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chemical  
space

can deal practically with approximationmethods
for the graph isomorphism problem.
Additionally, improved sequence generation

models are possible with the ability to read and
write to memory (69). These approaches demon-
strate better ability for learning long- and short-
termpatterns.Morework is neededonRiemannian
optimization methods that exploit the geometry
of latent space. Structured architectures such as
multilevel VAE (85) offer newways of organizing
latent space and are promising research direc-
tions. New approaches also lie in inverse RL,
geared toward learning a reward or loss function
(86). Research in this direction will allow for the
discovery of reward functions associated with
different materials discovery tasks.

Outlook

Inverse design is an important component of the
complex framework required to designmatter at
an accelerated pace. The tools for inverse design,
especially those stemming from the field of ma-
chine learning, have shown rapid progress in
the last several years and have allowed chemical
space to be framed into probabilistic data-driven
models. Generativemodels produce large numbers
of candidate molecules, and the physical realiza-
tions of these candidates will require automated
high-throughput efforts to validate the genera-
tive approach. The community has yet has to
show more than a few examples of successful

closed-loop approaches for the design of matter
(87). The blurring of the barriers between theory
and experiment will lead to AI-enabled auto-
mated laboratories (88, 89).
The combination of inverse design tools with

active learning approaches such as Bayesian
optimization (90, 91) can enable a model that
adapts as it explores chemical space, which
allows for expanding a model in regions of
high uncertainty and enabling the discovery
of regions of molecular space with desirable
properties as a function of composition. Active
learning in the space of objective functions could
lead to a better understanding of the best rewards
to seek while carrying out machine learning.
As seen, central to machine learning meth-

odologies is the representation of molecules;
representations that encode the relevant physics
will tend to generalize better. Despite consider-
able progress, much work remains. Graph and
hierarchical representations of molecules are an
area requiring further study.
The integration of machine learning as a new

pillar of knowledge in the curricula of chemical,
biochemical, medicinal, and materials sciences
will allow for a more rapid adoption of themeth-
odologies summarized in this work.
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Fig. 4. Schematic representation of several architectures found in
generative models. RNNs are used for sequence generation. The VAE
shows the semi-supervised variant, jointly trained by molecules (x) and
properties (y). Latent space is denoted with Z, and latent vectors with z.
In the GAN setting, the noise eventually acquires structure via the

adversarial training. Reinforcement learning (RL) shows a policy
gradient with MTCS in the task of SMILES completion with
arbitrary rewards. Shown in the lower right are hybrid architectures
such as AAE (adversarial autoencoders) and ORGAN, which represents
GAN and RL.
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Lattice field theoryMolecular simulation

Although no reference for this free-energy dif-
ference in the given simulationmodel is known,
the temperature profile admits basic consistency
checks: The x-ray structure is identified as the
most stable structure at temperatures below
330 K. The internal energy and entropy terms of
the free-energy difference (Eq. 1) are both positive
across all temperatures. Therefore, the free-energy
decreases at high temperatures as the entropic

stabilization becomes stronger. A higher configu-
rational entropy of the “O” state is consistent with
its more open loop structure (compare Fig. 5, G
and H) and the higher degree of fluctuations in
the “O” state observed by the analysis in (30).

Discussion and conclusion

Boltzmann generators can overcome rare event-
sampling problems in many-body systems by

generating independent samples from different
metastable states in one shot. We have demon-
strated this for dense and unstructured many-
body systems with up to 892 atoms (over 2600
dimensions) that are placed simultaneously, with
most samples having globally and locally valid
structures and potential energies in the range of
the equilibrium distribution. In contrast to other
generative neural networks, Boltzmann generators

Noé et al., Science 365, eaaw1147 (2019) 6 September 2019 7 of 11

Fig. 5. One-shot sampling of all-atom structures in different
conformations of the BPTI protein. (A) Boltzmann generator for
macromolecules: Backbone atoms are whitened using PCA; side-chain
atoms are described in normalized internal coordinates (crds). (B) BPTI
x-ray crystal structure (PDB: 5PTI). Cysteine disulfide bridges and
aromatic residues are shown for orientation. (C) One-shot Boltzmann
generator sample of all 892 atoms (2670 dimensions) of the BPTI
protein similar to the x-ray structure. (D) Potential energy distribution
from MD simulation (gray) and Boltzmann generator one-shot samples

(blue). (E) Distribution of bonds and angles compared between
MD simulation (black) and Boltzmann generator (blue).
(F) Representative snapshots of four clusters of structures
generated with the Boltzmann generator. Backbone root mean
square deviation from the x-ray structure is given below the
structure (in angstroms). Marked are the x-ray–like structure
“X” and the open structure “O.” (G and H) Magnification of the
most variable parts of the Boltzmann-generated samples from the
“X” and “O” states. Side chains are shown in atomistic resolution.
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Generative AI for statistical physics 

These are principled computation: quantitatively accurate, 
interpretable, reliable, and generalizable even without data 
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Probabilistic Generative Modeling

How to express, learn, and sample from a 
high-dimensional probability distribution ? 
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“… the images encountered in 
AI applications occupy a 
negligible proportion of

the volume of image space.”
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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�
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�
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, t
�
� x(t)

Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q
⇣
x(0···T )

⌘
. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p
⇣
x(0···T )

⌘
. An identity-covariance

Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, fµ

⇣
x(t), t

⌘
� x(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which
uses a Markov chain which slowly converts one distribu-
tion into another to compute a ratio of normalizing con-
stants. In (Burda et al., 2014) it is shown that AIS can also
be performed using the reverse rather than forward trajec-
tory. Langevin dynamics (Langevin, 1908), which are the
stochastic realization of the Fokker-Planck equation, show
how to define a Gaussian diffusion process which has any
target distribution as its equilibrium. In (Suykens & Vande-
walle, 1995) the Fokker-Planck equation is used to perform
stochastic optimization. Finally, the Kolmogorov forward
and backward equations (Feller, 1949) show that for many
forward diffusion processes, the reverse diffusion processes
can be described using the same functional form.

2. Algorithm
Our goal is to define a forward (or inference) diffusion pro-
cess which converts any complex data distribution into a
simple, tractable, distribution, and then learn a finite-time
reversal of this diffusion process which defines our gener-
ative model distribution (See Figure 1). We first describe
the forward, inference diffusion process. We then show

how the reverse, generative diffusion process can be trained
and used to evaluate probabilities. We also derive entropy
bounds for the reverse process, and show how the learned
distributions can be multiplied by any second distribution
(e.g. as would be done to compute a posterior when in-
painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
�
x(0)

�
. The data distribu-

tion is gradually converted into a well behaved (analyti-
cally tractable) distribution ⇡ (y) by repeated application
of a Markov diffusion kernel T⇡ (y|y0;�) for ⇡ (y), where
� is the diffusion rate,

⇡ (y) =

Z
dy0

T⇡ (y|y0;�)⇡ (y0) (1)

q

⇣
x(t)|x(t�1)

⌘
= T⇡

⇣
x(t)|x(t�1);�t

⌘
. (2)
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Unknown: generating distribution
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Statistical physicsGenerative modeling

Maximum likelihood estimation

ℒ = − 𝔼x∼dataset [ln p(x)]
“learn from data”

Variational free energy

“learn from Hamiltonian”

F = 𝔼
x∼p(x)

[H(x) + kBT ln p(x)]

Two sides of the same coin



Nature tries to minimize free energy

F = E − TS
energy entropy 

 is the generating function of all other thermodynamic quantities 
Unfortunately, it is “intractable” to compute

F



energy 

F[p] = ∫ dx p(x)[H(x) + kBT ln p(x)]

Nature minimizes free energy

Difficulties in Applying the Variational 
Principle to Quantum Field Theories1 

Richard P. Feynman 

California Institute of Technology 
Pasadena, California 91125, U.S.A. 

Introduction 
I'd like to talk on some work I did on the variational principle in field theory. At one 
time I thought that the brute force method of doing arithmetic on the machines will 
never get anywhere and we will probably end with something more old-fashioned, 
i.e. some analysis plus the machines to help us with the analytic equations, and 
so I tried to do something along these lines with quantum chromodynamics. So 
I'm talking on the subject of the application of the variational principle to field 
theoretic problems, but in particular to quantum chromodynamics. 

I'm going to give away what I want to say, which is that I didn't get anywhere! 
I got very discouraged and I think I can see why the variational principle is not 
very useful. So I want to take, for the sake of argument, a very strong view -
which is stronger than I really believe - and argue that it is no damn good at all! 

Let us review why the variational principle has gotten a good reputation. Let's 
say you apply it to something like atoms or to simple problems with a small number 
of variables, using the usual analytic methods to get a quantity called the total 
energy, a quantity which is of direct physical significance. The energy levels of 
atoms are very interesting, measurable quantities and they can be calculated with 
accuracy. It was noted that if one had a wave function which had some measure 
of error, say 10 percent, then the error in the energy would be of order 1 percent. 
The error in the energy is quadratic in the error in the wave function. So, by not 
having a perfect wave function, you can still get very good values for the energy 
and that's why the variational method has gotten a good reputation. But it has 
never been a powerful way of getting, with accuracy, the wave function itself. 

Now I want to turn to the other side, the application of the variational principle 
to quantum field theory in a more or less straightforward way. So you write down 
a Hamiltonian in some kind of scheme and then you try to find a wave functional 

1 Transcript of Professor Feynman's talk, taken by the Editors and corrected by the author 
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The variational free-energy principle

variational density 😱entropy 

≥ F



energy 

Use deep generative models as the variational density 

F[p] = 𝔼
x∼p(x)

[H(x) + kBT ln p(x)]

A deep variational free energy approach

Direct samplingTractable entropy 

Turning a sampling problem to an optimization problem 
better leverages the deep learning engine:

Deep variational free-energy approach

😁entropy 

Li and LW, PRL ‘18
Wu, LW, Zhang, PRL ‘19
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The dense hydrogen problem

N protons + N electrons in a box

Nobel Lecture7 are updated versions). In 1935, Eugene Wigner (one of
the founders of modern solid-state physics) and his colleague Hillard
Huntington first tried to predict what would happened to hydrogen if it
were compressed to very high densities.8 Based on a nearly free-electron
picture, they predicted that above 250 000 atm (25 GPa)—an un-
imaginable pressure at the time—hydrogen would enter ametallic state.
Because they did not know the compressibility of hydrogen, they were
quite far off in their estimate of the pressure required. Experimental
high-pressure physics has developedandmaturedover the eight decades
since, succeeding in subjecting hydrogen to pressures of the order of 400
GPa,9 an almost 16-fold increase compared with the original prediction
of Wigner and Huntington. A plethora of exciting and interesting
phenomenahavebeenobserved indensehydrogen, but themetallic state
remains elusive. Owing to the accumulated experience, knowledge, and
significantly improved experimental and theoretical methods, we now
understand the problems much better and can make an educated guess
as to the P–T conditions needed to turn the molecular gas into the
lightest metal. While the experimentalists are tantalizingly close to the
pressures needed to metallize hydrogen, theory has already moved
beyondcurrent static pressure limits andhas predicted that ground-state
(T ! 0 K) hydrogen, owing to strong quantum effects, would be an
entirely new state of matter, which could be superfluid or super-
conducting, depending on the magnetic field applied.16 This fascinating
prospect is so unusual that it is quite difficult to imagine it being possible.
Consequently, metallizing hydrogen and reaching such a novel state of
matter is arguably the most exciting and interesting discovery that
condensed matter physics could produce today.

II. PHYSICS OF DENSE HYDROGEN AND DEUTERIUM
AT HIGH DENSITIES (COMPRESSION)

The behavior of hydrogen is strongly influenced by quantum
mechanical effects. Nuclear quantum effects are larger for hydrogen

than any other atom, which explains its unique behavior. Solid hy-
drogen has a massive quantum zero-point energy (ZPE), far greater
than its latent heat of melting, and has a Debye temperature well above
melting. These factors determine the behavior of hydrogen in the dense
state. Currently, five solid phases of hydrogen are known (see Fig. 1),
and it is unique among the stable elements in that full structural in-
formation (e.g., the locations of the atomic centers and the shapes of the
molecules) is absent for all of them, which prevents modeling and/or
predictions of hydrogen behavior at higher pressures.

Under ambient conditions, i.e., atmospheric pressure and
300 K, hydrogen is a molecular gas [see Fig. 2(a)]. The exchange
interaction, a purely quantum mechanical effect, forms one of the
strongest bonds in chemistry, the H–H bond. Owing to this bond,
hydrogen exists in molecular form, with atoms separated by ap-
proximately 0.74 Å and a bond dissociation energy of approximately
4.52 eV under ambient conditions.17,18 In its solid state at 2 K, the
hydrogen bandgap is very large, at about 14 eV.19 Conversely, in-
termolecular bonding is very weak, requiring extreme conditions to
bring the molecules together and bind them into the solid state. Low-
temperature solidification of hydrogen was first achieved in 1899 by
Dewar, at a slightly higher temperature (19 K) than that required to
liquefy helium. An alternative solidification route is through com-
pression, whereby hydrogen can be solidified at 300 K by bringing the
molecules close to each other and increasing the density. The gaseous,
diffusive, and corrosive nature of hydrogen, combinedwith the lack of
high-pressure technology, delayed room temperature solidification
for almost a century after Dewar’s experiments. Only the invention
and refinement of the diamond anvil cell allowed Mao and Bell20 to
solidify hydrogen at 300 K using a pressure of 5.5 GPa (55 000 atm).
The solid state under these conditions is now known as phase I
(Fig. 1). This phase is characterized by quantum spherically disor-
deredmolecules arranged in a hexagonal close packed (hcp) structure
[Fig. 2(b)]. At room temperature and above 5.5 GPa, hydrogen is a
very good (molecular) insulator with a bandgap of 9.5 eV (H.-K.Mao,
unpublished work). Phase I occupies a very prominent part of the
phase diagram, reaching up to 190 GPa at 300 K. It displays re-
markable pressure stability and to our knowledge extends over the
second largest pressure range for any molecular system, being second
only to molecular chlorine, whose phase I exists over a pressure
interval of 230 GPa.21 Phase II, known as the “broken symmetry”
phase,23 is formed by compressing phase I of hydrogen or deuterium
above 60 GPa or 25 GPa, respectively,13 and at temperatures below
∼100 K. Governed by quantum effects, phase II is thought to have
ordered (or at least partially ordered) molecules, but the nature of
their arrangement and their shape are unknown.24 There is a strong
isotope dependence in the transition from phase I to II, with the
deuterium transition occurring at substantially lower pressures than
that in hydrogen, implying a critical role of nuclear quantum effects.
Phase III is obtained by compressing phase II above ∼155 GPa below
100 K25 or at around 190 GPa at 300 K10,11 (see Fig. 1). Nothing so far
is known about its structure (atomic positions), but it has been shown
to also have an hcp lattice,26,27 with unusually intense infrared ac-
tivity.28 It has very recently been shown that phase III extends over a
pressure interval of more than 200 GPa at low temperatures.22 The
phase diagrams of hydrogen and deuterium were studied in great
detail in the 1990s, leading to many interesting discoveries: for ex-
ample, both isotopes have a triple point, i.e., a P–T point at which the

FIG. 1. Proposed (artistic) P–T phase diagram of H2. Solid phase lines are a
combination of static compression studies of solid hydrogen9–13 and dynamic
compression studies of fluid deuterium.14,15 Dashed lines represent extrapolations
of these combined results. The dark brown color of phases III and V at higher
pressures suggests closing of the bandgap.
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The dense hydrogen problem

N protons + N electrons in a box
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the founders of modern solid-state physics) and his colleague Hillard
Huntington first tried to predict what would happened to hydrogen if it
were compressed to very high densities.8 Based on a nearly free-electron
picture, they predicted that above 250 000 atm (25 GPa)—an un-
imaginable pressure at the time—hydrogen would enter ametallic state.
Because they did not know the compressibility of hydrogen, they were
quite far off in their estimate of the pressure required. Experimental
high-pressure physics has developedandmaturedover the eight decades
since, succeeding in subjecting hydrogen to pressures of the order of 400
GPa,9 an almost 16-fold increase compared with the original prediction
of Wigner and Huntington. A plethora of exciting and interesting
phenomenahavebeenobserved indensehydrogen, but themetallic state
remains elusive. Owing to the accumulated experience, knowledge, and
significantly improved experimental and theoretical methods, we now
understand the problems much better and can make an educated guess
as to the P–T conditions needed to turn the molecular gas into the
lightest metal. While the experimentalists are tantalizingly close to the
pressures needed to metallize hydrogen, theory has already moved
beyondcurrent static pressure limits andhas predicted that ground-state
(T ! 0 K) hydrogen, owing to strong quantum effects, would be an
entirely new state of matter, which could be superfluid or super-
conducting, depending on the magnetic field applied.16 This fascinating
prospect is so unusual that it is quite difficult to imagine it being possible.
Consequently, metallizing hydrogen and reaching such a novel state of
matter is arguably the most exciting and interesting discovery that
condensed matter physics could produce today.

II. PHYSICS OF DENSE HYDROGEN AND DEUTERIUM
AT HIGH DENSITIES (COMPRESSION)

The behavior of hydrogen is strongly influenced by quantum
mechanical effects. Nuclear quantum effects are larger for hydrogen

than any other atom, which explains its unique behavior. Solid hy-
drogen has a massive quantum zero-point energy (ZPE), far greater
than its latent heat of melting, and has a Debye temperature well above
melting. These factors determine the behavior of hydrogen in the dense
state. Currently, five solid phases of hydrogen are known (see Fig. 1),
and it is unique among the stable elements in that full structural in-
formation (e.g., the locations of the atomic centers and the shapes of the
molecules) is absent for all of them, which prevents modeling and/or
predictions of hydrogen behavior at higher pressures.

Under ambient conditions, i.e., atmospheric pressure and
300 K, hydrogen is a molecular gas [see Fig. 2(a)]. The exchange
interaction, a purely quantum mechanical effect, forms one of the
strongest bonds in chemistry, the H–H bond. Owing to this bond,
hydrogen exists in molecular form, with atoms separated by ap-
proximately 0.74 Å and a bond dissociation energy of approximately
4.52 eV under ambient conditions.17,18 In its solid state at 2 K, the
hydrogen bandgap is very large, at about 14 eV.19 Conversely, in-
termolecular bonding is very weak, requiring extreme conditions to
bring the molecules together and bind them into the solid state. Low-
temperature solidification of hydrogen was first achieved in 1899 by
Dewar, at a slightly higher temperature (19 K) than that required to
liquefy helium. An alternative solidification route is through com-
pression, whereby hydrogen can be solidified at 300 K by bringing the
molecules close to each other and increasing the density. The gaseous,
diffusive, and corrosive nature of hydrogen, combinedwith the lack of
high-pressure technology, delayed room temperature solidification
for almost a century after Dewar’s experiments. Only the invention
and refinement of the diamond anvil cell allowed Mao and Bell20 to
solidify hydrogen at 300 K using a pressure of 5.5 GPa (55 000 atm).
The solid state under these conditions is now known as phase I
(Fig. 1). This phase is characterized by quantum spherically disor-
deredmolecules arranged in a hexagonal close packed (hcp) structure
[Fig. 2(b)]. At room temperature and above 5.5 GPa, hydrogen is a
very good (molecular) insulator with a bandgap of 9.5 eV (H.-K.Mao,
unpublished work). Phase I occupies a very prominent part of the
phase diagram, reaching up to 190 GPa at 300 K. It displays re-
markable pressure stability and to our knowledge extends over the
second largest pressure range for any molecular system, being second
only to molecular chlorine, whose phase I exists over a pressure
interval of 230 GPa.21 Phase II, known as the “broken symmetry”
phase,23 is formed by compressing phase I of hydrogen or deuterium
above 60 GPa or 25 GPa, respectively,13 and at temperatures below
∼100 K. Governed by quantum effects, phase II is thought to have
ordered (or at least partially ordered) molecules, but the nature of
their arrangement and their shape are unknown.24 There is a strong
isotope dependence in the transition from phase I to II, with the
deuterium transition occurring at substantially lower pressures than
that in hydrogen, implying a critical role of nuclear quantum effects.
Phase III is obtained by compressing phase II above ∼155 GPa below
100 K25 or at around 190 GPa at 300 K10,11 (see Fig. 1). Nothing so far
is known about its structure (atomic positions), but it has been shown
to also have an hcp lattice,26,27 with unusually intense infrared ac-
tivity.28 It has very recently been shown that phase III extends over a
pressure interval of more than 200 GPa at low temperatures.22 The
phase diagrams of hydrogen and deuterium were studied in great
detail in the 1990s, leading to many interesting discoveries: for ex-
ample, both isotopes have a triple point, i.e., a P–T point at which the

FIG. 1. Proposed (artistic) P–T phase diagram of H2. Solid phase lines are a
combination of static compression studies of solid hydrogen9–13 and dynamic
compression studies of fluid deuterium.14,15 Dashed lines represent extrapolations
of these combined results. The dark brown color of phases III and V at higher
pressures suggests closing of the bandgap.
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before full metallization of H is reached171. The mag-
nitude of electrical conductivity, along with the planet’s 
magnetic field strength and luminosity, can be used to 
estimate the internal ohmic dissipation and provide 
constraints for structure and dynamical models172–177.

Jupiter’s magnetic field is the strongest in the Solar 
System (excluding that of the Sun), and its surface field 
strength is 4–20 G (REFS178,179). Recently, the Juno space-
craft revealed that Jupiter’s magnetic field has an intense 
isolated magnetic spot near the equator with a negative 
magnetic anomaly. In addition, an intense and relatively 
narrow band of positive flux near 45 degrees latitude in 
the northern hemisphere has been found, together with 
a rather smooth magnetic field in the southern hem-
isphere. Furthermore, the north–south asymmetry in 
Jupiter’s magnetic field structure could be explained by 
the existence of a diluted core179.

Saturn’s magnetic field, which has a surface field 
strength of 0.2–0.5 G (REFS180–182), is nearly perfectly 
symmetrical with respect to the spin- axis183. The char-
acter of Saturn’s magnetic field could be a result of He 
rain, which could create a stable (against convection) 
layer below/above the dynamo. A stable deep interior 
could also be a result of composition gradients and 
non- adiabatic interiors.

Understanding the processes that lead to magnetic- 
field generation and their outcomes requires good 
knowledge of the associated thermodynamics and 
the feedback on the magnetic field and vice versa. 
Present- day understanding of the dynamo process is 

still limited, and as a result, the magnetic fields can only 
be used to set some bounds on the material properties 
and heat transport inside the planets. This, however, may 
change in the future.

Challenges and outlook
Although the giant planets and the behaviour of ele-
ments at planetary conditions are not yet completely 
understood, we expect progress in the near future. 
Upcoming experiments and theoretical models are 
expected to provide a deeper understanding of phase 
transitions, mixtures and immiscibilities. We also fore-
see improvements in numerical calculations, given the 
increasing computation power and the development of 
new numerical techniques. In particular, we expect that 
future experiments will resolve the disagreement on 
the metallization conditions of H and obtain consistent 
results from the various methods. In addition, it would 
be desirable to make experiments on H–He mixtures, 
to investigate the demixing of He in H. Another topic 
that is expected to blossom in the future is supercon-
ductivity. Although superconductivity has yet to be 
found in pure H, the hypothesis of superconductive H 
has directed the search for superconductivity in H- rich 
materials184,185.

In this Review, we have focused on Jupiter and 
Saturn and have not discussed the ice giants Uranus  
and Neptune. The ice planets are key to understand-
ing planet formation and for the characterization of 
intermediate planets around other stars. Because these 
planets are thought to consist of volatiles such as water, 
methane and ammonia, experimental data focusing on 
these materials would be valuable. In addition, the influ-
ence of H–He on the mixtures of these materials and the 
role of carbon is yet to be determined.

We also expect progress in understanding the inter-
nal structures of Jupiter and Saturn, given the ongoing 
efforts in processing and interpretation of recent data 
from the Juno and Cassini missions, and the devel-
opment of more comprehensive structure models. In 
addition, upcoming and future space missions will play 
a key role in better constraining the interiors of the gas 
giants. The planned ESA JUICE mission will reveal 
further information on Jupiter, and a potential Saturn 
probe mission will provide constraints on Saturn’s 
atmospheric composition and the immiscibility of He 
in H and the process of phase separation. Nevertheless, 
it is now realized that the interiors of giant planets are 
far more complex than previously thought. To under-
stand them better, improvements in the H and H–He 
EOS are required but insufficient. We suggest that 
future studies should concentrate on phase transitions 
of pure elements and mixtures as well as their physi-
cal properties such as thermal diffusivity, electrical 
conductivity and opacity. These properties can then 
be used to further constrain models for giant planet 
formation, evolution and structure. The link between 
planetary interiors and high- pressure physics is clear, 
and we believe that the future holds great promise in 
this direction.
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Nobel Lecture7 are updated versions). In 1935, Eugene Wigner (one of
the founders of modern solid-state physics) and his colleague Hillard
Huntington first tried to predict what would happened to hydrogen if it
were compressed to very high densities.8 Based on a nearly free-electron
picture, they predicted that above 250 000 atm (25 GPa)—an un-
imaginable pressure at the time—hydrogen would enter ametallic state.
Because they did not know the compressibility of hydrogen, they were
quite far off in their estimate of the pressure required. Experimental
high-pressure physics has developedandmaturedover the eight decades
since, succeeding in subjecting hydrogen to pressures of the order of 400
GPa,9 an almost 16-fold increase compared with the original prediction
of Wigner and Huntington. A plethora of exciting and interesting
phenomenahavebeenobserved indensehydrogen, but themetallic state
remains elusive. Owing to the accumulated experience, knowledge, and
significantly improved experimental and theoretical methods, we now
understand the problems much better and can make an educated guess
as to the P–T conditions needed to turn the molecular gas into the
lightest metal. While the experimentalists are tantalizingly close to the
pressures needed to metallize hydrogen, theory has already moved
beyondcurrent static pressure limits andhas predicted that ground-state
(T ! 0 K) hydrogen, owing to strong quantum effects, would be an
entirely new state of matter, which could be superfluid or super-
conducting, depending on the magnetic field applied.16 This fascinating
prospect is so unusual that it is quite difficult to imagine it being possible.
Consequently, metallizing hydrogen and reaching such a novel state of
matter is arguably the most exciting and interesting discovery that
condensed matter physics could produce today.

II. PHYSICS OF DENSE HYDROGEN AND DEUTERIUM
AT HIGH DENSITIES (COMPRESSION)

The behavior of hydrogen is strongly influenced by quantum
mechanical effects. Nuclear quantum effects are larger for hydrogen

than any other atom, which explains its unique behavior. Solid hy-
drogen has a massive quantum zero-point energy (ZPE), far greater
than its latent heat of melting, and has a Debye temperature well above
melting. These factors determine the behavior of hydrogen in the dense
state. Currently, five solid phases of hydrogen are known (see Fig. 1),
and it is unique among the stable elements in that full structural in-
formation (e.g., the locations of the atomic centers and the shapes of the
molecules) is absent for all of them, which prevents modeling and/or
predictions of hydrogen behavior at higher pressures.

Under ambient conditions, i.e., atmospheric pressure and
300 K, hydrogen is a molecular gas [see Fig. 2(a)]. The exchange
interaction, a purely quantum mechanical effect, forms one of the
strongest bonds in chemistry, the H–H bond. Owing to this bond,
hydrogen exists in molecular form, with atoms separated by ap-
proximately 0.74 Å and a bond dissociation energy of approximately
4.52 eV under ambient conditions.17,18 In its solid state at 2 K, the
hydrogen bandgap is very large, at about 14 eV.19 Conversely, in-
termolecular bonding is very weak, requiring extreme conditions to
bring the molecules together and bind them into the solid state. Low-
temperature solidification of hydrogen was first achieved in 1899 by
Dewar, at a slightly higher temperature (19 K) than that required to
liquefy helium. An alternative solidification route is through com-
pression, whereby hydrogen can be solidified at 300 K by bringing the
molecules close to each other and increasing the density. The gaseous,
diffusive, and corrosive nature of hydrogen, combinedwith the lack of
high-pressure technology, delayed room temperature solidification
for almost a century after Dewar’s experiments. Only the invention
and refinement of the diamond anvil cell allowed Mao and Bell20 to
solidify hydrogen at 300 K using a pressure of 5.5 GPa (55 000 atm).
The solid state under these conditions is now known as phase I
(Fig. 1). This phase is characterized by quantum spherically disor-
deredmolecules arranged in a hexagonal close packed (hcp) structure
[Fig. 2(b)]. At room temperature and above 5.5 GPa, hydrogen is a
very good (molecular) insulator with a bandgap of 9.5 eV (H.-K.Mao,
unpublished work). Phase I occupies a very prominent part of the
phase diagram, reaching up to 190 GPa at 300 K. It displays re-
markable pressure stability and to our knowledge extends over the
second largest pressure range for any molecular system, being second
only to molecular chlorine, whose phase I exists over a pressure
interval of 230 GPa.21 Phase II, known as the “broken symmetry”
phase,23 is formed by compressing phase I of hydrogen or deuterium
above 60 GPa or 25 GPa, respectively,13 and at temperatures below
∼100 K. Governed by quantum effects, phase II is thought to have
ordered (or at least partially ordered) molecules, but the nature of
their arrangement and their shape are unknown.24 There is a strong
isotope dependence in the transition from phase I to II, with the
deuterium transition occurring at substantially lower pressures than
that in hydrogen, implying a critical role of nuclear quantum effects.
Phase III is obtained by compressing phase II above ∼155 GPa below
100 K25 or at around 190 GPa at 300 K10,11 (see Fig. 1). Nothing so far
is known about its structure (atomic positions), but it has been shown
to also have an hcp lattice,26,27 with unusually intense infrared ac-
tivity.28 It has very recently been shown that phase III extends over a
pressure interval of more than 200 GPa at low temperatures.22 The
phase diagrams of hydrogen and deuterium were studied in great
detail in the 1990s, leading to many interesting discoveries: for ex-
ample, both isotopes have a triple point, i.e., a P–T point at which the

FIG. 1. Proposed (artistic) P–T phase diagram of H2. Solid phase lines are a
combination of static compression studies of solid hydrogen9–13 and dynamic
compression studies of fluid deuterium.14,15 Dashed lines represent extrapolations
of these combined results. The dark brown color of phases III and V at higher
pressures suggests closing of the bandgap.
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The Universe as a generative model

Thank you!
Discovering physical laws: learning the action

Solving physical problems: optimizing the action


