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So far, GDML has only been used for relatively small
molecules.
In this Letter, we introduce a neural network (NN) based

scheme for MD simulations, called deep potential molecu-
lar dynamics (DPMD), which overcomes the limitations
associated with auxiliary quantities like the symmetry
functions or the Coulomb matrix (All the examples
presented in this work are tested using the DeePMD-kit
package [21], which is available at [22]). In our scheme, a
local reference frame and a local environment is assigned to
each atom. Each environment contains a finite number of
atoms, whose local coordinates are arranged in a symmetry
preserving way following the prescription of the deep
potential method [23], an approach that was devised to
train a NN with the potential energy only. With typical
AIMD data sets, this is insufficient to reproduce the
trajectories. DPMD overcomes this limitation. In addition,
the learning process in DPMD improves significantly over
the deep potential method thanks to the introduction of a
flexible family of loss functions. The NN potential con-
structed in this way reproduces accurately the AIMD
trajectories, both classical and quantum (path integral),
in extended and finite systems, at a cost that scales linearly
with system size and is always several orders of magnitude
lower than that of equivalent AIMD simulations.
In DPMD, the potential energy of each atomic configu-

ration is a sum of “atomic energies” E ¼
P

iEi, where Ei is
determined by the local environment of atom i within a
cutoff radius Rc and can be seen as a realization of the
embedded atom concept. The environmental dependence
of Ei, which embodies the many-body character of the
interactions, is complex and nonlinear. The NN is able to
capture the analytical dependence of Ei on the coordinates
of the atoms in the environment in terms of the composition
of the sequence of mappings associated with the individual
hidden layers. The additive form of E naturally preserves
the extensive character of the potential energy. Because
of the analyticity of the atomic energies, DPMD is, in
principle, a conservative model.
Ei is constructed in two steps. First, a local coordinate

frame is set up for every atom and its neighbors inside Rc
[24]. This allows us to preserve the translational, rotational,
and permutational symmetries of the environment, as
shown in Fig. 1, which illustrates the format adopted for
the local coordinate information fDijg. The 1=Rij factor
present in Dij reduces the weight of the particles that are
more distant from atom i.
Next, fDijg serves as input of a deep neural network

(DNN) [25], which returns Ei in output (Fig. 2). The DNN is
a feed forward network, in which data flow from the input
layer to the output layer (Ei), through multiple hidden layers
consisting of several nodes that input the data dinl from the
previous layer and output the data doutk to the next layer. A
linear transformation is applied to the input data, i.e., d̃k ¼P

lwkldinl þ bk, followed by action of a nonlinear function

φ on d̃k, i.e., doutk ¼ φðd̃kÞ. In the final step from the last
hidden layer to Ei, only the linear transformation is applied.
The composition of the linear and nonlinear transformations
introduced above provides the analytical representation of
Ei in terms of the local coordinates. The technical details of
this construction are discussed in the Supplemental Material
[26]. In our applications, we adopt the hyperbolic tangent for
φ and use five hidden layers with decreasing number of
nodes per layer, i.e., 240, 120, 60, 30, and 10 nodes,
respectively, from the innermost to the outermost layer. It
is known empirically that the hidden layers greatly enhance
the capability of neural networks to fit complex and highly
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FIG. 1. Schematic plot of the neural network input for the
environment of atom i, taking water as an example. Atom j is a
generic neighbor of atom i, ðex; ey; ezÞ is the local frame of atom
i, ex is along the O─H bond, ez is perpendicular to the plane of
the water molecule, ey is the cross product of ez and ex, and
ðxij; yij; zijÞ are the Cartesian components of the vector Rij in this
local frame. Rij is the length of Rij. The neural network input Dij
may either contain the full radial and angular information of atom
j, i.e., Dij ¼ f1=Rij; xij=R2

ij; yij=R
2
ij; zij=R

2
ijg or only the radial

information, i.e., Dij ¼ f1=Rijg. We first sort the neighbors of
atom i according to their chemical species, e.g., oxygens first then
hydrogens. Within each species, we sort the atoms according to
their inverse distances to atom i, i.e., 1=Rij. We use fDijg to
denote the sorted input data for atom i.

FIG. 2. Schematic plot of the DPMD model. The frame in the
box is an enlargement of a DNN. The relative positions of all
neighbors with respect to atom i, i.e., fRijg, is first converted to
fDijg, then passed to the hidden layers to compute Ei.
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ab initio MD trajectories, we swapped atomistic configurations between different temperatures or
randomly displaced the atomic positions after 1 ps. Furthermore, to enhance the sampling of the
configuration space, we used a relatively large time step of 10 fs, although this increased the number
of steps to achieve self-consistency for solving the Kohn-Sham equations [1] at each step.

For clarification, we use the term system to denote a set of data on which a unified DeepPot-SE
model is fitted, and use the term sub-system to denote data with different composition of atoms or
different phases within a system. For all systems, we also test the DeePMD model for comparison.
We used the DeePMD-kit package [26] for all training and testing tasks. The network structure and
the training scheme (learning rate, decay step, etc.) are summarized in the Supplementary Materials.

(a) small molecules (b) MoS2 + Pt (c) CoCrFeMnNi HEA

(d) TiO2

(e) pyridine (f) others

Figure 2: Comparison of the DFT energies and the DeepPot-SE predicted energies on the testing
snapshots. The range of DFT energies of different systems is large. Therefore, for illustrative purpose,
for each sub-system, we calculate the average µE and standard deviation �E of DFT energies, and
standardize both the DFT energies and the DeepPot-SE predicted energies by subtracting µE from
them and then dividing them by �E . Then we plot the standardized energies within ±4.5�E . (a)
The unified DeepPot-SE model for the small molecular system. These molecules contain up to 4
types of atoms, namely C, H, O, and N. Therefore, essentially 4 atomic sub-networks are learned and
the corresponding parameters are shared by different molecules. (b) The DeepPot-SE model for the
MoS2 and Pt system. To make it robust for a real problem of structural optimization for Pt clusters
on MoS2 slabs, this model learn different sub-systems, in particular Pt clusters of various sizes on
MoS2 slabs. 6 representative sub-systems are selected in this figure. (c) The DeepPot-SE model for
the CoCrFeMnNi HEA system. The sub-systems are different in random occupations of the elements
on the lattice sites. 2 out of 48 sub-systems are selected in this figure. (d) The DeepPot-SE model for
the TiO2 system, which contains 3 different polymorphs. (e) The DeepPot-SE model for the pyridine
(C5H5N) system, which contains 2 different polymorphs. (f) Other systems: Al2O3, Cu, Ge, and Si.

4.1 Small organic molecules

The small molecular system consists of seven different sub-systems, namely aspirin, ethanol, mal-
onaldehyde, naphthalene, sallcylic acid, toluene, and uracil. The dataset has been benchmarked by
GDML, SchNet, and DeePMD [11, 12, 17]. Unlike previous models, our emphasis here is to train one
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can deal practically with approximationmethods
for the graph isomorphism problem.
Additionally, improved sequence generation

models are possible with the ability to read and
write to memory (69). These approaches demon-
strate better ability for learning long- and short-
termpatterns.Morework is neededonRiemannian
optimization methods that exploit the geometry
of latent space. Structured architectures such as
multilevel VAE (85) offer newways of organizing
latent space and are promising research direc-
tions. New approaches also lie in inverse RL,
geared toward learning a reward or loss function
(86). Research in this direction will allow for the
discovery of reward functions associated with
different materials discovery tasks.

Outlook

Inverse design is an important component of the
complex framework required to designmatter at
an accelerated pace. The tools for inverse design,
especially those stemming from the field of ma-
chine learning, have shown rapid progress in
the last several years and have allowed chemical
space to be framed into probabilistic data-driven
models. Generativemodels produce large numbers
of candidate molecules, and the physical realiza-
tions of these candidates will require automated
high-throughput efforts to validate the genera-
tive approach. The community has yet has to
show more than a few examples of successful

closed-loop approaches for the design of matter
(87). The blurring of the barriers between theory
and experiment will lead to AI-enabled auto-
mated laboratories (88, 89).
The combination of inverse design tools with

active learning approaches such as Bayesian
optimization (90, 91) can enable a model that
adapts as it explores chemical space, which
allows for expanding a model in regions of
high uncertainty and enabling the discovery
of regions of molecular space with desirable
properties as a function of composition. Active
learning in the space of objective functions could
lead to a better understanding of the best rewards
to seek while carrying out machine learning.
As seen, central to machine learning meth-

odologies is the representation of molecules;
representations that encode the relevant physics
will tend to generalize better. Despite consider-
able progress, much work remains. Graph and
hierarchical representations of molecules are an
area requiring further study.
The integration of machine learning as a new

pillar of knowledge in the curricula of chemical,
biochemical, medicinal, and materials sciences
will allow for a more rapid adoption of themeth-
odologies summarized in this work.
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Fig. 4. Schematic representation of several architectures found in
generative models. RNNs are used for sequence generation. The VAE
shows the semi-supervised variant, jointly trained by molecules (x) and
properties (y). Latent space is denoted with Z, and latent vectors with z.
In the GAN setting, the noise eventually acquires structure via the

adversarial training. Reinforcement learning (RL) shows a policy
gradient with MTCS in the task of SMILES completion with
arbitrary rewards. Shown in the lower right are hybrid architectures
such as AAE (adversarial autoencoders) and ORGAN, which represents
GAN and RL.
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Intuition

If the mapping f is 1-to-1, then the total area (or volume) should

not change after the transformation from x to z .

Figure 1: Mapping from one probability density to another. Source:

Lecture 19 notes
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Optimal Transport Theory
42 3 The founding fathers of optimal transport

minimize the total cost. Monge assumed that the transport cost of one
unit of mass along a certain distance was given by the product of the
mass by the distance.
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Fig. 3.1. Monge’s problem of déblais and remblais

Nowadays there is a Monge street in Paris, and therein one can find
an excellent bakery called Le Boulanger de Monge. To acknowledge this,
and to illustrate how Monge’s problem can be recast in an economic
perspective, I shall express the problem as follows. Consider a large
number of bakeries, producing loaves, that should be transported each
morning to cafés where consumers will eat them. The amount of bread
that can be produced at each bakery, and the amount that will be
consumed at each café are known in advance, and can be modeled as
probability measures (there is a “density of production” and a “density
of consumption”) on a certain space, which in our case would be Paris
(equipped with the natural metric such that the distance between two
points is the length of the shortest path joining them). The problem is
to find in practice where each unit of bread should go (see Figure 3.2),
in such a way as to minimize the total transport cost. So Monge’s
problem really is the search of an optimal coupling; and to be more
precise, he was looking for a deterministic optimal coupling.

Fig. 3.2. Economic illustration of Monge’s problem: squares stand for production
units, circles for consumption places.
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Nowadays there is a Monge street in Paris, and therein one can find
an excellent bakery called Le Boulanger de Monge. To acknowledge this,
and to illustrate how Monge’s problem can be recast in an economic
perspective, I shall express the problem as follows. Consider a large
number of bakeries, producing loaves, that should be transported each
morning to cafés where consumers will eat them. The amount of bread
that can be produced at each bakery, and the amount that will be
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Nowadays there is a Monge street in Paris, and therein one can find
an excellent bakery called Le Boulanger de Monge. To acknowledge this,
and to illustrate how Monge’s problem can be recast in an economic
perspective, I shall express the problem as follows. Consider a large
number of bakeries, producing loaves, that should be transported each
morning to cafés where consumers will eat them. The amount of bread
that can be produced at each bakery, and the amount that will be
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Reconstructing the density fluctuations in the early Universe that
evolved into the distribution of galaxies we see today is a
challenge to modern cosmology1. An accurate reconstruction
would allow us to test cosmological models by simulating the
evolution starting from the reconstructed primordial state and
comparing it to observations. Several reconstruction techniques
have been proposed2–9, but they all suffer from lack of uniqueness
because the velocities needed to produce a unique reconstruction
usually are not known. Here we show that reconstruction can be
reduced to a well-determined problem of optimization, and
present a specific algorithm that provides excellent agreement
when tested against data from N-body simulations. By applying
our algorithm to the redshift surveys now under way10, we will be
able to recover reliably the properties of the primeval fluctuation
field of the local Universe, and to determine accurately the
peculiar velocities (deviations from the Hubble expansion) and
the true positions of many more galaxies than is feasible by any
other method.
Starting from the available data on the galaxy distribution, canwe

trace back in time and map to its initial locations the highly
structured distribution of mass in the Universe (Fig. 1)? Here we
show that, with a suitable hypothesis, the knowledge of both the
present non-uniform distribution of mass and of its primordial
quasi-uniform distribution uniquely determines the inverse lagran-
gian map, defined as the transformation from present (eulerian)
positions x to the respective initial (lagrangian) positions q.
We first consider the direct lagrangian map q 7! x, which can be

approximately written in terms of a potential as x ¼ 7qF(q) at
those scales where nonlinearity stays moderate11. This is supported
by numerical N-body simulations showing good agreement with a
very simple potential approximation, due to Zel’dovich12, which
assumes that the particles move on straight trajectories. Even better
agreement is obtained with a refinement, the second-order lagran-
gian perturbation method13–16, also known to be potential.
In our ‘reconstruction hypothesis’, we furthermore assume the

convexity of the potential F(q), a consequence of which is the
absence of multi-streaming: for almost any eulerian position, there
is a single lagrangian antecedent. As is well-known, the Zel’dovich
approximation leads to caustics and tomulti-streaming. This can be
overcome in various ways, for example by a modification known as
the adhesion model, an equation of viscous pressureless gas
dynamics17,18. The latter, which leads to shocks rather than caustics,
is known to have a convex potential19 and to be in better agreement
with N-body simulations. Suppression or reduction of multi-
streaming requires a mechanism of momentum exchange, such as
viscosity, between neighbouring streams having different velocities.
This is a common phenomenon in ordinary fluids, such as the flow
of air or water in our natural environment. Dark matter is, however,
essentially collisionless, and the usual mechanism for generating

viscosity (discovered by Maxwell) does not operate, so that a non-
collisional mechanism involving a small-scale gravitational instabil-
ity must be invoked.

Our reconstruction hypothesis implies that the initial positions
can be obtained from the present ones by another gradient map:
q ¼ 7xQ(x), where Q is a convex potential related to F by a
Legendre–Fenchel transform (see Methods). We denote by r0 the
initial mass density (which can be treated as uniform) and by r(x)
the final one. Mass conservation implies r0 d

3q ¼ r(x) d3x. Thus,
the ratio of final to initial density is the jacobian of the inverse
lagrangian map. This can be written as the following Monge–
Ampère equation20 for the unknown potential Q:

detð7xi7xjQðxÞÞ ¼ rðxÞ=r0 ð1Þ
where ‘det’ stands for determinant.

We emphasize that no information about the dynamics of matter
other than the reconstruction hypothesis is needed for our method,
whose degree of success depends crucially on how well this hypoth-
esis is satisfied. Exact reconstruction is obtained, for example, for
the Zel’dovich approximation (before particle trajectories cross)
and for adhesion-model dynamics (at arbitrary times).

We note that our Monge–Ampère equation for self-gravitating
matter may be viewed as a nonlinear generalization of a Poisson
equation (used for reconstruction in ref. 4), to which it reduces if
particles have moved very little from their initial positions.

It has been discovered recently that the map generated by the
solution to the Monge–Ampère equation (1) is the (unique)
solution to an optimization problem21 (see also refs 22 and 23).

Figure 1 N-body simulation output (present epoch) used for testing our reconstruction

method. In the standard model of structure formation, the distribution of matter in the

Universe is believed to have emerged from a very smooth initial state: tiny irregularities of

the gravitational potential, which we can still observe as temperature fluctuations of the

cosmic microwave background, gave rise to density fluctuations, which grew under their

self-gravity, developing a rich and coherent pattern of structures. Most of the mass is in

the form of cold dark matter; the luminous matter (galaxies) can be assumed to trace—up

to some form of bias—the underlying dark matter. Shown here is a projection onto the x–y

plane of a 10% vertical slice of the simulation box of size 200 h 21 Mpc. The model,

LCDM, uses cold dark matter with cosmological constant and the following parameters:

Hubble constant h ¼ 0.65, density parameters QL ¼ 0:7 and Qm ¼ 0:3, normalization

factor j8 ¼ 0:99. Points are highlighted in yellow when reconstruction fails by more than

6 h 21 Mpc, which happens mostly in high-density regions.
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other than the reconstruction hypothesis is needed for our method,
whose degree of success depends crucially on how well this hypoth-
esis is satisfied. Exact reconstruction is obtained, for example, for
the Zel’dovich approximation (before particle trajectories cross)
and for adhesion-model dynamics (at arbitrary times).

We note that our Monge–Ampère equation for self-gravitating
matter may be viewed as a nonlinear generalization of a Poisson
equation (used for reconstruction in ref. 4), to which it reduces if
particles have moved very little from their initial positions.

It has been discovered recently that the map generated by the
solution to the Monge–Ampère equation (1) is the (unique)
solution to an optimization problem21 (see also refs 22 and 23).

Figure 1 N-body simulation output (present epoch) used for testing our reconstruction

method. In the standard model of structure formation, the distribution of matter in the

Universe is believed to have emerged from a very smooth initial state: tiny irregularities of

the gravitational potential, which we can still observe as temperature fluctuations of the

cosmic microwave background, gave rise to density fluctuations, which grew under their

self-gravity, developing a rich and coherent pattern of structures. Most of the mass is in

the form of cold dark matter; the luminous matter (galaxies) can be assumed to trace—up

to some form of bias—the underlying dark matter. Shown here is a projection onto the x–y

plane of a 10% vertical slice of the simulation box of size 200 h 21 Mpc. The model,

LCDM, uses cold dark matter with cosmological constant and the following parameters:

Hubble constant h ¼ 0.65, density parameters QL ¼ 0:7 and Qm ¼ 0:3, normalization

factor j8 ¼ 0:99. Points are highlighted in yellow when reconstruction fails by more than

6 h 21 Mpc, which happens mostly in high-density regions.
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The physics behind: fluid control
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Neural Ordinary Differential Equations
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State-of-the-art performance in unstructured density estimation
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Why now, but not 20 years ago ?  
What has changed ?  
What has not ?

But, this is not the first time we feel excited
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Representation Leanring
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Bény, 1301.3124 
Figure 2: Example of Figure 1 represented as a Bayesian network (only two layers are represented).
The bottom nodes are observed. Note that the graph is truncated, as the nodes of �2 must be linked
to the next layer which is not represented, as well as to each other, in the same manner as the two
layers below it.

Figure 3: Stochastic maps involved in the last two steps of the computation of the marginal state
on 3 consecutive output sites. The lines ending abruptly indicates that the corresponding variable
is summed over. The “past” of any region of �0 of size L always involves just 3 sites before level
�[log2(L)].

3 Learning CORA

The causal properties inherent in the definition of MERA/CORA imply that a marginal over any
finite group of L sites can be computed (explicitly, i.e., without sampling) in a time of order
eL log(N). Indeed, due to the particular causal structure of the maps ⇡j , the past of any set of
sites of �j , namely those sites of �j+1 on which their values depend explicitly through ⇡j , always
ends up involving a constant number of sites independent of N (and generally manageably small).
This is illustrated in Figure 3.

In the quantum physical setting for which MERA was introduced, the state that we want to represent
is not defined by samples, but instead by a Hamiltonian, or energy function, that it minimizes,
i.e., the cost function itself. Most often, the Hamiltonians considered are local, which implies that
the evaluation of their expectation only requires the use of marginal states over small clusters of
neighboring sites. Therefore the cost function can be evaluated efficiently and exactly.

Such a procedure can be adapted to a situation where, instead of being handed the Hamiltonian, we
are given samples from the unknown distribution: the training data. In physics, this situation presents
itself when an experimentalists wants to reconstruct a state that he has access to only through exper-
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FIG. 2. RG and deep learning in the one-dimensional Ising Model. (A) A decimation based renormalization trans-
formation for the ferromagnetic 1-D Ising model. At each step, half the spins are decimated, doubling the effective lattice
spacing. After, n successive decimations, the spins can be described using a new 1-D Ising models with a coupling Jn between
spins. Couplings at a given layer are related to couplings at a previous layer through the square of the hyberbolic tangent
function. (B) Decimation-based renormalization transformations can also be realized using the deep architecture where the
weights between the n + 1 and n-th hidden layer are given by Jn. (C) Visualizing the renormalization group flow of the
couplings for 1-D Ferromagnetic Ising model. Under four successive decimations or equivalently as we move up four layers in
the deep architecture, the couplings (marked by red dots) get smaller. Eventually, the couplings are attracted to stable fixed
point J = 0.

the two approaches employ distinct variational approxi-
mation schemes for coarse graining. Finally, notice that
the correspondence does not rely on the explicit form of
the energy E({hj}, {vj}) and hence holds for any Boltz-
mann Machine.

IV. EXAMPLES

To gain intuition about the mapping between RG
and deep learning, it is helpful to consider some sim-
ple examples in detail. We begin by examining the one-
dimensional nearest-neighbor Ising model where the RG
transformation can be carried out exactly. We then nu-
merically explore the two-dimensional nearest-neighbor
Ising model using an RBM-based deep learning architec-
ture.

A. One dimensional Ising Model

The one-dimensional Ising model describes a collection
of binary spins {vi} organized along a one-dimensional
lattice with lattice spacing a. Such a system is described
by a Hamiltonian of the form

H = −J
∑

i

vivi+1, (23)

where J is a ferromagnetic coupling that energetically
favors configurations where neighboring spins align. To
perform a RG transformation, we decimate (marginalize
over) every other spin. This doubles the lattice spacing
a → 2a and results in a new effective interaction J (1) be-
tween spins (see Figure 2). If we denote the coupling af-
ter performing n successive RG transformations by J (n),

then a standard calculation shows that these coefficients
satisfy the RG equations

tanh [J (n+1)] = tanh2 [J (n)], (24)

where we have defined J (0) = J [14]. This recursion
relationship can be visualized as a one-dimensional flow
in the coupling space J from J = ∞ to J = 0. Thus,
after performing RG the interactions become weaker and
weaker and J → 0 as n → ∞.

This RG transformation also naturally gives rise to the
deep learning architecture shown in Figure 2. The spins
at a given layer of the DNN have a natural interpretation
as the decimated spins when performing the RG trans-
formation in the layer below. Notice that the coupled
spins in the bottom two layers of the DNNs in Fig. 2B
form an “effective” one-dimensional chain isomorphic to
the original spin chain. Thus, marginalizing over spins in
the bottom layer in the DNN is identical to decimating
every other spin in the original spin systems. This im-
plies that the “hidden” spins in the second layer of the
DNN are also described by the RG transformed Hamil-
tonian with a coupling J (1) between neighboring spins.
Repeating this argument for spins coupled between the
second and third layers and so on, one obtains the deep
learning architecture shown in Fig. 2B which implements
decimation.

The advantage of the simple deep architecture pre-
sented here is that it is easy to interpret and requires no
calculations to construct. However, an important short-
coming is that it contains no information about half of
the visible spins, namely the spins that do not couple to
the hidden layer.

You, Yang, Qi, 1709.01223

MACHINE LEARNING SPATIAL GEOMETRY FROM … PHYSICAL REVIEW B 97, 045153 (2018)

Given the random state |ψv⟩ on each vertex v and the
entangled pair state |Ie⟩ on each edge e, the RTN state can be
constructed by projecting the entangled pair states to random
vertex states via the following partial inner product:

|G⟩ =
⊗

v∈V

⊗

e∈E

⟨ψv|Ie⟩. (4)

The remaining subspaces (as solid circles in Fig. 2) on the
dangling ends of the external edges are not touched by the
projection. They form the physical Hilbert space Hphy =⊗

v∈V∂
Hphy

v in which the RTN state |G⟩ is supported. Here
V∂ denotes the set of boundary vertices, i.e., the subset of V
whose vertices are connected to the external edges. It is worth
mentioning that |G⟩ should better be treated as an ensemble
of RTN states, instead of a single specific state, due to the
randomness in |ψv⟩. All states in the ensemble are labeled
by the same edge-weighted graph G and share the similar
entanglement feature.

B. Entanglement Features of RTN States

The entanglement feature of a quantum many-body state
refers to the full set of entanglement entropies over all entan-
glement subregions. In general, one could include all orders of
Renyi entropies in the definition, but we will only focus on the
second Renyi entropies in the following and leave the generic
discussion to the last section.

Given an ensemble of RTN states |G⟩ and a subregion A ⊆
V∂ , the ensemble-typical second Renyi entropy SG(A) over the
subregion A is defined via

e− SG (A) = E
TrA(TrĀ |G⟩⟨G|)2

(Tr |G⟩⟨G|)2
, (5)

where E takes the RTN ensemble expectation value (i.e.,
averaging over the random states |ψv⟩ on all vertices), and
Ā = V∂ \ A denotes the complement region of A. We have
explicitly introduced the denominator Tr |G⟩⟨G| to ensure the
normalization of the RTN density matrix. An important result
of Ref. [31] is to show that the entanglement entropy SG(A)
can be expressed in term of the free energies of a classical Ising
model on the same graph G in the large bond dimension limit.
A more general treatment away from that limit is provided in a
related work Ref. [68], but in this work, we will only consider
the large bond dimension limit.

To specify the Ising model, we first introduce a set of Ising
spins σv = ± 1 for all v ∈ V and an additional set of Ising
variables τv = ± 1 on the boundary v ∈ V∂ only. The model is
described by the energy functional

EG[σ,τ ] = −
∑

e∈E

Je

∏

v∈∂e

σv − h
∑

v∈V∂

τvσv. (6)

The Ising coupling Je ≡ Ie/4 is set by the edge mutual
information Ie of the RTN state. The external field h ≡ 1

2 ln D∂

is set by the local Hilbert space dimension D∂ of the physical
degrees of freedom (which is also the bond dimension of the
external leg). Only σv spins are dynamical, and τv are just Ising
variables that specifies the directions of the external pinning
field hτv on the boundary. The configuration of τv is determined

FIG. 3. Entanglement entropy as the minimal cut (in black)
through the tensor network that separates the region A (in red) from
Ā (in blue). The Ising domain wall is automatically the minimal
cut in the large bond dimension (low temperature) limit. Different
network structures gives rise to different scaling behaviors of the
entanglement entropy: (a) area law S(A) ∼ const., (b) logarithmic
law S(A) ∼ ln LA, and (c) volume law S(A) ∼ LA.

by the choice of the entanglement region A:

τv(A) =
{
− 1 v ∈ A,
+1 v ∈ Ā.

(7)

Tracing out the dynamical spins σv , the free energy F [τ ] of
the boundary spins τv can be defined via

e− FG [τ ] =
∑

[σ ]

e− EG [σ,τ ]. (8)

In the large bond dimension limit (Ie ≫ 1), it was shown [31]
that the typical second Renyi entropy of the RTN state |G⟩ is
given by the free energy difference

SG(A) = FG[τ (A)] − FG[τ (∅)], (9)

where τ (A) denotes the boundary pinning field configuration
specified in Eq. (7) and τ (∅) denotes the configuration of τv =
+1 for all v ∈ V∂ . The derivation of Eq. (9) is reviewed in
Appendix A. The physical intuition of Eq. (9) comes from the
interpretation [4] of the entanglement entropy as the area of
the minimal surface that separates the region A from Ā in the
holographic bulk. Correspondingly, the free energy difference
F [τ (A)] − F [τ (∅)] measures the energy cost of the domain
wall that separates the part A from Ā in the tensor network
(see Fig. 3), which matches the holographic interpretation of
the entanglement entropy in the large bond dimension limit.
Technically, the advantage of RTN over other types of tensor
networks also lies in the fact that the second Renyi entropy
of the RTN state can be efficiently estimated from the free
energy of the corresponding Ising model as in Eq. (9). For a
generic tensor network, calculating its entanglement entropy
requires to diagonalize the reduced density matrix, which could
be much more difficult than solving the Ising model in many
cases.

The set of entanglement entropies {SG(A)|A ⊆ V∂} consti-
tutes the entanglement feature of the RTN state, which only
depends on the graph G and its edge weights Ie. The RTN state
thus provides us a model to encode the entanglement feature
directly in the network structure (i.e., the graph geometry). This
is the essential idea behind the tensor network holography.
In many previous approaches, a bulk geometry is first given
and a tensor network is tiled on the background geometry.
The resulting tensor network state then produces the entangle-
ment feature on the holographic boundary that is dual to the
holographic bulk geometry. For example, Fig. 3 demonstrates

045153-3
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ARTICLESNATURE PHYSICS

Consider then a classical system of local degrees of freedom 
= … ≡X x x x{ , , } { }N i1 , defined by a Hamiltonian energy function 

H({xi}) and associated statistical probabilities ∝ β−XP( ) e xH({ })i , 
where β is the inverse temperature. Alternatively (and sufficiently 
for our purposes), the system is given by Monte Carlo samples of the 
equilibrium distribution XP( ). We denote a small spatial region of 
interest by ≡V v{ }i  and the remainder of the system by ≡E e{ }i , so 
that =X V E( , ). We adopt a probabilistic point of view, and treat X E,  
and so on as random variables. Our goal is to extract the relevant 
degrees of freedom H from V .

‘Relevance’ is understood here in the following way: the degrees 
of freedom that RG captures govern the long-distance behaviour 
of the theory, and therefore the experimentally measurable physi-
cal properties; they carry the most information about the system 
at large, as opposed to local fluctuations. We thus formally define 
the random variable H as a composite function of degrees of free-
dom in V  maximizing the ‘mutual information’ between H and the 
environment E . This definition, as we discuss in the Supplementary 
Information, is related to the requirement that the effective coarse-
grained Hamiltonian be compact and short-ranged, which is a con-
dition any successful standard RG scheme should satisfy. As we also 
show, it is supported by numerical results.

Mutual information, denoted by Iλ, measures the total amount of 
information about one random variable contained in the other9,10,31 
(thus, it is more general than correlation coefficients). It is given in 
our setting by:

∑=Λ Λ
Λ

Λ

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

H E E H
E H

H E
H E

I P
P

P P
( : ) ( , )log

( , )
( ) ( ) (1)

,

The unknown distribution Λ E HP ( , ) and its marginalization 
Λ HP ( ), depending on a set of parameters Λ (which we keep generic 

at this point), are functions of V EP( , ) and of ∣Λ H VP ( ), which is the 
central object of interest.

Finding ∣Λ H VP ( ) that maximizes IΛ under certain constraints is 
a well-posed mathematical question and has a formal solution32.  

However, since the space of probability distributions grows expo-
nentially with the number of local degrees of freedom, it is, in 
practice, impossible to use without further assumptions for any 
but the smallest physical systems. Our approach is to exploit the 
remarkable dimensionality reduction properties of artificial neural 
networks11. We use restricted Boltzmann machines (RBMs), a class 
of probabilistic networks well adapted to approximating arbitrary 
data probability distributions. An RBM is composed of two layers 
of nodes, the ‘visible’ layer, corresponding to local degrees of free-
dom in our setting, and a ‘hidden’ layer. The interactions between 
the layers are defined by an energy function ≡ θΘ V HE E ( , )a b, ,  =   
− ∑ b hj j j −  ∑ a vi i i −  θ∑ v hij i ij j, such that the joint probability distri-
bution for a particular configuration of visible and hidden degrees 
of freedom is given by a Boltzmann weight:

=Θ
− θV H

Z
VHP ( , ) 1 e (2)E ( , )a b, ,

where Z  is the normalization. The goal of the network training is 
to find parameters θij (‘weights’ or ‘filters’) and ai,bi optimizing a 
chosen objective function.

Three distinct RBMs are used. Two are trained as efficient 
approximators of the probability distributions V EP( , ) and VP( ), 
using the celebrated contrastive divergence (CD) algorithm33. Their 
trained parameters are used by the third network (see Fig. 1b),  
which has a different objective: to find ∣Λ H VP ( ) maximizing IΛ. To 
the end we introduce the real-space mutual information (RSMI) 
network, whose architecture is shown in Fig. 1a. The hidden units 
of RSMI correspond to coarse-grained variables H.

The parameters λΛ = a b( , , )i j i
j  of the RSMI network are trained 

by an iterative procedure. At each iteration, a Monte Carlo estimate 
of function Λ H EI ( : ) and its gradients is performed for the current 
values of parameters Λ. The gradients are then used to improve 
the values of weights in the next step, using a stochastic gradient 
descent procedure.

The trained weights Λ define the probability ∣Λ H VP ( ) of a 
Boltzmann form, which is used to generate MC samples of the coarse-
grained system. Those, in turn, become input to the next iteration of 
the RSMI algorithm. The estimates of mutual information, weights of 
the trained RBMs and sets of generated MC samples at every RG step 
can be used to extract quantitative information about the system in 
the form of correlation functions, critical exponents and so on, as we 
show below and in the Supplementary Information. We also empha-
size that the parameters Λ identifying relevant degrees of freedom are 
re-computed at every RG step. This potentially allows RSMI to capture 
the evolution of the degrees of freedom along the RG flow34.

Validation
To validate our approach, we consider two important classical mod-
els of statistical physics: the Ising model, whose coarse-grained 
degrees of freedom resemble the original ones, and the fully packed 
dimer model, where they are entirely different.

Ha

b

B

P( )

CD CD RSMI

PΛ(H∣ )
λ j
i

θ

θ( )

),

( ),

P(

Fig. 1 | The RSMI algorithm. a, The RSMI neural network architecture. The 
hidden layer H is directly coupled to the visible layer V  via the weights λi

j 
(red arrows). However, the training algorithm for the weights estimates 
mutual information between H and the environment E . The buffer B is 
introduced to filter out local correlations within V  (see Supplementary 
Information). b, The workflow of the algorithm. The CD-algorithm-trained 
RBMs learn to approximate probability distributions V EP( , ) and VP( ). Their 
final parameters, denoted collectively by V EΘ( , ) and VΘ( ), are inputs for the 
main RSMI network learning to extract H V∣ΛP ( ) by maximizing IΛ. The final 
weights λi

j of the RSMI network identify the relevant degrees of freedom. 
They are shown in Figs. 2 and 4 for Ising and dimer problems.
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Fig. 2 | The weights of the RSMI network trained on the Ising model. 
Visualization of the weights of the RSMI network trained on the Ising model 
for a visibile area V  of 2 ×  2 spins. The ANN couples strongly to areas with 
large absolute value of the weights. a, The weights for Nh!= !1 hidden neuron: 
the ANN discovers Kadanoff blocking. b, The weights for Nh!= !4 hidden 
neurons: each neuron tracks one original spin.
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Figure 2: Example of Figure 1 represented as a Bayesian network (only two layers are represented).
The bottom nodes are observed. Note that the graph is truncated, as the nodes of �2 must be linked
to the next layer which is not represented, as well as to each other, in the same manner as the two
layers below it.

Figure 3: Stochastic maps involved in the last two steps of the computation of the marginal state
on 3 consecutive output sites. The lines ending abruptly indicates that the corresponding variable
is summed over. The “past” of any region of �0 of size L always involves just 3 sites before level
�[log2(L)].

3 Learning CORA

The causal properties inherent in the definition of MERA/CORA imply that a marginal over any
finite group of L sites can be computed (explicitly, i.e., without sampling) in a time of order
eL log(N). Indeed, due to the particular causal structure of the maps ⇡j , the past of any set of
sites of �j , namely those sites of �j+1 on which their values depend explicitly through ⇡j , always
ends up involving a constant number of sites independent of N (and generally manageably small).
This is illustrated in Figure 3.

In the quantum physical setting for which MERA was introduced, the state that we want to represent
is not defined by samples, but instead by a Hamiltonian, or energy function, that it minimizes,
i.e., the cost function itself. Most often, the Hamiltonians considered are local, which implies that
the evaluation of their expectation only requires the use of marginal states over small clusters of
neighboring sites. Therefore the cost function can be evaluated efficiently and exactly.

Such a procedure can be adapted to a situation where, instead of being handed the Hamiltonian, we
are given samples from the unknown distribution: the training data. In physics, this situation presents
itself when an experimentalists wants to reconstruct a state that he has access to only through exper-
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FIG. 2. RG and deep learning in the one-dimensional Ising Model. (A) A decimation based renormalization trans-
formation for the ferromagnetic 1-D Ising model. At each step, half the spins are decimated, doubling the effective lattice
spacing. After, n successive decimations, the spins can be described using a new 1-D Ising models with a coupling Jn between
spins. Couplings at a given layer are related to couplings at a previous layer through the square of the hyberbolic tangent
function. (B) Decimation-based renormalization transformations can also be realized using the deep architecture where the
weights between the n + 1 and n-th hidden layer are given by Jn. (C) Visualizing the renormalization group flow of the
couplings for 1-D Ferromagnetic Ising model. Under four successive decimations or equivalently as we move up four layers in
the deep architecture, the couplings (marked by red dots) get smaller. Eventually, the couplings are attracted to stable fixed
point J = 0.

the two approaches employ distinct variational approxi-
mation schemes for coarse graining. Finally, notice that
the correspondence does not rely on the explicit form of
the energy E({hj}, {vj}) and hence holds for any Boltz-
mann Machine.

IV. EXAMPLES

To gain intuition about the mapping between RG
and deep learning, it is helpful to consider some sim-
ple examples in detail. We begin by examining the one-
dimensional nearest-neighbor Ising model where the RG
transformation can be carried out exactly. We then nu-
merically explore the two-dimensional nearest-neighbor
Ising model using an RBM-based deep learning architec-
ture.

A. One dimensional Ising Model

The one-dimensional Ising model describes a collection
of binary spins {vi} organized along a one-dimensional
lattice with lattice spacing a. Such a system is described
by a Hamiltonian of the form

H = −J
∑

i

vivi+1, (23)

where J is a ferromagnetic coupling that energetically
favors configurations where neighboring spins align. To
perform a RG transformation, we decimate (marginalize
over) every other spin. This doubles the lattice spacing
a → 2a and results in a new effective interaction J (1) be-
tween spins (see Figure 2). If we denote the coupling af-
ter performing n successive RG transformations by J (n),

then a standard calculation shows that these coefficients
satisfy the RG equations

tanh [J (n+1)] = tanh2 [J (n)], (24)

where we have defined J (0) = J [14]. This recursion
relationship can be visualized as a one-dimensional flow
in the coupling space J from J = ∞ to J = 0. Thus,
after performing RG the interactions become weaker and
weaker and J → 0 as n → ∞.

This RG transformation also naturally gives rise to the
deep learning architecture shown in Figure 2. The spins
at a given layer of the DNN have a natural interpretation
as the decimated spins when performing the RG trans-
formation in the layer below. Notice that the coupled
spins in the bottom two layers of the DNNs in Fig. 2B
form an “effective” one-dimensional chain isomorphic to
the original spin chain. Thus, marginalizing over spins in
the bottom layer in the DNN is identical to decimating
every other spin in the original spin systems. This im-
plies that the “hidden” spins in the second layer of the
DNN are also described by the RG transformed Hamil-
tonian with a coupling J (1) between neighboring spins.
Repeating this argument for spins coupled between the
second and third layers and so on, one obtains the deep
learning architecture shown in Fig. 2B which implements
decimation.

The advantage of the simple deep architecture pre-
sented here is that it is easy to interpret and requires no
calculations to construct. However, an important short-
coming is that it contains no information about half of
the visible spins, namely the spins that do not couple to
the hidden layer.
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Given the random state |ψv⟩ on each vertex v and the
entangled pair state |Ie⟩ on each edge e, the RTN state can be
constructed by projecting the entangled pair states to random
vertex states via the following partial inner product:

|G⟩ =
⊗

v∈V

⊗

e∈E

⟨ψv|Ie⟩. (4)

The remaining subspaces (as solid circles in Fig. 2) on the
dangling ends of the external edges are not touched by the
projection. They form the physical Hilbert space Hphy =⊗

v∈V∂
Hphy

v in which the RTN state |G⟩ is supported. Here
V∂ denotes the set of boundary vertices, i.e., the subset of V
whose vertices are connected to the external edges. It is worth
mentioning that |G⟩ should better be treated as an ensemble
of RTN states, instead of a single specific state, due to the
randomness in |ψv⟩. All states in the ensemble are labeled
by the same edge-weighted graph G and share the similar
entanglement feature.

B. Entanglement Features of RTN States

The entanglement feature of a quantum many-body state
refers to the full set of entanglement entropies over all entan-
glement subregions. In general, one could include all orders of
Renyi entropies in the definition, but we will only focus on the
second Renyi entropies in the following and leave the generic
discussion to the last section.

Given an ensemble of RTN states |G⟩ and a subregion A ⊆
V∂ , the ensemble-typical second Renyi entropy SG(A) over the
subregion A is defined via

e− SG (A) = E
TrA(TrĀ |G⟩⟨G|)2

(Tr |G⟩⟨G|)2
, (5)

where E takes the RTN ensemble expectation value (i.e.,
averaging over the random states |ψv⟩ on all vertices), and
Ā = V∂ \ A denotes the complement region of A. We have
explicitly introduced the denominator Tr |G⟩⟨G| to ensure the
normalization of the RTN density matrix. An important result
of Ref. [31] is to show that the entanglement entropy SG(A)
can be expressed in term of the free energies of a classical Ising
model on the same graph G in the large bond dimension limit.
A more general treatment away from that limit is provided in a
related work Ref. [68], but in this work, we will only consider
the large bond dimension limit.

To specify the Ising model, we first introduce a set of Ising
spins σv = ± 1 for all v ∈ V and an additional set of Ising
variables τv = ± 1 on the boundary v ∈ V∂ only. The model is
described by the energy functional

EG[σ,τ ] = −
∑

e∈E

Je

∏

v∈∂e

σv − h
∑

v∈V∂

τvσv. (6)

The Ising coupling Je ≡ Ie/4 is set by the edge mutual
information Ie of the RTN state. The external field h ≡ 1

2 ln D∂

is set by the local Hilbert space dimension D∂ of the physical
degrees of freedom (which is also the bond dimension of the
external leg). Only σv spins are dynamical, and τv are just Ising
variables that specifies the directions of the external pinning
field hτv on the boundary. The configuration of τv is determined

FIG. 3. Entanglement entropy as the minimal cut (in black)
through the tensor network that separates the region A (in red) from
Ā (in blue). The Ising domain wall is automatically the minimal
cut in the large bond dimension (low temperature) limit. Different
network structures gives rise to different scaling behaviors of the
entanglement entropy: (a) area law S(A) ∼ const., (b) logarithmic
law S(A) ∼ ln LA, and (c) volume law S(A) ∼ LA.

by the choice of the entanglement region A:

τv(A) =
{
− 1 v ∈ A,
+1 v ∈ Ā.

(7)

Tracing out the dynamical spins σv , the free energy F [τ ] of
the boundary spins τv can be defined via

e− FG [τ ] =
∑

[σ ]

e− EG [σ,τ ]. (8)

In the large bond dimension limit (Ie ≫ 1), it was shown [31]
that the typical second Renyi entropy of the RTN state |G⟩ is
given by the free energy difference

SG(A) = FG[τ (A)] − FG[τ (∅)], (9)

where τ (A) denotes the boundary pinning field configuration
specified in Eq. (7) and τ (∅) denotes the configuration of τv =
+1 for all v ∈ V∂ . The derivation of Eq. (9) is reviewed in
Appendix A. The physical intuition of Eq. (9) comes from the
interpretation [4] of the entanglement entropy as the area of
the minimal surface that separates the region A from Ā in the
holographic bulk. Correspondingly, the free energy difference
F [τ (A)] − F [τ (∅)] measures the energy cost of the domain
wall that separates the part A from Ā in the tensor network
(see Fig. 3), which matches the holographic interpretation of
the entanglement entropy in the large bond dimension limit.
Technically, the advantage of RTN over other types of tensor
networks also lies in the fact that the second Renyi entropy
of the RTN state can be efficiently estimated from the free
energy of the corresponding Ising model as in Eq. (9). For a
generic tensor network, calculating its entanglement entropy
requires to diagonalize the reduced density matrix, which could
be much more difficult than solving the Ising model in many
cases.

The set of entanglement entropies {SG(A)|A ⊆ V∂} consti-
tutes the entanglement feature of the RTN state, which only
depends on the graph G and its edge weights Ie. The RTN state
thus provides us a model to encode the entanglement feature
directly in the network structure (i.e., the graph geometry). This
is the essential idea behind the tensor network holography.
In many previous approaches, a bulk geometry is first given
and a tensor network is tiled on the background geometry.
The resulting tensor network state then produces the entangle-
ment feature on the holographic boundary that is dual to the
holographic bulk geometry. For example, Fig. 3 demonstrates
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ARTICLESNATURE PHYSICS

Consider then a classical system of local degrees of freedom 
= … ≡X x x x{ , , } { }N i1 , defined by a Hamiltonian energy function 

H({xi}) and associated statistical probabilities ∝ β−XP( ) e xH({ })i , 
where β is the inverse temperature. Alternatively (and sufficiently 
for our purposes), the system is given by Monte Carlo samples of the 
equilibrium distribution XP( ). We denote a small spatial region of 
interest by ≡V v{ }i  and the remainder of the system by ≡E e{ }i , so 
that =X V E( , ). We adopt a probabilistic point of view, and treat X E,  
and so on as random variables. Our goal is to extract the relevant 
degrees of freedom H from V .

‘Relevance’ is understood here in the following way: the degrees 
of freedom that RG captures govern the long-distance behaviour 
of the theory, and therefore the experimentally measurable physi-
cal properties; they carry the most information about the system 
at large, as opposed to local fluctuations. We thus formally define 
the random variable H as a composite function of degrees of free-
dom in V  maximizing the ‘mutual information’ between H and the 
environment E . This definition, as we discuss in the Supplementary 
Information, is related to the requirement that the effective coarse-
grained Hamiltonian be compact and short-ranged, which is a con-
dition any successful standard RG scheme should satisfy. As we also 
show, it is supported by numerical results.

Mutual information, denoted by Iλ, measures the total amount of 
information about one random variable contained in the other9,10,31 
(thus, it is more general than correlation coefficients). It is given in 
our setting by:

∑=Λ Λ
Λ

Λ

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

H E E H
E H

H E
H E

I P
P

P P
( : ) ( , )log

( , )
( ) ( ) (1)

,

The unknown distribution Λ E HP ( , ) and its marginalization 
Λ HP ( ), depending on a set of parameters Λ (which we keep generic 

at this point), are functions of V EP( , ) and of ∣Λ H VP ( ), which is the 
central object of interest.

Finding ∣Λ H VP ( ) that maximizes IΛ under certain constraints is 
a well-posed mathematical question and has a formal solution32.  

However, since the space of probability distributions grows expo-
nentially with the number of local degrees of freedom, it is, in 
practice, impossible to use without further assumptions for any 
but the smallest physical systems. Our approach is to exploit the 
remarkable dimensionality reduction properties of artificial neural 
networks11. We use restricted Boltzmann machines (RBMs), a class 
of probabilistic networks well adapted to approximating arbitrary 
data probability distributions. An RBM is composed of two layers 
of nodes, the ‘visible’ layer, corresponding to local degrees of free-
dom in our setting, and a ‘hidden’ layer. The interactions between 
the layers are defined by an energy function ≡ θΘ V HE E ( , )a b, ,  =   
− ∑ b hj j j −  ∑ a vi i i −  θ∑ v hij i ij j, such that the joint probability distri-
bution for a particular configuration of visible and hidden degrees 
of freedom is given by a Boltzmann weight:

=Θ
− θV H

Z
VHP ( , ) 1 e (2)E ( , )a b, ,

where Z  is the normalization. The goal of the network training is 
to find parameters θij (‘weights’ or ‘filters’) and ai,bi optimizing a 
chosen objective function.

Three distinct RBMs are used. Two are trained as efficient 
approximators of the probability distributions V EP( , ) and VP( ), 
using the celebrated contrastive divergence (CD) algorithm33. Their 
trained parameters are used by the third network (see Fig. 1b),  
which has a different objective: to find ∣Λ H VP ( ) maximizing IΛ. To 
the end we introduce the real-space mutual information (RSMI) 
network, whose architecture is shown in Fig. 1a. The hidden units 
of RSMI correspond to coarse-grained variables H.

The parameters λΛ = a b( , , )i j i
j  of the RSMI network are trained 

by an iterative procedure. At each iteration, a Monte Carlo estimate 
of function Λ H EI ( : ) and its gradients is performed for the current 
values of parameters Λ. The gradients are then used to improve 
the values of weights in the next step, using a stochastic gradient 
descent procedure.

The trained weights Λ define the probability ∣Λ H VP ( ) of a 
Boltzmann form, which is used to generate MC samples of the coarse-
grained system. Those, in turn, become input to the next iteration of 
the RSMI algorithm. The estimates of mutual information, weights of 
the trained RBMs and sets of generated MC samples at every RG step 
can be used to extract quantitative information about the system in 
the form of correlation functions, critical exponents and so on, as we 
show below and in the Supplementary Information. We also empha-
size that the parameters Λ identifying relevant degrees of freedom are 
re-computed at every RG step. This potentially allows RSMI to capture 
the evolution of the degrees of freedom along the RG flow34.

Validation
To validate our approach, we consider two important classical mod-
els of statistical physics: the Ising model, whose coarse-grained 
degrees of freedom resemble the original ones, and the fully packed 
dimer model, where they are entirely different.

Ha

b

B

P( )

CD CD RSMI

PΛ(H∣ )
λ j
i

θ

θ( )

),

( ),

P(

Fig. 1 | The RSMI algorithm. a, The RSMI neural network architecture. The 
hidden layer H is directly coupled to the visible layer V  via the weights λi

j 
(red arrows). However, the training algorithm for the weights estimates 
mutual information between H and the environment E . The buffer B is 
introduced to filter out local correlations within V  (see Supplementary 
Information). b, The workflow of the algorithm. The CD-algorithm-trained 
RBMs learn to approximate probability distributions V EP( , ) and VP( ). Their 
final parameters, denoted collectively by V EΘ( , ) and VΘ( ), are inputs for the 
main RSMI network learning to extract H V∣ΛP ( ) by maximizing IΛ. The final 
weights λi

j of the RSMI network identify the relevant degrees of freedom. 
They are shown in Figs. 2 and 4 for Ising and dimer problems.
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Fig. 2 | The weights of the RSMI network trained on the Ising model. 
Visualization of the weights of the RSMI network trained on the Ising model 
for a visibile area V  of 2 ×  2 spins. The ANN couples strongly to areas with 
large absolute value of the weights. a, The weights for Nh!= !1 hidden neuron: 
the ANN discovers Kadanoff blocking. b, The weights for Nh!= !4 hidden 
neurons: each neuron tracks one original spin.
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+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.
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We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det

 
@x
@z

!������ , (1)

where q(x) is the normalized probability density of the phys-
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Differentiable Scientific Programming
•  Most linear algebra operations (Eigen, SVD!) are differentiable 
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in deep learning, in which deep neural networks can even
reach billions of parameters [33]. In the history of machine
learning, gradient-free algorithms were employed to optimize
small-scale neural networks [34]. However, they failed to
scale up to a larger number of parameters. It is the back-
propagation algorithm [35] which can e�ciently compute the
gradient of the neural network output with respect to the
network parameters enables scalable training of deep neural
nets. It is thus highly demanded to have scalable quantum al-
gorithms for estimating gradients on actual quantum circuits.

Recently, gradient-based learning of quantum circuits has
been devised for quantum control [36] and discriminative
tasks [37, 38]. Although they are still less e�cient compared
to the back-propagation algorithm for neural networks, these
unbiased gradient algorithms can already greatly accelerate
the quantum circuit learning. Unfortunately, direct application
of these gradient algorithms [36–38] to QCBM training is still
non-trivial since the output of the generative model is gen-
uinely bit strings which follow high-dimensional probability
distributions. In fact, it is even an ongoing research topic
in deep learning to perform di↵erentiable learning of implicit
generative model with discrete outputs [24, 39].

In this paper, we develop an e�cient gradient-based learn-
ing algorithm to train the QCBM. In what follows, we first
present a practical quantum-classical hybrid algorithm to train
the quantum circuit as a generative model in Sec. II, thus
realize a Born machine. Then we apply the algorithm on
3 ⇥ 3 Bars-and-Stripes and double Gaussian peaks datasets
in Sec. III. We show that the training is robust to moderate
sampling noise, and is scalable in circuit depth. Increasing
the circuit depth significantly improves the representational
power for generative tasks. Finally, we conclude and discuss
caveats and future research directions about the QCBM in
Sec. IV.

II. MODEL AND LEARNING ALGORITHM

Given a dataset D = {x} containing independent and iden-
tically distributed (i.i.d.) samples from a target distribution
⇡(x), we set up a QCBM to generate samples close to the
unknown target distribution. As shown in Fig. 1, the QCBM
takes the product state |0i as an input and evolves it to a
final state | ✓i by a sequence of unitary gates. Then we can
measure this output state on computation basis to obtain a
sample of bits x ⇠ p✓(x) = |hx| ✓i|2. The goal of the training
is to let the model probability distribution p✓ approach to ⇡.

We employ a classical-quantum hybrid feedback loop as
the training strategy. The setup is similar to the Quantum
Approximate Optimization Algorithm (QAOA) [40–42] and
the Variational Quantum Eigensolver (VQE) [43–45]. By
constructing the circuits and performing measurements re-
peatedly we collect a batch of samples from the QCBM.
Then we introduce two-sample test as a measure of distance
between generated samples and training set, which is used
as our di↵erentiable loss. Using a classical optimizer which
takes the gradient information of the loss function, we can
push the generated sample distribution towards the target

Figure 1. Illustration of the di↵erentiable QCBM training scheme.
Top left is the quantum circuit which produce bit string samples. The
dashed box on the right denotes two-sample test on the generated
samples and training samples, with the loss function (Eq. (1)) and
corresponding gradients (Eq. (2)) as outputs. �✓ is the amount of
updated to be applied to the circuit parameters, which are computed
by a classical optimizer. The outcome of the training is to produce
a quantum circuit which generates samples according to the learned
probability distribution on the computational basis.

distribution.

A. Quantum Circuit Architecture Design

The overall circuit layout is similar to the IBM variational
quantum eigensolver [45], where one interweaves single qubit
rotation layers and entangler layers shown in Fig. 1. The
rotation layers are parameterized by rotation angles ✓ = {✓↵

l
},

where the layer index l runs from 0 to d, with d the maximum
depth of the circuit. ↵ is a combination of qubit index j and
arbitrary rotation gate index, where the arbitrary rotation gate
has the form U(✓ j

l
) = Rz(✓

j,1
l

)Rx(✓ j,2
l

)Rz(✓
j,3
l

) with Rm(✓) ⌘
exp
⇣�i✓�m

2

⌘
. The total number of parameters in this QCBM

is (3d + 1)n, with n the number of qubits [46].
We employ CNOT gates with no learnable parameters for

the entangle layers to induce correlations between qubits. In
light of experimental constraints on the connectivity of the
circuits, we make the connection of the entangle layers to be
sparse by requiring its topology as a tree (i.e. the simplest
connected graph). From the classical probabilistic graph-
ical model’s perspective [13], the tree graph that captures
information content of the dataset most e�ciently is Chow-
Liu tree [47]. Since controlled unitary gates have a close
relation with classical probability graphical models [48], we
employ the same Chow-Liu tree as the topology of CNOT
gates. To construct the Chow-Liu tree we first compute mutual
information between all pairs of the bits for samples in the
training set as weights, and then construct the maximum
spanning tree using, for example, the Kruskal’s algorithm.
The assignment of the control bit and the target bit on a bond
is random, since the Chow-Liu algorithm treated directed
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A method to study strongly interacting quantum many-body systems at and away from criticality
is proposed. The method is based on a MERA-like tensor network that can be e�ciently and reliably
contracted on a noisy quantum computer using a number of qubits that is much smaller than the
system size. We prove that the outcome of the contraction is stable to noise and that the estimated
energy upper bounds the ground state energy. The stability, which we numerically substantiate,
follows from the positivity of operator scaling dimensions under renormalization group flow. The
variational upper bound follows from a particular assignment of physical qubits to di↵erent locations
of the tensor network plus the assumption that the noise model is local. We postulate a scaling
law for how well the tensor network can approximate ground states of lattice regulated conformal
field theories in d spatial dimensions and provide evidence for the postulate. Under this postulate,
a O(logd(1/�))-qubit quantum computer can prepare a valid quantum-mechanical state with energy
density � above the ground state. In the presence of noise, � = O(✏ logd+1(1/✏)) can be achieved,
where ✏ is the noise strength.

I. INTRODUCTION

Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.

Quantum
Processor

Classical
Optimizer

Energy
Lowered

Energy
Measured

FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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system size. We prove that the outcome of the contraction is stable to noise and that the estimated
energy upper bounds the ground state energy. The stability, which we numerically substantiate,
follows from the positivity of operator scaling dimensions under renormalization group flow. The
variational upper bound follows from a particular assignment of physical qubits to di↵erent locations
of the tensor network plus the assumption that the noise model is local. We postulate a scaling
law for how well the tensor network can approximate ground states of lattice regulated conformal
field theories in d spatial dimensions and provide evidence for the postulate. Under this postulate,
a O(logd(1/�))-qubit quantum computer can prepare a valid quantum-mechanical state with energy
density � above the ground state. In the presence of noise, � = O(✏ logd+1(1/✏)) can be achieved,
where ✏ is the noise strength.

I. INTRODUCTION

Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.
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FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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A method to study strongly interacting quantum many-body systems at and away from criticality
is proposed. The method is based on a MERA-like tensor network that can be e�ciently and reliably
contracted on a noisy quantum computer using a number of qubits that is much smaller than the
system size. We prove that the outcome of the contraction is stable to noise and that the estimated
energy upper bounds the ground state energy. The stability, which we numerically substantiate,
follows from the positivity of operator scaling dimensions under renormalization group flow. The
variational upper bound follows from a particular assignment of physical qubits to di↵erent locations
of the tensor network plus the assumption that the noise model is local. We postulate a scaling
law for how well the tensor network can approximate ground states of lattice regulated conformal
field theories in d spatial dimensions and provide evidence for the postulate. Under this postulate,
a O(logd(1/�))-qubit quantum computer can prepare a valid quantum-mechanical state with energy
density � above the ground state. In the presence of noise, � = O(✏ logd+1(1/✏)) can be achieved,
where ✏ is the noise strength.

I. INTRODUCTION

Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.
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FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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is proposed. The method is based on a MERA-like tensor network that can be e�ciently and reliably
contracted on a noisy quantum computer using a number of qubits that is much smaller than the
system size. We prove that the outcome of the contraction is stable to noise and that the estimated
energy upper bounds the ground state energy. The stability, which we numerically substantiate,
follows from the positivity of operator scaling dimensions under renormalization group flow. The
variational upper bound follows from a particular assignment of physical qubits to di↵erent locations
of the tensor network plus the assumption that the noise model is local. We postulate a scaling
law for how well the tensor network can approximate ground states of lattice regulated conformal
field theories in d spatial dimensions and provide evidence for the postulate. Under this postulate,
a O(logd(1/�))-qubit quantum computer can prepare a valid quantum-mechanical state with energy
density � above the ground state. In the presence of noise, � = O(✏ logd+1(1/✏)) can be achieved,
where ✏ is the noise strength.

I. INTRODUCTION

Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.
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FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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I. INTRODUCTION

Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.
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FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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3. Information Processing Device
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Summary



https://github.com/GiggleLiu/QuantumCircuitBornMachine

https://github.com/QuantumBFS/Yao.jl/
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Try it yourself!

Thank You!

  

https://github.com/wangleiphy/TRG 
https://github.com/li012589/NeuralRG 
https://github.com/wangleiphy/MongeAmpereFlow
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