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Machine Learning 101

Supervised learning Unsupervised learning
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Spam detection Online advertising

Image recognition Anomaly detection



Artificial Neural Networks
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Artificial Neural Networks
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Artificial Neural Networks
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Universal Function Approximator

Cybenko 1989
Hornik, Stinchcombe, White 1989



Artificial Neural Networks
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Artificial Neural Networks

Connections to Renormalization Group 7

Bény 1301.3124 Mehta and Schwab1410.3831 label

Universal Function Approximator

Cybenko 1989
Hornik, Stinchcombe, White 1989



Artificial Neural Networks
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Why deep learning works” Not only a math
problem, but also because of the law of physics:
symmetry, locality, and compositionality

Lin and Tegmark,1608.08225



Artificial Neural Networks
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Restricted Boltzmann Machines

generative
learning:
“‘learns to write”




Restricted Boltzmann Machines

Smolensky 1986 Hinton and Sejnowski 1986




Restricted Boltzmann Machines

Smolensky 1986 Hinton and Sejnowski 1986
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Restricted Boltzmann Machines

Smolensky 1986 Hinton and Sejnowski 1986
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Restricted Boltzmann Machines

Smolensky 1986 Hinton and Sejnowski 1986
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Restricted Boltzmann Machines

Smolensky 1986 Hinton and Sejnowski 1986
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Generate

Marginal Probability

[p(X) =) 6E(X’h)]

Universal approximator of probability distributions
Freund and Haussler, 1989 Le Roux and Bengio, 2008
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Why machine learning
for many-body physics 7

» Conceptual connections: a new and natural way

to think

e Data ar

about (quantum) many-body systems

iven approach: making scientific

discovery based on big datasets

* [echniques: neural networks, kernel methods,

pattern

dimensi

probabil

recognition, feature extraction,
onal reduction, clustering analysis,
istic modeling, recommender systems,

hardwa

‘e acceleration, software frameworks...
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|deas

A general way to do fittings

Solving inverse problems

Variational wave functions

\

Quantum state tomography/classifier/decoding

Classiﬂcation/discovery Phases of Matter

\

Connection to tensor networks & RG

Recommender engines for QMC




Function Approximation



Material Discovery

g ) Data Generation (- )

Materials abor > | Properties
a laborious
L , Vi jou L ,

Computation/Experiments

Descriptors Instant Prediction

“Machine Learning in Materials Science: Recent Progress and Critical Next Steps”
Rampi Ramprasad @ IPAM program on Understanding Many-Particle Systems with ML, 2016



Variational wave functions

 Neural net as an efficient many-body wave function
* Universal function approximator

e Feature discovery and abstraction power from deep
hierarchical structure

Carleo and Troyer, 1606.02318 Deng, Li, Das Sarma, 1609.09060 Zi Cai, 1704.05148


https://arxiv.org/abs/1704.05148

“Phase” Recognition



Supervised Approach

Ising configurations

O~ ferromagnetic
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O~ disordered

“Machine Learning Phase of Matter”
Carrasquilla and Melko, 1605.01735 label

Tanaka, Tomiya 1609.09087

Ohtsuki, Ohtsuki, 1610.00462
1612.04909

/hang, Kim,1611.01518

Broecker, Carrasquilla, Melko, Trebst, 1608.07848
Ch'ng, Carrasquilla, Melko, Khatami, 1609.02552
Schindler, Regnault, Neupert,1704.01578

Ponte, Melko, 1704.05848



Unsupervised Approach




Unsupervised Approach
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Unsupervised Approach
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Unsupervised Approach

LW, 1606.00318

e E Discovering phase transition
PO, E with dimensional reduction
T : and clustering analysis
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ferromagnetic |  disordered only data, no label

Wetzel, 1703.02435
Nieuwenburg, Liu, Huber, 1610.02048 Hu, Singh, Scalettar, 1704.00080

Liu, Nieuwenburg, 1706.08111 Wetzel, Scherzer, 1705.05582
Broecker, Assaad, Trebst, 1707.00663 Wang and Zhai, 1706.07977



Algorithmic Innovations

Liu, Qi, Meng, Fu,1610.03137

Liu, Shen, Qi, Meng, Fu,1611.09364
Xu, Qi, Liu, Fu, Meng,1612.03804
Nagai, Shen, Qi, Liu, Fu, 1705.06724

Li Huang and LW, 1610.02746
Li Huang, Yi-teng Yang and LW, 1612.01871
LW, 1702.08586



A Video from
Google DeepMind

http://www.nature.com/nature/journal/v518/n7540/fig_tab/nature14236 SV2.html|



http://www.nature.com/nature/journal/v518/n7540/fig_tab/nature14236_SV2.html

Local vs Cluster algorithms




Local vs Cluster algorithms




Local vs Cluster algorithms

Algorithmic innovation outperforms Moore’s law!




Discovering cluster updates with BM

Learn preferences
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Discovering cluster updates with BM

et

Recommendatlons

e Use Boltzmann Machines as recommender
systems for Monte Carlo simulation

Li Huang and LW, 1610.02746




Discovering cluster updates with BM

Tt

Recommendatlons

e Use Boltzmann Machines as recommender

systems for Monte Carlo simulation
Li Huang and LW, 1610.02746

 Moreover, BM parametrizes Monte Carlo policies
and explores novel algorithms!

LW, 1702.08586



Quantum Many-Body Physics
for Machine Learning



Quantum Machine Learning

* Use a guantum computer to speed up classical ML

subroutines

Optimization
Linear algebra
Sampling
Clustering

Support vector machine

Principal component analysis ¢

Li et al, PRL 114, 140504 (2015)

* Quantum data and guantum architecture

"Advances in quantum machine learning”, Adcock et al, 1512.02900

“Quantum machine learning”, Biamonte et al, 1611.09347



Quantum Boltzmann Machine

$15 million “quantum Ising simulator”

|s there any advantage of qguantum architecture 7

Amin et al, 1601.02036



Quantum entanglement perspective on deep learning

Xun Gao, L.-M. Duan, 1701.05039

Yichen Huang and J. E. Moore, 1701.06246

Liand S. Das Sarma, 1701.04844
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1704.01552v2 [[cs.LG]| 10 Apr 2017

arxiv

Deep Learning and Quantum Entanglement:
Fundamental Connections with Implications to Network Design

Yoav Levine YOAVLEVINE @ CS.HUJI.AC.IL
David Yakira DAVIDYAKIRA @ CS.HUJI.AC.IL
Nadav Cohen COHENNADAV @ CS.HUJI.AC.IL
Amnon Shashua SHASHUA @CS.HUJI.AC.IL

The Hebrew University of Jerusalem

Abstract

Deep convolutional networks have witnessed unprecedented success in various machine learning
applications. Formal understanding on what makes these networks so successful is gradually un-
folding, but for the most part there are still significant mysteries to unravel. The inductive bias,
which reflects prior knowledge embedded in the network architecture, is one of them. In this work,
we establish a fundamental connection between the fields of quantum physics and deep learning.
We use this connection for asserting novel theoretical observations regarding the role that the num-
ber of channels in each layer of the convolutional network fulfills in the overall inductive bias.
Specifically, we show an equivalence between the function realized by a deep convolutional arith-
metic circuit (ConvAC) and a quantum many-body wave function, which relies on their common
underlying tensorial structure. This facilitates the use of quantum entanglement measures as well-
defined quantifiers of a deep network’s expressive ability to model intricate correlation structures
of its inputs. Most importantly, the construction of a deep convolutional arithmetic circuit in terms
of a Tensor Network is made available. This description enables us to carry a graph-theoretic
analysis of a convolutional network, tying its expressiveness to a min-cut in the graph which char-
acterizes it. Thus, we demonstrate a direct control over the inductive bias of the designed deep
convolutional network via its channel numbers, which we show to be related to the min-cut in the
underlying graph. This result is relevant to any practitioner designing a convolutional network for
a specific task. We theoretically analyze convolutional arithmetic circuits, and empirically validate
our findings on more common convolutional networks which involve ReLU activations and max
pooling. Beyond the results described above, the description of a deep convolutional network in
well-defined graph-theoretic tools and the formal structural connection to quantum entanglement,
are two interdisciplinary bridges that are brought forth by this work.
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