

Neural Network

Renormalization Group

Lei Wang (王磊) Institute of Physics, CAS <u>https://wangleiphy.github.io</u>

RG and Deep Learning

Goodfellow, Bengio, Courville, <u>http://www.deeplearningbook.org/</u>

Page 6 Figure 1.2

OpenReview.net

Search ICLR 2013 conference

ICLR 2013 conference Venues

Deep learning and the renormalization group PDF

Cédric Bény

15 Jan 2013 ICLR 2013 conference submission readers: everyone **Decision:** reject

Abstract: Renormalization group methods, which analyze the way in which the effective behavior of a system depends on the scale at which it is observed, are key to modern condensed-matter theory and particle physics. The aim of this paper is to compare and contrast the ideas behind the renormalization group (RG) on the one hand and deep machine learning on the other, where depth and scale play a similar role. In order to illustrate this connection, we review a recent numerical method based on the RG---the multiscale entanglement renormalization ansatz (MERA)---and show how it can be converted into a learning algorithm based on a generative hierarchical Bayesian network model. Under the assumption---common in physics--that the distribution to be learned is fully characterized by local correlations, this algorithm involves only explicit evaluation of probabilities, hence doing away with sampling.

arxiv:1301.3124

OpenReview.net

Search ICLR 2013 conference

ICLR 2013 conference Venues

Deep learning and the renormalization group PDF

Cédric Bény

15 Jan 2013 ICLR 2013 conference submission readers: everyone **Decision:** reject

Yann LeCun

05 Apr 2013 ICLR 2013 submission review readers: everyone **Review:** It seems to me like there could be an interesting connection between approximate inference in graphical models and the renormalization methods.

There is in fact a long history of interactions between condensed matter physics and graphical models. For example, it is well known that the loopy belief propagation algorithm for inference minimizes the Bethe free energy (an approximation of the free energy in which only pairwise interactions are taken into account and high-order interactions are ignored). More generally, variational methods inspired by statistical physics have been a very popular topic in graphical model inference.

The renormalization methods could be relevant to deep architectures in the sense that the grouping of random variable resulting from a change of scale could be be made analogous with the pooling and subsampling operations often used in deep models.

It's an interesting idea, but it will probably take more work (and more tutorial expositions of RG) to catch the attention of this community.

A Common Logic to Seeing Cats and Cosmos

There may be a universal logic to how physicists, computers and brains tease out important features from among other irrelevant bits of data.

"An exact mapping between the Variational Renormalization Group and Deep Learning", Mehta and Schwab, 1410.3831

Olena Shmahalo / Quanta Magazine

$$e^{-E(h)} = \sum_{x} e^{T(x,h) - E(x)}$$

RG Transformation

Exact Mapping

$$e^{-E(h)} = \sum_{\mathbf{x}} e^{-E(\mathbf{x},h)}$$

Boltzmann Machine

- "Why does deep and cheap learning work so well ", Lin, Tegmark, Rolnick, 1608.08225
- Comment on the paper above, Schwab and Mehta, 1609.03541
- PCA meets RG, Bradde and Bialek, 1610.09733
- Mutual information RG, Koch-Janusz and Ringel, 1704.06279
- Machine Learning Holography, You, Yang, Qi, 1709.01223
- Vulnerability of deep learning, Kenway, 1803.06111 & 1803.10995

More on DL and RG

next talk by Maciej

Panda 58% confidence

• Vulnerability of deep learning, Kenway, 1803.06111 & 1803.10995

More on DL and RG

Gibbon 99% confidence Goodfellow et al, 2014

RG offers a theoretical understanding of DL

In return, DL helps to solve physics problems

Shuo-Hui Li (李烁辉)

Why bother ?

Multi-Scale Entanglement Renormalization Ansatz

Vidal 2006

Multi-Scale Entanglement Renormalization Ansatz

Vidal 2006

MERA as a quantum circuit

Entangled qubits

Correlated classical variables

Probability transformation in picture

motion

Coupled harmonic oscillator

Toy problem: Harmonic oscillator

Relative Center-of-mass motion

Toy problem: Harmonic oscillator chain

Linear layers are sufficient to decouple a free theory via iterative diagonalization

Toy problem: Harmonic oscillator chain

Linear layers are sufficient to decouple a free theory via iterative diagonalization

Toy problem: Harmonic oscillator chain

Linear layers are sufficient to decouple a free theory via iterative diagonalization

Nonlinear Bijectors

Inverse

$$\begin{cases} z_{<} = x_{<} \\ z_{>} = (x_{>} - t(x_{<})) \odot \end{cases}$$

Log-Abs-Jacobian-Det

 $\ln \left| \det \left(\frac{\partial x}{\partial z} \right) \right| = \sum_{i} [s(z_{<})]_{i}$

Bijective & Differentiable map, i.e., Diffeomorphism

 $e^{-s(x_{<})}$

Normalizing flow, Rezende et al, 1505.05770 Real NVP, Dinh et al, 1605.08803

https://www.tensorflow.org/api_docs/python/tf/distributions/bijectors/Bijector http://pytorch.org/docs/master/distributions.html#transformeddistribution

x = g(z) $g = \cdots \circ g_2 \circ g_1$

Modular design

Bijectors form a group

$$\ln \left| \det \left(\frac{\partial x}{\partial z} \right) \right| = \sum_{i} \ln \left| \det \left(\frac{\partial g_{i+1}}{\partial g_i} \right) \right|$$

Flexible structure

Correlation length ~ Network depth

"Disentangler only" architecture

"Decimator only" architecture

"Decimator only" architecture

I(A:B) = I(a:b)Mutual Information Bottleneck

Spherical chicken in vacuum

Animals in the wild

s d	
dual	
/2	
)
)
)
/2	¥
)
	7

Simplified, but not oversimplified model with balanced interpretability and expressibility

Spherical chicken in vacuum

Animals in the wild

s d	
dual	
/2	
)
)
)
/2	¥
)
	7

Given a dataset, learn its probability density by minimizing the Negative Log-Likelihood

 $NLL_{\theta} = -\sum_{x \in \text{dataset}} \ln q_{\theta}(x)$ Network parameters

Given a dataset, learn its probability density by minimizing the Negative Log-Likelihood

 $NLL_{\theta} = -$

Equivalent to optimize the forward Kullback–Leibler divergence

$$\sum_{x \in \text{dataset}} \ln q_{\theta}(x)$$
Network parameters

$$\frac{e^{-E(\boldsymbol{x})}}{Z} \left\| q_{\boldsymbol{\theta}}(\boldsymbol{x}) \right\|$$

"dissimilarity between two prob. dist."

Given a dataset, learn its probability density by minimizing the Negative Log-Likelihood

 $NLL_{\theta} = -$

Equivalent to optimize the forward Kullback–Leibler divergence

KL

However, for typical stat-mech problems, we only have access to the bare energy function, not its samples

$$\sum_{x \in \text{dataset}} \ln q_{\theta}(x)$$
Network parameters

$$\frac{e^{-E(x)}}{Z} \| q_{\theta}(x) \right) \qquad \text{``dissimilarity between} \\ \text{two prob. dist.''}$$

Minimize the variational free energy

$$\mathcal{L}_{\theta} = \int \mathrm{d}x \, dx$$

 $q_{\theta}(\boldsymbol{x}) \left[\ln q_{\theta}(\boldsymbol{x}) + E(\boldsymbol{x}) \right]$

Minimize the variational free energy

$$\mathcal{L}_{\theta} = \int \mathrm{d}x \, dx$$

 $q_{\theta}(\boldsymbol{x}) \left[\ln q_{\theta}(\boldsymbol{x}) + E(\boldsymbol{x}) \right]$

Energy function of the problem

Minimize the variational free energy

$$\mathcal{L}_{\theta} = \int \mathrm{d}x \, dx$$

Minimize the variational free energy

"Learn from the samples generated by the network itself!"

 $\mathcal{L}_{\theta} + \ln Z =$

The loss function is lower bounded by the physical free energy (Gibbs-Bogoliubov-Feynman inequality)

$$= \mathbb{KL}\left(q_{\theta}(\boldsymbol{x}) \mid \left\| \frac{e^{-E(\boldsymbol{x})}}{Z} \right\} \ge 0$$
Interlude

https://www.youtube.com/watch?v=IXUQ-DdSDoE

Interlude: The WaveNet Story

	Output	•	•	•	•	•	•
	Hidden Layer	0	0	0	0	0	0
WaveNet 2016 Autoregressive Flow	Hidden Layer	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
	Hidden Layer	\bigcirc	0	\bigcirc	0	0	0
	Input	0	ightarrow	0	0	0	0

waveforms. The model is fully probabilistic and autoregressive, with the predictive distribution for each audio sample conditioned on all previous ones; nonetheless we show that it can be efficiently trained on data with tens of thousands of samples per second of audio. When applied to text-to-speech, it yields state-of-

https://deepmind.com/blog/wavenet-generative-model-raw-audio/ 1609.03499 https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/ 1711.10433

Interlude: The WaveNet Story

	Output	•	•	•	•	•	•
	Hidden Layer	0	0	0	0	0	0
WaveNet 2016 Autoregressive Flow	Hidden Layer	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Hidden Layer	\bigcirc	0	\bigcirc	0	0	0
	Input	0	ightarrow	0	0	0	0

waveforms. The model is fully probabilistic and autoregressive, with the predictive distribution for each audio sample conditioned on all previous ones; nonetheless we show that it can be efficiently trained on data with tens of thousands of samples per second of audio. When applied to text-to-speech, it yields state-of-

https://deepmind.com/blog/wavenet-generative-model-raw-audio/ 1609.03499 https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/ 1711.10433

Interlude: The WaveNet Story

Parallel WaveNet 2017 Inverse Autoregressive Flow

dataset of audio, we define the *Probability Density Distillation* loss as follows:

 $D_{\mathrm{KL}}\left(P_{S} || P_{S}' \right)$

https://deepmind.com/blog/wavenet-generative-model-raw-audio/ 1609.03499 https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/ 1711.10433

speech signal

input noise

Given a parallel WaveNet student $p_S(x)$ and WaveNet teacher $p_T(x)$ which has been trained on a

$$P_T) = H(P_S, P_T) - H(P_S)$$

(6)

Maximum Likelihood Estimation

 ${\mathcal X}$

Fig. 3.6, Goodfellow, Bengio, Courville, http://www.deeplearningbook.org/

Forward KL or Reverse KL?

Probability Density Distillation

 $q^* = \operatorname{argmin}_q D_{\mathrm{KL}}(q||p)$

 ${\mathcal X}$

"Reparametrization trick"

Unbiased, low variance gradient estimator w.r.t. random sampling

 $\mathcal{L}_{\theta} = \mathbb{E}_{\substack{z \sim p(z) \\ \bullet}} \left[\ln q(g_{\theta}(z)) + E(g_{\theta}(z)) \right]$

Sample from the Network parameters prior dist.

Secret behind scalable deep learning: end-to-end training via back-propagation

"Reparametrization trick"

Unbiased, low variance gradient estimator w.r.t. random sampling

 $\mathcal{L}_{\theta} = \mathbb{E}_{\substack{z \sim p(z) \\ \bullet}} \left[\ln q(g_{\theta}(z)) + E(g_{\theta}(z)) \right]$

- 1. Draw z from prior
- 2. Pass them through the network x=g(z)
- 3. Evaluate the variational loss
- Optimize

Sample from the Network parameters prior dist.

Secret behind scalable deep learning: end-to-end training via back-propagation

 $\pi(\boldsymbol{s}) = \exp\left(\frac{1}{2}\boldsymbol{s}^T \boldsymbol{K}\boldsymbol{s}\right)$

 $\pi(s) = \exp(s)$

decouple

M. E. Fisher 1983 Binney et al 1992

$$\exp\left(\frac{1}{2}\boldsymbol{s}^T\boldsymbol{K}\boldsymbol{s}\right)$$

$$\int d\mathbf{x} \exp\left(-\frac{1}{2}\mathbf{x}^T (K+\alpha I)^{-1}\mathbf{x} + \mathbf{s}^T \mathbf{x}\right)$$

 $\pi(s) = ex$

 \propto

decouple

M. E. Fisher 1983 Binney et al 1992

trace out s

$$\exp\left(\frac{1}{2}\boldsymbol{s}^{T}\boldsymbol{K}\boldsymbol{s}\right)$$

$$\int d\mathbf{x} \exp\left(-\frac{1}{2}\mathbf{x}^T \left(K + \alpha I\right)^{-1} \mathbf{x} + \mathbf{s}^T \mathbf{x}\right)$$

$$p\left(-\frac{1}{2}\boldsymbol{x}^T \left(\boldsymbol{K}+\alpha \boldsymbol{I}\right)^{-1} \boldsymbol{x}\right) \prod_i \cosh(x_i)$$

 $\pi(s) = ex$

= $\Lambda^{-1/2} V^T$

A = I"Gaussian-Bernoulli Boltzmann Machine"

$$\exp\left(\frac{1}{2}\boldsymbol{s}^{T}\boldsymbol{K}\boldsymbol{s}\right)$$

$$\int d\mathbf{x} \exp\left(-\frac{1}{2}\mathbf{x}^T \left(K + \alpha I\right)^{-1} \mathbf{x} + \mathbf{s}^T \mathbf{x}\right)$$

$$p\left(-\frac{1}{2}\boldsymbol{x}^T \left(\boldsymbol{K}+\alpha \boldsymbol{I}\right)^{-1} \boldsymbol{x}\right) \prod_i \cosh(x_i)$$

$$\left[\begin{pmatrix} 1 + e^{-2s_i x_i} \end{pmatrix}^{-1} & \text{continuous dual} \\ \text{of the Ising model} \end{cases} \right]$$

Zhang, Sutton, Storkey, Ghahramani, NIPS 2012

Variational Loss

Training = Variational free energy calculation

Generated Samples

Generated Samples

What is the neural net doing?

Physical variables

Two-point correlations

What is the neural net doing?

Two-point correlations

Two-point correlations

How to interpret the latent variables?

Guy, Wavelets & RG, 1999+ White, Evenbly, Qi, Wavelets, MERA, and holographic mapping 2013+

How to interpret the latent variables?

Wavelet transformation for Lena and Ising

Wavelet transformation for Lena and Ising

Wavelet transformation for Lena and Ising

$\mathbb{E}_{\boldsymbol{x}\sim\pi(\boldsymbol{x})}[\partial z_i/\partial \boldsymbol{x}]$

The latent variables seem to be nonlinear & adaptive generalizations of wavelets

$\mathbb{STD}_{\boldsymbol{x} \sim \pi(\boldsymbol{x})}[\partial z_i / \partial \boldsymbol{x}]$

How is this useful?

Identifying mutually independent collective variables (molecular simulation, PIMC, PIMD)

Accelerated Monte Carlo simulation

Deriving effective field theory of collective variables

Information preserving RG for holographic mapping

A Comparison of two Markov Chain Monte Carlo samplers

How to transform *almost* anything to a Gaussian?

Normalizing flow

$$Z = \int d\mathbf{x} \overline{\pi(\mathbf{x})} = \int dz \, \pi(g(z)) \left| \det\left(\frac{\partial g(z)}{\partial z}\right) \right| = \int dz \, p(z) \left[\frac{\pi(g(z))}{q(g(z))}\right]$$

Physical Prob. Dist.

Learnable change-of-variables for a mutually independent representation

How to transform *almost* anything to a Gaussian?

Normalizing flow

$$Z = \int d\mathbf{x} \overline{\pi(\mathbf{x})} = \int dz \overline{\pi(g(z))} \left| \det \left(\frac{\partial g(z)}{\partial z} \right) \right| = \int dz \ p(z) \left[\frac{\pi(g(z))}{q(g(z))} \right]$$

Physical Latent space

Prob. Dist.

Prob. Dist.

Learnable change-of-variables for a mutually independent representation

How to transform *almost* anything to a Gaussian?

Normalizing flow

$$Z = \int d\mathbf{x} \overline{\pi(\mathbf{x})} = \int dz \overline{\pi(g(z))} \left| \det \left(\frac{\partial g(z)}{\partial z} \right) \right| = \int dz \overline{p(z)} \left[\frac{\pi(g(z))}{q(g(z))} \right]$$

Physical Latent space Prior Dist

Prob. Dist.

Prob. Dist.

Learnable change-of-variables for a mutually independent representation

Latent space HMC

Physical energy function

HMC thermalizes faster in the latent space

Latent space HMC

Latent space energy function $E(z) = -\ln \pi(g(z)) + \ln q(g(z)) - \ln p(z)$

 $E(\mathbf{x}) = -\ln \pi(\mathbf{x})$ Physical energy function

HMC thermalizes faster in the latent space

Mutual information

 $I(x_i:x_j)$

Reduced Mutual Information in the latent space

KSG MI estimator Phys. Rev. E 69, 066138 (2004)

MI and holographic RG

bijector

This is a neural network Physical variables on the boundary Latent variables in the bulk RG flows along the radial direction Information is preserved by the flow Qi 1309.6282, You, Qi, Xu 1508.03635 You, Yang, Qi 1709.01223

Normalizing flow implements an invertible RG flow Mutual information reveals the emergent geometry in the bulk

Remarks on RG

- fixed point.
- architecture (Wegner 74').
- Changes of variables formulation of RG (Caticha 16')

 Conventional RG fixes the transformation and searches for the fixed point. Now, learn the transformation towards the Gaussian

 Conventional RG is a semi-group. Here, it is a group builds on bijectors. Coarse-graining is done by the hierarchical network

 Probabilistic (Jona-Lasinio 75') and Information Theory (Apenko 09') perspectives on RG (same is true for neural & tensor networks)

- Learns from bare energy function, instead of training data
- Extends conventional RG with modern DL technique, and with a different goal
- Is a practical computational tool for realistic systems
- Does not seem to be strong for universality, exponents and so on
- Can be regarded as an implementation of the insights of Bény 13'.

More Remarks

Dictionary: RG vs Deep Learning

Property	Variational RG
How input distribution is defined	Hamiltonian defining P(v)
How interactions are defined	T(v,h)
Exact transformation	$Tr_{h}e^{T(v,h)} = 1$
Approximations	Minimize or bound free energy differences
Method	Analytic (mostly)
What happens under coarse-graining	Relevant operators grow/irrelevant shrink

Table from Schwab's talk at PI: http://pirsa.org/displayFlash.php?id=16080006

Deep Belief Networks

Data samples drawn from P(v)

E(v,h)

- KL divergence between P(v) and variational distribution is zero
- Minimize the KL divergence

Numerical

New features emerge

Dictionary: RG vs Deep Learning

Property	Variational RG	Deep Belief Networks	Normalizing Flow
How input distribution is defined	Hamiltonian defining P(v)	Data samples drawn from P(v)	Bare energy function
How interactions are defined	T(v,h)	E(v,h)	Nonlinear bijectors
Exact transformation	$Tr_{h}e^{T(\mathbf{v},\mathbf{h})} = 1$	KL divergence between P(v) and variational distribution is zero	Reverse KL divergence reaches zero
Approximations	Minimize or bound free energy differences	Minimize the KL divergence	Variational minimization of the free energy
Method	Analytic (mostly)	Numerical	Numerical (Differentiable Programming)
What happens under coarse-graining	Relevant operators grow/irrelevant shrink	New features emerge	Progressly decoupled degrees of freedom

Table from Schwab's talk at PI: <u>http://pirsa.org/displayFlash.php?id=16080006</u>

Remarks on accelerated MC

- 1. Cheap surrogate function for Metropolis rejection: Neal 96' Jun. S Liu 01'
- 2. Recommender engine for MC updates using generative models: Huang, LW, 1610.02746, Liu, Qi, Meng, Fu, 1610.03137
- 3. Reinforcement learning the transition kernel: Song et al, 1706.07561, Levy et al 1711.09268, Cusumano-Towner et al 1801.03612
- 4. Performs MC in the learned disentangled representation: Wavelet MC, Ismail 03'

- Junwei's talk on Monday Kai's & Nobu's posters
 - Ying-Jer's poster
 - Present approach

Remarks on tensor networks

- What we had is a classical downgrade of MERA Bény 2013
 - Probability Density~ Quantum Wavefuntion
 - Classical Mutual Information ~ Entanglement Entropy
 - "Decorrelator" ~ Disentangler

Decimator~Isometry

Bijectivity~Unitary

- bijectors), instead of tensor operations
- Deep Learning machinery provides structural flexibility,
- (and hopefully, how to do better)

RG transformation is done via normalizing flow (composition of

modular abstraction, and end-to-end differentiable learning

• TNS gives back to DL an understanding of what are they doing

Remarks on Deep Learning

Old Wisdoms

Pooling layer in ConvNets ~ Decimation

Hidden nodes of deep energybased model ~ Renormalized Variables

New Insights

Dilated convolution or Factor out layers = Decimation

Latent variables in the normalizing flow = Renormalized Variables

Remarks on Generative Models

Boltzmann
Machines

Variational Autoendoer

1980s 2013

Leverage the power of modern generative models for physics

Thank You!

Jin-Guo Liu Shuo-Hui Li Pan Zhang Yi-Zhuang You

Tensor networks

Holographic RG

IOP, CAS

