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Ab-initio study of quantum matters at T>0
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Hamburg, Germany;25,26 and the upcoming FAIR facility at GSI
Darmstadt, Germany.27,28 A particularly exciting application is inertial
confinement fusion18–20 where electronic quantum effects are impor-
tant during the initial phase. Aside from dense plasmas, many con-
densed matter systems exhibit WDM behavior – if they are subject to
strong excitation, e.g., by lasers or free electron lasers.29,30

The behavior of all these very diverse systems is characterized by,
among others, electronic quantum effects, moderate to strong
Coulomb correlations, and finite temperature (FT) effects. Quantum
effects of electrons are of relevance at a low temperature and/or if mat-
ter is very highly compressed, such that the temperature is of the order
of (or lower than) the Fermi temperature (for the relevant parameter
range, see Fig. 1 and, for the parameter definitions, see Sec. II).

An important role in the theoretical description of quantum plas-
mas is being played by the quantum kinetic theory.31–38 During the last
25years, improved and generalized quantum kinetic equations have been
derived starting from reduced density operators, e.g., Refs. 39 and 40, or
nonequilibrium Green functions (NEGFs);41–44 for text books, see Refs.
40 and 45–47 and references therein. Another direction in quantum
plasma theory is first principles computer simulations such as quantum
Monte Carlo (QMC),4,48–55 semiclassical molecular dynamics (SC-MD)
with quantum potentials, e.g., Ref. 56, electronic force fields,57,58 and vari-
ous variants of quantumMD, e.g., Refs. 59–63.

A recent breakthrough occurred with the application of
Kohn–Sham density functional theory (DFT) simulations because
they, for the first time, enabled the self-consistent simulation of realis-
tic warm dense matter that includes both plasma and condensed mat-
ter phases, e.g., Refs. 64–66. Further developments include orbital-free

DFT (OF-DFT) methods, e.g., Refs. 67 and 68, and time-dependent
DFT (TD-DFT), e.g., Ref. 69. In DFT simulations, however, a bottle-
neck is the exchange–correlation (XC) functional for which a variety
of options exist, the accuracy of which is often poorly known, what
limits the predictive power of the method. This requires tests against
independent methods such as quantum Monte Carlo simulations for
the electron component4 or against electron-ion quantum Monte
Carlo.70–72 Also, the use of finite-temperature functionals was shown
to be important73,74 when the XC-contribution is comparable to the
thermal energy, see Ref. 75 for a topical discussion and Ref. 76 for an
extensive investigation of hydrogen. One goal of this paper is to pre-
sent an overview of these results and discuss future research
directions.

Motivated by time-resolved experiments, e.g., Ref. 77, the theo-
retical description of the nonequilibrium dynamics of warm dense
matter is attracting increasing interest, e.g., Ref. 78. Time-dependent
x-ray Thomson scattering was modeled in Refs. 79 and 80. Here, the
powerful methods are quantum kinetic equations81,82 and nonequilib-
rium Green functions, e.g., Refs. 83 and 84.

All of the above-mentioned simulation approaches are complex
and require substantial amounts of computer time. At the same time,
the above-mentioned simulations are currently only feasible for small
length scales and simulation durations. Therefore, simplified models
that would allow to reach larger length and time scales are highly
desirable. Possible candidates are fluid models for quantum plasmas
that are obtained via a suitable coarse graining procedure, as in the
case of classical plasmas. Quantum hydrodynamics (QHD) models for
dense plasmas have experienced high activity since the work of
Manfredi and Haas.85,86 However, their version of QHD involved sev-
eral assumptions, the validity of which remained open for a long time.
Corrections of the coefficients in the QHD equations were recently
obtained in Refs. 87 and 88, and a systematic derivation of the QHD
equations from the time-dependent Kohn-Sham equations is given in
Ref. 89. We also mention a recent alternative approach that is based
on the computation of semiclassical Bohm trajectories.90

The goal of this paper is to present a summary of some of the
recent ab initio simulations of the electron gas under warm dense mat-
ter conditions, including thermodynamic functions and local field cor-
rections developments. Furthermore, we summarize recent progress in
the field of QHD for quantum plasmas. In addition to an overview of
recent developments, we present new results for (a) the application
of the finite-temperature exchange correlation free energy in DFT sim-
ulations of dense hydrogen and carbon (Sec. IV); (b) for the dynamic
density response function, vðx; qÞ (Sec. IIIC); (c) for the screened
potential of an ion in a correlated plasma, based on the ab initioQMC
input for the local field correction (Sec. VF); and (d) on the dispersion
of ion-acoustic modes in a correlated quantum plasma (Sec. VG).

This paper is organized as follows: in Sec. II, we recall the main
parameters of warm dense matter and the relevant temperature and
density range. Section III presents an overview on recent quantum
Monte Carlo simulations followed by finite-temperature DFT results
in Sec. IV. WDM out of equilibrium and its treatment via a QHD
model is discussed in Sec. V.

II. WARM DENSE MATTER PARAMETERS
Let us recall the basic parameters of warm dense matter:40,89 the

first are the electron degeneracy parameters h ¼ kBT=EF and

FIG. 1. Density-temperature plane with examples of plasmas and characteristic
plasma parameters. ICF denotes inertial confinement fusion. Metals (semicon-
ductors) refer to the electron gas in metals (electron–hole plasma in semicon-
ductors). Weak electronic coupling is found outside the line Ceff ¼ 0:1, cf.
Eq. (4). Electronic (ionic) quantum effects are observed to the right of the line
v ¼ 1 (vp ¼ 1). The coupling strength of quantum electrons increases with rs
(with decreasing density). Atomic ionization due to thermal effects (due to pres-
sure ionization) is dominant above (to the right of) the red line, aion ¼ 0:5, for
the case of an equilibrium hydrogen plasma.91 The values of vp and rs refer to
the case of hydrogen. Figure modified from Ref. 89.
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evolution of the walkers, as derived from Eq. (23), can be
found elsewhere.45,67 The form of q̂ is known exactly at infi-
nite temperature (b¼ 0, q̂ ¼ 1̂), providing an initial condi-
tion for Eq. (22). For the electron gas, however, it turns out
that simulating a differential equation that evolves a mean-
field density matrix at inverse temperature b to the exact
density matrix at inverse temperature b is much more effi-
cient than solving Eq. (22), an insight that leads to the
“interaction picture” version of DMQMC39,46 used through-
out this work.

The sign problem manifests itself in DMQMC as an
exponential growth in the number of walkers required for the
sampled density matrix to emerge from the statistical
noise.67–70 Working in a discrete Hilbert space helps to reduce
the noise by ensuring a more efficient cancellation of positive
and negative contributions, enabling larger systems and lower
temperatures to be treated than would otherwise be possible.
Nevertheless, at some point, the walker numbers required
become overwhelming and approximations are needed.
Recently, we have applied the initiator approximation71–73 to
DMQMC (i"DMQMC). In principle, at least, this allows a
systematic approach to the exact result with an increasing
walker number. More details on the use of the initiator
approximation in DMQMC and its limitations can be found in
Ref. 39.

F. Applicability of the QMC methods

To conclude the discussion of Quantum Monte Carlo, in
Fig. 2, we give a schematic overview of the parameter com-
binations where the different methods can be used to obtain
results in the thermodynamic limit (for a discussion of finite-
size corrections, see Sec. V) with a relative accuracy of
DV=V # 0:003. Standard PIMC (black) is only useful for
high temperatures and low densities where fermionic
exchange does not play an important role and, therefore,
does not give access to the WDM regime. PB-PIMC (green)
significantly extends the possible parameter combinations to

lower temperature (down to h ¼ 0:5 for rs $ 1) and is avail-
able over the entire density range for h ! 2. In contrast, both
CPIMC (red) and DMQMC (blue) are feasible for all h at
small rs and eventually break down with increasing rs due to
coupling effects. Despite their apparent similar range of
applicability, it turns out that CPIMC is significantly more
efficient at higher temperature, while DMQMC is superior at
low h.

IV. SIMULATION RESULTS FOR THE FINITE SYSTEM

The first step towards obtaining QMC results for the
warm dense electron gas in the thermodynamic limit is to
carry out accurate simulations of a finite model system. In
Fig. 3, we compare results for the density dependence of the
exchange correlation energy Exc of the UEG for N¼ 33 spin-
polarized electrons and two different temperatures. The first
results, shown as blue squares, were obtained with RPIMC31

for rs $ 1. Subsequently, Groth, Dornheim, and co-work-
ers44,51 showed that the combination of PB-PIMC (red
crosses) and CPIMC (red circles) allows for an accurate
description of this system for h $ 0:5. In addition, it was
revealed that RPIMC is afflicted with a systematic nodal error
for densities greater than the relatively low value at which
rs¼ 6. Nevertheless, the FSP precludes the use of PB-PIMC
at lower temperatures and, even at h ¼ 0:5 and rs¼ 2, the sta-
tistical uncertainty becomes large. The range of applicability
of DMQMC is similar to that of CPIMC, and the DMQMC
results (green diamonds) fully confirm the CPIMC results.39,46

Further, the introduction of the initiator approximation (i-
DMQMC) has made it possible to obtain results up to rs¼ 2
for h ¼ 0:5. Although i-DMQMC is, in principle, systemati-
cally improvable and controlled, the results suggest that the
initiator approximation may introduce a small systematic shift
at lower densities.

In summary, the recent progress in fermionic QMC
methods has resulted in a consensus regarding the finite-N
UEG for temperatures h $ 0:5. However, there remains a
gap at rs % 2" 6 and h < 0:5 where, at the moment, no reli-
able data are available.

FIG. 2. Density-temperature-plane around the WDM regime. Shown are the
parameter combinations where standard PIMC (black), PB-PIMC (green),
CPIMC (red), and DMQMC (blue) can be used to obtain data in the thermo-
dynamic limit with an accuracy of DV=V # 0:003.

FIG. 3. Exchange-correlation energy of N¼ 33 spin-polarized electrons as a
function of the density parameter rs for two isotherms. Shown are results
from CPIMC and PB-PIMC taken from Ref. 51, restricted PIMC from Ref.
31, and DMQMC from Ref. 39. For h ¼ 0:5, all data have been shifted by
0.05 Hartree. In the case of DMQMC, the initiator approximation is used.

056303-5 Dornheim et al. Phys. Plasmas 24, 056303 (2017)
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Quantum Monte Carlo 
is limited by the sign problem Z = Tr(e−H/kBT)



😱 entropy energy 

F = ∫ dX p(X)[kBT ln p(X) + H(X)]

Nature minimizes free energy

The Gibbs-Bogolyubov-Feynman variational free energy principle

Difficulties in Applying the Variational 
Principle to Quantum Field Theories1 

Richard P. Feynman 

California Institute of Technology 
Pasadena, California 91125, U.S.A. 

Introduction 
I'd like to talk on some work I did on the variational principle in field theory. At one 
time I thought that the brute force method of doing arithmetic on the machines will 
never get anywhere and we will probably end with something more old-fashioned, 
i.e. some analysis plus the machines to help us with the analytic equations, and 
so I tried to do something along these lines with quantum chromodynamics. So 
I'm talking on the subject of the application of the variational principle to field 
theoretic problems, but in particular to quantum chromodynamics. 

I'm going to give away what I want to say, which is that I didn't get anywhere! 
I got very discouraged and I think I can see why the variational principle is not 
very useful. So I want to take, for the sake of argument, a very strong view -
which is stronger than I really believe - and argue that it is no damn good at all! 

Let us review why the variational principle has gotten a good reputation. Let's 
say you apply it to something like atoms or to simple problems with a small number 
of variables, using the usual analytic methods to get a quantity called the total 
energy, a quantity which is of direct physical significance. The energy levels of 
atoms are very interesting, measurable quantities and they can be calculated with 
accuracy. It was noted that if one had a wave function which had some measure 
of error, say 10 percent, then the error in the energy would be of order 1 percent. 
The error in the energy is quadratic in the error in the wave function. So, by not 
having a perfect wave function, you can still get very good values for the energy 
and that's why the variational method has gotten a good reputation. But it has 
never been a powerful way of getting, with accuracy, the wave function itself. 

Now I want to turn to the other side, the application of the variational principle 
to quantum field theory in a more or less straightforward way. So you write down 
a Hamiltonian in some kind of scheme and then you try to find a wave functional 

1 Transcript of Professor Feynman's talk, taken by the Editors and corrected by the author 
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≥ − kBT ln Z

Warmup: ℏ = 0
Z = ∫ dX e−H(X)/kBT



or
p(x, y)y = f(x)

p(y |x)

Generative learningDiscriminative learning
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.

21A. Georges et al.: Dynamical mean-field theory of . . .
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Deep Unsupervised Learning using Nonequilibrium Thermodynamics

t = 0 t = T
2 t = T

q
�
x(0···T )

�

p
�
x(0···T )

�

fµ
�
x(t)

, t
�
� x(t)

Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q
⇣
x(0···T )

⌘
. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p
⇣
x(0···T )

⌘
. An identity-covariance

Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, fµ

⇣
x(t), t

⌘
� x(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which
uses a Markov chain which slowly converts one distribu-
tion into another to compute a ratio of normalizing con-
stants. In (Burda et al., 2014) it is shown that AIS can also
be performed using the reverse rather than forward trajec-
tory. Langevin dynamics (Langevin, 1908), which are the
stochastic realization of the Fokker-Planck equation, show
how to define a Gaussian diffusion process which has any
target distribution as its equilibrium. In (Suykens & Vande-
walle, 1995) the Fokker-Planck equation is used to perform
stochastic optimization. Finally, the Kolmogorov forward
and backward equations (Feller, 1949) show that for many
forward diffusion processes, the reverse diffusion processes
can be described using the same functional form.

2. Algorithm
Our goal is to define a forward (or inference) diffusion pro-
cess which converts any complex data distribution into a
simple, tractable, distribution, and then learn a finite-time
reversal of this diffusion process which defines our gener-
ative model distribution (See Figure 1). We first describe
the forward, inference diffusion process. We then show

how the reverse, generative diffusion process can be trained
and used to evaluate probabilities. We also derive entropy
bounds for the reverse process, and show how the learned
distributions can be multiplied by any second distribution
(e.g. as would be done to compute a posterior when in-
painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
�
x(0)

�
. The data distribu-

tion is gradually converted into a well behaved (analyti-
cally tractable) distribution ⇡ (y) by repeated application
of a Markov diffusion kernel T⇡ (y|y0;�) for ⇡ (y), where
� is the diffusion rate,

⇡ (y) =

Z
dy0

T⇡ (y|y0;�)⇡ (y0) (1)

q

⇣
x(t)|x(t�1)

⌘
= T⇡

⇣
x(t)|x(t�1);�t

⌘
. (2)

p(X)

Han et al,  
PRX 18 

Liu et al, PRA 18 
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Partition function Free energy calculation

Sample diversity Enhanced sampling



Known: samples 
Unknown: generating distribution

Known: energy function 
Unknown: samples, partition function

Statistical physicsGenerative modeling

“learn from data” “learn from Hamiltonian”

F = 𝔼
X∼p(X)

[H(X) + kBT ln p(X)]

Two sides of the same coin

𝕂𝕃(data ∥ p) 𝕂𝕃(p ∥ e−H/kBT)

ℒ = − 𝔼X∼data [ln p(X)]
vs



energy 

Deep generative models unlocks the power of   
the Gibbs-Bogolyubov-Feynman variational principle

F[p] = 𝔼
X∼p(X)

[kBT ln p(X) + E(X)]

A deep variational free energy approach

Direct samplingTractable normalization 

Deep variational free energy approach

Li and LW, PRL ‘18
Wu, LW, Zhang, PRL ‘19

≥ − kBT ln Z
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360 29 — Monte Carlo Methods

where Z =
∫
dxdy P ∗(x) is the volume of the lake. You are provided with a

boat, a satellite navigation system, and a plumbline. Using the navigator, you
can take your boat to any desired location x on the map; using the plumbline
you can measure P ∗(x) at that point. You can also measure the plankton
concentration there.

Problem 1 is to draw 1 cm3 water samples at random from the lake, in
such a way that each sample is equally likely to come from any point within
the lake. Problem 2 is to find the average plankton concentration.

These are difficult problems to solve because at the outset we know nothing
about the depth P ∗(x). Perhaps much of the volume of the lake is contained

Figure 29.3. A slice through a lake
that includes some canyons.

in narrow, deep underwater canyons (figure 29.3), in which case, to correctly
sample from the lake and correctly estimate Φ our method must implicitly
discover the canyons and find their volume relative to the rest of the lake.
Difficult problems, yes; nevertheless, we’ll see that clever Monte Carlo methods
can solve them.

Uniform sampling

Having accepted that we cannot exhaustively visit every location x in the
state space, we might consider trying to solve the second problem (estimating
the expectation of a function φ(x)) by drawing random samples {x(r)}R

r=1

uniformly from the state space and evaluating P ∗(x) at those points. Then
we could introduce a normalizing constant ZR, defined by

ZR =
R∑

r=1

P ∗(x(r)), (29.16)

and estimate Φ =
∫

dNx φ(x)P (x) by

Φ̂ =
R∑

r=1

φ(x(r))
P ∗(x(r))

ZR
. (29.17)

Is anything wrong with this strategy? Well, it depends on the functions φ(x)
and P ∗(x). Let us assume that φ(x) is a benign, smoothly varying function
and concentrate on the nature of P ∗(x). As we learnt in Chapter 4, a high-
dimensional distribution is often concentrated in a small region of the state
space known as its typical set T , whose volume is given by |T | ! 2H(X), where
H(X) is the entropy of the probability distribution P (x). If almost all the
probability mass is located in the typical set and φ(x) is a benign function,
the value of Φ =

∫
dNx φ(x)P (x) will be principally determined by the values

that φ(x) takes on in the typical set. So uniform sampling will only stand
a chance of giving a good estimate of Φ if we make the number of samples
R sufficiently large that we are likely to hit the typical set at least once or
twice. So, how many samples are required? Let us take the case of the Ising
model again. (Strictly, the Ising model may not be a good example, since it
doesn’t necessarily have a typical set, as defined in Chapter 4; the definition
of a typical set was that all states had log probability close to the entropy,
which for an Ising model would mean that the energy is very close to the
mean energy; but in the vicinity of phase transitions, the variance of energy,
also known as the heat capacity, may diverge, which means that the energy
of a random state is not necessarily expected to be very close to the mean
energy.) The total size of the state space is 2N states, and the typical set has
size 2H . So each sample has a chance of 2H/2N of falling in the typical set.

Children randomly throwing pebbles into a square, as in Fig. 1.1, illus-
trate a very simple direct-sampling Monte Carlo algorithm that can be
adapted to a wide range of problems in science and engineering, most
of them quite difficult, some of them discussed in this book. The basic
principles of Monte Carlo computing are nowhere clearer than where it
all started: on the beach, computing .

Fig. 1.1 Children computing the number on the Monte Carlo beach.

Mackay, Information Theory, 
Inference, and Learning Algorithms

Krauth, Statistical Mechanics: 
Algorithms and Computations

entropy 

1 = ∫ dX p(X) 𝔼
X∼p(X)

😁



Examples of deep generative models

p(X) = 𝒩(Z) det ( ∂Z
∂X )

Normalizing flow

Implementation: invertible Resnet (backflow)…

Z

X

N (Z)

p
(X

)

p(X) = p(x1)p(x2 |x1)p(x3 |x1, x2)⋯

“… the murderer is ___”
p(_ | . . . )

Autoregressive model

Implementation: transformer with causal mask…



been challenging to conventional MCMC and mean-field
approaches.
Next, to demonstrate the ability of capturing multiple

states at low temperature, we consider the Hopfield
model [32], where N spins are connected to each other.
The couplings composed of P random patterns,
Jij ¼ ð1=NÞ

PP
μ¼1 ξ

μ
i ξ

μ
j , with fξμg ∈ f$1gN denoting a

random pattern. At a low temperature with P small, the
system has a retrieval phase where all P patterns are
remembered by the system; hence there are P pure states
in the system [33,34]. The experiments are carried out on a
Hopfield network with N ¼ 100 spins and P ¼ 2 orthogo-
nal random patterns. At low temperature the energy
(probability) landscape contains four modes, corresponding
to two stored patterns and their mirrors (due to Z2

symmetry). As opposed to models defined on lattices,
there is no topology structure to apply convolution, so we
use a simplest VAN with only one layer and NðN − 1Þ=2
parameters. We start training our network at β ¼ 0.3 and
slowly anneal the temperature to β ¼ 1.5. At each temper-
ature, we sample configurations from the trained VAN, and
show their log probability in Fig. 3.
The figure shows that at high temperature with β ¼ 0.3,

samplings are not correlated with the two stored patterns,
and the system is in the paramagnetic state. The log
probability landscape is quite flat, as the Gibbs measure
is dominated by entropy. When β is increased to 1.5, four
peaks of probability emerge and dominate over other
configurations. These four peaks touch coordinates [1, 0],
[0, 1], ½−1; 0&, and ½0;−1& in the X-Y plane, which
correspond exactly to the two patterns and their mirrors.
This is an evidence that our approach avoids collapsing into
a single mode, and gives samplings capturing the features
of the whole landscape, despite that those modes are
separated by high barriers.
Compared with the landscape of Hopfield model in the

retrieval phase which exhibits several local minima in the
energy and probability landscape, models in the spin glass

phase are considerably more complex [35], because they
have an infinite number of pure states, in the picture of
replica symmetry breaking [36]. Here we apply our method
to the classic Sherrington-Kirkpatrick (SK) model [37],
where N spins are connected to each other by couplings Jij
drawn from Gaussian distribution with variance 1=N. So
far the tensor network approaches do not apply to this
model because of long range interactions and the disorder,
which causes negative Z issue [38]. On the thermodynamic
limit with N → ∞ where the free energy concentrates to its
mean value averaged over disorder, using for example
replica method and cavity method, and replica symmetry
breaking, i.e., the Parisi formula [36]. On a single instance
of SK model, the algorithm version of the cavity method,
belief propagation, or Thouless-Anderson-Paler [6] equa-
tions apply as message passing algorithms. On large
systems in the replica symmetry phase, the message
passing algorithms converge and the obtained Bethe free
energy is a good approximation, but in the replica sym-
metry breaking phase they fail to converge. Also notice that
even in the replica symmetry phase, Bethe free energy is
not an upper bound to the true free energy.
As a proof of concept, we use a small system size

N ¼ 20, so we can enumerate all 2N configurations,
compute the exact value of free energy, then evaluate the
performance of our approach. Again, we use a simple VAN
with only one layer.
In Fig. 4(a) we show the free energy obtained from VAN,

compared with NMF and Bethe approximations. The free
energy from VAN is much better than NMF and Bethe, and
even indistinguishable to the exact value. This is quite
remarkable considering that VAN adopts only NðN − 1Þ=2
parameters, which is even smaller than that used in the
belief propagation, NðN − 1Þ. We also checked that our
approach not only gives a good estimate on free energy, it
also obtains accurate energy, entropy, magnetizations, and
correlations.
The ability of solving ordinary statistical mechanics

problems also gives us the ability to solve inverse statistical
mechanics problems. A prototype problem is the inverse

FIG. 3. Log probability of sampled configurations from VAN
trained for a Hopfield model with N ¼ 100 spins, and P ¼ 2
orthogonal patterns. The sampled configurations are projected
onto the two-dimensional space spanned by the two patterns. X
axis (O1) and Y axis (O2) are the overlap (inner product,
normalized to ½−1; 1&) between each sampled configuration
and the two patterns, respectively. (a) β ¼ 0.3, and the system
is in the paramagnetic phase. (b) β ¼ 1.5, and the system is in the
retrieval phase. Note the different scales in the color bars.
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FIG. 4. (a) Free energy of SK model with N ¼ 20 spins. The
inset shows relative errors to exact values in a larger β regime.
Bethe converges only when β ≤ 1.5. (b) The reconstruction error
in the inverse Ising problem. The underlying model is an SK
model with N ¼ 20 spins. VAN uses a network with two layers (a
hidden layer and an output layer).
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Sherrington-Kirkpatrick spin glass
Naive mean-field 

factorized probability

Bethe approximation 
pairwise interaction

p(X) = ∏
i

p(xi)

p(X) = ∏
i

p(xi) ∏
(i,j)∈E

p(xi, xj)
p(xi)p(xj)

Variational autoregressive networks

Wu, LW, Zhang, PRL ’19 
github.com/wdphy16/stat-mech-van

Variational autoregressive  
network

p(X) = ∏
i

p(xi |x<i)



Normalizing flow for physics: an intuition
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Neural network renormalization group

Neural Network Renormalization Group

Shuo-Hui Li1, 2 and Lei Wang1, ⇤

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China

We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det

 
@x
@z

!������ , (1)

where q(x) is the normalized probability density of the phys-

Physical variables

Collective variables

Probability Transformation

ln p(X) = ln 𝒩(Z) − ln det ( ∂X
∂Z )

Li, LW, PRL ’18 li012589/NeuralRG



Gibbs–Bogolyubov-Feynman-Delbrück–Molière variational principle

Now, move on to the quantum case

Trρ = 1 ρ ≻ 0 ρ† = ρ ⟨X |ρ |X′ ⟩ = ( − )𝒫⟨𝒫X |ρ |X′ ⟩s . t .

F[ρ] = kBT Tr(ρ ln ρ) + Tr(Hρ)min

Q: How to parametrize  ?ρ

A: Use TWO deep generative models !!

Z = Tr(e−H/kBT)

≥ − kBT ln Z



Density matrix

Variational density matrix

ρ = ∑
n

pn |Ψn⟩⟨Ψn |

Classical probability  pn
Quantum state basis |Ψn⟩

Normalizing flowDiscrete probabilistic models 
e.g. an autoregressive model

particle 
coordinates

quasiparticle 
coordinates 

Xie, Zhang, LW, JML ‘22



Example: uniform electron gas

H = −
N

∑
i=1

ℏ2 ∇2
i

2m
+ ∑

i<j

e2

|ri − rj |
rs

Fundamental model in condensed  
matter physics: metals 2 < rs < 6

Xie, Zhang, LW, 
2201.03156, SciPost ‘23

Jellium Fermi 
sea

T ≪ TF ≲
e2

rs

Low energy excited states labeled in 
the same way as ideal Fermi gas K = {k1, k2, …, kN}



ρ = ∑
K

p(K) ΨK⟩⟨ΨK

Normalized probability 
distribution 

Orthonormal  
many-electron basis

∑
K

p(K) = 1 ⟨ΨK |ΨK′ 
⟩ = δK,K′ 

Deep generative models for  
the variational density matrix

Design deep generative models with physics constraints



Autoregressive model for p(K)

p(K) = p(k1)p(k2 |k1)p(k3 |k1, k2)⋯

Pauli exclusion: we are modeling a set of words with no repetitions and no order
We use masked casual self-attention Vaswani et al 1706.03762; Alternative solution: Hibat-Allah et al, 2002.02793, Barrett et al, 2109.12606

N # of fermions # of words

M
Momentum 

cutoff
Vocabulary

Fermionic 
occupation 
in k-space

quick
brown fox

jumps

 probability space(M
N )



ΨK(X) =
det(eiki⋅zj)

N!
⋅ det ( ∂Z

∂X )
1
2

Electron  
coordinates

Quasi-particle  
coordinates

Jacobian of the  
transformationOrthonormal many-body states

Fermion statistics: the flow should be permutation equivariant

X Z

we use FermiNet layer Pfau et al, 1909.02487 

Normalizing flow for |ΨK⟩



Feynman’s backflow in the deep learning era
zi = xi+∑

j≠i

η( |xi − xj | ) (xj − xi)
Feynman & Cohen 1956 

wavefunction for liquid Helium
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E Commun. Math. Stat 17’,  Harbor el al 1705.03341, Lu et al 1710.10121, Chen et al, 1806.07366Taddei et al,  PRB ‘15

Iterative backflow  deep residual network  continuous normalizing flow→ →



Continuous flow of electron density in a quantum dot

github.com/fermiflow
Xie, Zhang, LW, 2105.08644, JML ‘22

Fermi Flow

http://github.com/fermiflow/


Jointly optimize  and  to minimize the variational free energy |ΨK⟩ p(K)

F = 𝔼
K∼p(K)

kBT ln p(K) + 𝔼
X∼ ⟨X |ΨK⟩

2 [ ⟨X |H |ΨK⟩
⟨X |ΨK⟩ ]

Boltzmann 
distribution

Born  
probability 

The objective function



Benchmarks on spin-polarized electron gases

3D electron gas T/TF=0.0625

Brown et al, PRL ‘13 
restricted PIMC N=33, rs=10
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2D electron gas T=0

Tanatar, Ceperley, PRB, ’89 
Slater-Jastrow VMC N=37, rs=5
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⇒
m*
m

=
s
s0

s =
π2kB

3
m*
m

T
TF

Application: m* from low temperature entropy

A fundamental quantity appears in nearly all physical properties of a Fermi liquid 
Has been some debate despite its fundamental role and long history of research 

Eich, Holzmann, Vignale, PRB ‘17

interacting electrons 

noninteracting electrons 

Richard D. Mattuck  
A Guide to Feynman 

Diagrams in the Many-
body Problem



Layer thickness, valley, disorder, spin-orbit coupling…

Two-dimensional electron gas experiments

m * /m > 1

m * /m < 1

🤔



37 spin-polarized electrons in 2D @ T/TF=0.15
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Effective mass of spin-polarized 2DEG

More pronounced suppression of m* in the low-density strong-coupling region

Diffusion Monte Carlo  
extrapolated to N = ∞

Drummond, Needs, PRB ‘13

Perturbative theory  
valid for rs ≪ 1



FAQs
Where to get training data ?

Do I understand the “black box” model  ?

How do we know it is correct ?

No training data. Data are self-generated from the generative model.

Variational principle: lower free-energy is better.

a) I don’t care (as long as it is sufficiently accurate). 

b)  contains the Landau energy functional 
       vividly illustrates adiabatic continuity.

ln p(K)
Z ↔ X

E[δnk] = E0 + ∑
k

ϵkδnk +
1
2 ∑

k,k′ 

fk,k′ δnkδnk′ 



Linfeng ZhangHao Xie

Thank you!

1802.02840, PRL ’18 
1809.10606, PRL ‘19 
2105.08644, JML ’22 
2201.03156, SciPost Physics ‘23 fermiflow/CoulombGas

Shuo-Hui Li Pan ZhangDian Wu

wdphy16/stat-mech-van
li012589/NeuralRG

Thanks to deep generative models, the variational free-energy principle 
has become a practical computational tool  for T>0 quantum matter

fermiflow/fermiflow

IOP HKUST→ PKU EPFL→ IOP UZH→ ITP DP/AISI

https://github.com/fermiflow/CoulombGas
https://github.com/fermiflow/fermiflow

