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RG and Deep Learning
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Abstract: Renormalization group methods, which analyze the way in which the effective behavior of a system depends on the
scale at which it is observed, are key to modern condensed-matter theory and particle physics. The aim of this paper is to
compare and contrast the ideas behind the renormalization group (RG) on the one hand and deep machine learning on the
other, where depth and scale play a similar role. In order to illustrate this connection, we review a recent numerical method
based on the RG---the multiscale entanglement renormalization ansatz (MERA)---and show how it can be converted into a
learning algorithm based on a generative hierarchical Bayesian network model. Under the assumption---common in physics---
that the distribution to be learned is fully characterized by local correlations, this algorithm involves only explicit evaluation of
probabilities, hence doing away with sampling.

arxiv:1301.3124
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Cédric Bény

15Jan 2013 ICLR 2013 conference submission  readers: everyone
Decision: reject

Yann LeCun

05 Apr 2013  ICLR 2013 submission review readers: everyone

Review: It seems to me like there could be an interesting connection between approximate inference in graphical models
and the renormalization methods.

(There is in fact a long history of interactions between condensed matter physics and graphical models} For example, it is well
known that the loopy belief propagation algorithm for inference minimizes the Bethe free energy (an approximation of the
free energy in which only pairwise interactions are taken into account and high-order interactions are ignored). More
generally, variational methods inspired by statistical physics have been a very popular topic in graphical model inference.

The renormalization methods could be relevant to deep architectures in the sense that the grouping of random variable
resulting from a change of scale could be be made analogous with the pooling and subsampling operations often used in
deep models.

(It's an interesting idea, but it will probably take more wor@(and more tutorial expositions of RG) to catch the attention of this
community.
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A Common Logic to Seeing Cats and Cosmos
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There may be a universal logic to how physicists, computers and brains tease out important features from
among other irrelevant bits of data.

"An exact mapping between the Variational Renormalization Group
and Deep Learning”, Mehta and Schwalb, 1410.3831




—xact Mapping

Decimation B Deep Architecture

*°* O—(—0"* 2| ¢ o o
JO/TON JW J(I\
0, ° o

: J/J\J J

J @ J? J/J)
NONONONONONONOLI

)
** O @) O O De ° E' 1 o o
JO g g Ja) J/J\.’
)

0! « « O-O-O-O-D-O-O-O-O . ¢

S

—

Number of Decimations
Y

J J ST J T JJ

tanh[J ")) = tanh’[J ("] tanh[J ™) = tanh’[J ]
o~ Eh) _ Z o1 (eh)—E(x) o Eh) _ Z o—ECe.h)
X X

RG Transformation Boltzmann Machine



More on DL and RG

"Why does deep and cheap learning work so well *, Lin,
Tegmark, Rolnick, 1608.08225

Comment on the paper above, Schwab and Mehta, 1609.0354 1
PCA meets RG, Bradde and Bialek, 1610.09733

Mutual information RG, Koch-danusz and Ringel, 1704.06279
Machine Learning Holography, You, Yang, Qi, 1709.01223

Vulnerabillity of deep learning, Kenway, 1803.06111 &
1803.10995
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More on DL and RG
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Why bother

RG offers a theoretical understanding of DL

In return, DL helps to solve physics problems

Igi arXiv:1802.02840

O hitps://github.com/
i012589/NeuralRG
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Neural Network Renormalization Group
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Neural Network Renormalization Group
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Probability transtformation in picture
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lToy problem: Harmonic oscillator

Relative Center-of-mass
motion motion ©
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Coupled harmonic oscillator



lToy problem: Harmonic oscillator chain

Linear layers are sufficient to decouple a free theory
via iterative diagonalization
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lToy problem: Harmonic oscillator chain

Linear layers are sufficient to decouple a free theory
via iterative diagonalization
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lToy problem: Harmonic oscillator chain

Linear layers are sufficient to decouple a free theory
via iterative diagonalization
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Nonlinear Bljectors

Bijective & Differentiable map, I.e., Ditfeomorphism
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Bljectors form a group

x = g(2)
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‘Disentangler only™ arcnhitecture
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"‘Decimator only” architecture




"‘Decimator only™ architecture

I(A:B)=1I(a: b)
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VGG-19
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Simplified, but not oversimplified model with
balanced interpretability and expressibility

Spherical chicken Animals
N vacuum N the wild




Training: Probability Density Estimation 7

Given a dataset, learn its probability density by
minimizing the Negative Log-Likelihood

NLLg = — In qg(x )
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Network parameters
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Training: Probability Density Estimation 7

Given a dataset, learn its probability density by
minimizing the Negative Log-Likelihood

NLL, = — Z

In gg(x)

X € dataset

N

Network parameters

Equivalent to optimize the forward Kullback—Leibler divergence

€
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<

/

%(x))

“dissimilarity between
two prob. dist.”

However, for typical stat-mech problems, we only have
access to the bare energy function, not its samples



Training: Probabllity Density Distillation

Minimize the variational free energy

Ly = f dx gg(x) |In ge(x) + E(x)]



Training: Probabllity Density Distillation

Minimize the variational free energy
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Training: Probabllity Density Distillation

Minimize the variational free energy

Ly = f dx gg(x) |In ge(x) + E(x)]
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Entropy of  Energy function
model prob. of the problem



Training: Probabllity Density Distillation

Minimize the variational free energy

Ly = f dx gg(x) |In ge(x) + E(x)]

| \
“Learn from the Entropy of  Energy function
samples generated model prob. of the problem

by the network itselt!”

Log+1InZ = KL(QQ(X)

—E(x)
‘ )z 0
/

The loss function is lower bounded by the
physica\ free energy (Gibbs-Bogoliubov-Feynman inequality)




INnterlude

hitps://www.youtube.com/watch?v=IXUQ-DdSDoE




Interlude: The WaveNet Story

Ouput @ @ © 09 9 09 090900000 O

Hidden
Layer

WaveNet 2016 Hidden
Autoregressive Flow e

Hidden
Layer

nnt © © O 0O 000000000000

wavetforms. The model 1s fully probabilistic and autoregressive, with the predic-
tive distribution for each audio sample conditioned on all previous ones; nonethe-
less we show that 1t can be efficiently trained on data with tens of thousands of
samples per second of audio. When applied to text-to-speech, it yields state-of-

b https://deepmind.com/blog/wavenet-generative-model-raw-audio/ 1609.03499
https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/ 1711.10433
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Interlude: The WaveNet Story

speech signal

Parallel WaveNet 2017
Inverse Autoregressive FHow

INput Noise

Given a parallel WaveNet student pg(x) and WaveNet teacher pr(a) which has been trained on a
dataset of audio, we define the Probability Density Distillation loss as follows:

Dxy (Ps||Pr) = H(Ps, Pr) — H(Ps) (6)

b https://deepmind.com/blog/wavenet-generative-model-raw-audio/ 1609.03499
https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/ 1711.10433
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Forward KL or Reverse KL 7

Maximum Likelihood Estimation Probability Density Distillation

q* = argmin, Dk (p||q) q" = argmin, Dxkr(q||p)

Probability Density
Probability Density

Fig. 3.6, Goodfellow, Bengio, Courville, http://www.deeplearningbook.org/
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‘Reparametrization trick”

Unblased, low variance gradient estimator w.r.t. random sampling

Lo= E lnq(ge(2) + E(g(2))]

Samp.\e frqm the Network parameters
prior dist.

Secret behind scalable deep learning:
end-to-end training via back-propagation



‘Reparametrization trick”

Unblased, low variance gradient estimator w.r.t. random sampling

Ly = [In g(g6(2)) + E(g6(2))]
z~p(z)
1. Draw z from prior Sample from the Network parameters
2. Pass them through orior dist.

the network x=9g(z)
3. Evaluate the | |
variational loss Secret behind scalable deep learning:

4. Optimize end-to-end training via back-propagation




L ets 3 O the Ising modade
‘y ttot N O

|

I

lSTKS)
(s) = exp 5



_et's apply It to the Ising model!
m(s) = exp(%sTKs)

1
decouple oC fdx exp (——xT (K +al) ' x + sTx)

2
M. E. Fisher 1983
Binney et al 1992



_et's apply It to the Ising model!
m(s) = exp(%sTKs)

1
decouple oC fdx exXp (——xT (K +al) ' x + sTx)

2
M. E. Fisher 1983
Binney et al 1992

a | N
trace out s m(x) = exp (—ixT (K + afI)_1 x) 1—[ cosh(x;)
\_ i W,




_et's apply It to the Ising model!

3%
(s) = exp ES Ks

|
decouple oC fdx exXp (—ixT (K +al) ' x + sTx)
M. E. Fisher 1983
Binney et al 1992
a N
1 7 -1
trace out s m(x) = exp —ix (K+al) x l—[ cosh(x;)
\_ " W,
X m _1 continuous dual
_ —28; X
m(six) = 1—[ (1 Te ) of the Ising model

sO O O O |

“Gaussian-Bernoulli Boltzmann Machine” /hang, Sutton, Storkey, Ghahramani, NIPS 2012
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_16- Exact lower bound -In(Z)
(Onsager 1944)
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Training = Variational free energy calculation
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What is the neural net doing”
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What is the neural net doing”
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What is the neural net doing”

1.00
IO.75
- 0.50

. -
Co\llective D [ ] [ }
varlab\eS\[‘* *] [i\{ *]
Latenﬁ ][ ][ N ]
variables ||l | || |

Physical variables Two-point correlations



How to interpret the latent variables ?



How to interpret the latent variables ?

Guy, Wavelets & RG, 1999+
White, Evenbly, Qi, Wavelets, MERA, and holographic mapping 2013+
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Wavelet transtormation for Lena and Ising

* *

L) (A

A * * %
EEVIEEY Y




1

0000000

Wavelet transtormation for Lena and Ising

11101_.000

11111111
——e—e——_—_ e}




Exnl0zi/0x] STy nx)[0zi/0x]

0.06

0.05

I 0.4

- 0.2

0.04

w1 1

0 - 0.02

- 0.01
—-0.4
. o — m m N

The latent variables seem to be
nonlinear & adaptive generalizations of wavelets




How IS this useful ?

|[dentitying mutually independent collective
variables (molecular simulation, PIMC, PIMD)

Deriving effective field theory of collective variables

Information preserving RG for holographic mapping

Accelerated Monte Carlo simulation




A Comparison of two
Markov Chain Monte Carlo
samplers




How to transform a/most anything to a Gaussian “

Normalizing flow
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Physical
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Learnable change-of-variables for
a mutually independent representation



How to transform a/most anything to a Gaussian “

Normalizing flow

4 )
VA f dx(m(x) )= f dzim(g(2)) det(ag(z)) = f dz p(z)[ﬂ(g(z»]
: 0z q(g(2))
N A )
Physical | atent space
Prob. Dist. Prob. Dist.

Learnable change-of-variables for
a mutually independent representation



How to transform a/most anything to a Gaussian “

Normalizing flow
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Prob. Dist. Prob. Dist. Prior. List.

Learnable change-of-variables for
a mutually independent representation



| atent space HMC
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| atent space HMC

| atent space energy function
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Mutual information

Phys. Rev. E 69, 066138 (2004)

I(x;: x;) 1(z; : z;)
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Reduced Mutual Information in the latent space



M| and holographic RG
. . This I1s a neural network

Physical variables on the boundary

RG flows along the radial direction
S c
Information is preserved by the flow
7 Qi 1309.6282, You, Qi, Xu 1508.03635

bijeCtOl’ You, Yang, Qi 1709.01223

Normalizing flow implements an invertible RG flow
Mutual information reveals the emergent geometry in the bulk



Remarks on RG

Conventional RG fixes the transformation and searches for the
fixed point. Now, learn the transformation towards the (Gaussian
fixed point.

Conventional RG is a semi-group. Here, it is a group builds on
bijectors. Coarse-graining is done by the hierarchical network
architecture (Wegner 74).

Changes of variables formulation of RG (Caticha 16')

Probabllistic (Jona-Lasinio 75’) and Information Theory (Apenko 09))
perspectives on RG (same is true for neural & tensor networks)



Viore Remarks

Learns from bare energy function, instead of training data

Extends conventional RG with modern DL technique, and with a
different goal

|s a practical computational tool for realistic systems
Does not seem to be strong for universality, exponents and so on

Can be regarded as an implementation of the insights of Bény 13",



Dictionary: RG vs Deep Learning

Property Variational RG Deep Belief
Networks
How input distribution Hamiltonian defining Data samples drawn
IS defined P(v) from P(v)
How interactions are T(v,h) E(v,h)
defined
Exact transformation KL divergence
Tre' ™" =1 between P(v) and
variational distribution
IS zero
Approximations Minimize or bound Minimize the KL
free energy divergence
differences
Method Analytic (mostly) Numerical
What happens under Relevant operators  New features emerge
coarse-graining grow/irrelevant shrink

Table from Schwab’s talk at Pl: http://pirsa.org/displayFlash.php?id=16080006
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Dictionary: RG vs Deep Learning

Property Variational RG Deep Belief B
Networks Normalizing Flow

How input distribution Hamiltonian defining Data samples drawn

s defined P(V) from P(v) Bare energy function
How interactions are T(v,h) E(v,h) _ -
defined Nonlinear bijectors
rExact transformation KL divergence
Tr.e' ™" =1 between P(v) and Reverse KL divergence
variational distribution reaches zero
IS zero
Approximations Minimize or bound Minimize the KL " .
. Variational minimization of
free energy divergence
AlMareficas the free energy
Method Analytic (mostly) Numerical Numerical
| (Differentiable Programming)
What happens under Relevant operators  New features emerge Progressly decoupled
coarse-graining grow/irrelevant shrink degrees of freedom

Table from Schwab’s talk at Pl: http://pirsa.org/displayFlash.php?id=16080006
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Remarks on accelerated MC

1. Cheap surrogate function for Metropolis rejection: Neal 96’ Jun. S Liu 01
2. Recommender engine for MC updates using generative Junwer's
models: Huang, LW, 1610.02746, Liu, Qi, Meng, Fu, 1610.03137 talk on Mlonaay
Kal's & Nobu's
posters
3. Reinforcement learning the transition kernel: Song et al, | |
1706.07561, Levy et al 1711.09268, Cusumano-Towner et al Ying-Jers
1801.03612 noster
4. Performs MC in the learned disentangled representation: Present

Wavelet MC, Ismail 03’ approach



Remarks on tensor networks

What we had is a classical downgrade of MERA Bény 2013

Probability Density~ Quantum Wavefuntion

Classical Mutual Information ~ Entanglement Entropy
"Decorrelator’ ~ Disentangler
Decimator~Isometry

Bijectivity~Unitary

RG transformation is done via normalizing flow (composition of
bijectors), instead of tensor operations

Deep Learning machinery provides structural flexibility,
modular abstraction, and end-to-end differentiable learning

TNS gives back to DL an understanding of what are they doing
(and hopetully, how to do better)



Remarks on Deep Learning

Old Wisdoms

Decimation

2ooling layer in ConvNets ~

Hidden nodes of deep energy-

based model ~
Variables

Max pooling

A

Renormalized

New Insights

Dilated convolution or Factor out

ayers = Decimation

_atent variables in the normalizing

flow= Renormalized Variables




Remarks on Generative Models
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Boltzmann Variational Adversarial Normalizing Autoregressive Born
Machines Autoendoer Network Flows Flows Machines
1980s 2013 2014 2015 2016 2017

X

Leverage the power of modern generative models for physics


https://arxiv.org/abs/1610.02415
https://arxiv.org/abs/1802.02840

Tensor networks

Wavelets .avﬂ

Holographic RG
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