Yao.jl: Extensible, Efficient Framework for Quantum Algorithm Design

http://yaoquantum.org/

Creators of Yao

Xiu-Zhe Luo, U Waterloo & Pl

Jin-Guo Liu, IOP CAS

In about next 3 years Small: O(10)-O(10³) qubits Shallow: $O(10^2)-O(10^4)$ gates Noisy: no error correction

What is the killer app of a <u>near-term</u> quantum computer ?

Quantum Algorithms

Cryptography

Search

Linear Algebra

Quantum Machine Learning

Variational quantum eigensolver

Quantum circuit as a variational ansatz

Peruzzo et al, Nat. Comm. '13

Google PRX '16

VQE on actual guantum devices

Scan 1000 values of the single variational parameter

These optimization schemes do not scale to higher dimensions

Optimize the quantum circuit

Stochastic gradient descend with numerical derivative

The engine of deep learning

Compose differentiable components to form a program e.g. a neural network, then optimize it with gradients

Optimization with noisy gradients

VQE encounters the "same type" of stochastic optimization in deep learning

Ruder, 1609.04747

Optimization with noisy gradients

VQE encounters the "same type" of stochastic optimization in deep learning

Ruder, 1609.04747

Neural Nets ↔ Probabilistic Graphical Models ↔ Tensor Nets ↔ Quantum Circuits

Differentiable Programming Quantum Circuits

Differentiable Programming

Andrej Karpathy

Director of AI at Tesla. Previously Research Scientist at OpenAI and PhD student

https://medium.com/@karpathy/software-2-0-a64152b37c35

Writing software 2.0 by gradient search in the program space

Differentiable Programming

Benefits of Software 2.0

- Computationally homogeneous
- Simple to bake into silicon
- Constant running time
- Constant memory usage
- Highly portable & agile
- Modules can meld into an optimal whole
- Better than humans

Writing software 2.0 by gradient search in the program space

Andrej Karpathy

Director of AI at Tesla. Previously Research Scientist at OpenAI and PhD student at Stanford. I like to train deep neural nets on large datasets.

https://medium.com/@karpathy/software-2-0-a64152b37c35

- Variational quantum eigensovler (VQE) •
- Quantum circuit Born machine (QCBM)
- Quantum approximate optimization algorithm (QAOA) •
- Quantum pattern recognition \bullet

. . .

Quantum circuit classifier TNS inspired circuit architecture VQE with fewer qubits Quantum generative model Quantum adversarial training

Farhi, Neven, 1802.06002 Havlicek et al, 1804.11326 Huggins, Patel, Whaley, Stoudenmire, 1803.11537 Liu, Zhang, Wan, LW, 1902.02663 Gao, Zhang, Duan, 1711.02038 Dallaire-Demers, Lloyd, Benedetti 1804.08641,1804.09139, 1806.00463

It is a paradigm beyond quantum-classical hybrid

- Variational quantum eigensovler (VQE)
- Quantum circuit Born machine (QCBM)
- Quantum approximate optimization algorithm (QAOA)
- Quantum pattern recognition ullet

. . .

Quantum circuit classifier TNS inspired circuit architecture VQE with fewer qubits Quantum generative model Quantum adversarial training

Farhi, Neven, 1802.06002 Havlicek et al, 1804.11326 Huggins, Patel, Whaley, Stoudenmire, 1803.11537 Liu, Zhang, Wan, LW, 1902.02663 Gao, Zhang, Duan, 1711.02038 Dallaire-Demers, Lloyd, Benedetti 1804.08641,1804.09139, 1806.00463

It is a paradigm beyond quantum-classical hybrid

Near term:

What can we do with noisy circuits of limited depth?

Long term:

Are we really good at programing quantum computers?

It is a paradigm beyond quantum-classical hybrid

- Variational quantum eigensovler (VQE)
- Quantum circuit Born machine (QCBM)
- Quantum approximate optimization algorithm (QAOA)
- Quantum pattern recognition

. . .

Quantum circuit classifier TNS inspired circuit architecture VQE with fewer qubits Quantum generative model Quantum adversarial training

Farhi, Neven, 1802.06002 Havlicek et al, 1804.11326 Huggins, Patel, Whaley, Stoudenmire, 1803.11537 Liu, Zhang, Wan, LW, 1902.02663 Gao, Zhang, Duan, 1711.02038 Dallaire-Demers, Lloyd, Benedetti 1804.08641,1804.09139, 1806.00463

It is a paradigm beyond quantum-classical hybrid

- Variational quantum eigensovler (VQE)
- Quantum circuit Born machine (QCBM)
- Quantum approximate optimization algorithm (QAOA)
- Quantum pattern recognition

Quantum circuit TNS inspired circ VQE with fewer (Quantum genera Quantum advers

. . .

Be prepared for Quantum Software 2.0 https://yaoquantum.org/

Xiu-Zhe Luo (IOP, CAS \rightarrow Waterloo & PI) Jin-Guo Liu (IOP, CAS \rightarrow Harvard)

Features:

• Differentiable programming quantum circuits Batched quantum register with GPU acceleration Quantum block intermediate representation

Stacks of Yao

https://github.com/QuantumBFS

• Julia is fast!

 Generic programming (type system and multiple dispatch)

• The future of technical computing

Why Julia?

http://ljuug.org

• Julia is fast!

• Generic programming (type system and multiple dispatch)

The future of technical computing

Why Julia?

• Julia is fast!

 Generic programming (type system and multiple dispatch)

• Future of technical computing

Why Julia?

https://github.com/wangleiphy/YaoTutorial

Demo 1

Quantum Block Intermediate Representation

Demo 2

https://github.com/wangleiphy/YaoTutorial

Differentiable¹ quantum circuits

Write your simulator as a machine learning model Isn't that obvious ?

Differentiable programming tools

HIPS/autograd

O PyTorch

theano

Differentiable¹ quantum circuits

Even better: quantum computing is reversible! Backpropagation with O(1) memory in classical simulation

Reversible training of neural nets Gomez et al, 1707.04585 Chen et al, 1806.07366

"comb" graph

data

Define "ac

djoint"
$$\overline{x} = \frac{\partial \mathscr{L}}{\partial x}$$

"comb" graph

Define "ac

djoint"
$$\overline{x} = \frac{\partial \mathscr{L}}{\partial x}$$

"comb" graph

Define "ac

djoint"
$$\overline{x} = \frac{\partial \mathscr{L}}{\partial x}$$

"comb" graph

Define "adjoint" $\overline{x} = \frac{\partial \mathscr{L}}{\partial x}$

"comb" graph

Define "adjoint" $\overline{x} = \frac{\partial \mathscr{L}}{\partial x}$

directed acyclic graph

Message passing for the adjoint at each node

Advantages of automatic differentiation

Accurate to the machine precision

 Same computational complexity as the function evaluation: Baur-Strassen theorem '83

Supports higher order gradients

1	١	١	
	I		

Applications of AD

Computing force Quantum optimal control

Sorella and Capriotti J. Chem. Phys. '10

Leung et al PRA '17

Tamayo-Mendoza et al ACS Cent. Sci. '18

More Applications...

Structural Optimization

Ingraham et al ICLR '19

Hoyer et al 1909.04240

Understandings of AD

Black magic box Chain rule

with Will Farr

Functional differential geometry

https://colab.research.google.com/ github/google/jax/blob/master/ notebooks/autodiff_cookbook.ipynb

Reverse versus forward mode

- Backtrace the computation graph
- Needs to store intermediate results
- Efficient for graphs with large fan-in

Reverse mode AD: Vector-Jacobian Product of primitives

$$v_o(J)_{o \times i}$$

Backpropagation = Reverse mode AD applied to neural networks

Reverse versus forward mode

- Same order with the function evaluation
- No storage overhead
- Efficient for graph with large fan-out

 $\frac{\partial \mathscr{L}}{\partial \theta} = \frac{\partial \mathscr{L}}{\partial x_n} \frac{\partial x_n}{\partial x_{n-1}} \frac{\partial x_2}{\partial x_1} \frac{\partial x_1}{\partial \theta}$

Forward mode AD: Jacobian-Vector Product of primitives

 $(J)_{o \times i} v_i$

Less efficient for scalar output, but useful for higher-order derivatives

Parametrized gate of the form

Differentiable² quantum circuits

Li et al, PRL '17, Mitarai et al, PRA '18 Schuld et al, PRA '19, Nakanishi et al '19

$$\left\{ \nabla \langle H \rangle_{\theta} = \left(\langle H \rangle_{\theta + \pi/2} - \langle H \rangle_{\theta - \pi/2} \right) \right\}$$

Unbiased gradient estimator measured on actual quantum circuits

https://github.com/wangleiphy/YaoTutorial

Demo 3

Applications of Yao.jl

Quantum machine learning:

Differentiable Learning of Quantum Circuit Born Machine, 1804.04168 Learning and Inference on Generative Adversarial Quantum Circuits, 1808.03425

Quantum many-body physics:

Variational Quantum Eigensolver with Fewer Qubits, 1902.02663 Solving Quantum Statistical Mechanics with VAN + Quantum Circuits, 1912.????

. . .

Train quantum circuits as probabilistic g

However, there is a HUGE GAP in the qubit number

What we want to solve

Variational quantum eigensolver with fewer qubits Jin-Guo Liu, Yi-Hong Zhang, Yuan Wan, LW, 1902.02663

What current technology offers

Initial state

see also Cramer et al, Nat. Comm. '10

Tensor network inspired quantum circuit architecture

Huggins, Patel, Whaley, Stoudenmire, 1803.11537

Initial state

Measured qubits

Initial state

Measured qubits

Initial state

Matrix Product State with exponentially large bond dimensions

Matrix Product State with exponentially large bond dimensions

 $\times (N - V - 2)$ $\boldsymbol{\theta}_1$ $\boldsymbol{\theta}_{k}$ θ_{N-V} **0** ↓ # ① Measure $q_2^x \quad q_3^x \quad q_4^x \quad q_5^x \quad q_6^x \quad q_7^x \quad q_8^x \quad q_9^x \quad q_{10}^x \quad q_{11}^x \quad q_{12}^x \quad q_{13}^x \quad q_{14}^x \quad q_{15}^x \quad q_{16}^x$ q_1^x $q_1^y \ q_2^y \ q_3^y \ q_4^y \ q_5^y \ q_6^y \ q_7^y \ q_8^y \ q_9^y \ q_9^y \ q_{10}^y \ q_{11}^y \ q_{12}^y \ q_{13}^y \ q_{14}^y \ q_{15}^y \ q_{16}^y$

. . .

Q-PEPS

How to prepare quantum thermal states?

Thermofield Double States

Wu & Hsieh, 1811.11756

Quantum imaginary-time evolution Motta et al, 1901.07653

A classical mixture of quantum states parametrizes density matrices Martyn & Swingle, 1812.01015 Verdon et al, 1910.02071

"R"-V()E

Study quantum thermodynamics with classical & quantum flows

Yao offers you freedom no one else can offer

julia> using Yao

Make your own innovation in quantum algorithms design!

Yao.jl: Extensible, Efficient Framework for Quantum Algorithm Design

Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang, Lei Wang, <u>1912.10877</u>

