal coupling limit considered here is
Esite = −0.3936 independent of the nature of the couplings,
i.e., for both ferromagnetic as well as antiferromagnetic
couplings. Our best variational approximations to the energy
per site are EFM

site = −0.3931 and EAFM
site = −0.3933 with a

bond dimension D = 7 (χ = 60), yielding good agreement
with the exact value (see Fig. 2).

A feature of the Kitaev model is that the ground state
is known to be a Z2 spin liquid and as such develops
no local order parameter. In our case, we find variational
states exhibiting a strongly suppressed magnetization, with
the largest values of the magnetization being around 0.03
and 0.02 in the ferromagnetic and antiferromagnetic cases,
respectively, with a bond dimension D = 4. The level of
symmetry breaking is observed to decrease in general as a
function of increasing D (entanglement), and for our best
variational states the magnetization reaches a minimum of
approximately 0.02 for the ferromagnetic case and 0.01 for
the antiferromagnetic case, with D = 7. See Eqs. (4)–(8) for
our definition of magnetization as well as similar magnetic
order parameters.

The fact that the model is strongly frustrated and exhibits
gapless excitations turns it into a formidable challenge for
numerical methods in general. In what follows, we will show
that iPEPS ansatz wave functions are capable of capturing
the essential features of this model quite well, even in the
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Variational optimization with gradient indeed help! 
However, manually deriving gradients is cumbersome

PHILIPPE CORBOZ PHYSICAL REVIEW B 94, 035133 (2016)

optimization problem. We present a practical scheme dealing
with this issue in Sec. III C.

B. Systematic summation of Hamiltonian terms
with the CTM method

The CTM method discussed in Sec. II B provides a
convenient way to compute the norm (and local expectation
values) by using the environment tensors, as shown in Fig. 1(c).
The expectation value ⟨!|Ĥ |!⟩, which is an infinite sum, can
be computed in a similar way by introducing a new type of
environment tensors which we call H-environment tensors,
shown in dark blue in Fig. 3.

Each H-environment tensor consists of a sum of Hamil-
tonian contributions. For example, the corner tensor C̃1
contains all contributions from Hamiltonian terms acting on
the infinite upper left part of the system (see bottom panel in
Fig. 3). Similarly, T̃4 contains all Hamiltonian terms acting
on the corresponding infinite half row. We further introduce
horizontal and vertical corner tensors, denoted by C̃h1 and
C̃v1, respectively, for the upper left corner. These tensors
take into account Hamiltonian terms which connect sites
located in the corner C1 and edges T1 or T4, respectively
(see bottom of Fig. 3). Similar tensors are also defined for
the other corners. Finally, we also have to sum up the local
Hamiltonian terms connecting the center site with its four
nearest neighbors (located on the four edge tensors). With this,
the sum represented in Fig. 3 takes into account all Hamiltonian
terms.

The H-environment tensors can be computed in a systematic
way within the regular CTM method, as shown in Fig. 4
for a left move. Importantly, the H-environment tensors are
renormalized in the same way as the norm-environment
tensors, i.e., using the same projectors P and P̃ . In this way
the indices of the H-environment tensors match the ones from
the norm-environment tensors, and thus, different diagrams,
as shown in Fig. 4, can simply be added [41].

Note that the ˜T T tensors, which include Hamiltonian
contributions between two edge tensors, do not appear in
the expectation value of the Hamiltonian shown in Fig. 3.
However, it is crucial to keep track of these tensors since they
add contributions to the C̃h and C̃v tensors, as, for example,
shown in the second row in Fig. 3, where the contributions in
the ˜T T1 tensor are added to the C̃ ′

h1 tensor.
We end this section with three additional remarks: (1) It is

convenient to store also the edge tensors where the physical
legs of the outermost site are kept open, e.g., T ′o

4 shown in
Fig. 4. These tensors can then be used to compute the local
Hamiltonian terms (connecting to the center site) shown in
Fig. 3. (2) The computation of the ˜T T edge terms has a
relatively large computational cost of O(χ3D6) compared to
the other terms. This is the same complexity [42] as for the
computation of the projectors P and P̃ . [21] One way to reduce
the complexity of the ˜T T term is to split it in the middle into
two parts using an SVD, keeping only a bond dimension of
O(χ ) between the two parts. (3) In some implementations of
the CTM algorithm one normalizes the environment tensors
in a certain way after each step (e.g., division by the largest
element of a tensor) in order to keep the numbers in the tensors
bounded. In this case one has to make sure for consistency that
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FIG. 3. Representation of the expectation value of the Hamilto-
nian, where the blue tensors contain sums of local Hamiltonian terms,
as illustrated in the bottom part of the figure. For example, the corner
tensor C̃1 contains all contributions of local Hamiltonian terms in the
upper left corner of the infinite system, whereas the edge tensor T̃4

contains all contributions from an infinite half row, as depicted in the
bottom part of the figure. The vertical corner tensor C̃v1 takes into
account all Hamiltonian terms located between the corner C1 and
the edge tensor T4 (see bottom image; a similar definition holds for
the horizontal corner tensors C̃h1). All the other dark blue tensors on
the other corners/edges are defined in a similar way. Finally, there
are four remaining Hamiltonian terms (light blue) between the center
site and its nearest neighbors. The cross on top of a tensor indicates
that the Hamiltonian term is connected to the corresponding physical
legs which are not shown in this top view.

the same normalization is used also for the H-environment
tensors (i.e., the same normalization factor has to be used,
e.g., for C1 and C̃1).

C. Practical schemes

With the CTM approach discussed in the previous sections
we can compute the H and the N matrices and solve the

035133-4

PHILIPPE CORBOZ PHYSICAL REVIEW B 94, 035133 (2016)

optimization problem. We present a practical scheme dealing
with this issue in Sec. III C.

B. Systematic summation of Hamiltonian terms
with the CTM method

The CTM method discussed in Sec. II B provides a
convenient way to compute the norm (and local expectation
values) by using the environment tensors, as shown in Fig. 1(c).
The expectation value ⟨!|Ĥ |!⟩, which is an infinite sum, can
be computed in a similar way by introducing a new type of
environment tensors which we call H-environment tensors,
shown in dark blue in Fig. 3.

Each H-environment tensor consists of a sum of Hamil-
tonian contributions. For example, the corner tensor C̃1
contains all contributions from Hamiltonian terms acting on
the infinite upper left part of the system (see bottom panel in
Fig. 3). Similarly, T̃4 contains all Hamiltonian terms acting
on the corresponding infinite half row. We further introduce
horizontal and vertical corner tensors, denoted by C̃h1 and
C̃v1, respectively, for the upper left corner. These tensors
take into account Hamiltonian terms which connect sites
located in the corner C1 and edges T1 or T4, respectively
(see bottom of Fig. 3). Similar tensors are also defined for
the other corners. Finally, we also have to sum up the local
Hamiltonian terms connecting the center site with its four
nearest neighbors (located on the four edge tensors). With this,
the sum represented in Fig. 3 takes into account all Hamiltonian
terms.

The H-environment tensors can be computed in a systematic
way within the regular CTM method, as shown in Fig. 4
for a left move. Importantly, the H-environment tensors are
renormalized in the same way as the norm-environment
tensors, i.e., using the same projectors P and P̃ . In this way
the indices of the H-environment tensors match the ones from
the norm-environment tensors, and thus, different diagrams,
as shown in Fig. 4, can simply be added [41].

Note that the ˜T T tensors, which include Hamiltonian
contributions between two edge tensors, do not appear in
the expectation value of the Hamiltonian shown in Fig. 3.
However, it is crucial to keep track of these tensors since they
add contributions to the C̃h and C̃v tensors, as, for example,
shown in the second row in Fig. 3, where the contributions in
the ˜T T1 tensor are added to the C̃ ′
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We end this section with three additional remarks: (1) It is

convenient to store also the edge tensors where the physical
legs of the outermost site are kept open, e.g., T ′o

4 shown in
Fig. 4. These tensors can then be used to compute the local
Hamiltonian terms (connecting to the center site) shown in
Fig. 3. (2) The computation of the ˜T T edge terms has a
relatively large computational cost of O(χ3D6) compared to
the other terms. This is the same complexity [42] as for the
computation of the projectors P and P̃ . [21] One way to reduce
the complexity of the ˜T T term is to split it in the middle into
two parts using an SVD, keeping only a bond dimension of
O(χ ) between the two parts. (3) In some implementations of
the CTM algorithm one normalizes the environment tensors
in a certain way after each step (e.g., division by the largest
element of a tensor) in order to keep the numbers in the tensors
bounded. In this case one has to make sure for consistency that

+ + +

+ + ++

+ + ++

+ + ++

+ + ++

=
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tensor C̃1 contains all contributions of local Hamiltonian terms in the
upper left corner of the infinite system, whereas the edge tensor T̃4

contains all contributions from an infinite half row, as depicted in the
bottom part of the figure. The vertical corner tensor C̃v1 takes into
account all Hamiltonian terms located between the corner C1 and
the edge tensor T4 (see bottom image; a similar definition holds for
the horizontal corner tensors C̃h1). All the other dark blue tensors on
the other corners/edges are defined in a similar way. Finally, there
are four remaining Hamiltonian terms (light blue) between the center
site and its nearest neighbors. The cross on top of a tensor indicates
that the Hamiltonian term is connected to the corresponding physical
legs which are not shown in this top view.

the same normalization is used also for the H-environment
tensors (i.e., the same normalization factor has to be used,
e.g., for C1 and C̃1).

C. Practical schemes

With the CTM approach discussed in the previous sections
we can compute the H and the N matrices and solve the
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FIG. 4. All relevant diagrams to perform a left move to update
the H-environment tensors in the CTM method. Coordinates of the
tensors relative to the unit cell have been omitted for simplicity.
The projectors to perform the renormalization step (yellow triangles)
are the same as the ones computed for the norm. The tensor ˜T T 4

contains Hamiltonian terms connecting the sites between two edges
T4. The tensor T o

4 is an edge where the physical legs of the right
outermost bulk tensors are left open (such that a Hamiltonian term
can be connected to it). Similar diagrams are defined for a right
move, top move, and bottom move. In this way one keeps track of all
nearest-neighbor Hamiltonian terms in a systematic way.

generalized eigenvalue problem (3) for the eigenstate Ã[x,y ]

with lowest-energy eigenvalue. In finite PEPS, where each
tensor appears only once, this provides the best solution at
the current iteration. In iPEPS, however, each tensor A[x,y ]

appears infinitely many times, and thus, replacing each tensor
A[x,y ] by the solution Ã[x,y ] might not be the optimal choice.

This is because both H and N also depend on A[x,y ], making
Eq. (2) a highly nonlinear problem (instead of a quadratic
one).

One could solve the minimization problem (2), e.g., by a
conjugate-gradient method. Here we use a different strategy,
which turns out to work well in practice: we solve the
generalized eigenvalue problem, but instead of using the
solution Ã[x,y ], we take a linear combination with the previous
tensor A[x,y ],

A′(λ)[x,y ] = Ã[x,y ] sin λπ − A[x,y ] cos λπ. (4)

We then optimize the energy E(λ) with respect to the single
parameter λ ∈ [0.5,1.5] [43], which, in principle, can be done
by standard minimization solvers. For each evaluation of E(λ)
one has to recompute the environment for the norm (typically,
a few iterations starting from the previous environment is
accurate enough) and evaluate all local Hamiltonian terms.
For this reason it is desirable to keep the number of function
evaluations of E(λ) low. We had a good experience with the
following scheme:

(1) Compute E(1) (corresponding to the previous energy
with the old tensor A′ = A) and E(0.5) (corresponding to the
energy with A′ = Ã).

(2) If E(0.5) < E(1), take A′ = Ã as the solution and exit.
(3) Define an initial step size #0 (e.g., #0 = 0.1) and a

tiny step size h (e.g., h = 10− 4).
(4) If E(1 + h) < E(1), set # = #0, else # = − #0.
(5) For iter = 1 to maxiter

(a) If E(1 + #) < E(1), accept solution [44] with λ =
1 + # and exit.

(b) Else # = #/2.
With this scheme, typically, only a few evaluations of the

energy are required. The algorithm stops as soon as a lower-
energy solution is found. This does not provide the optimal λ
at each iteration, but in practice this does not seem to matter
since in the end we are interested in the global minimum after
many sweeps and not the “local” optimum at each iteration.

Finally, we repeat the minimization for each tensor in the
unit cell, i.e., for all coordinates [x,y ], and reiterate until the
desired convergence in the energy is reached.

For computations of both the H -environment and the
norm-environment we can start from the environment from
the previous iteration (like in the fast full update [29]), so
that only a few additional CTM iterations are needed at each
step [45].

IV. BENCHMARK RESULTS

In this section we present a series of benchmark results,
ranging from a standard problem (the Heisenberg model) to
challenging cases, including the Shastry-Sutherland and the
t-J models. In all cases we show that the iPEPS results for
each bond dimension can be considerably improved with the
variational optimization, the energy, and order parameters.
For the larger-D simulations we have exploited the U (1)
symmetry of the models in order to increase the efficiency
of the calculation [46,47].
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generalized eigenvalue problem (3) for the eigenstate Ã[x,y ]

with lowest-energy eigenvalue. In finite PEPS, where each
tensor appears only once, this provides the best solution at
the current iteration. In iPEPS, however, each tensor A[x,y ]

appears infinitely many times, and thus, replacing each tensor
A[x,y ] by the solution Ã[x,y ] might not be the optimal choice.

This is because both H and N also depend on A[x,y ], making
Eq. (2) a highly nonlinear problem (instead of a quadratic
one).

One could solve the minimization problem (2), e.g., by a
conjugate-gradient method. Here we use a different strategy,
which turns out to work well in practice: we solve the
generalized eigenvalue problem, but instead of using the
solution Ã[x,y ], we take a linear combination with the previous
tensor A[x,y ],

A′(λ)[x,y ] = Ã[x,y ] sin λπ − A[x,y ] cos λπ. (4)

We then optimize the energy E(λ) with respect to the single
parameter λ ∈ [0.5,1.5] [43], which, in principle, can be done
by standard minimization solvers. For each evaluation of E(λ)
one has to recompute the environment for the norm (typically,
a few iterations starting from the previous environment is
accurate enough) and evaluate all local Hamiltonian terms.
For this reason it is desirable to keep the number of function
evaluations of E(λ) low. We had a good experience with the
following scheme:

(1) Compute E(1) (corresponding to the previous energy
with the old tensor A′ = A) and E(0.5) (corresponding to the
energy with A′ = Ã).

(2) If E(0.5) < E(1), take A′ = Ã as the solution and exit.
(3) Define an initial step size #0 (e.g., #0 = 0.1) and a

tiny step size h (e.g., h = 10− 4).
(4) If E(1 + h) < E(1), set # = #0, else # = − #0.
(5) For iter = 1 to maxiter

(a) If E(1 + #) < E(1), accept solution [44] with λ =
1 + # and exit.

(b) Else # = #/2.
With this scheme, typically, only a few evaluations of the

energy are required. The algorithm stops as soon as a lower-
energy solution is found. This does not provide the optimal λ
at each iteration, but in practice this does not seem to matter
since in the end we are interested in the global minimum after
many sweeps and not the “local” optimum at each iteration.

Finally, we repeat the minimization for each tensor in the
unit cell, i.e., for all coordinates [x,y ], and reiterate until the
desired convergence in the energy is reached.

For computations of both the H -environment and the
norm-environment we can start from the environment from
the previous iteration (like in the fast full update [29]), so
that only a few additional CTM iterations are needed at each
step [45].

IV. BENCHMARK RESULTS

In this section we present a series of benchmark results,
ranging from a standard problem (the Heisenberg model) to
challenging cases, including the Shastry-Sutherland and the
t-J models. In all cases we show that the iPEPS results for
each bond dimension can be considerably improved with the
variational optimization, the energy, and order parameters.
For the larger-D simulations we have exploited the U (1)
symmetry of the models in order to increase the efficiency
of the calculation [46,47].
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Variational optimization with gradient indeed help! 
However, manually deriving gradients is cumbersome
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optimization problem. We present a practical scheme dealing
with this issue in Sec. III C.

B. Systematic summation of Hamiltonian terms
with the CTM method

The CTM method discussed in Sec. II B provides a
convenient way to compute the norm (and local expectation
values) by using the environment tensors, as shown in Fig. 1(c).
The expectation value ⟨!|Ĥ |!⟩, which is an infinite sum, can
be computed in a similar way by introducing a new type of
environment tensors which we call H-environment tensors,
shown in dark blue in Fig. 3.

Each H-environment tensor consists of a sum of Hamil-
tonian contributions. For example, the corner tensor C̃1
contains all contributions from Hamiltonian terms acting on
the infinite upper left part of the system (see bottom panel in
Fig. 3). Similarly, T̃4 contains all Hamiltonian terms acting
on the corresponding infinite half row. We further introduce
horizontal and vertical corner tensors, denoted by C̃h1 and
C̃v1, respectively, for the upper left corner. These tensors
take into account Hamiltonian terms which connect sites
located in the corner C1 and edges T1 or T4, respectively
(see bottom of Fig. 3). Similar tensors are also defined for
the other corners. Finally, we also have to sum up the local
Hamiltonian terms connecting the center site with its four
nearest neighbors (located on the four edge tensors). With this,
the sum represented in Fig. 3 takes into account all Hamiltonian
terms.

The H-environment tensors can be computed in a systematic
way within the regular CTM method, as shown in Fig. 4
for a left move. Importantly, the H-environment tensors are
renormalized in the same way as the norm-environment
tensors, i.e., using the same projectors P and P̃ . In this way
the indices of the H-environment tensors match the ones from
the norm-environment tensors, and thus, different diagrams,
as shown in Fig. 4, can simply be added [41].

Note that the ˜T T tensors, which include Hamiltonian
contributions between two edge tensors, do not appear in
the expectation value of the Hamiltonian shown in Fig. 3.
However, it is crucial to keep track of these tensors since they
add contributions to the C̃h and C̃v tensors, as, for example,
shown in the second row in Fig. 3, where the contributions in
the ˜T T1 tensor are added to the C̃ ′

h1 tensor.
We end this section with three additional remarks: (1) It is

convenient to store also the edge tensors where the physical
legs of the outermost site are kept open, e.g., T ′o

4 shown in
Fig. 4. These tensors can then be used to compute the local
Hamiltonian terms (connecting to the center site) shown in
Fig. 3. (2) The computation of the ˜T T edge terms has a
relatively large computational cost of O(χ3D6) compared to
the other terms. This is the same complexity [42] as for the
computation of the projectors P and P̃ . [21] One way to reduce
the complexity of the ˜T T term is to split it in the middle into
two parts using an SVD, keeping only a bond dimension of
O(χ ) between the two parts. (3) In some implementations of
the CTM algorithm one normalizes the environment tensors
in a certain way after each step (e.g., division by the largest
element of a tensor) in order to keep the numbers in the tensors
bounded. In this case one has to make sure for consistency that
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FIG. 3. Representation of the expectation value of the Hamilto-
nian, where the blue tensors contain sums of local Hamiltonian terms,
as illustrated in the bottom part of the figure. For example, the corner
tensor C̃1 contains all contributions of local Hamiltonian terms in the
upper left corner of the infinite system, whereas the edge tensor T̃4

contains all contributions from an infinite half row, as depicted in the
bottom part of the figure. The vertical corner tensor C̃v1 takes into
account all Hamiltonian terms located between the corner C1 and
the edge tensor T4 (see bottom image; a similar definition holds for
the horizontal corner tensors C̃h1). All the other dark blue tensors on
the other corners/edges are defined in a similar way. Finally, there
are four remaining Hamiltonian terms (light blue) between the center
site and its nearest neighbors. The cross on top of a tensor indicates
that the Hamiltonian term is connected to the corresponding physical
legs which are not shown in this top view.

the same normalization is used also for the H-environment
tensors (i.e., the same normalization factor has to be used,
e.g., for C1 and C̃1).

C. Practical schemes

With the CTM approach discussed in the previous sections
we can compute the H and the N matrices and solve the
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optimization problem. We present a practical scheme dealing
with this issue in Sec. III C.

B. Systematic summation of Hamiltonian terms
with the CTM method

The CTM method discussed in Sec. II B provides a
convenient way to compute the norm (and local expectation
values) by using the environment tensors, as shown in Fig. 1(c).
The expectation value ⟨!|Ĥ |!⟩, which is an infinite sum, can
be computed in a similar way by introducing a new type of
environment tensors which we call H-environment tensors,
shown in dark blue in Fig. 3.

Each H-environment tensor consists of a sum of Hamil-
tonian contributions. For example, the corner tensor C̃1
contains all contributions from Hamiltonian terms acting on
the infinite upper left part of the system (see bottom panel in
Fig. 3). Similarly, T̃4 contains all Hamiltonian terms acting
on the corresponding infinite half row. We further introduce
horizontal and vertical corner tensors, denoted by C̃h1 and
C̃v1, respectively, for the upper left corner. These tensors
take into account Hamiltonian terms which connect sites
located in the corner C1 and edges T1 or T4, respectively
(see bottom of Fig. 3). Similar tensors are also defined for
the other corners. Finally, we also have to sum up the local
Hamiltonian terms connecting the center site with its four
nearest neighbors (located on the four edge tensors). With this,
the sum represented in Fig. 3 takes into account all Hamiltonian
terms.

The H-environment tensors can be computed in a systematic
way within the regular CTM method, as shown in Fig. 4
for a left move. Importantly, the H-environment tensors are
renormalized in the same way as the norm-environment
tensors, i.e., using the same projectors P and P̃ . In this way
the indices of the H-environment tensors match the ones from
the norm-environment tensors, and thus, different diagrams,
as shown in Fig. 4, can simply be added [41].

Note that the ˜T T tensors, which include Hamiltonian
contributions between two edge tensors, do not appear in
the expectation value of the Hamiltonian shown in Fig. 3.
However, it is crucial to keep track of these tensors since they
add contributions to the C̃h and C̃v tensors, as, for example,
shown in the second row in Fig. 3, where the contributions in
the ˜T T1 tensor are added to the C̃ ′

h1 tensor.
We end this section with three additional remarks: (1) It is

convenient to store also the edge tensors where the physical
legs of the outermost site are kept open, e.g., T ′o

4 shown in
Fig. 4. These tensors can then be used to compute the local
Hamiltonian terms (connecting to the center site) shown in
Fig. 3. (2) The computation of the ˜T T edge terms has a
relatively large computational cost of O(χ3D6) compared to
the other terms. This is the same complexity [42] as for the
computation of the projectors P and P̃ . [21] One way to reduce
the complexity of the ˜T T term is to split it in the middle into
two parts using an SVD, keeping only a bond dimension of
O(χ ) between the two parts. (3) In some implementations of
the CTM algorithm one normalizes the environment tensors
in a certain way after each step (e.g., division by the largest
element of a tensor) in order to keep the numbers in the tensors
bounded. In this case one has to make sure for consistency that

+ + +

+ + ++

+ + ++

+ + ++

+ + ++

=
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FIG. 3. Representation of the expectation value of the Hamilto-
nian, where the blue tensors contain sums of local Hamiltonian terms,
as illustrated in the bottom part of the figure. For example, the corner
tensor C̃1 contains all contributions of local Hamiltonian terms in the
upper left corner of the infinite system, whereas the edge tensor T̃4

contains all contributions from an infinite half row, as depicted in the
bottom part of the figure. The vertical corner tensor C̃v1 takes into
account all Hamiltonian terms located between the corner C1 and
the edge tensor T4 (see bottom image; a similar definition holds for
the horizontal corner tensors C̃h1). All the other dark blue tensors on
the other corners/edges are defined in a similar way. Finally, there
are four remaining Hamiltonian terms (light blue) between the center
site and its nearest neighbors. The cross on top of a tensor indicates
that the Hamiltonian term is connected to the corresponding physical
legs which are not shown in this top view.

the same normalization is used also for the H-environment
tensors (i.e., the same normalization factor has to be used,
e.g., for C1 and C̃1).

C. Practical schemes

With the CTM approach discussed in the previous sections
we can compute the H and the N matrices and solve the

035133-4

VARIATIONAL OPTIMIZATION WITH INFINITE . . . PHYSICAL REVIEW B 94, 035133 (2016)

= +
+

+

+

+

= +++

+ = +

= + +

=

= + +

+

=

=

=

=

=

=

= + +

=

= +
+

+

=

=

=

C̃1

C̃v1

C̃h1

C̃h4

˜TT 4

T̃ 4

C̃v4

C̃4

T
o
4

=+

FIG. 4. All relevant diagrams to perform a left move to update
the H-environment tensors in the CTM method. Coordinates of the
tensors relative to the unit cell have been omitted for simplicity.
The projectors to perform the renormalization step (yellow triangles)
are the same as the ones computed for the norm. The tensor ˜T T 4

contains Hamiltonian terms connecting the sites between two edges
T4. The tensor T o

4 is an edge where the physical legs of the right
outermost bulk tensors are left open (such that a Hamiltonian term
can be connected to it). Similar diagrams are defined for a right
move, top move, and bottom move. In this way one keeps track of all
nearest-neighbor Hamiltonian terms in a systematic way.

generalized eigenvalue problem (3) for the eigenstate Ã[x,y ]

with lowest-energy eigenvalue. In finite PEPS, where each
tensor appears only once, this provides the best solution at
the current iteration. In iPEPS, however, each tensor A[x,y ]

appears infinitely many times, and thus, replacing each tensor
A[x,y ] by the solution Ã[x,y ] might not be the optimal choice.

This is because both H and N also depend on A[x,y ], making
Eq. (2) a highly nonlinear problem (instead of a quadratic
one).

One could solve the minimization problem (2), e.g., by a
conjugate-gradient method. Here we use a different strategy,
which turns out to work well in practice: we solve the
generalized eigenvalue problem, but instead of using the
solution Ã[x,y ], we take a linear combination with the previous
tensor A[x,y ],

A′(λ)[x,y ] = Ã[x,y ] sin λπ − A[x,y ] cos λπ. (4)

We then optimize the energy E(λ) with respect to the single
parameter λ ∈ [0.5,1.5] [43], which, in principle, can be done
by standard minimization solvers. For each evaluation of E(λ)
one has to recompute the environment for the norm (typically,
a few iterations starting from the previous environment is
accurate enough) and evaluate all local Hamiltonian terms.
For this reason it is desirable to keep the number of function
evaluations of E(λ) low. We had a good experience with the
following scheme:

(1) Compute E(1) (corresponding to the previous energy
with the old tensor A′ = A) and E(0.5) (corresponding to the
energy with A′ = Ã).

(2) If E(0.5) < E(1), take A′ = Ã as the solution and exit.
(3) Define an initial step size #0 (e.g., #0 = 0.1) and a

tiny step size h (e.g., h = 10− 4).
(4) If E(1 + h) < E(1), set # = #0, else # = − #0.
(5) For iter = 1 to maxiter

(a) If E(1 + #) < E(1), accept solution [44] with λ =
1 + # and exit.

(b) Else # = #/2.
With this scheme, typically, only a few evaluations of the

energy are required. The algorithm stops as soon as a lower-
energy solution is found. This does not provide the optimal λ
at each iteration, but in practice this does not seem to matter
since in the end we are interested in the global minimum after
many sweeps and not the “local” optimum at each iteration.

Finally, we repeat the minimization for each tensor in the
unit cell, i.e., for all coordinates [x,y ], and reiterate until the
desired convergence in the energy is reached.

For computations of both the H -environment and the
norm-environment we can start from the environment from
the previous iteration (like in the fast full update [29]), so
that only a few additional CTM iterations are needed at each
step [45].

IV. BENCHMARK RESULTS

In this section we present a series of benchmark results,
ranging from a standard problem (the Heisenberg model) to
challenging cases, including the Shastry-Sutherland and the
t-J models. In all cases we show that the iPEPS results for
each bond dimension can be considerably improved with the
variational optimization, the energy, and order parameters.
For the larger-D simulations we have exploited the U (1)
symmetry of the models in order to increase the efficiency
of the calculation [46,47].
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4 is an edge where the physical legs of the right
outermost bulk tensors are left open (such that a Hamiltonian term
can be connected to it). Similar diagrams are defined for a right
move, top move, and bottom move. In this way one keeps track of all
nearest-neighbor Hamiltonian terms in a systematic way.

generalized eigenvalue problem (3) for the eigenstate Ã[x,y ]

with lowest-energy eigenvalue. In finite PEPS, where each
tensor appears only once, this provides the best solution at
the current iteration. In iPEPS, however, each tensor A[x,y ]

appears infinitely many times, and thus, replacing each tensor
A[x,y ] by the solution Ã[x,y ] might not be the optimal choice.

This is because both H and N also depend on A[x,y ], making
Eq. (2) a highly nonlinear problem (instead of a quadratic
one).

One could solve the minimization problem (2), e.g., by a
conjugate-gradient method. Here we use a different strategy,
which turns out to work well in practice: we solve the
generalized eigenvalue problem, but instead of using the
solution Ã[x,y ], we take a linear combination with the previous
tensor A[x,y ],

A′(λ)[x,y ] = Ã[x,y ] sin λπ − A[x,y ] cos λπ. (4)

We then optimize the energy E(λ) with respect to the single
parameter λ ∈ [0.5,1.5] [43], which, in principle, can be done
by standard minimization solvers. For each evaluation of E(λ)
one has to recompute the environment for the norm (typically,
a few iterations starting from the previous environment is
accurate enough) and evaluate all local Hamiltonian terms.
For this reason it is desirable to keep the number of function
evaluations of E(λ) low. We had a good experience with the
following scheme:

(1) Compute E(1) (corresponding to the previous energy
with the old tensor A′ = A) and E(0.5) (corresponding to the
energy with A′ = Ã).

(2) If E(0.5) < E(1), take A′ = Ã as the solution and exit.
(3) Define an initial step size #0 (e.g., #0 = 0.1) and a

tiny step size h (e.g., h = 10− 4).
(4) If E(1 + h) < E(1), set # = #0, else # = − #0.
(5) For iter = 1 to maxiter

(a) If E(1 + #) < E(1), accept solution [44] with λ =
1 + # and exit.

(b) Else # = #/2.
With this scheme, typically, only a few evaluations of the

energy are required. The algorithm stops as soon as a lower-
energy solution is found. This does not provide the optimal λ
at each iteration, but in practice this does not seem to matter
since in the end we are interested in the global minimum after
many sweeps and not the “local” optimum at each iteration.

Finally, we repeat the minimization for each tensor in the
unit cell, i.e., for all coordinates [x,y ], and reiterate until the
desired convergence in the energy is reached.

For computations of both the H -environment and the
norm-environment we can start from the environment from
the previous iteration (like in the fast full update [29]), so
that only a few additional CTM iterations are needed at each
step [45].

IV. BENCHMARK RESULTS

In this section we present a series of benchmark results,
ranging from a standard problem (the Heisenberg model) to
challenging cases, including the Shastry-Sutherland and the
t-J models. In all cases we show that the iPEPS results for
each bond dimension can be considerably improved with the
variational optimization, the energy, and order parameters.
For the larger-D simulations we have exploited the U (1)
symmetry of the models in order to increase the efficiency
of the calculation [46,47].
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Figure 3. Energy density and specific heat of the 2D Ising model.
They are computed by taking the first and second order derivative of
the free energy obtained after 30 TRG iteration steps with a cuto↵
bond dimension � = 30. Solid lines are exact solutions [89].

dimensional tensor network with bond dimension D = 2

Z = . (8)

The bulk tensor is [90]

Tuldr = =
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�mod(u+l�d�r,2), (9)

where �u = e
� + (�1)u

e
��. We contract the infinite tensor

network using the TRG approach discussed in Sec. II B 1. We
use a cut o↵ bond dimension � = 30 and iterate for 30 TRG
steps. Finally, we obtain the partition function Eq. (8) and the
free energy by tracing out the bulk tensor.

Next, we compute the physical observables such as energy
density and specific heat by directly taking derivatives of the
free energy using automatic di↵erentiation, as shown in Fig. 3.
One notices that the energy density shows a kink and the
specific heat exhibits a peak around the critical temperature
�c = ln(1 +

p
2)/2 ⇡ 0.44068679. Unlike numerical di↵er-

entiation, these results are free from the finite di↵erence er-
ror [60, 91]. Accurate computation of higher order derivatives
of the tensor network algorithm will be useful to investigate
thermal and quantum phase transitions. We note that it is in
principle possible to obtain the specific heat by directly com-
puting the energy variance [35, 92], which, however, involves
cumbersome summation of geometric series expressed in term
of tensor networks.

There are alternative ways to compute the specific heat with
automatic di↵erentiation. For example, one can directly com-
pute the energy via using the impurity tensor and then take the
first order derivative to obtain the specific heat. Or, one can
also use forward mode automatic di↵erentiation since there

is only one input parameter � to be di↵erentiated. We have
purposely chosen the present approach to show o↵ the power
of di↵erentiable programming with the reverse mode auto-
matic di↵erentiation technique. Backpropagating through the
whole TRG procedure, and in particular the SVD, allows one
to compute physical observables using higher order deriva-
tives. It is remarkable that this works at all given many of the
degenerate singular values due to the Z2 symmetry of the Ising
model [47]. To obtain correct physical results, it is crucial to
implement the SVD backward function in a numerical stable
way as explained in Sec. III A 2.

B. Gradient based optimization of iPEPS

We consider a variational study of the square lattice antifer-
romagnetic Heisenberg model with the Hamiltonian

H =
X
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We consider an infinite projected entangled pair state (iPEPS)
as the variational ansatz. The variational parameters are the
elements in the iPEPS

A
s

uldr
= , (11)

where s denotes the physical indices, and the remaining in-
dices u, l, d, r are for virtual degrees of freedom of the bond
dimension D. We initialize the tensor elements with random
Gaussian variables. The overlap of the iPEPS forms a tensor
network, where the bulk tensor is the double layer tensor with
bond dimension d = D

2

Tuldr = = . (12)

To contract the infinite tensor network formed by this bulk
tensor we use the CTMRG method reviewed in Sec. II B 2.
We initialize the corner and edge tensors by partially tracing
out legs from the bulk tensor, then perform the CTMRG iter-
ation until we reach convergence in the corner and edge ten-
sors. After contraction, we can evaluate the expected energy
h |H| i/h | i. Due to the translational invariance of the prob-
lem, it is su�cient to consider the expected energy on a bond

L =

,
, (13)

where the black rectangle in Eq. (13) is the Hamiltonian
operator acting on a bond. We have performed a basis
rotation to the Hamiltonian so that the ground state will
have a single site unit cell. We use cuto↵ bond dimension
� = 30, 50, 80, 100, 144, 160 for D = 2, 3, . . . , 7 respectively.

=

Human only cares about tensor contraction  
Differentiable programing takes care of  the optimization

Automatic differentiation to the rescue
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conjugate-gradient, quasi-Newton, etc
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Nuts and Bolts

• Reduce memory via checkpointing or exploiting RG fixed point property

A = UDVT

• Numerical stable backward through SVD

Liao, Liu, LW, Xiang, 1903.09650

Ti+1 = f(Ti, θ) T* = f(T*, θ)
Iterate

θ = T* [1 −
∂f

∂T* ]
−1 ∂f

∂θ
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Square lattice Heisenberg model
LIN, TANG, LOU, AND SANDVIK PHYSICAL REVIEW B 86, 144405 (2012)
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FIG. 22. (Color online) Optimized AP amplitudes for the Heisen-
berg chain of length L = 256. The line has slope −1.44.

common power-law line in Fig. 22; that is, in the notation of
Sec. III the optimized state has λ = 1. Looking at Fig. 6, when
λ = 1 the exponent α ≈ 0.75, quite close to α ≈ 0.70 obtained
above with the optimized amplitudes. Thus, the boundary
effects on h(r) seen in Fig. 22 appear to have only minor effects
on the critical behavior. The conclusion for the optimized AP
state is, thus, that a critical behavior is reproduced, but with the
wrong exponents for the correlation functions. Note, however,
that α ≈ β for the applicable power-law obtained here, which
is also the case for the true Heisenberg correlations (but with
larger values, α = β = 1).

C. Two dimensions

We next systematically investigate the improvement of
the energy with the inclusion of bond correlations in two
dimensions, using several choices for the maximum bond
length rmax in the correlation factors C(r1,r2). Figure 23
illustrates all the bond shapes (r1,r2) at three correlation levels,
with rmax = 1,

√
5, and 3 for correlation levels 1, 2, and 3,

respectively.
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FIG. 23. (Color online) Levels of bond correlations. At level n,
the longest bonds (r1,r2) for which the correlation weight C(r1,r2) in
Eq. (7) is optimized (i.e., can be different from 1) are those marked
by n.
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FIG. 24. (Color online) Energy of the 2D Heisenberg model with
variational CAP states at three different levels of bond correlations,
according to the definition of the levels in Fig. 23. Level 0
corresponds to the pure AP state, with no bond correlations included.
The horizontal lines show energies obtained with unbiased QMC
calculations (with the width of the lines corresponding approximately
to the statistical errors).

1. Heisenberg model

For the 2D Heisenberg model, previous variational AP
calculations have shown that the energy error within this class
of state is <0.1% for large systems, and the spin correlations
are reproduced to within 1% or better.19,20 Although the
system is strongly Néel-ordered and only has rapidly decaying
short-range VBS correlations, including bond correlations
with CAP states can still significantly improve the energy
further. Figure 24 shows results for L × L systems with
L = 16, 32, and 64 at different correlation levels. The deviation
from unbiased QMC calculations decreases with increasing
correlation level. For L = 16 with rmax = 3 the relative error
is as small as ≈4 × 10−5, while for the larger systems it is
somewhat larger, about 10−4.

Going further and optimizing all correlation weights
C(r1,r2) with r ! L/2 − 1, one should, in principle, be able
to further improve the energy and obtain the best possible
CAP state (with the kind of correlations included here)
when L → ∞. The energy only improves marginally on the
rmax = 3 results, however. Figure 25 shows results versus
the system size for the energy as well as the sublattice
magnetization. On the scale of the graphs, one can barely
see any differences between the CAP and unbiased QMC
results for L ! 20, while for the larger systems there are
some visible deviations. Here it should again be noted that the
results for large systems are likely not completely optimized.
As discussed above in Sec. V A, the energy depends only
very weakly on the long-bond statistics, which implies that
MC evaluations of the corresponding derivatives are affected
by relatively large fluctuations, leading to slow convergence.
The sublattice magnetization is more sensitive to the long
bonds, however, and this makes it very difficult to obtain
completely unbiased results for large systems. For example,
five independent optimizations for L = 32 with rmax = 3 all
gave the same energy within statistical errors, but the sublattice
magnetization showed significant fluctuations, with the results
⟨m2

s ⟩ = 0.1131,0.1113,0.1132,0.1129,0.1094, with the error

144405-16
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Kitaev honeycomb model

Reaches lower energy even at smaller bond dimensions  
with substantially reduced magnetic order

c.f. analytically constructed iPEPS, Lee et al, 1901.05786



• iPEPS with small bond dimensions are more expressive than we 
thought. We just did not optimize them hard enough 

• Differentiable programming tensor networks has a bright future: 
variational contraction, gauge fixing, fermions…
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• iPEPS with small bond dimensions are more expressive than we 
thought. We just did not optimize them hard enough 

• Differentiable programming tensor networks has a bright future: 
variational contraction, gauge fixing, fermions…

• BTW, the difficulty of optimizing neural network quantum states 
with VMC: stochastic optimization with correlated samples and 
poor gradient estimator (potentially can also be fixed by ML). 
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the cluster-update scheme [39] finds a direct Néel-to-VBS
transition occurring at J c1

2 /J1 ≈ 0.57 [40]. The finite-size
PEPS results did not identify the true nature of VBS order,
specifically between plaquette and columnar. They also find
corresponding critical exponents are consistent with the J -Q
models. A very recent SU (2)-symmetric infinite PEPS (iPEPS)
ansatz suggests a quantum-critical point at J c1

2 /J1 ≃ 0.5,
where in contrast to the finite-size PEPS results [40], the
extracted critical exponents seem to deviate from those of the
J -Q models [41].

In this paper, we aim to develop a fully U (1)-symmetric
iPEPS ansatz with an “improved” update scheme to reexamine
the phase diagram of the J1-J2 SHM. So far, the iPEPS update
algorithms [42,43] have been able to treat the first-neighbor
interactions with high efficiency. They have been shown in
practice to be quite accurate and stable providing reliable
results. However, in the case of longer-range interactions (e.g.,
second-neighbor interactions) a similarly efficient scheme is
still highly desired. To this end, we present an update method
based on the so-called positive approximant and reduced-
tensor application [39,44] to treat second-nearest-neighbor
interactions more accurately and efficiently. We find that this
update scheme significantly improves efficiency and provides
more accurate results in comparison with previous schemes
[43,45]. In addition, we also investigate the implementation of
U (1) symmetry into the iPEPS ansatz by introducing a general
scheme to pick up relevant symmetry sectors. We show that it
solves the loss of accuracy observed when applying continuous
symmetry groups [46] and provides the same accuracy as
nonsymmetric iPEPS.

By using the U (1)-symmetric iPEPS ansatz, we clarify the
quantum phase diagram and the nature of phase transitions
for the J1-J2 SHM with substantially improved variational
wave function (of the ground state), and bridge the gap
between the previous tensor-network and DMRG studies. We
show that the nonmagnetic phase appears in the range of
0.53 < J2/J1 ! 0.61. The critical point J c1

2 /J1 ≃ 0.53 is of
the deconfined type confirmed by continuously vanishing the
Néel order parameter and the divergence of the correlation
length ξ ∼ D1.2. By extrapolating dimer-dimer and spin-spin
correlation functions in the D → ∞ limit, we estimate the
critical anomalous exponents ηs ∼ 0.6 and ηd ∼ 1.9. The
pattern of the local nearest-neighboring bond energies shows
that a columnar VBS phase is established up to J c2

2 /J1 ≃ 0.61.
However, the observed (variational) energies from different
approaches [32] indicate both columnar and plaquette VBS
phases are competitive candidates for the intermediate phase.
With further increasing J2/J1, a first-order phase transition
takes place from VBS phase to the conventional Stripe phase.

The paper is organized as follows. We first introduce the
model and briefly summarize different types of the phases and
the resulting phase diagram obtained by our iPEPS studies in
Sec. II. In Sec. III, we briefly introduce the U (1)-symmetric
iPEPS ansatz and discuss a general scheme to select auto-
matically relevant symmetric sectors (Sec. III B). We then
present an iterative scheme in detail and compare it with
previous schemes (Sec. III C). Section IV provides the main
simulation results. The variational ground-state energy and
Néel order parameter are presented in Sec. IV C. We show
that the intermediate phase is a columnar VBS represented in

FIG. 1. Phase diagram of the J1-J2 SHM as a function of coupling
J2. The arrows show pattern of magnetic order appeared in AFM Néel
and Stripe phases. The eclipses in intermediate phase (columnar VBS)
stand for entangled spins (singlet states).

Sec. IV D. The critical properties of the deconfined quantum-
critical point are discussed by studying correlation function and
correlation length in Sec. IV E; further plots of the correlation
functions are presented in the Appendix. Using different initial
tensors representing different symmetry-breaking states, we
determine the boundary of columnar VBS and the conventional
Stripe phase in Sec. IV F. Finally, we summarize our work with
some discussions in Sec. V.

II. MODEL

The J1-J2 SHM is defined by the Hamiltonian

H = J1

∑

⟨i,j⟩
Si · Sj + J2

∑

⟨⟨i,j⟩⟩
Si · Sj ,

where Si ≡(Sx
i ,S

y
i ,S

z
i ) are spin-1/2 operators. The couplings

J1 and J2 stand for the first- and second-neighbor antiferro-
magnetic (AFM) interactions. We set J1 = 1 throughout the
paper and consider the frustrated interaction J2 > 0.

In the extreme cases J2 ≈ 0 or J2 ≫ 1, the ground states
are, respectively, defined by two magnetically ordered phases,
i.e., AFM Néel and Stripe. The patterns of magnetic orders for
these phases have been shown in Fig. 1. All the earlier studies
suggest that these two phases are separated by an (or several)
intermediate phase(s). Our goal is to locate and characterize
the intermediate phase.

The obtained phase diagram has been illustrated in Fig. 1.
We find that the intermediate phase is a paramagnetic phase
that breaks lattice symmetry, i.e., a columnar VBS. As seen
in Fig. 1, columnar VBS order (in which vertical spins are
strongly entangled) only breaks lattice symmetry in the y
direction. The columnar VBS phase is separated from the
Néel one by a continuous phase transition occurred at J c1

2 =
0.530(5). In addition, the quantum phase transition between
VBS and AFM Stripe phases takes place at J c2

2 = 0.610(3),
which is of the first-order type.

III. METHOD

A. U(1)-symmetric iPEPS ansatz

An iPEPS is constructed by building-block tensors that
are sitting on sites of the physical lattice [47]. The tensors
are connected to each other by the so-called virtual bonds

174408-2

and plaquette order.3,14,15) By using DMRG, Gong et al.8)

have reported that a plaquette VBC phase appears for 0:5 <
J2=J1 < 0:61.

Although both the VMC and DMRG methods can be used
to predict the quantum spin liquid state in the intermediate
region of the J1–J2 Heisenberg model, the nature of this state
such as the spin gap remains controversial. Among all, very
recent state-of-the-art studies, one by VMC6) and the other
two by the DMRG method7,8) have led to contradictory
conclusions, in terms of the phase diagram and spin liquid
properties. The nature and existence of the quantum spin
liquid phase are, therefore, still under hot debate.

One possible reason for the discrepancy is the inevitable
bias existing in the VMC methods. As in the case of the
calculation by Hu et al., the variational wave functions are
often assumed to have a certain symmetry through the mean-
field Hamiltonian.6) Another possible origin of the discrep-
ancy could be the insufficient number of states kept in the
DMRG studies. The limitation of the tractable number of
states also constrains the lattice shape to a cylindrical
geometry and the maximum size of the circumference at
most 12 or 14 sites.

To elucidate the origin of the discrepancy, particularly
between the VMC and DMRG results, we perform VMC
simulations using improved variational wave functions that
can reproduce both spin-gapped and spin-gapless states in a
unified form. We employ the many-variable variational Monte
Carlo (mVMC) method16) for the model of square size (L! L)
with a periodic boundary condition, which is more symmetric
than the cylindrical boundary condition studied by the DMRG
method and makes the extrapolation to the thermodynamic
limit easier. To reduce biases of the variational wave functions,
we introduce a generalized one-body part of the variational
wave functions so that they can compare both spin-gapped
and spin-gapless states on equal footing. To obtain singlet
and triplet excited states, we apply several quantum-number
projections to specify the quantum numbers of the wave
function such as the total spin and momentum, which must be
preserved because they commute with the Hamiltonian. This
procedure not only enables higher accuracy but also allows us
to calculate the energy gaps and excitation spectra directly.

Our calculations up to 16! 16 sites yield the ground-state
phase diagram after the size extrapolation to the thermody-
namic limit, as shown in Fig. 2. The staggered (stripe) AF
phase exists for J2=J1 " 0:4 (J2 > 0:6), and the ground
state for 0:4 < J2=J1 " 0:6 has no magnetic order. In this
nonmagnetic region, we found that the triplet gap closes
and becomes gapless in the region 0:4 < J2=J1 " 0:5, while
the VBC phase is obtained for 0:5 < J2=J1 " 0:6 with gapful
spin-triplet excitations. We also report the power-law decay
of the spin–spin correlation function in the gapless region
indicating the existence of an algebraic spin-liquid phase in
an extended region.

This paper is organized as follows. In Sect. 2, we first
introduce the J1–J2 Heisenberg model and the mVMC
method with quantum-number projections. In Sect. 3, we
determine the quantum numbers of the ground and excited
states and report results of the order parameters and triplet
gap. The nature of the nonmagnetic region and the properties
of phase transition points are discussed in Sect. 4. Section 5
is devoted to the conclusions.

2. Model and Method

We consider the spin 1/2 antiferromagnetic J1–J2
Heisenberg model on the square lattice. The Hamiltonian is
given by

H ¼ J1
X

hi;ji
Si $ Sj þ J2

X

hhi;jii
Si $ Sj; ð1Þ

where hi; ji and hhi; jii denote nearest-neighbor and next-
nearest-neighbor sites, respectively; Si is the spin 1/2
operator on site i. In the following, we set J1 ¼ 1 as a unit
of energy. We calculate the ground state and low-energy
excited states of the model under the periodic boundary
conditions.

To obtain the physical properties of the states, we use
the mVMC method with quantum-number projections.16) We
employ a fermionic representation of the trial wave functions
of the form

j i ¼ PGLj!pairi; ð2Þ

where j!pairi and L denote the one-body part and quantum
number projection, respectively, as we will detail later. We
introduce the creation (annihilation) operator ci" (cyi") of the
electron on the site i with spin ·. The ¡-component of the
spin 1/2 operator (# ¼ x; y; z) is represented by

S#i ¼ 1

2
cyi "#ci; ð3Þ

where "# denotes the Pauli matrix and cyi ¼ ðcyi"; c
y
i#Þ. The

Gutzwiller projection

PG ¼
Y

i

ð1 ( ni"ni#Þ ð4Þ

prohibits the double occupation of electrons.
The one-body part is given by a generalized pair wave

function defined as

j!pairi ¼
X

i;j

fijc
y
i"c

y
j#

 !Ns=2

j0i; ð5Þ

where Ns ¼ L2 is the number of sites. The pairing amplitudes
fij are taken as a variational parameter depending on i and j,
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Fig. 2. (Color online) Ground-state phase diagram of J1–J2 Heisenberg
model on square lattice obtained in the present study. Staggered (stripe)
magnetizations are denoted by mðqÞ with q ¼ ð$;$Þ (q ¼ ð$; 0Þ). The dimer
order parameter md is multiplied by 5.0 and ¦ denotes the triplet spin gap.
The curves are guides for the eyes. For the definitions of mðqÞ and md, see
Sect. 3.
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The nature of quantum spin liquids is studied for the spin-1/2 antiferromagnetic Heisenberg model on a square lattice
containing exchange interactions between nearest-neighbor sites, J1, and those between next-nearest-neighbor sites, J2.
We perform variational Monte Carlo simulations together with the quantum-number-projection technique and clarify the
phase diagram in the ground state together with its excitation spectra. We obtain the nonmagnetic phase in the region
0.4 < J2/J1 ¯ 0.6 sandwiched by the staggered and stripe antiferromagnetic (AF) phases. Our direct calculations of the
spin gap support the notion that the triplet excitation from the singlet ground state is gapless in the range of 0.4 <
J2/J1 ¯ 0.5, while the gapped valence-bond-crystal (VBC) phase is stabilized for 0.5 < J2/J1 ¯ 0.6. The VBC order is
likely to have the columnar symmetry with a spontaneous symmetry breaking of the C4v symmetry. The power-law
behaviors of the spin–spin and dimer–dimer correlation functions in the gapless region are consistent with the emergence
of the algebraic quantum-spin-liquid phase (critical phase). The exponent of the spin correlation hSð0ÞSðrÞi / 1=rzþ ! at a
long distance r appears to increase from z + © ³ 1 at J2/J1 ³ 0.4 toward the continuous transition to the VBC phase at
J1/J1 ³ 0.5. Our results, however, do not fully exclude the possibility of a direct quantum transition between the
staggered AF and VBC phases with a wide critical region and deconfined criticality.

1. Introduction

In the presence of strong geometrical frustration and
quantum fluctuations, insulators without any long range
order, i.e., quantum spin liquid (SL) states, may appear even
at zero temperature. One of the simplest models proposed for
the quantum spin liquid state is a spin 1/2 antiferromagnetic
J1–J2 Heisenberg model on a square lattice (Fig. 1). The
variables J1 and J2 denote the nearest- and next-nearest-
neighbor interactions, respectively. In the small-J2 region,
just as in the Heisenberg model on a square lattice, the
ground state is widely believed to have the staggered
antiferromagnetic (AF) long-ranged order with a Bragg peak
at q ¼ ð";"Þ in the spin structure factor. On the other hand,
when J2 becomes comparable to J1, the stripe AF long-range
order with Bragg peaks at q ¼ ð0;"Þ and ð"; 0Þ in the spin
structure factor is stabilized. In the intermediate region,
J2 % J1=2, geometrical frustration and quantum fluctuations
have been proposed to suppress the long-range magnetic and
valence-bond-crystal (VBC) orders.1–10)

There are several high-precision numerical methods of
obtaining the ground states of strongly correlated electron
systems. Among others, the variational Monte Carlo (VMC)
method based on the fermionic resonating-valence-bond
(RVB) state is a powerful tool for examining the quantum
spin liquid states. More recently, Hu et al. have investigated
the J1–J2 Heisenberg model by the VMC method together
with the Lanczos technique and reported that the energy gap
between the ground state and the triplet excited state with the
total momentum K ¼ ð"; 0Þ closes in the range of 0:48 &
J2=J1 & 0:6.6)

The density matrix renormalization group (DMRG)
method is a highly accurate numerical technique. It is
originally developed for one-dimensional electron systems
and has recently been applied to two-dimensional ones under
the cylindrical boundary condition. Jiang et al. have revisited

the ground-state properties of the J1–J2 Heisenberg model
by using the DMRG method.7) They have reported a spin-
gapped quantum spin liquid phase in the range of 0:41 &
J2=J1 & 0:62. The quantum spin liquid state is characterized
by the absence of long-range magnetic and dimer orders. In
contrast to these results, Gong et al. showed a gapless region
without any magnetic and VBC orders in the range of
0:44 < J2=J1 < 0:5 using DMRG with SU(2) spin rotation
symmetry.8)

In various numerical results, the intermediate region 0:4 .
J2=J1 . 0:6 has been interpreted as the spin liquid phase with
either gapless4,6,8) or gapful5,7,9) triplet excitations. However,
it has also been alternatively interpreted by the deconfine-
ment criticality, where a novel quantum criticality dominated
by the deconfinement of magnons emerges at the critical
point between the AF and stripe AF (or VBC) phases. In this
proposal, the spin liquid phase does not exist in the ground
state, but the liquid emerges only at the critical point; in other
words, the parameters away from the critical point always
belong to either of the ordered phases in a strict sense.

It has also been proposed that the intermediate phase
contains VBC phases including the columnar order1,2,11–13)

Fig. 1. Lattice structure of the antiferromagnetic J1–J2 Heisenberg model
on a square lattice. At J2 ¼ 0, the structure is a simple square lattice. We use
the periodic–periodic boundary condition.
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+ many many others

gappedZ2 SL [40]—by observing that the PVBdecay length
grows stronglywith increasing systemwidth.We identify the
PVB order as the s-wave plaquette [33] by studying dimer-
dimer correlations. For 0.44 < J2 < 0.5, we find that the
magnetic order, valence-bond crystal (VBC) orders, and spin
excitation gap are small on finite-size systems, suggesting
a near-critical behavior. The magnetic and dimer critical
exponents atJ2 ¼ 0.5 are roughly similar to thevalues found
for the deconfined criticality in theJ-Qmodels on the square
and honeycomb lattices [56–63], which is consistent with
the deconfined criticality scenario conjectured also for the
J1-J2 model in Ref. [64].
We establish the phases based on high accuracy DMRG

results on cylinders [65]. The first cylinder is the rectan-
gular cylinder (RC) with closed boundary in the y direction
and open boundaries in the x direction. We denote it as
RCLy-Lx , where Ly and Lx are the number of sites in the
y and x directions; the width of the cylinder is Wy ¼ Ly
(see the inset of Fig. 1). To study the dimers oriented in the
y direction, we can induce such an order near the open
boundaries by modifying every other NN vertical bond
on the boundary to be Jpin ≠ J1 as illustrated in Fig. 1. The
second geometry is the tilted cylinder (TC), as shown in
Fig. 4(a), when discussing VBC order.
Néel order.—The Néel order parameter m2

s is defined as
m2

s ¼ 1
N2

P
i;jhSi · Sjiei~q·ð~ri−~rjÞ (N is the total site number),

with ~q ¼ ðπ; πÞ. We calculatem2
s from the spin correlations

of the L × L sites in the middle of the RCL-2L cylinder,
which efficiently reduces boundary effects [40,66]. In
Fig. 2(a), we show m2

s for different systems with L¼4–14
[67]. We show the obtained two-dimensional limit m2

s;∞ in

the inset of Fig. 2(a). Such an analysis suggests that the
Néel order vanishes for J2 > 0.44.
The estimatedJ2 of spin order vanishing is different from

the point J2 ¼ 0.5 where the PVB order develops as found
below. One possibility is an intermediate SL phase [44,45].
Another possibility is that the system is near critical for
0.44 < J2 < 0.5. In this case, to get some idea about the
criticality, Fig. 2(b) shows the log-log plot of m2

sðLÞ. m2
s

approaches finite value in the Néel phase as seen for J2 ¼
0.35 and 0.4. On the other hand, we expectm2

sðLÞ∼L−ð1þηÞ

at a critical point andm2
sðLÞ∼L−2 in thenonmagnetic phase.

The accelerated decay of m2
sðLÞ at J2 ¼ 0.55 is consistent

with vanishingNéel order: from the two largest sizes we esti-
mate m2

sðLÞ∼L−1.82, which is quite close to m2
sðLÞ∼L−2.

In the near-critical region, we fit the J2 ¼ 0.44 data to
L−ð1þ0.15Þ and the J2 ¼ 0.5 data (L > 8) to L−ð1þ0.44Þ. This
range of η is compatible with the findings in theJ-Qmodels
on the square (η≃ 0.26–0.35) [56–62] and honeycomb
(η≃ 0.3) [63] lattices, which show continuous Néel-to-
VBC transition argued to be in the deconfined criticality
class, so our model is compatible with this scenario as well.
VBC orders.—We introduce the “pinning” bonds Jpin ≠

J1 on boundaries to induce a vertical dimer pattern and

FIG. 1 (color online). Phase diagram of spin-1=2 J1-J2 SHM
obtained by our SUð2Þ DMRG studies. With growing J2, the
model has a Néel phase for J2 < 0.44 and a PVB phase for
0.5 < J2 < 0.61. Between these two phases, the finite-size mag-
netization and spin gap appear small in our calculations, consistent
with a near-critical behavior. The main panel shows Néel order
parameter ms and spin gap ΔT in the thermodynamic limit. The
inset is a sketch of a RC4-6 cylinder;Jpin shows the modified odd
vertical bonds providing the boundary pinning for dimer orders.
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FIG. 2 (color online). (a) m2
s plotted versus 1=L for RCL-2L

cylinder with L ¼ 4; 6; 8; 10; 12; 14; lines are polynomial fits up
to fourth order. The inset is J2 dependence of the obtained
magnetic order in the 2D limit m2

s;∞. (b) Same data as (a) shown
as log-log plot of m2

s versus width L.
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itself by a vanishing of the singlet gap at k= !0,2! /"3# for
x" 1 is an instability towards a columnar dimerization. Al-
though this does not prove that the columnar state is finally
stable, it makes the columnar dimerization pattern the most
likely candidate for the VBS order in the nonmagnetic region
of the phase diagram.

IV. CONCLUSIONS

We have calculated the ground-state energy e for the
J1-J2 model including a small field F1 with strength #, which
induces a columnar dimerization in the Néel ordered phase,
by Ising series expansion. We have argued that everywhere
except directly at a critical point it is possible to expand e!##

in a regular series in #2 and that this series has a finite radius
of convergence which goes to zero when the tentative critical
point is approached. The prefactor of the #2-term in that
series gives the susceptibility $1 with respect to F1. The data
for this susceptibility obtained by an Ising series expansion
indicate that the Néel state becomes unstable for g % gc
$0.43 and that the ground state for g % gc breaks transla-
tional symmetry by one site and therefore seems to be of the
VBS type and not a spin liquid. Based on a mean-field treat-
ment of an effective field theory describing the Néel state
coexisting with the small dimerization induced by F1 we
have argued that the sign of the #4 term in the expansion of
e!## determines whether the transition with respect to the
VBS order parameter is first or second order. We believe that
this is an in general more sensitive and less biased method to
distinguish between a first- and a second-order transition
than looking for a crossing of energies obtained by different
expansions. From the series data we found that the #4-term
has a negative sign and we showed that the same is true in
spin-wave theory. Within the presented GL-type theory this
means that the transition is expected to be first order. Our
mean-field treatment of the order parameter is a posteriori
justified because a critical point where such a treatment
would break down is never reached.

In the second part we gave arguments in favor of a first-
order transition which are independent of any effective field
theory by analyzing two additional susceptibilities testing
different lattice symmetries. These susceptibilities were cal-
culated based on an Ising expansion in the Néel phase so that
the series is not biased by any assumed dimerization pattern.
We argued that at a deconfined critical point all three suscep-
tibilities considered here are expected to diverge and that the
fact that $2 and $3 do not diverge excludes this scenario. We
further argued that in any second-order scenario the nondi-
vergence of $2 would mean that the VBS state is not of the
columnar dimer type and the nondivergence of $3 would
mean that the VBS state is not of plaquette type either. For
an assumed second-order transition we have been able to find
a VBS pattern which does have the correct lattice symme-
tries to explain our data for all three susceptibilities. Series
expansion data starting from this pattern, however, have
proven that this state is unstable with respect to the columnar
dimerization pattern.

Taking the arguments given in the two parts together
shows that the transition from the Néel state to a VBS state

FIG. 7. !Color online# Ground state energies calculated by dif-
ferent series expansions starting from the nonmagnetic states shown
in Fig. 4 as well as from the magnetic Néel and collinear states. The
curve 4!a# !open squares# corresponds to the columnar dimer state
shown in Fig. 4!a#, the curve 4!b# !black dots# to the plaquette state
shown in Fig. 4!b#, and the curve 4!c# !red dots# to the plaquette
state shown in Fig. 4!c#. The black triangles show results of Ising
series expansions starting from the Néel and collinear states.

TABLE I. Series coefficients xn for the minimum singlet gap &s and triplet gap &t for the plaquette state
from Fig. 4!c# and g =0.25 !g =0.45#, respectively.

n &s /J1 !g =0.25# &t /J1 !g =0.25# &s /J1 !g =0.45# &t /J1 !g =0.45#

0 1.500000000 1.000000000 1.100000000 1.000000000
1 0.000000000 −8.33333334' 10−1 0.000000000 −4.33333334' 10−1

2 −4.356195887' 10−1 −5.722808442' 10−1 −4.151003339' 10−1 −5.005966374' 10−1

3 −3.880918282' 10−1 1.4032850965' 10−1 −1.832689336' 10−1 8.2113320127' 10−2

4 −4.828163654' 10−1 −2.265506840' 10−1 −1.537390367' 10−1 −3.080455443' 10−2

5 −6.032418702' 10−1 7.5790435073' 10−3 −1.592497102' 10−1 −1.108096117' 10−1

6 −7.988310579' 10−1 −4.517676083' 10−2 −1.653261118' 10−1 1.6084176410' 10−2
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FIG. 2. Squares of order parameter, g,&, and M, associated
with collinear and Neel states, respectively, vs J2 (J| 2.0).
Solid (open) squares and triangles denote results for N 20
(N 16) as explained in the figure.
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—1.4
0.4 0.8 2.0

FIG. l. (a) Some representative energy levels (per site) of
the %=16 lattice at Jl 2.0. E+ is the ground state, E— is
the first excited state odd under a ir/2 lattice rotation, Eswi,
Esw2 are spin waves, and Ep, Eg are excited states whose phys-
ical meaning is explained in the text. (b) Same as (a) but for
jV 20.

of operators are evaluated in the actual ground state tak-
ing into account the crossing levels. We explicitly
checked that our qualitative predictions are unchanged if
instead of the actual ground state for N=20 we consider
the state E+ in calculating expectation values.
Now we analyze the physical meaning of our results.

First we concentrate on the near degeneracy between E+
and E— for J2/Ji )0.55 where classically the system
decouples into two independent Neel-ordered sublattices.
However, for large but finite J2, thermal and/or quan-
tum fluctuations crucially alter this picture. The J&
term that couples the two sublattices cannot be neglect-

ed. The basic detail is that the coupling between the
fluctuations of each sublattice staggered magnetization is
maximum when they are parallel or antiparallel. Expli-
cit calculations at large S have sho~n that the infinite
degeneracy of the classical ground state is removed and
the system eAectively prefers to be locked in a state
where the magnetizations have a relative angle of 0 or z.
This results in dominant configurations having alternat-
ing rows (or columns) of spins up and down (that we will
call "strip" or collinear states) that are connected by a
lattice rotation of m/2. However, the tunneling between
them is through a high-energy barrier and thus exponen-
tially suppressed. The barrier diverges in the thermo-
dynamic limit and a spontaneous breakdown of the
discrete lattice rotational symmetry occurs.
Our results in Fig. 1 clearly support this picture,

confirming the validity of the spin-wave calculations
even for S 2 . E+ and E—correspond to the even and
odd combinations of the two collinear states with a split-
ting caused by tunneling in our finite system. Analyzing
the wave functions we found that indeed the classical
collinear states have relatively large coefticients. In the
collinear states there is a spin-wave mode in the "stag-
gered" direction. They correspond to the states Esw2 of
Fig. 1. Another way to check the existence of collinear
states is by using the order parameter

o;=s; (s, „-+s, „-—s, „-
—s, „-). (2)

0; takes values +1 or —1 for the collinear states. It
vanishes for a classical Neel state. %'e have studied the
square of this order parameter, defined as g,&,
=((N 'g;0;) ), where the sum is over even sites. If a
collinearlike state is the ground state in the bulk limit
then g,t, should stay approximately constant with in-
creasing N. In Fig. 2 we show our results for g,~,. For
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FIG. 1. Illustration of the three common steps of hybrid quantum-classical algorithms. These steps have

to be repeated until convergence or when a su�ciently good quality of the solution is reached. 1) State

preparation involving the quantum hardware capable of tunable gates characterized by parameters “n (blue),

2) measurement of the quantum state and evaluation of the objective function (red), 3) iteration of the

optimization method to determine promising changes in the state preparation (green). Notice that a single

parameter “n may characterize more than one gate, for example see “1 and “6 in the blue box. In practice,

many state preparations and measurements are necessary before proceeding with a single update of the

parameters.

quantum state, records the outcomes and analyze them to obtain the value of the objective function

corresponding to the prepared state. The third step is the classical optimization iteration that,

based on previous results, suggests new parameter values to improve the quality of the state. We

pictorially illustrate these three parts and their interplay in Fig. 1.

As mentioned, the goal of variational algorithms is to find an approximate solution to certain

problems. The quality of such approximation is given by the value of the objective function that one

desires to maximize (or minimize). The objective function is expressed as a quantum observable,

noted here with Ĉ, of the qubit register. It can be a genuinely quantum quantity, as is the case

for the energy of molecular systems, or classical in nature, for example when it is associated to

combinatorial optimization, scheduling problems or financial modeling. Given the quantum register

in state |„Í, the objective function is given by the expectation value È„| Ĉ |„Í.
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one measures the phase Ent and collapses the system
register to the state jni with probability janj2.
Our PEA implementation is based on a modification of

Kitaev’s iterative phase estimation algorithm [8,35]. The
circuit we use is shown in Fig. 4 and detailed descriptions
of the subroutines we use to control UTrotð2kt0Þ on an
ancilla are shown in Appendix C. The rotation ZΦðkÞ in
Fig. 4 feeds back classical information from the prior k − 1
measurements using phase kickback as

ΦðkÞ ¼ π
Xk−1

l¼0

jl
2l−kþ1

: ð7Þ

With iterative phase estimation, one measures the phase
accumulated on the system one bit at a time. Even when a0
is very small, one can use iterative phase estimation to
measure eigenvalues if the system register remains coherent
throughout the entire phase determination. Since the
Hartree-Fock state has strong overlap with the ground state
of molecular hydrogen (i.e., jh0jϕij2 > 0.5), we are able to
measure each bit independently with a majority-voting
scheme, reducing coherence requirements. For b bits,
the ground-state energy is digitally computed as a binary
expansion of the measurement outcomes,

Eb
0 ¼ −

π
t0

Xb−1

k¼0

jk
2kþ1

: ð8Þ

Experimentally computed energies are plotted alongside
VQE results in Fig. 3(a). Because energies are measured

digitally in iterative phase estimation, the experimentally
determined PEA energies in Fig. 3(a) agree exactly with
theoretical simulations of Fig. 4, which differ from the exact
energies due to the approximation of Eq. (5). The primary
difficulty of the PEA experiment is that the controlled
application of UTrotð2kt0Þ requires complex quantum
circuitry and long coherent evolutions. Accordingly, we
approximate the propagator in Eq. (5) using a single
Trotter step (ρ ¼ 1), which is not sufficient for chemical
accuracy. Our PEA experiment shows an error in the
dissociation energy of ð1% 1Þ × 10−2 hartree.
In addition to taking only one Trotter step, we perform

classical simulations of the error in Eq. (5) under different
orderings of the Hγ in order to find the optimal Trotter
sequences at each value ofR. The Trotter sequences we use
in our experiment as well as parameters such as t0 are
reported in Appendix C. Since this optimization is intrac-
table for larger molecules, our PEA protocol benefits from
inefficient classical preprocessing (unlike our VQE imple-
mentation). Nevertheless, this is the first time the canonical
quantum algorithm for chemistry has been executed in its
entirety and, as such, represents a significant step towards
scalable implementations.

IV. EXPERIMENTAL METHODS

Both algorithms are implemented with a superconduct-
ing quantum system based on the Xmon [48], a variant of
the planar transmon qubit [49], in a dilution refrigerator
with a base temperature of 20 mK. Each qubit consists
of a superconducting quantum interference device

(a) (b)

FIG. 3. Computed H2 energy curve and errors. (a) Energy surface of molecular hydrogen as determined by both VQE and PEA. VQE
approach shows dissociation energy error of ð8% 5Þ × 10−4 hartree (error bars on VQE data are smaller than markers). PEA approach
shows dissociation energy error of ð1% 1Þ × 10−2 hartree. (b) Errors in VQE energy surface. Red dots show error in the experimentally
determined energies. Green diamonds show the error in the energies that would have been obtained experimentally by running the circuit
at the theoretically optimal θ instead of the experimentally optimal θ. The discrepancy between blue and red dots provides experimental
evidence for the robustness of VQE, which could not have been anticipated via numerical simulations. The gray band encloses the
chemically accurate region relative to the experimental energy of the atomized molecule. The dissociation energy is relative to the
equilibrium geometry, which falls within this envelope.
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jφð~θÞi≡Uð~θÞjϕi. Even if jϕi is a simple product state and
Uð~θÞ is a very shallow circuit, jφð~θÞi can contain complex
many-body correlations and span an exponential number of
standard basis states.
We can express the mapping Uð~θÞ as a concatenation

of parametrized quantum gates, U1ðθ1ÞU2ðθ2Þ…UnðθnÞ.
In this work, we parametrize our circuit according to
unitary coupled cluster theory [20,22,23]. As described
in Appendix D, unitary coupled cluster theory predicts that
the ground state of Eq. (1) can be expressed as

jφðθÞi ¼ e−iθX0Y1 j01i; ð3Þ

where jϕi ¼ j01i is the Hartree-Fock (mean-field) state
of molecular hydrogen in the representation of Eq. (1).
As discussed in Appendix D, unitary coupled cluster
theory is widely believed to be classically intractable and
is known to be strictly more powerful than the “gold
standard” of classical electronic structure theory, coupled
cluster theory [43–46]. The gate model circuit that
performs this unitary mapping is shown in the software
section of Fig. 1.
VQE solves for the parameter vector ~θ with a classical

optimization routine. One first prepares an initial ansatz
jφð~θ0Þi and then estimates the ansatz energy E ð~θ0Þ by
measuring the expectation values of each term in Eq. (1)
and summing these values together as

E ð~θÞ ¼
X

γ

gγhφð~θÞjHγjφð~θÞi; ð4Þ

where the gγ are scalars and the Hγ are local Hamiltonians

as in Eq. (1). The initial guess ~θ0 and the corresponding
objective value E ð~θ0Þ are then fed to a classical greedy
minimization routine (e.g., gradient descent), which then
suggests a new setting of the parameters ~θ1. The energy
E ð~θ1Þ is then measured and returned to the classical outer
loop. This continues for m iterations until the energy
converges to a minimum value E ð~θmÞ, which represents
the VQE approximation to E 0.
Because our experiment requires only a single varia-

tional parameter, as in Eq. (3), we elect to scan 1000
different values of θ ∈ ½−π; πÞ in order to obtain expect-
ation values that define the entire potential energy curve.
We do this to simplify the classical feedback routine but at
the cost of needing slightly more experimental trials. These
expectation values are shown in Fig. 2(a) and the corre-
sponding energy surfaces at different bond lengths are
shown in Fig. 2(b). The energy surface in Fig. 2(b) is
locally optimized at each bond length to emulate an on-the-
fly implementation.
Figure 3(a) shows the exact and experimentally deter-

mined energies of molecular hydrogen at different bond
lengths. The minimum energy bond length (R¼ 0.72 Å)
corresponds to the equilibrium bond length, whereas the
asymptote on the right-hand part of the curve corresponds
to dissociation into two hydrogen atoms. The energy
difference between these points is the dissociation energy,
and the exponential of this quantity determines the chemi-
cal dissociation rate. Our VQE experiment correctly pre-
dicts this quantity with an error of ð8% 5Þ × 10−4 hartree,
which is below the chemical accuracy threshold. Error bars

FIG. 1. Hardware and software schematic of the variational quantum eigensolver. (Hardware) micrograph shows two Xmon transmon
qubits and microwave pulse sequences to perform single-qubit rotations (thick lines), dc pulses for two-qubit entangling gates (dashed
lines), and microwave spectroscopy tones for qubit measurements (thin lines). (Software) quantum circuit diagram shows preparation of
the Hartree-Fock state, followed by application of the unitary coupled cluster ansatz in Eq. (3) and efficient partial tomography (Rt) to
measure the expectation values in Eq. (1). Finally, the total energy is computed according to Eq. (4) and provided to a classical optimizer
which suggests new parameters.
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the case of H2, remove two qubits associated with the spin–parity 
 symmetries, reducing the Hamiltonian to a six-qubit problem that 
encodes eight spin orbitals. A similar approach is used to map LiH 
onto four qubits. The Hamiltonians for H2, LiH and BeH2 at their 
 lowest-energy interatomic distances (bond distance) are given  explicitly 
in Supplementary Information.

The results from an optimization procedure are illustrated in Fig. 2, 
using the Hamiltonian for BeH2 at the interatomic distance of 1.7 Å. 
Although using a large number of entanglers UENT helps to achieve 
better energy estimates in the absence of noise, the combined effect 
of decoherence and finite sampling sets the optimal depth for opti-
mizations on our quantum hardware to 0–2 entanglers. The results 
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Figure 2 | Experimental implementation of six-qubit optimization. The 
minimum energy of the six-qubit Hamiltonian describing BeH2 with an 
interatomic distance of l =  1.7 Å (data points) is plotted along with the 
exact value (black dashed line). For each iteration k, the gradient at each 
control θk is approximated using 1,000 samples for energy estimation  
at θ+k  (blue) and θ−k  (red), which are perturbations to θk along opposite 
directions of a random axis in parameter space. The error bars correspond 
to the standard error of the mean. The inset shows the simultaneous 

optimization of 30 Euler angles that control the trial state preparation. 
Each colour refers to a particular qubit (Q1–Q6; q =  1, 2, …), following the 
colour scheme in Fig. 1. The final energy estimate (green dashed line) is 
obtained using the average angle over the last 25 angle updates (indicated 
by the green dotted arrow), to mitigate the effect of stochastic fluctuations, 
and with a higher number of samples (100,000), to obtain a more accurate 
energy estimation.

CR
2–4

CR 6–
5

CR
1–3

CR
2–4

CR
1–3

CR
2–4

0 1 2 3 4

Interatomic distance (Å)

–1.2

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

En
er

gy
 (h

ar
tr

ee
)

0

50

100

1 2 3 4 5

Interatomic distance (Å)

–8.0

–7.8

–7.6

–7.4

–7.2

–7.0

–6.8

–6.6

0

20

40

C
R

2–
1

Q1 

Q2 

Q3 Q4 Q5 

Q7 

Q6 Q1 

Q2 

Q3 Q4 Q5 

Q7 

Q6 

H H 

H Li 

1 2 3 4 5

Interatomic distance (Å)

–15.5

–15.0

–14.5

–14.0

–13.5

–13.0

–12.5

–12.0

0

20

40

C
R

2–
1CR4–5

Q1 

Q2 

Q3 Q4 Q5 

Q7 

Q6 

Be 
H H 

a b

 

c 

Figure 3 | Application to quantum chemistry. a–c, Experimental results 
(black filled circles), exact energy surfaces (dotted lines) and density plots 
(shading; see colour scales) of outcomes from numerical simulations, 
for several interatomic distances for H2 (a), LiH (b) and BeH2 (c). The 
experimental and numerical results presented are for circuits of depth 
d =  1. The error bars on the experimental data are smaller than the 
size of the markers. The density plots are obtained from 100 numerical 

outcomes at each interatomic distance. The top insets in each panel 
highlight the qubits used for the experiment and the cross-resonance 
gates (arrows, labelled CRc–t; where ‘c’ denotes the control qubit and ‘t’ the 
target qubit) that constitute UENT. The bottom insets are representations 
of the molecular geometry (not to scale). For all the three molecules, 
the deviation of the experimental results from the exact curves is well 
explained by the stochastic simulations.
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the state | 00…0〉 , applying d entanglers UENT that  alternate with N Euler 
rotations, giving
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Because the qubits are all initialized in their ground state | 0〉 , the first 
set of Z rotations of Uq,0(θ) is not implemented, resulting in a total of 
p =  N(3d +  2) independent angles. In the experiment, the evolution 
time τ and the individual couplings in H0 can be controlled. However, 
numerical simulations indicate that accurate optimizations are 
obtained for fixed-phase entanglers UENT, leaving the p control angles 
as  variational parameters. Our hardware-efficient approach does not 
rely on the accurate implementation of specific two-qubit gates and can 
be used with any UENT that generates sufficient entanglement. This is 
in  contrast to unitary coupled-cluster trial states, which require high- 
fidelity  quantum gates that approximate a unitary operator tailored on 
the basis of a theoretical ansatz. For the experiments considered here, 
the entanglers UENT are composed of a sequence of two-qubit cross- 
resonance gates23. Simulations as a function of entangler phase show 
plateaus of minimal energy error around gate phases that correspond 
to the maximal pairwise concurrence; see Supplementary Information. 
We therefore set the entangler evolution time τ at the beginning of such 
plateaus, to reduce decoherence effects.

In our experiments, the Z rotations are implemented as frame 
changes in the control software24, whereas the X rotations are imple-
mented by appropriately scaling the amplitude of calibrated Xπ pulses, 
using a fixed total time of 100 ns for every single-qubit rotation. The 
cross-resonance gates that compose UENT are implemented by driving 
a control qubit Qc with a microwave pulse that is resonant with a target 
qubit Qt. We use Hamiltonian tomography of these gates to determine 
the strengths of the various interaction terms, and the gate time for 

maximal entanglement23. We set our two-qubit gate times at 150 ns, to 
try to minimize the effect of decoherence without compromising the 
accuracy of the optimization outcome; see Supplementary Information.

After each trial state is prepared, we estimate the associated energy 
by measuring the expectation values of the individual Pauli terms in 
the Hamiltonian. These estimates are affected by stochastic fluctua-
tions due to finite sampling. Different post-rotations are applied after 
trial-state preparation for sampling different Pauli operators (Fig. 1c, d). 
We group the Pauli operators into tensor product basis sets that require 
the same post-rotations. We numerically show that such grouping 
reduces the energy fluctuations, while keeping the same total number 
of samples, thereby reducing the time overhead for energy estimation; 
see Supplementary Information. The energy estimates are then used 
in a gradient descent algorithm that relies on a simultaneous perturba-
tion stochastic approximation (SPSA) to update the control parameters. 
The SPSA algorithm approximates the gradient using only two energy 
measurements, regardless of the dimensions of the parameter space p, 
achieving a level of accuracy comparable to that of standard gradient 
descent methods, in the presence of stochastic fluctuations10. This is 
crucial for optimizing over many qubits and long depths for trial-state 
preparation, enabling us to optimize over a number of parameters as 
large as p =  30.

To address molecular problems on our quantum processor, we rely on 
a compact encoding of the second-quantized fermionic Hamiltonians 
onto qubits. The Hamiltonian for molecular H2 has four spin orbitals, 
representing the spin-degenerate 1s orbitals of the two hydrogen atoms. 
We use a binary tree encoding11 to map the Hamiltonian to a four-
qubit system, and remove the two qubits that are associated with the 
spin parities of the system9. The Hamiltonian for BeH2 is defined on 
the basis of the 1s, 2s and 2px orbitals that are associated with Be, and 
the 1s orbital that is associated with each H atom, for a total of ten spin 
orbitals. We then assume perfect filling of the innermost two 1s spin 
orbitals of Be, after shifting their energies by diagonalizing the non- 
interacting part of the fermionic Hamiltonian. We map the eight- 
spin-orbital Hamiltonian of BeH2 using parity mapping and, as in 
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Figure 1 | Quantum chemistry on a superconducting quantum 
processor. Solving electronic-structure problems on a quantum computer 
relies on mappings between fermionic and qubit operators. a, Parity 
mapping of eight spin orbitals (drawn in blue and red, not to scale) onto 
eight qubits, which are then reduced to six qubits owing to fermionic 
spin and parity symmetries. The length of the bars indicate the parity of 
the spin orbitals that are encoded in each qubit. b, False-coloured optical 
micrograph of the superconducting quantum processor with seven 
transmon qubits. These qubits are coupled via two coplanar waveguide 
resonators (violet) and have individual coplanar waveguide resonators 

for control and read-out. c, Hardware-efficient quantum circuit for trial-
state preparation and energy estimation, shown here for six qubits. For 
each iteration k, the circuit is composed of a sequence of interleaved 
single-qubit rotations Uq,d(θk) and entangling unitary operations UENT 
that entangle all of the qubits in the circuit. A final set of post-rotations 
(I, X− π/2 or Yπ/2) before the qubits are read out is used to measure the 
expectation values of the individual Pauli terms in the Hamiltonian and to 
estimate the energy of the trial state. d, An example of the pulse sequence 
for the preparation of a six-qubit trial state, in which UENT is implemented 
as a sequence of two-qubit cross-resonance gates.
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the case of H2, remove two qubits associated with the spin–parity 
 symmetries, reducing the Hamiltonian to a six-qubit problem that 
encodes eight spin orbitals. A similar approach is used to map LiH 
onto four qubits. The Hamiltonians for H2, LiH and BeH2 at their 
 lowest-energy interatomic distances (bond distance) are given  explicitly 
in Supplementary Information.

The results from an optimization procedure are illustrated in Fig. 2, 
using the Hamiltonian for BeH2 at the interatomic distance of 1.7 Å. 
Although using a large number of entanglers UENT helps to achieve 
better energy estimates in the absence of noise, the combined effect 
of decoherence and finite sampling sets the optimal depth for opti-
mizations on our quantum hardware to 0–2 entanglers. The results 
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Figure 2 | Experimental implementation of six-qubit optimization. The 
minimum energy of the six-qubit Hamiltonian describing BeH2 with an 
interatomic distance of l =  1.7 Å (data points) is plotted along with the 
exact value (black dashed line). For each iteration k, the gradient at each 
control θk is approximated using 1,000 samples for energy estimation  
at θ+k  (blue) and θ−k  (red), which are perturbations to θk along opposite 
directions of a random axis in parameter space. The error bars correspond 
to the standard error of the mean. The inset shows the simultaneous 

optimization of 30 Euler angles that control the trial state preparation. 
Each colour refers to a particular qubit (Q1–Q6; q =  1, 2, …), following the 
colour scheme in Fig. 1. The final energy estimate (green dashed line) is 
obtained using the average angle over the last 25 angle updates (indicated 
by the green dotted arrow), to mitigate the effect of stochastic fluctuations, 
and with a higher number of samples (100,000), to obtain a more accurate 
energy estimation.
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Figure 3 | Application to quantum chemistry. a–c, Experimental results 
(black filled circles), exact energy surfaces (dotted lines) and density plots 
(shading; see colour scales) of outcomes from numerical simulations, 
for several interatomic distances for H2 (a), LiH (b) and BeH2 (c). The 
experimental and numerical results presented are for circuits of depth 
d =  1. The error bars on the experimental data are smaller than the 
size of the markers. The density plots are obtained from 100 numerical 

outcomes at each interatomic distance. The top insets in each panel 
highlight the qubits used for the experiment and the cross-resonance 
gates (arrows, labelled CRc–t; where ‘c’ denotes the control qubit and ‘t’ the 
target qubit) that constitute UENT. The bottom insets are representations 
of the molecular geometry (not to scale). For all the three molecules, 
the deviation of the experimental results from the exact curves is well 
explained by the stochastic simulations.
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are computed with Gaussian process regression [47], which
interpolates the energy surface based on local errors from
the shot-noise-limited expectation value measurements in
Fig. 2(a).
Errors in our simulation as a function of R are shown in

Fig. 3(b). The curve in Fig. 3(b) becomes nearly flat past
R ¼ 2.5 Å because the same angle is experimentally
chosen for each R past this point. Note that the exper-
imental energies are always greater than or equal
to the exact energies due to the variational principle.
Figure 3(b) shows that VQE has substantial robustness to
systematic errors. While this possibility had been pre-
viously hypothesized [23], we report the first experimen-
tal signature of robustness and show that it allows for a
successful computation of the dissociation energy. By
performing (inefficient) classical simulations of the circuit
in Fig. 1, we identify the theoretically optimal value of θ at
each R . In fact, for this system, at every value of R there
exists θ such that E ðθÞ ¼ E 0. However, due to experi-
mental error, the theoretically optimal value of θ differs
substantially from the experimentally optimal value of θ.
This can be seen in Fig. 3(b) from the large discrepancy
between the green diamonds (experimental energy errors
at theoretically optimal θ) and the red dots (experimental
energy errors at experimentally optimal θ). The exper-
imental energy curve at theoretically optimal θ shows an
error in the dissociation energy of 1.1 × 10−2 hartree,
which is more than an order of magnitude worse. One
could anticipate this discrepancy by looking at the raw
data in Fig. 2(a), which shows that the experimentally
measured expectation values deviate considerably from
the predictions of theory. In a sense, the green diamonds
in Fig. 3(b) show the performance of a nonvariational

algorithm, which in theory gives the exact answer, but in
practice fails due to systematic errors.

III. PHASE ESTIMATION ALGORITHM

We also report an experimental demonstration of the
original quantum algorithm for chemistry [2]. Similar to
VQE, the first step of this algorithm is to prepare the system
register in a state having good overlap with the ground state
of the Hamiltonian H. In our case, we begin with the
Hartree-Fock state jϕi. We then evolve this state under H
using a Trotterized approximation to the time-evolution
operator. The execution of this unitary is controlled on an
ancilla initialized in the superposition state ðj0iþ j1iÞ=

ffiffiffi
2

p
.

The time-evolution operator can be approximated using
Trotterization [34] as

e−iHt ¼ e−it
P

γ
gγHγ ≈UTrotðtÞ≡

"Y
γ
e−igγHγ t=ρ

#
ρ
; ð5Þ

where the Hγ are local Hamiltonians as in Eq. (1) and the
error in this approximation depends linearly on the time
step ρ−1 [34]. Application of the propagator induces a
phase on the system register so that

e−iHtjϕi ¼
"X

n

e−iE ntjnihnj
#
jϕi ¼

X

n

ane−iE ntjni; ð6Þ

where jni are eigenstates of the Hamiltonian such that
Hjni ¼ E njni and an ¼ hnjϕi. By controlling this evolu-
tion on the ancilla superposition state, one entangles the
system register with the ancilla. Accordingly, by measuring
the phase between the j0i state and j1i state of the ancilla,

FIG. 2. Variational quantum eigensolver: raw data and computed energy surface. (a) Data showing the expectation values of terms in
Eq. (1) as a function of θ, as in Eq. (3). Black lines nearest to the data show the theoretical values. While such systematic phase errors
would prove disastrous for PEA, our VQE experiment is robust to this effect. (b) Experimentally measured energies (in hartree) as a
function of θ and R . This surface is computed from (a) according to Eq. (4). The white curve traces the theoretical minimum energy; the
values of theoretical and experimental minima at each R are plotted in Fig. 3(a). Errors in this surface are given in Fig. 6.
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the case of H2, remove two qubits associated with the spin–parity 
 symmetries, reducing the Hamiltonian to a six-qubit problem that 
encodes eight spin orbitals. A similar approach is used to map LiH 
onto four qubits. The Hamiltonians for H2, LiH and BeH2 at their 
 lowest-energy interatomic distances (bond distance) are given  explicitly 
in Supplementary Information.

The results from an optimization procedure are illustrated in Fig. 2, 
using the Hamiltonian for BeH2 at the interatomic distance of 1.7 Å. 
Although using a large number of entanglers UENT helps to achieve 
better energy estimates in the absence of noise, the combined effect 
of decoherence and finite sampling sets the optimal depth for opti-
mizations on our quantum hardware to 0–2 entanglers. The results 
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Figure 2 | Experimental implementation of six-qubit optimization. The 
minimum energy of the six-qubit Hamiltonian describing BeH2 with an 
interatomic distance of l =  1.7 Å (data points) is plotted along with the 
exact value (black dashed line). For each iteration k, the gradient at each 
control θk is approximated using 1,000 samples for energy estimation  
at θ+k  (blue) and θ−k  (red), which are perturbations to θk along opposite 
directions of a random axis in parameter space. The error bars correspond 
to the standard error of the mean. The inset shows the simultaneous 

optimization of 30 Euler angles that control the trial state preparation. 
Each colour refers to a particular qubit (Q1–Q6; q =  1, 2, …), following the 
colour scheme in Fig. 1. The final energy estimate (green dashed line) is 
obtained using the average angle over the last 25 angle updates (indicated 
by the green dotted arrow), to mitigate the effect of stochastic fluctuations, 
and with a higher number of samples (100,000), to obtain a more accurate 
energy estimation.
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Figure 3 | Application to quantum chemistry. a–c, Experimental results 
(black filled circles), exact energy surfaces (dotted lines) and density plots 
(shading; see colour scales) of outcomes from numerical simulations, 
for several interatomic distances for H2 (a), LiH (b) and BeH2 (c). The 
experimental and numerical results presented are for circuits of depth 
d =  1. The error bars on the experimental data are smaller than the 
size of the markers. The density plots are obtained from 100 numerical 

outcomes at each interatomic distance. The top insets in each panel 
highlight the qubits used for the experiment and the cross-resonance 
gates (arrows, labelled CRc–t; where ‘c’ denotes the control qubit and ‘t’ the 
target qubit) that constitute UENT. The bottom insets are representations 
of the molecular geometry (not to scale). For all the three molecules, 
the deviation of the experimental results from the exact curves is well 
explained by the stochastic simulations.
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Abstract

This paper is a broad and accessible survey of the methods we have at our disposal for Monte
Carlo gradient estimation in machine learning and across the statistical sciences: the problem of
computing the gradient of an expectation of a function with respect to parameters defining the
distribution that is integrated; the problem of sensitivity analysis. In machine learning research,
this gradient problem lies at the core of many learning problems, in supervised, unsupervised and
reinforcement learning. We will generally seek to rewrite such gradients in a form that allows
for Monte Carlo estimation, allowing them to be easily and e�ciently used and analysed. We
explore three strategies—the pathwise, score function, and measure-valued gradient estimators—
exploring their historical developments, derivation, and underlying assumptions. We describe their
use in other fields, show how they are related and can be combined, and expand on their possible
generalisations. Wherever Monte Carlo gradient estimators have been derived and deployed in the
past, important advances have followed. A deeper and more widely-held understanding of this
problem will lead to further advances, and it is these advances that we wish to support.

Keywords: gradient estimation, Monte Carlo, sensitivity analysis, score-function estimator,
pathwise estimator, measure-valued estimator, variance reduction

1. Introduction

Over the past five decades the problem of computing the gradient of an expectation of a function—a
stochastic gradient—has repeatedly emerged as a fundamental tool in the advancement of the state
of the art in the computational sciences. An ostensibly anodyne gradient lies invisibly within many
of our everyday activities: within the management of modern supply-chains (Kapuscinski and Tayur,
1999; Siekman, 2000), in the pricing and hedging of financial derivatives (Glasserman, 2013), in the
control of tra�c lights (Rubinstein and Shapiro, 1993), and in the major milestones in the ongoing
research in artificial intelligence (Silver et al., 2016). Yet, computing the stochastic gradient is not
without complexity, and its fundamental importance requires that we deepen our understanding
of them to sustain future progress. This is our aim in this paper: to provide a broad, accessible,
and detailed understanding of the tools we have to compute gradients of stochastic functions. We
also aim to describe their instantiations in other research fields, to consider the tradeo↵s we face in
choosing amongst the available solutions, and to consider questions for future research.
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classes, gradients-of-measure or gradients-of-paths. We derived the score-function estimator and the
measure-valued gradient estimator as instances of gradients of measure, both of which exploit the
measure in the stochastic objective to derive the gradient. And we derived the pathwise estimator
that uses knowledge of the sampling path to obtain the gradient. All these methods benefit from
variance reduction techniques and we reviewed four approaches for variance reduction we might
consider in practice. We further explored the use of these estimators through a set of case studies,
and explored some of the other tools for gradient estimation that exist beyond the three principal
estimators.

10.1 Guidance in Choosing Gradient Estimators

With so many competing approaches, we o↵er our rules of thumb in choosing an estimator, which
follow the intuition we developed throughout the paper:

• If our estimation problem involves continuous functions and measures that are continuous
in the domain, then using the pathwise estimator is a good default. It is relatively easy to
implement and a default implementation, one without other variance reduction, will typically
have variance that is low enough so as not to interfere with the optimisation.

• If the cost function is not di↵erentiable or a black-box function then the score-function or the
measure-valued gradients are available. If the number of parameters is low, then the measure-
valued gradient will typically have lower variance and would be preferred. But if we have a
high-dimensional parameter set, then the score function estimator should be used.

• If we have no control over the number of times we can evaluate a black-box cost function,
e↵ectively only allowing a single evaluation of it, then the score function is the only estimator
of the three we reviewed that is applicable.

• The score function estimator should, by default, always be implemented with at least a basic
variance reduction. The simplest option is to use a baseline control variate estimated with a
running average of the cost value.

• When using the score-function estimator, some attention should be paid to the dynamic range
of the cost function and its variance, and to find ways to keep its value bounded within a
reasonable range, e.g., transforming the cost so that it is zero mean, or using a baseline.

• For all estimators, track the variance of the gradients if possible and address high variance by
using a larger number of samples from the measure, decreasing the learning rate, or clipping
the gradient values. It may also be useful to restrict the range of some parameters to avoid
extreme values, e.g., by clipping them to a desired interval.

• The measure-valued gradient should be used with some coupling method for variance reduc-
tion. Coupling strategies that exploit relationships between the positive and negative compo-
nents of the density decomposition, and which have shared sampling paths, are known for the
commonly-used distributions.

• If we have several unbiased gradient estimators, a convex combination of them might have
lower variance than any of the individual estimators.

• If the measure is discrete on its domain then the score-function or measure-valued gradient
are available. The choice will again depend on the dimensionality of the parameter space.

• In all cases, we strongly recommend having a broad set of tests to verify the unbiasedness of
the gradient estimator when implemented.
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in deep learning, in which deep neural networks can even
reach billions of parameters [33]. In the history of machine
learning, gradient-free algorithms were employed to optimize
small-scale neural networks [34]. However, they failed to
scale up to a larger number of parameters. It is the back-
propagation algorithm [35] which can e�ciently compute the
gradient of the neural network output with respect to the
network parameters enables scalable training of deep neural
nets. It is thus highly demanded to have scalable quantum al-
gorithms for estimating gradients on actual quantum circuits.

Recently, gradient-based learning of quantum circuits has
been devised for quantum control [36] and discriminative
tasks [37, 38]. Although they are still less e�cient compared
to the back-propagation algorithm for neural networks, these
unbiased gradient algorithms can already greatly accelerate
the quantum circuit learning. Unfortunately, direct application
of these gradient algorithms [36–38] to QCBM training is still
non-trivial since the output of the generative model is gen-
uinely bit strings which follow high-dimensional probability
distributions. In fact, it is even an ongoing research topic
in deep learning to perform di↵erentiable learning of implicit
generative model with discrete outputs [24, 39].

In this paper, we develop an e�cient gradient-based learn-
ing algorithm to train the QCBM. In what follows, we first
present a practical quantum-classical hybrid algorithm to train
the quantum circuit as a generative model in Sec. II, thus
realize a Born machine. Then we apply the algorithm on
3 ⇥ 3 Bars-and-Stripes and double Gaussian peaks datasets
in Sec. III. We show that the training is robust to moderate
sampling noise, and is scalable in circuit depth. Increasing
the circuit depth significantly improves the representational
power for generative tasks. Finally, we conclude and discuss
caveats and future research directions about the QCBM in
Sec. IV.

II. MODEL AND LEARNING ALGORITHM

Given a dataset D = {x} containing independent and iden-
tically distributed (i.i.d.) samples from a target distribution
⇡(x), we set up a QCBM to generate samples close to the
unknown target distribution. As shown in Fig. 1, the QCBM
takes the product state |0i as an input and evolves it to a
final state | ✓i by a sequence of unitary gates. Then we can
measure this output state on computation basis to obtain a
sample of bits x ⇠ p✓(x) = |hx| ✓i|2. The goal of the training
is to let the model probability distribution p✓ approach to ⇡.

We employ a classical-quantum hybrid feedback loop as
the training strategy. The setup is similar to the Quantum
Approximate Optimization Algorithm (QAOA) [40–42] and
the Variational Quantum Eigensolver (VQE) [43–45]. By
constructing the circuits and performing measurements re-
peatedly we collect a batch of samples from the QCBM.
Then we introduce two-sample test as a measure of distance
between generated samples and training set, which is used
as our di↵erentiable loss. Using a classical optimizer which
takes the gradient information of the loss function, we can
push the generated sample distribution towards the target

Figure 1. Illustration of the di↵erentiable QCBM training scheme.
Top left is the quantum circuit which produce bit string samples. The
dashed box on the right denotes two-sample test on the generated
samples and training samples, with the loss function (Eq. (1)) and
corresponding gradients (Eq. (2)) as outputs. �✓ is the amount of
updated to be applied to the circuit parameters, which are computed
by a classical optimizer. The outcome of the training is to produce
a quantum circuit which generates samples according to the learned
probability distribution on the computational basis.

distribution.

A. Quantum Circuit Architecture Design

The overall circuit layout is similar to the IBM variational
quantum eigensolver [45], where one interweaves single qubit
rotation layers and entangler layers shown in Fig. 1. The
rotation layers are parameterized by rotation angles ✓ = {✓↵

l
},

where the layer index l runs from 0 to d, with d the maximum
depth of the circuit. ↵ is a combination of qubit index j and
arbitrary rotation gate index, where the arbitrary rotation gate
has the form U(✓ j

l
) = Rz(✓

j,1
l

)Rx(✓ j,2
l

)Rz(✓
j,3
l

) with Rm(✓) ⌘
exp
⇣�i✓�m

2

⌘
. The total number of parameters in this QCBM

is (3d + 1)n, with n the number of qubits [46].
We employ CNOT gates with no learnable parameters for

the entangle layers to induce correlations between qubits. In
light of experimental constraints on the connectivity of the
circuits, we make the connection of the entangle layers to be
sparse by requiring its topology as a tree (i.e. the simplest
connected graph). From the classical probabilistic graph-
ical model’s perspective [13], the tree graph that captures
information content of the dataset most e�ciently is Chow-
Liu tree [47]. Since controlled unitary gates have a close
relation with classical probability graphical models [48], we
employ the same Chow-Liu tree as the topology of CNOT
gates. To construct the Chow-Liu tree we first compute mutual
information between all pairs of the bits for samples in the
training set as weights, and then construct the maximum
spanning tree using, for example, the Kruskal’s algorithm.
The assignment of the control bit and the target bit on a bond
is random, since the Chow-Liu algorithm treated directed

Quantum Circuit Born Machine
With Liu, Zeng, Wu, Hu 
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FIG. 2. DDQCL on the bars and stripes (BAS) data set. The top left corner shows patterns that belong to BAS22 and that
we would like our quantum circuit to generate. For completeness, the top central image shows undesired patterns. On the top
right corner, we show a possible mapping of the 4 pixels to N = 4 qubits, and we show some of the entangling layer topologies
that can be set up in the ion trap (e.g chain, star, and all). The bottom left corner shows results of DDQCL simulations for
shallow circuits with di↵erent topologies. We show the bootstrapped median and 90% confidence interval over the distribution
of medians of the KL divergence as learning progresses for 100 iterations. The mean-field-like circuit L = 1 (green crosses)
severely underperforms. A significant improvement is obtained with L = 2, where most of the angles for XX gates have been
learned to their maximum entangling value. These observations indicate that entanglement is a key resource for learning the
BAS data set. Note that for L = 2 the choice of topology becomes a key factor for improving the performance. The chain
topology (purple squares) performs slightly better than the star topology (red stars) even though they have the same number
of parameters. The all-to-all topology (orange circles) significantly outperform all the others as it has more expressive power.
The bottom central image extends the previous analysis to deeper circuits with L = 4 and approximatively twice the number
of parameters. All the topologies achieve a lower median KL divergence and the confidence intervals shrink. The bottom right
corner shows the bootstrapped mean qBAS22 and 95% confidence interval for simulations (green bars) and experiments on the
ion trap quantum computer hosted at University of Maryland (pink bars).

depth, gate fidelities, and any other architectural design
aspects such as its qubit-qubit connectivity, in addition
to the native set of single and two-qubit gates available
in hardware.

When framed in the context of information retrieval,
the qBASnm score can be seen as an instantiation of
the widely used F1 score. To score high, it is insu�-
cient to simply retrieve states, which belong to BASnm.
This quantity alone corresponds to the so called precision
(denoted here as p), and it determines the ratio between
the number of measurements belonging to BASnm di-
vided by the total number of measurements [46]. One
also needs to score high in the so called recall (denoted
here by r) which determines the capacity of the circuit
model to retrieve the whole spectrum of patterns belong-

ing to the BASnm. In our context, it is a measure of
“fair sampling”, or the capacity to uniformly retrieve
all the states from BASnm. Within the F1 score, re-
call is a general quantity that can always be computed
as the number of di↵erent BASnm patterns appearing in
the Nreads measurements divided by the total number of
states NBASnm that belong to the data set. If we denote
the number of di↵erent patterns that were measured as
d(Nreads), then r = d(Nreads)/NBASnm. The F1 score is
defined as the harmonic mean of the precision and the re-
call, i.e., F1 = 2pr/(p + r), and to score high (F1 ⇡ 1.0)
it is required to have both a high precision (p ⇡ 1.0)
and high recall in retrieving of all the NBASnm patterns
(r ⇡ 1.0). The F1 score is a useful measure for the qual-
ity of information retrieval and classification algorithms,

Experiments:
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A method to study strongly interacting quantum many-body systems at and away from criticality
is proposed. The method is based on a MERA-like tensor network that can be e�ciently and reliably
contracted on a noisy quantum computer using a number of qubits that is much smaller than the
system size. We prove that the outcome of the contraction is stable to noise and that the estimated
energy upper bounds the ground state energy. The stability, which we numerically substantiate,
follows from the positivity of operator scaling dimensions under renormalization group flow. The
variational upper bound follows from a particular assignment of physical qubits to di↵erent locations
of the tensor network plus the assumption that the noise model is local. We postulate a scaling
law for how well the tensor network can approximate ground states of lattice regulated conformal
field theories in d spatial dimensions and provide evidence for the postulate. Under this postulate,
a O(logd(1/�))-qubit quantum computer can prepare a valid quantum-mechanical state with energy
density � above the ground state. In the presence of noise, � = O(✏ logd+1(1/✏)) can be achieved,
where ✏ is the noise strength.

I. INTRODUCTION

Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.

Quantum
Processor

Classical
Optimizer

Energy
Lowered

Energy
Measured

FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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A method to study strongly interacting quantum many-body systems at and away from criticality
is proposed. The method is based on a MERA-like tensor network that can be e�ciently and reliably
contracted on a noisy quantum computer using a number of qubits that is much smaller than the
system size. We prove that the outcome of the contraction is stable to noise and that the estimated
energy upper bounds the ground state energy. The stability, which we numerically substantiate,
follows from the positivity of operator scaling dimensions under renormalization group flow. The
variational upper bound follows from a particular assignment of physical qubits to di↵erent locations
of the tensor network plus the assumption that the noise model is local. We postulate a scaling
law for how well the tensor network can approximate ground states of lattice regulated conformal
field theories in d spatial dimensions and provide evidence for the postulate. Under this postulate,
a O(logd(1/�))-qubit quantum computer can prepare a valid quantum-mechanical state with energy
density � above the ground state. In the presence of noise, � = O(✏ logd+1(1/✏)) can be achieved,
where ✏ is the noise strength.

I. INTRODUCTION

Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.
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FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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A method to study strongly interacting quantum many-body systems at and away from criticality
is proposed. The method is based on a MERA-like tensor network that can be e�ciently and reliably
contracted on a noisy quantum computer using a number of qubits that is much smaller than the
system size. We prove that the outcome of the contraction is stable to noise and that the estimated
energy upper bounds the ground state energy. The stability, which we numerically substantiate,
follows from the positivity of operator scaling dimensions under renormalization group flow. The
variational upper bound follows from a particular assignment of physical qubits to di↵erent locations
of the tensor network plus the assumption that the noise model is local. We postulate a scaling
law for how well the tensor network can approximate ground states of lattice regulated conformal
field theories in d spatial dimensions and provide evidence for the postulate. Under this postulate,
a O(logd(1/�))-qubit quantum computer can prepare a valid quantum-mechanical state with energy
density � above the ground state. In the presence of noise, � = O(✏ logd+1(1/✏)) can be achieved,
where ✏ is the noise strength.

I. INTRODUCTION

Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.
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FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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Quantum circuit classifier Farhi, Neven, 1802.06002 Havlicek et al, 1804.11326

Liu, Zhang, Wan, LW, 1902.02663

• Variational quantum eigensovler (VQE) 

• Quantum circuit Born machine (QCBM) 

• Quantum approximate optimization algorithm (QAOA) 

• Quantum pattern recognition 

…

Quantum code

Robust entanglement renormalization on a noisy quantum computer
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A method to study strongly interacting quantum many-body systems at and away from criticality
is proposed. The method is based on a MERA-like tensor network that can be e�ciently and reliably
contracted on a noisy quantum computer using a number of qubits that is much smaller than the
system size. We prove that the outcome of the contraction is stable to noise and that the estimated
energy upper bounds the ground state energy. The stability, which we numerically substantiate,
follows from the positivity of operator scaling dimensions under renormalization group flow. The
variational upper bound follows from a particular assignment of physical qubits to di↵erent locations
of the tensor network plus the assumption that the noise model is local. We postulate a scaling
law for how well the tensor network can approximate ground states of lattice regulated conformal
field theories in d spatial dimensions and provide evidence for the postulate. Under this postulate,
a O(logd(1/�))-qubit quantum computer can prepare a valid quantum-mechanical state with energy
density � above the ground state. In the presence of noise, � = O(✏ logd+1(1/✏)) can be achieved,
where ✏ is the noise strength.

I. INTRODUCTION

Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.

Quantum
Processor

Classical
Optimizer

Energy
Lowered

Energy
Measured

FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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Differentiable Quantum Programming

Quantum Software 2.0

It is a paradigm beyond quantum-classical hybrid



+ + =

https://github.com/QuantumBFS/Yao.jl

• Differentiable programming quantum circuits 
• Batch parallelization with GPU acceleration 
• Quantum block intermediate representation

Features:

Xiu-Zhe Luo (Waterloo & PI) Jin-Guo Liu (IOP, CAS)

Be prepared for Quantum Software 2.0



 
Neural Networks Tensor Networks Quantum Circuits

Thank You!

Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang, LW, up coming

Yao.jl: Extensible, Efficient Framework for Quantum Algorithm Design

Differentiable Programming Tensor Networks
Hai-Jun Liao, Jin-Guo Liu, LW, Tao Xiang, 1903.09650, PRX in press
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