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Fig. 18.2. Schematic representation of the Hamiltonian matrix of the Hubbard model with
L = 4, N↑ = 3, N↓ = 2, and periodic boundary conditions

constructed using the projector

Pk =
1
L

L−1∑

j=0

e2πijk/LT j . (18.14)

Clearly, for a given (unsymmetrized) state |n⟩, the state Pk|n⟩ is an eigenstate of T ,

TPk|n⟩ =
1
L

L−1∑

j=0

e2πijk/LT j+1|n⟩ = e−2πik/LPk|n⟩ , (18.15)

where the corresponding eigenvalue is exp(−2πik/L) and 2πk/L is the discrete
lattice momentum. Here we made use of the fact that T L = 1 (on a ring with L
sites, L translations by one site let you return to the origin). This property also
implies exp(−2πik) = 1, hence k has to be an integer. Due to the periodicity of the
exponential, we can restrict ourselves to k = 0, 1, . . . , (L − 1).

The normalization of the state Pk|n⟩ requires some care. We find

P †
k =

1
L

L−1∑

j=0

e−2πijk/LT−j =
1
L

L−1∑

j′=0

e2πij′k/LT j′ = Pk

P 2
k =

1
L2

L−1∑

i,j=0

e2πi(i−j)k/LT i−j =
1
L

L−1∑

j′=0

e2πij′k/LT j′ = Pk , (18.16)

as we expect for a projector. Hence, ⟨n|P †
kPk|n⟩ = ⟨n|P 2

k |n⟩ = ⟨n|Pk|n⟩. For
most |n⟩ the states T j|n⟩ with j = 0, 1, . . . , (L − 1) will differ from each other,
therefore ⟨n|Pk|n⟩ = 1/L. However, some states are mapped onto themselves by a
translation T νn with νn < L, i.e., T νn |n⟩ = eiφn |n⟩ with a phase φn (usually 0 or
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Machine Learning 101

Supervised learning Unsupervised learning 
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Computing unit: artificial neuron
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Restricted Boltzmann Machines
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Restricted Boltzmann Machines

Universal approximator of probability distributions
 . Freund and Haussler, 1989 . Le Roux and Bengio, 2008
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Why machine learning  
for many-body physics ? 

• Conceptual connections: a new and natural way 
to think about (quantum) many-body systems 

• Data driven approach: making scientific 
discovery based on big datasets  

• Techniques: neural networks, kernel methods, 
pattern recognition, feature extraction, 
dimensional reduction, clustering analysis, 
probabilistic modeling, recommender systems, 
hardware acceleration, software frameworks…
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Ideas
A general way to do fittings

Solving inverse problems 

Variational wave functions 

Recommender engines for QMC

Connection to tensor networks & RG

Classification/discovery phases of matter 

Quantum state tomography/classifier/decoding



Function Approximation



Material Discovery

Materials
Data Generation 

via laborious  
Computation/Experiments

Properties

Instant PredictionDescriptors

Model 

“Machine Learning in Materials Science: Recent Progress and Critical Next Steps”
Rampi Ramprasad @ IPAM program on Understanding Many-Particle Systems with ML, 2016 



Variational wave functions 

• Neural net as an efficient many-body wave function 

• Universal function approximator 

• Feature discovery and abstraction power from deep 
hierarchical structure

Carleo and Troyer, 1606.02318
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Zi Cai, 1704.05148Deng, Li, Das Sarma, 1609.09060

2N

https://arxiv.org/abs/1704.05148


“Phase” Recognition 



Supervised Approach

ferromagnetic
disordered

Carrasquilla and Melko, 1605.01735 data label
“Machine Learning Phase of Matter”

Broecker, Carrasquilla, Melko, Trebst, 1608.07848 
Ch'ng, Carrasquilla, Melko, Khatami, 1609.02552

Zhang, Kim,1611.01518

Ohtsuki, Ohtsuki,1610.00462   
1612.04909

Tanaka, Tomiya 1609.09087

Ponte, Melko, 1704.05848
Schindler, Regnault, Neupert,1704.01578

Ising configurations
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Unsupervised Approach

ferromagnetic disordered
�1

�2

�N

. . .

only data, no label

LW, 1606.00318 
Discovering phase transition 
with dimensional reduction  

and clustering analysis

Wetzel, 1703.02435
Hu, Singh, Scalettar, 1704.00080

Wetzel, Scherzer, 1705.05582
Wang and Zhai, 1706.07977

Nieuwenburg, Liu, Huber, 1610.02048
Liu, Nieuwenburg, 1706.08111 

Broecker, Assaad, Trebst, 1707.00663



Algorithmic Innovations

Li Huang and LW, 1610.02746  
Li Huang, Yi-feng Yang and LW, 1612.01871

LW, 1702.08586 

Liu, Qi, Meng, Fu,1610.03137
Liu, Shen, Qi, Meng, Fu,1611.09364

Xu, Qi, Liu, Fu, Meng,1612.03804  
Nagai, Shen, Qi, Liu, Fu, 1705.06724 



A Video from 
Google DeepMind 

http://www.nature.com/nature/journal/v518/n7540/fig_tab/nature14236_SV2.html

http://www.nature.com/nature/journal/v518/n7540/fig_tab/nature14236_SV2.html
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Local vs Cluster algorithms

is slower than



Local vs Cluster algorithms

Algorithmic innovation outperforms Moore’s law! 



Learn preferences

Recommendations

Discovering cluster updates with BM



• Use Boltzmann Machines as recommender 
systems for Monte Carlo simulation

Learn preferences

Recommendations

Discovering cluster updates with BM

Li Huang and LW, 1610.02746  



• Use Boltzmann Machines as recommender 
systems for Monte Carlo simulation

Learn preferences

Recommendations

Discovering cluster updates with BM

LW, 1702.08586 

• Moreover, BM parametrizes Monte Carlo policies 
and explores novel algorithms!

Li Huang and LW, 1610.02746  



Quantum Many-Body Physics 
for Machine Learning



Quantum Machine Learning
• Use a quantum computer to speed up classical ML 

subroutines  
• Optimization 
• Linear algebra 
• Sampling 
• Clustering 
• Support vector machine 
• Principal component analysis 

Next, a single-qubit measurement is made on the
ancillary qubit alone (the other qubits are simply ignored),
projecting it onto the state

jϕi ¼ ðjujj0i − jvjj1iÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj2 þ jvj2

q
: ð2Þ

The success probability p of this projective measurement
can be estimated by repeated measurements. Remarkably,
the inner product between jui and jvi can be directly
calculated from the p:

hujvi ¼ ð0.5 − pÞðjuj2 þ jvj2Þ=jujjvj; ð3Þ

and the distance between ~u and ~v can then be obtained:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðjuj2 þ jvj2Þ

q
: ð4Þ

It is important to note that such an estimation can achieve a
desired statistical accuracy simply by a sufficient number of
repeated measurements, but is independent of the size (N)
of the vectors, which gives a quantum speed-up.
This algorithm can be understood intuitively; the more

difference between the pure states jui and jvi, the more
entangled the Eq. (1) is. For examples, if jui and jvi are
identical, then the ancillary qubit is in the state ðj0iþ j1iÞ=ffiffiffi
2

p
, separable from the vector qubits, and p ¼ 0, D ¼ 0.

If jui and jvi are orthogonal, then the Eq. (1) is maximally
entangled, and p ¼ 0.5, D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj2 þ jvj2

p
.

In our experiment, we use single photons as qubits,
where j0i and j1i are encoded with the photon’s horizontal
(H) and vertical (V) polarization, respectively. A schematic
drawing of the experimental setup is illustrated in Fig. 1.
Polarization-entangled photon pairs are generated by spon-
taneous parametric down-conversion [17] and prepared in
the state

ðj0iancj0ivec þ j1iancj1ivecÞ=
ffiffiffi
2

p
: ð5Þ

One photon (anc) is used as the ancillary qubit, and the other
one (vec) will be used to encode the reference and incoming
vectors using Sagnac-like interferometers (see Fig. 1).
To generate three- and four-photon entanglement

resource states, we create two entangled photon pairs.
Two single photons, one from each pair, are temporally and
spatially superposed on a polarizing beam splitter (PBS).
We select the events where one and only one single photon
emits from each output. It can be concluded that the four
photons are either all H polarized or V polarized, two cases
that are quantum mechanically indistinguishable when all
the other degrees of freedom of the photons are erased
(see the caption of Fig. 1), thus projecting the four photons
into the Greenberger-Horne-Zeilinger entangled state [18]:

anc123

DT

DRD1D2D3

BBO BBO

HWP

PBS

PBS
NBS

PBS
NBS

PBS
NBS

Prism

PBS
HWPHWP

HWPHWPHWP

HWP

BBO HWP
BBO

HWP
BBO

HWP

BBO

PrismPrism

FIG. 1 (color). Experimental setup for quantum machine learning with photonic qubits. Ultraviolet laser pulses with a central
wavelength of 394 nm, pulse duration of 120 fs, and a repetition rate of 76 MHz pass through two type-II β-barium borate (BBO)
crystals with a thickness of 2 mm to produce two entangled photon pairs. The photons pass through pairs of birefringent compensators
consisting of a 1-mm BBO crystal and a HWP to compensate the walk-off between horizontal and vertical polarization, and are prepared
in the quantum state: ðjHijViþ jVijHiÞ=

ffiffiffi
2

p
. Two extra HWPs placed in arm 3 and anc are used to transform the state into

ðjHijHiþ jVijViÞ=
ffiffiffi
2

p
. Two single photons, one from each pair, are temporally and spatially superposed on a PBS to generate a four-

photon entangled state: ðjHijHijHijHiþ jVijVijVijViÞ=
ffiffiffi
2

p
. The photons 1, 2, and 3 are sent to Sagnac-like interferometers, where

each single photon splits into two spatial modes by the PBS with regard to its polarization, and recombines on a nonpolarizing beam
splitter (NBS). Various vectors are independently encoded into the two spatial modes using HWPs. The specially designed beam splitter
cube is half-PBS coated and half-NBS coated. High-precision small-angle prisms are inserted for fine adjustments of the relative delay
of the two different paths. The photons are detected by five single-photon detectors (quantum efficiency > 60%), and the two four-
photon coincidence events, D3D2D1DT and D3D2D1DR, are simultaneously registered by a homemade FPGA-based coincidence unit.

PRL 114, 110504 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

20 MARCH 2015

110504-2

Cai et al, PRL 114, 110504 (2015) 
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FIG. 2. (Color online) The schematic diagram of the quantum SVM. An ancillary qubit is added here to readout the classification
result. The auxiliary registers for matrix inversion are not shown here.
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F2
F3

F1

C
𝐼

13𝐶 𝐹1 𝐹2 𝐹3
13𝐶 15479.9Hz

𝐹1 -297.7Hz -33130.1Hz

𝐹2 -275.7Hz 64.6Hz -42681.4Hz

𝐹3 39.1Hz 51.5Hz -129.0Hz -56443.5Hz

𝑇2∗ 1.22s 0.66s 0.63s 0.61s

𝑇2 7.9s 4.4s 6.8s 4.8s

  0 S

(a)

(c)

FIG. 3. (Color online)(a) Properties of the 13C-iodotrifluroethylene. The chemical shifts ⌫
i

and scalar coupling constants (J
jk

)
are on the lower diagonal in the table, respectively. The chemical shifts are given with respect to reference frequencies of 100.62
MHz (Carbon) and 376.48 MHz (Fluorines). (b) The quantum circuit for building the kernel matrix K. After discarding the
training-data register (the second qubit), the desired kernel matrix K is obtained as the quantum density matrix of the first
qubit. (c) The quantum circuit for classification. Here H and S are the Hadamard and phase gate, respectively.

realized [15, 16], with an exponentially speedup. Using the same method, the hyperplane parameters are determined

by
�
b, ~↵T

�
T

= F̃�1
�
0, ~yT

�
T

, where the vectors here represent quantum states.

The classification results in Eq. (2) could be reproduced by the overlap of two quantum states : y(~x) = sign(hx̃0 |ũ i),
with the training-data state |ũi = 1p

N

ũ

(b|0i|0i +
P

M

k=1 abs(~xk

)↵
k

|ki|~x
k

i) and the query-state |x̃0i = 1p
N

x̃0

(|0i|0i +
P

M

k=1 abs(~x0)|ki| ~x0i). Here the training-data state |ũi could be easily obtained by calling the training-data oracle

on
�
b, ~↵T

�
T

. By applying a inverse operation U
x0 = |00i hx̃0|, the expansion coe�cients h00|U

x0 |ũi = hx̃0| |ũi will
produce the classification result y(~x) [17]. A schematic diagram of this part is shown in Fig. 2. Note that the
unitary operations are conditional operations here, controlled by an ancillary qubit. Hence the final state will be
| i = |�i |1i

A

+ |00i |0i
A

, where |�i = U
x0 |ũi and the subscript ”A” indicates the state of ancillary qubit. By

measuring the expectation value of coherent term O ⌘ |00i h00| ⌦ (|0i h1|)
A

, the classification result will be revealed

• Quantum data and quantum architecture

Li et al, PRL 114, 140504 (2015) 

“Advances in quantum machine learning”, Adcock et al, 1512.02900  
“Quantum machine learning”, Biamonte  et al, 1611.09347  



Quantum Boltzmann Machine

Amin et al, 1601.02036

$15 million “quantum Ising simulator”

Evidence for quantum annealing with more than
one hundred qubits

Supplementary material for “Evidence for quantum annealing with more than one
hundred qubits”

Sergio Boixo,1 Troels F. Rønnow,2 Sergei V. Isakov,2 Zhihui Wang,3 David
Wecker,4 Daniel A. Lidar,5 John M. Martinis,6 and Matthias Troyer∗2

1Information Sciences Institute, University of Southern California, Los Angeles, CA 90089, USA
2Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland

3Department of Chemistry and Center for Quantum Information Science & Technology,
University of Southern California, Los Angeles, California 90089, USA

4Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052, USA
5 Departments of Electrical Engineering, Chemistry and Physics,
and Center for Quantum Information Science & Technology,

University of Southern California, Los Angeles, California 90089, USA
6Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA

I. OVERVIEW

Here we provide additional details in support of the
main text. Section II shows details of the chimera graph
used in our study and the choice of graphs for our simula-
tions. Section III expands upon the algorithms employed
in our study. Section IV presents additional success prob-
ability histograms for different numbers of qubits and for
instances with magnetic fields, explains the origin of easy
and hard instances, and explains how the final state can
be improved via a simple error reduction scheme. Section
V presents further correlation plots and provide more
details on gauge averaging. Section VI gives details on
how we determined the scaling plots and how quantum
speedup can be detected on future devices. Finally, sec-
tion VII explains how the spectral gaps were calculated
by quantum Monte Carlo (QMC) simulations.

II. THE CHIMERA GRAPH OF THE D-WAVE
DEVICE.

The qubits and couplers in the D-Wave device can be
thought of as the vertices and edges, respectively, of a
bipartite graph, called the “chimera graph”, as shown in
figure 1. This graph is built from unit cells containing
eight qubits each. Within each unit cell the qubits and
couplers realise a complete bipartite graph K4,4 where
each of the four qubits on the left is coupled to all of the
four on the right and vice versa. Each qubit on the left
is furthermore coupled to the corresponding qubit in the
unit cell above and below, while each of the ones on the
right is horizontally coupled to the corresponding qubits
in the unit cells to the left and right (with appropriate
modifications for the boundary qubits). Of the 128 qubits
in the device, the 108 working qubits used in our tests of
the device are shown in green, and the couplers between
them are marked as black lines.
For our scaling analysis we follow the standard pro-

cedure for scaling of finite dimensional models by con-
sidering the chimera graph as an L × L square lattice
with an eight-site unit cell and open boundary condi-

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

1

FIG. 1: Qubits and couplers in the D-Wave device.
The D-Wave One Rainer chip consists of 4 × 4 unit cells of
eight qubits, connected by programmable inductive couplers
as shown by lines.

tions. The sizes we typically used in our numerical sim-
ulations are L = 1, . . . , 8 corresponding to N = 8L2 =
8, 32, 72, 128, 200, 288, 392 or 512 spins. For the simu-
lated annealers and exact solvers on sizes of 128 and
above we used a perfect chimera graph. For sizes below
128 where we compare to the device we use the working
qubits within selections of L×L eight-site unit cells from
the graph shown in figure 1.

In references [1, 2] it was shown that an optimisation
problem on a complete graph with

√
N vertices can be

mapped to an equivalent problem on a chimera graph
with N vertices through minor-embedding. The tree
width of

√
N mentioned in the main text arises from this

mapping. See Section VIA for additional details about
the tree width and tree decomposition of a graph.
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I. OVERVIEW

Here we provide additional details in support of the
main text. Section II shows details of the chimera graph
used in our study and the choice of graphs for our simula-
tions. Section III expands upon the algorithms employed
in our study. Section IV presents additional success prob-
ability histograms for different numbers of qubits and for
instances with magnetic fields, explains the origin of easy
and hard instances, and explains how the final state can
be improved via a simple error reduction scheme. Section
V presents further correlation plots and provide more
details on gauge averaging. Section VI gives details on
how we determined the scaling plots and how quantum
speedup can be detected on future devices. Finally, sec-
tion VII explains how the spectral gaps were calculated
by quantum Monte Carlo (QMC) simulations.

II. THE CHIMERA GRAPH OF THE D-WAVE
DEVICE.

The qubits and couplers in the D-Wave device can be
thought of as the vertices and edges, respectively, of a
bipartite graph, called the “chimera graph”, as shown in
figure 1. This graph is built from unit cells containing
eight qubits each. Within each unit cell the qubits and
couplers realise a complete bipartite graph K4,4 where
each of the four qubits on the left is coupled to all of the
four on the right and vice versa. Each qubit on the left
is furthermore coupled to the corresponding qubit in the
unit cell above and below, while each of the ones on the
right is horizontally coupled to the corresponding qubits
in the unit cells to the left and right (with appropriate
modifications for the boundary qubits). Of the 128 qubits
in the device, the 108 working qubits used in our tests of
the device are shown in green, and the couplers between
them are marked as black lines.
For our scaling analysis we follow the standard pro-

cedure for scaling of finite dimensional models by con-
sidering the chimera graph as an L × L square lattice
with an eight-site unit cell and open boundary condi-
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FIG. 1: Qubits and couplers in the D-Wave device.
The D-Wave One Rainer chip consists of 4 × 4 unit cells of
eight qubits, connected by programmable inductive couplers
as shown by lines.

tions. The sizes we typically used in our numerical sim-
ulations are L = 1, . . . , 8 corresponding to N = 8L2 =
8, 32, 72, 128, 200, 288, 392 or 512 spins. For the simu-
lated annealers and exact solvers on sizes of 128 and
above we used a perfect chimera graph. For sizes below
128 where we compare to the device we use the working
qubits within selections of L×L eight-site unit cells from
the graph shown in figure 1.

In references [1, 2] it was shown that an optimisation
problem on a complete graph with

√
N vertices can be

mapped to an equivalent problem on a chimera graph
with N vertices through minor-embedding. The tree
width of

√
N mentioned in the main text arises from this

mapping. See Section VIA for additional details about
the tree width and tree decomposition of a graph.

SUPPLEMENTARY INFORMATION
DOI: 10.1038/NPHYS2900

NATURE PHYSICS | www.nature.com/naturephysics 1

Is there any advantage of quantum architecture ?



������� �	 
������ 
������� ������

������ ��	"
 7�����
� ������ �
������� �� ��
��� &�� ��
����� ���0�
� ���� ��%��
�������
� �� � �
����� �����������
' ����� ���� �� 
���� ������� �������� ����� �� � 
�
.
!��� ����������� �� ��
����� �
 ����� �� � ���� �� �
� ����� ��@��� ��� ��
��� �
���
�����
�
 �* ����������
�� �� 
���� �������� ������� ���� �����
�
� �
 ��������� ���� ��������
���� ��� ������ �
���
����� �
 �* ����������
� ������ � 
��������� ���������
 �� ���
������ �� ����� ������

:� ����
�� ������������ ����������� ��
���������
 ��� ��� 
�;����� �� 
���
���� ��� ���� ���
 �� � ���
������ 
���� ������ �� ��������
� ,� ��
� ��
�
�
�����
� ���� ��� �������
 �� ��������� ��� ��������� �� ���� ����� �� �����

���

������� �	 
����
���
��

������ ��?	 
��
��� ������ ���
 ��� AF�:) �������� )�� ,F�:)- ������ ��� F�������
��������� �� :�������� ��� )���������� ��� ������ ���� ���������� ��������� ���� �����
)�� ,A- ������ ��� ,
���1���- ����� ��� ���� ��� ���� ������������ ��� ������ ��� ����

������ �������� ��������
�� )�� AF�:) ������� �������� �� ����� �� ����������� ������
��� ���������� ������ ���������� ����� ����� 4%? �� ��������� �� ���� �
���� )��� ��
���
������1������ ������
 �� ��� �� ��� ��
����� ��� 
��� ������ ���� ����� �� ���� ��������
��������� �� ��
���� ������� ������� ����� <���� ���� ��� 
����� ������<��� �� ���!��
0������ C����� ��� ��������� �� �� ,��� �	����
��� �� 
������ ���������- 
������ ����
�� ������ 
������ �������� ����������� �� ����� ����� ��������
� �� ���������� ����������
����������� 
��� �� ���������� ����� ����� ����� H����

��

MNIST database random images
from the “Deep Learning” book by Goodfellow, Bengio, Courville https://www.deeplearningbook.org/

Jing Chen, Song Cheng, Haidong Xie, LW, and Tao Xiang, 1701.04831
Dong-Ling Deng, Xiaopeng Li and S. Das Sarma, 1701.04844  

Xun Gao, L.-M. Duan, 1701.05039  

Yichen Huang and J. E. Moore, 1701.06246

Quantum entanglement perspective on deep learning



Deep Learning and Quantum Entanglement:
Fundamental Connections with Implications to Network Design

Yoav Levine YOAVLEVINE@CS.HUJI.AC.IL

David Yakira DAVIDYAKIRA@CS.HUJI.AC.IL

Nadav Cohen COHENNADAV@CS.HUJI.AC.IL

Amnon Shashua SHASHUA@CS.HUJI.AC.IL

The Hebrew University of Jerusalem

Abstract
Deep convolutional networks have witnessed unprecedented success in various machine learning
applications. Formal understanding on what makes these networks so successful is gradually un-
folding, but for the most part there are still significant mysteries to unravel. The inductive bias,
which reflects prior knowledge embedded in the network architecture, is one of them. In this work,
we establish a fundamental connection between the fields of quantum physics and deep learning.
We use this connection for asserting novel theoretical observations regarding the role that the num-
ber of channels in each layer of the convolutional network fulfills in the overall inductive bias.
Specifically, we show an equivalence between the function realized by a deep convolutional arith-
metic circuit (ConvAC) and a quantum many-body wave function, which relies on their common
underlying tensorial structure. This facilitates the use of quantum entanglement measures as well-
defined quantifiers of a deep network’s expressive ability to model intricate correlation structures
of its inputs. Most importantly, the construction of a deep convolutional arithmetic circuit in terms
of a Tensor Network is made available. This description enables us to carry a graph-theoretic
analysis of a convolutional network, tying its expressiveness to a min-cut in the graph which char-
acterizes it. Thus, we demonstrate a direct control over the inductive bias of the designed deep
convolutional network via its channel numbers, which we show to be related to the min-cut in the
underlying graph. This result is relevant to any practitioner designing a convolutional network for
a specific task. We theoretically analyze convolutional arithmetic circuits, and empirically validate
our findings on more common convolutional networks which involve ReLU activations and max
pooling. Beyond the results described above, the description of a deep convolutional network in
well-defined graph-theoretic tools and the formal structural connection to quantum entanglement,
are two interdisciplinary bridges that are brought forth by this work.

1. Introduction

A central factor in the application of machine learning to a given task is the restriction of the hy-
pothesis space of learned functions known as inductive bias. The restriction posed by the inductive
bias is necessary for practical learning, and reflects prior knowledge regarding the task at hand. In
deep convolutional networks, prior knowledge is embedded in architectural features such as num-
ber of layers, number of channels per layer, the pattern of pooling, various schemes of connectivity
and convolution kernel defined by size and stride (see LeCun et al. (2015) for an overview). For-
mal understanding of the inductive bias behind convolutional networks is limited – the assumptions
encoded into these models, which seem to form an excellent prior knowledge for imagery data

c� Y. Levine, D. Yakira, N. Cohen & A. Shashua.
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摘 要 量子纠缠在量子物质态的研究中扮演着日趋重要的角色，它可以标记传统

范式难以区分的新奇量子态和量子相变，并指导设计高效的数值算法来精确地研究量子多体

问题。最近，随着一些深度学习技术在量子物理问题中的应用，人们惊奇地发现：从量子纠

缠的视角审视深度学习，或许有助于反过来理解和解决一些深度学习中的问题。量子纠缠

定量化地刻画了现实数据集的复杂度，并指导相应的人工神经网络结构设计。沿着这个思

路，物理学家们对于量子多体问题所形成的种种洞察和理论可以以一种意想不到的方式应

用在现实世界中。
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