Unlocking the power of the variational free-energy principle with deep generative models

Lei Wang (王磊) Institute of Physics, CAS https://wangleiphy.github.io

"Using AI to accelerate scientific discovery" Demis Hassabis, co-founder and CEO of DeepMind 2021

What makes for a suitable problem?

Massive combinatorial search space

Clear objective function (metric) to optimise

Ab-initio study of quantum matters at T>o

 $H = -\sum_{i} \frac{\hbar^{2}}{2m_{e}} \nabla_{i}^{2} - \sum_{I} \frac{\hbar^{2}}{2m_{I}} \nabla_{I}^{2} - \sum_{I} \frac{\hbar$

 $Z = \mathrm{Tr}(e^{-H/k_BT})$

$$\frac{Z_{I}e^{2}}{|R_{I}-r_{i}|} + \frac{1}{2}\sum_{i\neq j}\frac{e^{2}}{|r_{i}-r_{j}|} + \frac{1}{2}\sum_{I\neq J}\frac{Z_{I}Z_{J}e^{2}}{|R_{I}-R_{J}|}$$

Quantum Monte Carlo is limited by the sign problem

Dornheim et al, Phys. Plasmas '17

The Gibbs-Bogolyubov-Feynman variational free energy principle $F = \int dX p(X) \left[k_B T \ln p(X) + H(X) \right] \ge -k_B T \ln Z$ entropy energy

Richard P. Feynman

Warmup: $\hbar = 0$ $Z = \int d\mathbf{X} e^{-H(\mathbf{X})/k_B T}$

Difficulties in Applying the Variational Principle to Quantum Field Theories¹

¹transcript of Professor Feynman's talk in 1987

deep generative models!

Discriminative learning

 $y = f(\mathbf{x})$ or $p(y|\mathbf{x})$

Generative learning

 $p(\boldsymbol{x}, \boldsymbol{y})$

Two sides of the same coin **Statistical physics Generative modeling**

Known: samples Unknown: generating distribution "learn from data"

 $\mathscr{L} = -\mathbb{E}_{\mathbf{X}\sim \text{data}}\left[\ln p(\mathbf{X})\right]$

 $\mathbb{KL}(\text{data} \parallel p) \text{ VS } \mathbb{KL}(p \parallel e^{-H/K_B I})$

Known: energy function Unknown: samples, partition function "learn from Hamiltonian" $H(\mathbf{Y}) \perp k T \ln n(\mathbf{Y})$

$$\Gamma = \bigsqcup_{X \sim p(X)} \left[\prod(A) + \kappa_B \prod p(A) \right]$$

Deep variational free energy approach

Mackay, Information Theory, Inference, and Learning Algorithms

Deep generative models unlocks the power of the Gibbs-Bogolyubov-Feynman variational principle

Direct sampling

Krauth, Statistical Mechanics: Algorithms and Computations

Examples of deep generative models

Normalizing flow

 $p(X) = \mathcal{N}(Z) \left| \det \left(\frac{\partial Z}{\partial X} \right) \right|$

Implementation: invertible Resnet (backflow)...

Autoregressive model

$p(\mathbf{X}) = p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2) \cdots$

"… the murderer is ____

Implementation: transformer with causal mask...

Variational autoregressive networks

Sherrington-Kirkpatrick spin glass

github.com/wdphy16/stat-mech-van

Physics intuition of normalizing flow

coupled oscillators

p(X) Variational density

High-dimensional, nonlinear, learnable, composable transformations

Neural network renormalization group

Collective variables

Probability Transformation

$$\ln p(X) = \ln \mathcal{N}(Z) - \ln \left| \det \left(\frac{\partial X}{\partial Z} \right) \right|$$

Physical variables

Li, LW, PRL '18 lio12589/NeuralRG

Now, move on to the quantum case $Z = \mathrm{Tr}(e^{-H/k_BT})$

Gibbs–Bogolyubov-Feynman-Delbrück–Molière variational principle

Q: How to parametrize ρ ?

- $\min F[\rho] = k_B T \operatorname{Tr}(\rho \ln \rho) + \operatorname{Tr}(H\rho) \ge -k_B T \ln Z$
- s.t. $\operatorname{Tr}\rho = 1$ $\rho \succ 0$ $\rho^{\dagger} = \rho$ $\langle X | \rho | X' \rangle = (-)^{\mathscr{P}} \langle \mathscr{P}X | \rho | X' \rangle$

A: Use TWO deep generative models !!

Variational density matrix

Discrete probabilistic models e.g. an autoregressive model

 $\sqrt{Normalizing flow}$

Xie, Zhang, LW, JML '22

Example: uniform electron gas

Xie, Zhang, LW, 2201.03156, SciPost '23

Fundamental model in condensed matter physics: metals $2 < r_s < 6$

Low energy excited states labeled in the same way as ideal Fermi gas $K = \{k_1, k_2, ..., k_N\}$

Deep generative models for the variational density matrix

 $\rho = \sum_{K} p(K) \left| \Psi_{K} \right\rangle \langle \Psi_{K} \right|$

Normalized probability distribution

 $\sum_{K} p(K) = 1$

Design deep generative models with physics constraints

Orthonormal many-electron basis

Fermionic occupation in k-space

Pauli exclusion: we are modeling a set of words with no repetitions and no order

We use masked casual self-attention Vaswani et al 1706.03762; Alternative solution: Hibat-Allah et al, 2002.02793, Barrett et al, 2109.12606

(1) Autoregressive model for p(K)

 $p(\mathbf{K}) = p(\mathbf{k}_1)p(\mathbf{k}_2 | \mathbf{k}_1)p(\mathbf{k}_3 | \mathbf{k}_1, \mathbf{k}_2) \cdots$

probability space

# of fermions	# of words
Momentum cutoff	Vocabulary

quick brown fox JUMPS

Fermion statistics: the flow should be permutation equivariant we use FermiNet layer Pfau et al, 1909.02487

Feynman's backflow in the deep learning era

Taddei et al, PRB '15 E Commun. Math. Stat 17', Harbor el al 1705.03341, Lu et al 1710.10121, Chen et al, 1806.07366

Iterative backflow \rightarrow deep residual network \rightarrow continuous normalizing flow

Fermi Flow

Xie, Zhang, LW, 2105.08644, JML '22

github.com/fermiflow

Continuous flow of electron density in a quantum dot

The objective function

$$+ \mathbb{E}_{X \sim \left|\langle X | \Psi_{K} \rangle\right|^{2}} \left[\frac{\langle X | H | \Psi_{K} \rangle}{\langle X | \Psi_{K} \rangle} \right]$$

Born
probability

Jointly optimize $|\Psi_{K}\rangle$ and p(K) to minimize the variational free energy

Benchmarks on spin-polarized electron gases

3D electron gas $T/T_F=0.0625$

2D electron gas T=0

Application: *m*^{*} from low temperature entropy

 $s = \frac{\pi^2 k_B \ m^* \ T}{3 \ m \ T_F}$

 M^* M

A fundamental quantity appears in nearly all physical properties of a Fermi liquid Has been some debate despite its fundamental role and long history of research

Eich, Holzmann, Vignale, PRB '17

Two-dimensional electron gas experiments

VOLUME 91, NUMBER 4

PHYSICAL REVIEW LETTERS

Spin-Independent Origin of the Strongly Enhanced Effective Mass in a Dilute 2D Electron System

A. A. Shashkin,^{*} Maryam Rahimi, S. Anissimova, and S.V. Kravchenko Physics Department, Northeastern University, Boston, Massachusetts 02115, USA

V.T. Dolgopolov Institute of Solid State Physics, Chernogolovka, Moscow District 142432, Russia

T. M. Klapwijk Department of Applied Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands (Received 13 January 2003; published 24 July 2003)

PRL 101, 026402 (2008)

PHYSICAL REVIEW LETTERS

Effective Mass Suppression in Dilute, Spin-Polarized Two-Dimensional Electron Systems

Medini Padmanabhan, T. Gokmen, N. C. Bishop, and M. Shayegan Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA (Received 19 September 2007; published 7 July 2008)

Layer thickness, valley, disorder, spin-orbit coupling...

week ending 25 JULY 2003

week ending 11 JULY 2008

m * / m < 1

37 spin-polarized electrons in 2D @ T/T_F=0.15

Effective mass of spin-polarized 2DEG

More pronounced suppression of *m*^{*} in the low-density strong-coupling region

Where to get training data?

How do we know it is correct?

Variational principle: lower free-energy is better.

Do I understand the "black box" model ?

- a) I don't care (as long as it is sufficiently accurate).
- b) $\ln p(\mathbf{K})$ contains the Landau energy functional
 - $Z \leftrightarrow X$ vividly illustrates adiabatic continuity.

FAQs

No training data. Data are self-generated from the generative model.

$$E[\delta n_k] = E_0 + \sum_k \epsilon_k \delta n_k + \frac{1}{2} \sum_{k,k'} f_{k,k'} \delta n_k$$

Thank you!

Thanks to deep generative models, the variational free-energy principle has become a practical computational tool for T>0 quantum matter

Shuo-Hui Li Dian Wu $IOP \rightarrow HKUST$ $PKU \rightarrow EPFL$

1802.02840, PRL '18 1809.10606, PRL '19 2105.08644, JML '22 2201.03156, SciPost Physics '23

Pan Zhang ITP

Linfeng Zhang DP/AISI

lio12580/NeuralRG wdphy16/stat-mech-van fermiflow/fermiflow fermiflow/CoulombGas

