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Figure 2: Example of Figure 1 represented as a Bayesian network (only two layers are represented).
The bottom nodes are observed. Note that the graph is truncated, as the nodes of �2 must be linked
to the next layer which is not represented, as well as to each other, in the same manner as the two
layers below it.

Figure 3: Stochastic maps involved in the last two steps of the computation of the marginal state
on 3 consecutive output sites. The lines ending abruptly indicates that the corresponding variable
is summed over. The “past” of any region of �0 of size L always involves just 3 sites before level
�[log2(L)].

3 Learning CORA

The causal properties inherent in the definition of MERA/CORA imply that a marginal over any
finite group of L sites can be computed (explicitly, i.e., without sampling) in a time of order
eL log(N). Indeed, due to the particular causal structure of the maps ⇡j , the past of any set of
sites of �j , namely those sites of �j+1 on which their values depend explicitly through ⇡j , always
ends up involving a constant number of sites independent of N (and generally manageably small).
This is illustrated in Figure 3.

In the quantum physical setting for which MERA was introduced, the state that we want to represent
is not defined by samples, but instead by a Hamiltonian, or energy function, that it minimizes,
i.e., the cost function itself. Most often, the Hamiltonians considered are local, which implies that
the evaluation of their expectation only requires the use of marginal states over small clusters of
neighboring sites. Therefore the cost function can be evaluated efficiently and exactly.

Such a procedure can be adapted to a situation where, instead of being handed the Hamiltonian, we
are given samples from the unknown distribution: the training data. In physics, this situation presents
itself when an experimentalists wants to reconstruct a state that he has access to only through exper-
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FIG. 2. RG and deep learning in the one-dimensional Ising Model. (A) A decimation based renormalization trans-
formation for the ferromagnetic 1-D Ising model. At each step, half the spins are decimated, doubling the effective lattice
spacing. After, n successive decimations, the spins can be described using a new 1-D Ising models with a coupling Jn between
spins. Couplings at a given layer are related to couplings at a previous layer through the square of the hyberbolic tangent
function. (B) Decimation-based renormalization transformations can also be realized using the deep architecture where the
weights between the n + 1 and n-th hidden layer are given by Jn. (C) Visualizing the renormalization group flow of the
couplings for 1-D Ferromagnetic Ising model. Under four successive decimations or equivalently as we move up four layers in
the deep architecture, the couplings (marked by red dots) get smaller. Eventually, the couplings are attracted to stable fixed
point J = 0.

the two approaches employ distinct variational approxi-
mation schemes for coarse graining. Finally, notice that
the correspondence does not rely on the explicit form of
the energy E({hj}, {vj}) and hence holds for any Boltz-
mann Machine.

IV. EXAMPLES

To gain intuition about the mapping between RG
and deep learning, it is helpful to consider some sim-
ple examples in detail. We begin by examining the one-
dimensional nearest-neighbor Ising model where the RG
transformation can be carried out exactly. We then nu-
merically explore the two-dimensional nearest-neighbor
Ising model using an RBM-based deep learning architec-
ture.

A. One dimensional Ising Model

The one-dimensional Ising model describes a collection
of binary spins {vi} organized along a one-dimensional
lattice with lattice spacing a. Such a system is described
by a Hamiltonian of the form

H = −J
∑

i

vivi+1, (23)

where J is a ferromagnetic coupling that energetically
favors configurations where neighboring spins align. To
perform a RG transformation, we decimate (marginalize
over) every other spin. This doubles the lattice spacing
a → 2a and results in a new effective interaction J (1) be-
tween spins (see Figure 2). If we denote the coupling af-
ter performing n successive RG transformations by J (n),

then a standard calculation shows that these coefficients
satisfy the RG equations

tanh [J (n+1)] = tanh2 [J (n)], (24)

where we have defined J (0) = J [14]. This recursion
relationship can be visualized as a one-dimensional flow
in the coupling space J from J = ∞ to J = 0. Thus,
after performing RG the interactions become weaker and
weaker and J → 0 as n → ∞.

This RG transformation also naturally gives rise to the
deep learning architecture shown in Figure 2. The spins
at a given layer of the DNN have a natural interpretation
as the decimated spins when performing the RG trans-
formation in the layer below. Notice that the coupled
spins in the bottom two layers of the DNNs in Fig. 2B
form an “effective” one-dimensional chain isomorphic to
the original spin chain. Thus, marginalizing over spins in
the bottom layer in the DNN is identical to decimating
every other spin in the original spin systems. This im-
plies that the “hidden” spins in the second layer of the
DNN are also described by the RG transformed Hamil-
tonian with a coupling J (1) between neighboring spins.
Repeating this argument for spins coupled between the
second and third layers and so on, one obtains the deep
learning architecture shown in Fig. 2B which implements
decimation.

The advantage of the simple deep architecture pre-
sented here is that it is easy to interpret and requires no
calculations to construct. However, an important short-
coming is that it contains no information about half of
the visible spins, namely the spins that do not couple to
the hidden layer.

Exact Mapping

RG Transformation Boltzmann Machine
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+ .007⇥ =
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✏sign(rxJ(✓,x, y))
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Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.
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RG offers a theoretical understanding of  DL 

In return, DL helps to solve physics problems
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MERA as a quantum circuit
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FIG. 1. (a) Basic construction of a k = 2 MERA (2 sites renormalized to 1). (b) The squares
represent disentanglers: unitary maps that, from the moving-upward perspective, remove entan-
glement between two adjacent sites. (c) The triangles represent isometries: linear maps that, again
from the moving-upward perspective, coarse-grain two sites into one. Moving downward, we may
think of isometries as unitary operators that, in the MERA, map a state in V ⌦ |0i into V ⌦ V .
The i and j labels in (b) and (c) represent the tensor indices of the disentangler and isometry.

attention to the case D = 1 + 1.

The MERA tensor network is shown in Fig. 1. The quantum system being modeled by

the MERA lives at the bottom of the diagram, henceforth “the boundary” in anticipation of

the AdS/MERA connection to be explored later. We can think of the tensor network as a

quantum circuit that either runs from the top down, starting with a simple input state and

constructing the boundary state, or from the bottom up, renormalizing a boundary state via

coarse-graining. One defining parameter of the MERA is the rescaling factor k, defining the

number of sites in a block to be coarse-grained; in Fig. 1 we have portrayed the case k = 2.

The squares and triangles are the tensors: multilinear maps between direct products of vector

spaces. Each line represents an index i of the corresponding tensor, ranging over values from

1 to the “bond dimension” �. The boundary Hilbert space Hboundary = V
⌦Nboundary is given

by a tensor product of Nboundary individual spaces V , each of dimension �. (In principle
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We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det

 
@x
@z

!������ , (1)

where q(x) is the normalized probability density of the phys-
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The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det
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We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.
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Intuition

If the mapping f is 1-to-1, then the total area (or volume) should

not change after the transformation from x to z .

Figure 1: Mapping from one probability density to another. Source:
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We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
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where q(x) is the normalized probability density of the phys-
ical variables and p(z) = N(z; 0, 1) is the prior probability
density of the latent variables chosen to be a fixed normal dis-
tribution. The second term of Eq. (1) is the log-Jacobian de-
terminant of the bijector neural network, which can be easily
computed by collecting the contributions from each bijector.
Since the log-probability can be interpreted as a negative en-
ergy function, Eq. (1) shows that the renormalization of the ef-
fective coupling is provided by the log-Jacobian at each trans-
formation step.

Since di↵eomorphisms form a group, an arbitrary compo-
sition the building blocks is still a bijector. This motivates the
modular design of the network structure shown in Fig. 1(a).
The layers alternate between disentangler blocks and decima-
tor blocks. The disentangler blocks in light gray reduce the
mutual information between the inputs and pass less corre-
lated outputs to the next layer. While the decimator blocks in
dark gray pass only parts of outputs to the next layer and treat
the remaining ones as irrelevant latent variables. The RG flow
corresponds to the inference of the latent variables z = g�1(x)
based on observed physical variables, during which the kept
degrees of freedom emerge as renormalized collective vari-
ables at coarser scales. In the reversed direction, the la-
tent variables are injected into the neural network at di↵erent
depths. And they a↵ect physical variables at di↵erent length
scales.

The bijective property is crucial for learning the RG flow
in a controlled way. No matter how complex is the hierarchi-
cal transformations performed by the neural network, one can
e�ciently compute the normalized probability density q(x)
for any physical configuration x (either generated or given)
by keep tracking the Jacobian determinant at each block lo-
cally. One can share the weights among the blocks in the same
layer due to the translational invariances of the physical prob-
lem. Moreover, one can even share the weights in the depth
direction due to scale invariance emerged at criticality. The
scale-invariant reduces the number of parameters to be inde-
pendent of the system size. In this case, one can iterate the
training process for increasingly larger system size and reuse
the weights from the previous step as the initial value.

The proposed NeuralRG architecture shown in Fig. 1(a) is
largely inspired by the tensor networks [7, 11–16], and in par-
ticular, the multi-scale entanglement renormalization ansatz
(MERA) [6]. Moreover, stacking bijectors to transform the
probability densities is analogous to the philosophy of re-
versible computation using quantum circuits [42]. Exploiting
these analogies provide constructive guidelines to the neural
network architecture design. The neural network nevertheless
has the flexibility that the blocks can be arbitrarily large and
long-range connected. Given the modular design of Fig. 1(a),
arbitrarily complicated NeuralRG architecture can be learned
e�ciently using standard di↵erential approaches o↵ered in
modern deep learning frameworks [43, 44].

Compared to ordinary neural networks used in deep learn-
ing, the architecture shown in Fig 1(a) has strong physical and
information theoretical motivations. To see this, we consider a

Figure 2. (a) A reference neural network architecture with only dis-
entanglers. The physical variables in the two shaded regions are un-
correlated because their causal light cones do not overlap in the latent
variables. (b) Mutual information flow at the decimator block, see
Eq. (2). (c) The arrangement of the bijectors on a two-dimensional
lattice. (d) Each bijector acts on four variables. For the decimators,
only one of the outputs is carried on to the next layer and the others
are directly treated as latent variables.

simpler reference structure shown in Fig. 2(a) where one uses
disentangler blocks at each layer. The resulting structure re-
sembles the structure of a time-evolving block decimation net-
work [45]. Since each disentangler block connects only a few
neighboring variables, the causal light cone of the physical
variables at the bottom can only reach regions proportional to
the depth of the network. Therefore, the correlation length of
the physical variables is limited by the depth of the disentan-
gler layers. This structure is su�cient for physical problems
with finite correlation length, i.e. away from the criticality.

On the other hand, a network with decimators in each
layer is similar to the tree tensor network [46]. As shown in
Fig. 2(b), the mutual information (MI) between the variables
at each decimation step follows

I(A : B) = I(z1 [ a : b [ z4) = I(a : b). (2)

The first equality is due to that the mutual information is
invariant under invertible transformation of variables within
each group. While the second equality is due to the random
variables z1 and z4 are independent of all other variables. Ap-
plying Eq. (2) recursively at each decimation step, one con-
cludes that in a neural net with only decimators the MI be-
tween two sets of variables is limited by the top layer. Such
structure is su�cient to model one dimensional physical sys-
tems with short-range interactions due to that the mutual in-
formation is constant [47]. Although the upper bound of MI
of two continuous variables can be arbitrarily large, in gen-
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where q(x) is the normalized probability density of the phys-
ical variables and p(z) = N(z; 0, 1) is the prior probability
density of the latent variables chosen to be a fixed normal dis-
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ticular, the multi-scale entanglement renormalization ansatz
(MERA) [6]. Moreover, stacking bijectors to transform the
probability densities is analogous to the philosophy of re-
versible computation using quantum circuits [42]. Exploiting
these analogies provide constructive guidelines to the neural
network architecture design. The neural network nevertheless
has the flexibility that the blocks can be arbitrarily large and
long-range connected. Given the modular design of Fig. 1(a),
arbitrarily complicated NeuralRG architecture can be learned
e�ciently using standard di↵erential approaches o↵ered in
modern deep learning frameworks [43, 44].

Compared to ordinary neural networks used in deep learn-
ing, the architecture shown in Fig 1(a) has strong physical and
information theoretical motivations. To see this, we consider a

Figure 2. (a) A reference neural network architecture with only dis-
entanglers. The physical variables in the two shaded regions are un-
correlated because their causal light cones do not overlap in the latent
variables. (b) Mutual information flow at the decimator block, see
Eq. (2). (c) The arrangement of the bijectors on a two-dimensional
lattice. (d) Each bijector acts on four variables. For the decimators,
only one of the outputs is carried on to the next layer and the others
are directly treated as latent variables.

simpler reference structure shown in Fig. 2(a) where one uses
disentangler blocks at each layer. The resulting structure re-
sembles the structure of a time-evolving block decimation net-
work [45]. Since each disentangler block connects only a few
neighboring variables, the causal light cone of the physical
variables at the bottom can only reach regions proportional to
the depth of the network. Therefore, the correlation length of
the physical variables is limited by the depth of the disentan-
gler layers. This structure is su�cient for physical problems
with finite correlation length, i.e. away from the criticality.

On the other hand, a network with decimators in each
layer is similar to the tree tensor network [46]. As shown in
Fig. 2(b), the mutual information (MI) between the variables
at each decimation step follows

I(A : B) = I(z1 [ a : b [ z4) = I(a : b). (2)

The first equality is due to that the mutual information is
invariant under invertible transformation of variables within
each group. While the second equality is due to the random
variables z1 and z4 are independent of all other variables. Ap-
plying Eq. (2) recursively at each decimation step, one con-
cludes that in a neural net with only decimators the MI be-
tween two sets of variables is limited by the top layer. Such
structure is su�cient to model one dimensional physical sys-
tems with short-range interactions due to that the mutual in-
formation is constant [47]. Although the upper bound of MI
of two continuous variables can be arbitrarily large, in gen-
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We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det

 
@x
@z

!������ , (1)

where q(x) is the normalized probability density of the phys-
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ABSTRACT

This paper introduces WaveNet, a deep neural network for generating raw audio
waveforms. The model is fully probabilistic and autoregressive, with the predic-
tive distribution for each audio sample conditioned on all previous ones; nonethe-
less we show that it can be efficiently trained on data with tens of thousands of
samples per second of audio. When applied to text-to-speech, it yields state-of-
the-art performance, with human listeners rating it as significantly more natural
sounding than the best parametric and concatenative systems for both English and
Mandarin. A single WaveNet can capture the characteristics of many different
speakers with equal fidelity, and can switch between them by conditioning on the
speaker identity. When trained to model music, we find that it generates novel and
often highly realistic musical fragments. We also show that it can be employed as
a discriminative model, returning promising results for phoneme recognition.

1 INTRODUCTION

This work explores raw audio generation techniques, inspired by recent advances in neural autore-
gressive generative models that model complex distributions such as images (van den Oord et al.,
2016a;b) and text (Józefowicz et al., 2016). Modeling joint probabilities over pixels or words using
neural architectures as products of conditional distributions yields state-of-the-art generation.

Remarkably, these architectures are able to model distributions over thousands of random variables
(e.g. 64⇥64 pixels as in PixelRNN (van den Oord et al., 2016a)). The question this paper addresses
is whether similar approaches can succeed in generating wideband raw audio waveforms, which are
signals with very high temporal resolution, at least 16,000 samples per second (see Fig. 1).

Figure 1: A second of generated speech.

This paper introduces WaveNet, an audio generative model based on the PixelCNN (van den Oord
et al., 2016a;b) architecture. The main contributions of this work are as follows:

• We show that WaveNets can generate raw speech signals with subjective naturalness never
before reported in the field of text-to-speech (TTS), as assessed by human raters.
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implemented by simply stacking 4 such networks on top of each other) did improve the quality. Note
that in the final parallel WaveNet architecture, the weights were not shared between the flows.

The first (bottom) network takes as input the white unconditional logistic noise: x0 = z. Thereafter
the output of each network i is passed as input to the next network i + 1 , which again transforms it.

xi = xi�1 · si + µi (3)

Because we use the same ordering in all the flows, the final distribution p(xt|z<t,✓) is logistic with
location µtot and scale stot:

µtot =
NX

i

µi

0

@
NY

j>i

sj

1

A (4)

stot =
NY

i

si (5)

where N is the number of flows and the dependencies on t and z are omitted for simplicity.

4 Probability Density Distillation

Training the parallel WaveNet model directly with maximum likelihood would be impractical, as the
inference procedure required to estimate the log-likelihoods is sequential and slow1. We therefore
introduce a novel form of neural network distillation [11] that uses an already trained WaveNet as a
‘teacher’ from which a parallel WaveNet ‘student’ can efficiently learn. To stress the fact that we are
dealing with normalised density models, we refer to this process as Probability Density Distillation

(in contrast to Probability Density Estimation). The basic idea is for the student to attempt to match
the probability of its own samples under the distribution learned by the teacher.

Given a parallel WaveNet student pS(x) and WaveNet teacher pT (x) which has been trained on a
dataset of audio, we define the Probability Density Distillation loss as follows:

DKL (PS ||PT ) = H(PS , PT ) � H(PS) (6)

where DKL is the Kullback–Leibler divergence, and H(PS , PT ) is the cross-entropy between the
student PS and teacher PT , and H(PS) is the entropy of the student distribution. When the KL
divergence becomes zero, the student distribution has fully recovered the teacher’s distribution. The
entropy term (which is not present in previous distillation objectives [11]) is vital in that it prevents
the student’s distribution from collapsing to the mode of the teacher (which, counter-intuitively,
does not yield a good sample—see Appendix section A.1). Crucially, all the operations required to
estimate derivatives for this loss (sampling from pS(x), evaluating pT (x), and evaluating H(PS))
can be performed efficiently, as we will see.

It is worth noting the parallels to Generative Adversarial Networks (GANs [7]), with the student
playing the role of generator, and the teacher playing the role of discriminator. As opposed to GANs,
however, the student is not attempting to fool the teacher in an adversarial manner; rather it co-
operates by attempting to match the teacher’s probabilities. Furthermore the teacher is held constant,
rather than being trained in tandem with the student, and both models yield tractable normalised
distributions.

Recently [9] has presented a related idea to train feed-forward networks for neural machine translation.
Their method is based on conditioning the feedforward decoder on fertility values, which require
supervision by an external alignment system. The training procedure also involves the creation of an
additional dataset as well as fine-tuning. During inference, their model relies on re-scoring by an
auto-regressive model.

1In this sense the two architectures are dual to one another: slow training and fast generation with parallel
WaveNet versus fast training and slow generation with WaveNet.
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CHAPTER 3. PROBABILITY AND INFORMATION THEORY
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Figure 3.6: The KL divergence is asymmetric. Suppose we have a distribution p(x) and
wish to approximate it with another distribution q(x). We have the choice of minimizing
either DKL (p q� ) or DKL (q p� ). We illustrate the effect of this choice using a mixture of
two Gaussians for p , and a single Gaussian for q. The choice of which direction of the
KL divergence to use is problem-dependent. Some applications require an approximation
that usually places high probability anywhere that the true distribution places high
probability, while other applications require an approximation that rarely places high
probability anywhere that the true distribution places low probability. The choice of the
direction of the KL divergence reflects which of these considerations takes priority for each
application. (Left)The effect of minimizing DKL(p q� ). In this case, we select a q that has
high probability where p has high probability. When p has multiple modes, q chooses to
blur the modes together, in order to put high probability mass on all of them. (Right)The
effect of minimizing DKL(q p� ). In this case, we select a q that has low probability where
p has low probability. When p has multiple modes that are sufficiently widely separated,
as in this figure, the KL divergence is minimized by choosing a single mode, in order to
avoid putting probability mass in the low-probability areas between modes of p. Here, we
illustrate the outcome when q is chosen to emphasize the left mode. We could also have
achieved an equal value of the KL divergence by choosing the right mode. If the modes
are not separated by a sufficiently strong low probability region, then this direction of the
KL divergence can still choose to blur the modes.

76

Maximum Likelihood Estimation Probability Density Distillation

Fig. 3.6, Goodfellow, Bengio, Courville, http://www.deeplearningbook.org/
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“Gaussian-Bernoulli Boltzmann Machine”

⇡(s|x) =
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⇣
1 + e�2si xi

⌘�1

Zhang, Sutton, Storkey, Ghahramani, NIPS 2012

p(s)

s s

x x

Original MRF

[MS10; HKP91] Current Approach

s

x

General A A = ⇤�1/2
V

T A = I

Figure 1: Graphical depiction of the different versions of the Gaussian integral trick. In all of the
models here si 2 {0, 1} while xi 2 R. Notice that when A = I the x have the same dependence
structure as the s did in the original MRF.

3.1 Convexity of Log Density

Because probabilistic inference is NP-hard, it is too much to expect that the continuous transfor-
mation will always help. Sometimes difficult discrete distributions will be converted into difficult
continuous ones. Experimentally we have noticed that highly frustrated systems typically result in
multimodal p(x).

The modes of p(x) are particularly easy to understand if A = ⇤�1/2
V

T , because p(x|s) =
N (x; ⇤1/2

V s; I), that is, the covariance does not depend on W + D. Without loss of general-
ity assume that the diagonal of W is 0. Then write (W + D) = W + cD

0. Interpreting p(x) as a
mixture of Gaussians, one for each assignment s, as c ! 1 the Gaussians become farther apart and
we get 2n modes, one each at ⇤1/2

V s for each assignment to binary vector s. If we take a small
c, however, we can sometimes get fewer modes, and as shown next, we can sometimes even get
log p(x) convex. This is a motivation to make sure that the elements of D are not too large.

In the following proposition we characterize the conditions on p(s) under which the resultant p(x)
is log-concave. For any N ⇥ N matrix M , let �1(M) � . . . � �N (M) denote the eigenvalues of
M . Recall that we have already required that D be chosen so that W + D is positive definite, i.e.,
�N (W + D) > 0. Then
Proposition 1. p(x) is log-concave if and only if W +D has a narrow spectrum, by which we mean
�1(W + D) < 4.

Proof. The Hessian of log p(x) is easy to compute. It is

Hx := r2
x log p(x) = Cx � (W + D)�1 (13)

where Cx is a diagonal matrix with elements cii = �(�ai � xi + di
2 )(1 � �(�ai � xi + di

2 )). We
use the simple eigenvalue inequalities that �1(A) + �N (B)  �1(A + B)  �1(A) + �1(B). If
�1(W + D)  4, then

�1(Hx)  �1(Cx) � [�1(W + D)]�1  0.25 � [�1(W + D)]�1  0.

So p(x) is log-concave. Conversely suppose that p(x) is log-concave. Then

0.25 � [�1(W + D)]�1 = sup
x

�N (Cx) � [�1(W + D)]�1  sup
x

�1(Hx)  0.

So �1(W + D)  4.

3.2 MCMC in the Continuous Relaxation

Now we discuss how to perform inference in the augmented distribution resulting from the trick.
One simple choice is to focus on the joint density p(x, s). It is straightforward to generate samples
from the conditional distributions p(x|s) and p(s|x). Therefore one can sample the joint distribution
p(x, s) in a block Gibbs style that switches sampling between p(x|s) and p(s|x). In spite of the sim-
plicity of this method, it has the potential difficulty that it may generate highly correlated samples,
due to the coupling between discrete and continuous samples.

To overcome the drawbacks of block Gibbs sampling, we propose running MCMC directly on the
marginal p(x). We can efficiently evaluate the unnormalized density of p(x) from (11) up to a
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We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det
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@z

!������ , (1)

where q(x) is the normalized probability density of the phys-
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has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]
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Guy, Wavelets & RG, 1999+ 
White, Evenbly, Qi, Wavelets, MERA, and holographic mapping 2013+
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The latent variables seem to be  
nonlinear & adaptive generalizations of  wavelets



How is this useful ?

Accelerated Monte Carlo simulation 

Deriving effective field theory of collective variables

Identifying mutually independent collective 
variables (molecular simulation, PIMC, PIMD)

Information preserving RG for holographic mapping
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ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
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To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
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Mutual information

Reduced Mutual Information in the latent space

KSG MI estimator 
  Phys. Rev. E 69, 066138 (2004)  



MI and holographic RG

Mutual information reveals the emergent geometry in the bulk

RG flows along the radial direction

Physical variables on the boundary

Latent variables in the bulk

Information is preserved by the flow

Normalizing flow implements an invertible RG flow 

bijector

This is a neural network

Qi 1309.6282, You, Qi, Xu 1508.03635  
You, Yang, Qi 1709.01223



Remarks on RG
• Conventional RG fixes the transformation and searches for the 

fixed point. Now, learn the transformation towards the Gaussian 
fixed point. 

• Conventional RG is a semi-group. Here, it is a group builds on 
bijectors. Coarse-graining is done by the hierarchical network 
architecture (Wegner 74’).  

• Changes of variables formulation of RG (Caticha 16’) 

• Probabilistic (Jona-Lasinio 75’) and Information Theory (Apenko 09’) 
perspectives on RG (same is true for neural & tensor networks)



More Remarks
• Learns from bare energy function, instead of training data 

• Extends conventional RG with modern DL technique, and with a 
different goal 

• Is a practical computational tool for realistic systems  

• Does not seem to be strong for universality, exponents and so on 

• Can be regarded as an implementation of the insights of Bény 13’.



Pirsa: 16080006 Page 13/34

Dictionary: RG vs Deep Learning

Table from Schwab’s talk at PI: http://pirsa.org/displayFlash.php?id=16080006

http://pirsa.org/displayFlash.php?id=16080006


Pirsa: 16080006 Page 13/34

Dictionary: RG vs Deep Learning

Table from Schwab’s talk at PI: http://pirsa.org/displayFlash.php?id=16080006

Normalizing Flow

Bare energy function

Nonlinear bijectors

Reverse KL divergence 
reaches zero

Variational minimization of 
the free energy

Numerical
(Differentiable Programming)

Progressly decoupled 
degrees of freedom
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Remarks on accelerated MC
1. Cheap surrogate function for Metropolis rejection: 

2. Recommender engine for MC updates using generative 
models: Huang, LW, 1610.02746, Liu, Qi, Meng, Fu, 1610.03137 

3. Reinforcement learning the transition kernel: Song et al, 
1706.07561, Levy et al 1711.09268, Cusumano-Towner et al 
1801.03612 

4. Performs MC in the learned disentangled representation: 
Wavelet MC, Ismail 03’ 

Neal 96’ Jun. S Liu 01’

Junwei’s  
talk on Monday

Ying-Jer’s  
poster

Kai’s & Nobu’s  
posters

Present  
approach



Remarks on tensor networks

• Deep Learning machinery provides structural flexibility, 
modular abstraction, and end-to-end differentiable learning 

• What we had is a classical downgrade of MERA
Probability Density~ Quantum Wavefuntion 
Classical Mutual Information ~ Entanglement Entropy 
“Decorrelator" ~ Disentangler 
Decimator~Isometry 
Bijectivity~Unitary

• TNS gives back to DL an understanding of what are they doing 
(and hopefully, how to do better)

Bény 2013

• RG transformation is done via normalizing flow (composition of 
bijectors), instead of tensor operations



Remarks on Deep Learning

Pooling layer in ConvNets ~ 
Decimation 

Hidden nodes of deep energy-
based model ~ Renormalized 
Variables

Published as a conference paper at ICLR 2017

(a) In this alternating pattern, units which remain identical in one
transformation are modified in the next.

z1 z2

x1 x2 x3 x4

z3

z1 z2 z3 z4

(1) (1)

(2)

f(1)

f(2)

f(3)

h4

h4h3

(b) Factoring out variables.
At each step, half the vari-
ables are directly modeled as
Gaussians, while the other
half undergo further transfor-
mation.

Figure 4: Composition schemes for affine coupling layers.

3.6 Multi-scale architecture

We implement a multi-scale architecture using a squeezing operation: for each channel, it divides the
image into subsquares of shape 2⇥ 2⇥ c, then reshapes them into subsquares of shape 1⇥ 1⇥ 4c.
The squeezing operation transforms an s ⇥ s ⇥ c tensor into an s

2 ⇥ s
2 ⇥ 4c tensor (see Figure 3),

effectively trading spatial size for number of channels.

At each scale, we combine several operations into a sequence: we first apply three coupling layers
with alternating checkerboard masks, then perform a squeezing operation, and finally apply three
more coupling layers with alternating channel-wise masking. The channel-wise masking is chosen so
that the resulting partitioning is not redundant with the previous checkerboard masking (see Figure
3). For the final scale, we only apply four coupling layers with alternating checkerboard masks.

Propagating a D dimensional vector through all the coupling layers would be cumbersome, in terms
of computational and memory cost, and in terms of the number of parameters that would need to be
trained. For this reason we follow the design choice of [57] and factor out half of the dimensions at
regular intervals (see Equation 14). We can define this operation recursively (see Figure 4(b)),

h(0) = x (13)

(z(i+1), h(i+1)) = f (i+1)(h(i)) (14)

z(L) = f (L)(h(L�1)) (15)

z = (z(1), . . . , z(L)). (16)

In our experiments, we use this operation for i < L. The sequence of coupling-squeezing-coupling
operations described above is performed per layer when computing f (i) (Equation 14). At each
layer, as the spatial resolution is reduced, the number of hidden layer features in s and t is doubled.
All variables which have been factored out at different scales are concatenated to obtain the final
transformed output (Equation 16).

As a consequence, the model must Gaussianize units which are factored out at a finer scale (in an
earlier layer) before those which are factored out at a coarser scale (in a later layer). This results in the
definition of intermediary levels of representation [53, 49] corresponding to more local, fine-grained
features as shown in Appendix D.

Moreover, Gaussianizing and factoring out units in earlier layers has the practical benefit of distribut-
ing the loss function throughout the network, following the philosophy similar to guiding intermediate
layers using intermediate classifiers [40]. It also reduces significantly the amount of computation and
memory used by the model, allowing us to train larger models.
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Abstract

We present a novel neural network for process-
ing sequences. The ByteNet is a one-dimensional
convolutional neural network that is composed of
two parts, one to encode the source sequence and
the other to decode the target sequence. The two
network parts are connected by stacking the de-
coder on top of the encoder and preserving the
temporal resolution of the sequences. To ad-
dress the differing lengths of the source and the
target, we introduce an efficient mechanism by
which the decoder is dynamically unfolded over
the representation of the encoder. The ByteNet
uses dilation in the convolutional layers to in-
crease its receptive field. The resulting network
has two core properties: it runs in time that
is linear in the length of the sequences and it
sidesteps the need for excessive memorization.
The ByteNet decoder attains state-of-the-art per-
formance on character-level language modelling
and outperforms the previous best results ob-
tained with recurrent networks. The ByteNet
also achieves state-of-the-art performance on
character-to-character machine translation on the
English-to-German WMT translation task, sur-
passing comparable neural translation models
that are based on recurrent networks with atten-
tional pooling and run in quadratic time. We
find that the latent alignment structure contained
in the representations reflects the expected align-
ment between the tokens.

1. Introduction

In neural language modelling, a neural network estimates
a distribution over sequences of words or characters that
belong to a given language (Bengio et al., 2003). In neu-
ral machine translation, the network estimates a distribu-
tion over sequences in the target language conditioned on
a given sequence in the source language. The network can
be thought of as composed of two parts: a source network
(the encoder) that encodes the source sequence into a rep-
resentation and a target network (the decoder) that uses the

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t11 t12 t13 t14 t15 t16t10

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

t11 t12 t13 t14 t15 t16 t17t10t9t8t7t6t5t4t3t2t1

Figure 1. The architecture of the ByteNet. The target decoder
(blue) is stacked on top of the source encoder (red). The decoder
generates the variable-length target sequence using dynamic un-
folding.

representation of the source encoder to generate the target
sequence (Kalchbrenner & Blunsom, 2013).

Recurrent neural networks (RNN) are powerful sequence
models (Hochreiter & Schmidhuber, 1997) and are widely
used in language modelling (Mikolov et al., 2010), yet they
have a potential drawback. RNNs have an inherently se-
rial structure that prevents them from being run in parallel
along the sequence length during training and evaluation.
Forward and backward signals in a RNN also need to tra-
verse the full distance of the serial path to reach from one
token in the sequence to another. The larger the distance,
the harder it is to learn the dependencies between the tokens
(Hochreiter et al., 2001).

A number of neural architectures have been proposed
for modelling translation, such as encoder-decoder net-
works (Kalchbrenner & Blunsom, 2013; Sutskever et al.,
2014; Cho et al., 2014; Kaiser & Bengio, 2016), networks
with attentional pooling (Bahdanau et al., 2014) and two-
dimensional networks (Kalchbrenner et al., 2016a). De-
spite the generally good performance, the proposed models
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Figure 2.D.1: Example application of a VAE in [Gómez-Bombarelli et al.,
2016]: design of new molecules with desired chemical properties. (a) A latent
continuous representation z of molecules is learned on a large dataset of
molecules. (b) This continuous representation enables gradient-based search
of new molecules that maximizes some chosen desired chemical property
given by objective function f (z).
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Figure 2.D.1: Example application of a VAE in [Gómez-Bombarelli et al.,
2016]: design of new molecules with desired chemical properties. (a) A latent
continuous representation z of molecules is learned on a large dataset of
molecules. (b) This continuous representation enables gradient-based search
of new molecules that maximizes some chosen desired chemical property
given by objective function f (z).
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