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Density functional theory 
Hohenberg and Kohn 1964
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n Hohenberg-Kohn theorem: All properties of the system are 
completely determined by the ground state density. 

n Exact ground state density and energy can be obtained by 
minimizing a universal density functional. 
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Kohn and Sham 1965

n Hohenberg-Kohn theorem: All properties of the system are 
completely determined by the ground state density. 

n Exact ground state density and energy can be obtained by 
minimizing a universal density functional. 

n In practice, obtain many-particle density from an auxiliary 
noninteracting system 



Time-dependent DFT
Runge and Gross, 1984

n Time-dependent density also plays a central role for 
non-equilibrium systems 
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Time-dependent DFT
Runge and Gross, 1984

n Time-dependent density also plays a central role for 
non-equilibrium systems 

n Vxc from diffusion Monte-Carlo simulation of uniform atomic 
gases Pilati et al 2010, Ping Nang Ma et al 2012

n We use the adiabatic local-density approximation
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i� ĉj� +

X

i,�

vexti n̂i� + U
X

i

n̂i�n̂i⇥

Schiro and Fabrizio, 2010

|�(t)� =
Y

i

P̂i |Slater�



Deep optical lattices:  
Time-dependent Gutzwiller method

H = �
X

i,j,�

tij ĉ
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i� ĉj� +

X

i,�

vexti n̂i�

...

HB =
X

i

b̂†iHiB b̂i

b̂i =

0

BB@

e
"
#
d

1

CCA

i

Schiro and Fabrizio, 2010

t⇤ij = z⇤i tij zj

|�(t)� =
Y

i

P̂i |Slater�



Strongly)interactingNon/interacting

Initial)State

Free)Expansion)in)lattice

Strongly)interactingNon/interacting

Initial)State

Free)Expansion)in)lattice

Simulation of cloud expansion
Schneider et al, 2012
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Figure 2 | Expansion of non-interacting fermions. a–j, In situ absorption images (column density in a.u.) of an expanding non-interacting cloud in a
horizontally homogeneous square lattice with lattice depth 8Er (1ms⇤ 1.8h̄/J). The expansion changes the symmetry of the cloud from the rotational
symmetry of the harmonic trap to the square symmetry of the lattice Brillouin zone. k, Fitted cloud size R(t) (light) and deconvolved single particle width
Rs(t)=

⌅
R(t)2�R(0)2 (dark) extracted from phase-contrast images. Solid lines denote the quantum mechanical prediction and the dashed lines a

corresponding classical random walk.

increasing interaction strengths. During the expansion the density
gets reduced and, in the limit of infinite expansion times, all
atoms are expected to become ballistic. This crossover into ballistic
behaviour for small densities leads to a breakdown of the diffusive
behaviour and regularizes the otherwise singular diffusion equation.

To describe both the diffusive and the ballistic regime, we
use numerical simulations based on the semi-classical Boltzmann
equation in the relaxation-time approximation:

⇥t fq +vq⇧rfq +F(r)⇧qfq = � 1
� (n)

�
fq � f 0q (n)

⇥
(2)

This equation describes the evolution of a semi-classical momen-
tum distribution fq(r,t ) as a function of position and time in the
presence of a force F. Here, the transport scattering time 1/� (n),
which describes the relaxation towards an equilibrium Fermi dis-
tribution f 0q for given energy and particle densities, is determined
from a microscopic calculation of the diffusion constant for small
interactions (see Supplementary Information for details). The
Boltzmann equation describes qualitatively and semi-quantitatively
the observed cloud shapes, see Fig. 3b.

The core width Rc(t ), which measures the size of only the
high-density core, is extracted from phase-contrast images by
determining the half-width at half-maximum (HWHM) of the
density distribution (see Supplementary Information). By fitting

the evolving core width to Rc(t )=
⌅
R2
c,0 +v2c t 2, we extract the core

expansion velocities vc, which are shown in Fig. 4. Surprisingly, they
decrease dramatically already for interactions much smaller than
the bandwidth 8 J, which highlights the strong impact of moderate
interactions on mass transport in these systems. We observe the
same behaviour irrespective of the sign of the interactions.

For interactions larger than |U/J | ⇥>3, the dynamics of the high-
density core changes qualitatively: the core starts shrinking instead
of expanding and the core expansion velocities vc become negative.
In this regime, the expansion of the diffusive core is strongly
suppressed and the essentially frozen core dissolves by emitting
ballistic particles and therefore shrinks in size, similarly to amelting
ball of ice. This feature is also recovered by our simulations based on
the Boltzmann equation (red line in Fig. 4). The slight asymmetry
at large interactions can be attributed to interaction-dependent
losses caused by light-assisted collisions during the preparation
sequence. Note that the suppressed expansion is not related to
any self-trapping arising from the interaction potential29, as we
have checked by switching off the corresponding forces in our
numerical simulations.

This pronounced dependence of the dynamics on small
interactions enabled us to measure the zero crossing of the
scattering length (B(a = 0) = 209.1± 0.2G), which corresponds
to a width of the Feshbach resonance of w = 7.0 ± 0.2G, see
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Figure 3 | Expansion of interacting fermions. a, Experimental in situ absorption images for different interactions after 25ms expansion in a horizontally
homogeneous lattice. The images show a symmetric crossover from a ballistic expansion for non-interacting clouds to an interaction-dominated expansion
for both attractive and repulsive interactions. Images are averaged over at least five shots and all scales are identical to those in Fig. 2. b, Simulated density
distributions using a 2D Boltzmann equation.

Supplementary Information. In contrast to the high interaction
limit, where the exponentially long lifetime5 of excess doublons
leads to two independent dynamics of doublons and single atoms,
we observe thermal equilibrium between doublons and unpaired
atoms, as shown in detail in the Supplementary Information.

We have shown that the observed transport properties can be
qualitatively predicted by the semi-classical Boltzmann equation
(equation (2)). However, the full quantum dynamics is certainly
more complex and includes, for example, the formation of
entanglement between distant atoms30 as well as the existence of
bound or repulsively bound states. Although the expansion can be
modelled in 1D (ref. 31) usingDMRGmethods32, so far nomethods

are available to calculate the dynamics quantum-mechanically in
higher dimensions. The separation between ballistically expanding
atoms carrying high entropy and the high-density core in the
centre could be used to locally cool the atoms via quantum-
distillation processes33.

Surprisingly, we observe identical density profiles and expansion
rates for repulsive and attractive interactions of the same strength
(Figs 3, 4). Whereas scattering cross sections are proportional to
U 2 for small U , the interaction energy and density gradients
give rise to forces linear in U : repulsive interactions create
a positive pressure, which in free space would lead to an
increased expansion rate, whereas an attractive interaction is

4 NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics
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Topological charge pumping of 
cold atoms

j(x, t)
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A pump is a device that moves fluids, or sometimes 
slurries, by mechanical action. 
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Pumps

Buttiker, Brouwer, Zhou, Spivak, Altshuler ...

A pump is a device that moves fluids, or sometimes 
slurries, by mechanical action. 

Pump for Electrons (2)
Examples: 

• quantum dot with shape-distorting gate voltages x1, x2

• conductor penetrated by Aharonov-Bohm fluxes x , x• conductor penetrated by Aharonov-Bohm fluxes x1, x2

x1

x2

x1 x2

II

Switkes et al. (1999)  Switkes et al 1999 Archimedes’ screw ~250 BC



Topological pump
A topological pump transfers quantized charge in each 
pumping cycle. 

Thouless, Niu, 1980s

Su Schrieffer Heeger Model model for polyacetalene
simplest “two band” model
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Without the extra symmetry, all 1D band structures are topologically equivalent.
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Su, Schrieffer, Heeger, 1979

n Current flows in an insulating state

n No dissipation! 

n Dynamical analog of quantum Hall effect



Experimental progresses

Optical Superlattice in-situ imaging

Full (independent) dynamical
control over V1, V2 and φ

Gemelke, et al, Sherson et al, Bakr et al 

per lattice site, exhibit a corresponding variance in the particle
number s2i~!nni . When the interactions between the particles relative
to their kinetic energy are increased, the systemundergoes a quantum

phase transition to aMott insulating state4–6. For homogeneous con-
ditions and a two-dimensional simple square lattice, this transition is
expected to occur at U=Jð Þc^16:4 (see ref. 23), where small shifts of
this critical value have been reported when the system is additionally
exposed to an underlying harmonic trapping potential24. In our case,
such an additional harmonic confinement was caused by the
Gaussian beam profile of our lattice beams (1/e2 waist of 75 mm)
and resulted in an in-plane harmonic confinement with trapping
frequencies vx/(2p)5 72(4)Hz and vy/(2p)5 83(4)Hz for lattice
depths of Vx,y5 23(2)Er. For U=J ? U=Jð Þc the Mott insulator
can be described by neglecting the tunnelling energy of the system
in the so called zero-tunnelling approximation (atomic limit). The
in-trap density distribution then exhibits a pronounced shell struc-
ture of incompressible regions where the density is pinned to integer
values and increases in a step-likemanner from the outer wings to the
inner core5,16,25,26. At zero temperature, the particle number variance
at a lattice site is then expected to vanish (s2i~0), resulting in perfect
Fock states. For low, but still finite temperatures kBT = U , thermal
fluctuations can be induced. These fluctuations limit the quality of
the number squeezing and eventually lead to a complete melting of
the characteristic shell structure of a Mott insulator when the tem-
perature is increased above the melting temperature Tm^0:2U=kB
(see refs 20 and 21).

We monitored the dramatic differences in the density profiles and
the on-site number fluctuations by imaging the in-trap atom distri-
butions of a BEC and aMott insulator in the zero-tunnelling limit for
different atom numbers and temperatures (see top row of Fig. 2). For
the Mott insulators, the lattices along the x and y directions were
increased in S-shaped ramps within 75ms up to values of
Vx,y5 23(2)Er. To freeze out the atom distribution of a BEC, we
ramped up the lattices within 0.1ms. Using the point spread function
of our optical imaging system we were able to reconstruct the atom
number distribution on the lattice with single-site and single-atom
resolution via an image processing algorithm (seeMethods). It works

b

x
y

20 µm

BEC Mott insulators

R
aw

 im
ag

es
R

ec
on

st
ru

ct
ed

R
ec

on
st

ru
ct

ed
 ∗

 p
oi

nt
sp

re
ad

 fu
nc

tio
n

 

c e f ga

Increasing atom number

d

Figure 2 | High-resolution fluorescence images of a BEC and Mott
insulators. The top row shows experimentally obtained raw images of a BEC
(a) and Mott insulators for increasing particle numbers (b–g) in the zero-
tunnelling limit. The middle row shows numerically reconstructed atom
distribution on the lattice. The images were convoluted with the point
spread function (* indicates the convolution operator) of our imaging

system for comparison with the original images. The bottom row shows the
reconstructed atomnumber distribution. Each circle indicates a single atom;
the pointsmark the lattice sites. The BEC andMott insulators were prepared
with the same in-plane harmonic confinement (see Supplementary
Information for the Bose–Hubbard model parameters of our system).
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Figure 1 | Experimental set-up. Two-dimensional bosonic quantumgases are
prepared in a single two-dimensional plane of an optical standing wave along
the z direction, which is created by retroreflecting a laser beam (l5 1,064 nm)
on the coated vacuum window. Additional lattice beams along the x and y
directions are used to bring the system into the strongly correlated regime of a
Mott insulator. The atoms are detected using fluorescence imaging via a high-
resolution microscope objective. Fluorescence of the atoms was induced by
illuminating the quantum gas with an optical molasses that simultaneously
laser-cools the atoms. The inset shows a section from a fluorescence picture of
a dilute thermal cloud (points mark the lattice sites).
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1D pumping lattices 
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Quantum dynamics
j(x, t)
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1D pump and 2D QHE

Integer Quantum Hall Effect :  Laughlin Argument

Adiabatically thread a quantum of magnetic flux through cylinder.
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Practical issues

n Detection

n External trap 

n Temperature effect

n Non-adiabatic effect 



Trapping & Detection

hxi/d = �n



Trapping & Detection

hxi/d = �n



Temperature & Non-adiabatic effect
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Measuring Chern number from 
topological charge pumping



Synthetic gauge-field in 
optical lattices

n Imprint complex phases to the hopping amplitude 

subsequently deload all atoms into the jmF ¼ þ1i spin
state while mapping the occupied crystal momentum kx to
free-particle momentum [14]. We image this distribution
after a 13.1 ms TOF, revealing kmin. The Peierls phase,
shown as crosses in Fig. 3(a), is !=" ¼ kmin=kL.

In the sudden method, we test the robustness of the
Peierls phase ! by first adiabatically loading to ! ¼ #"
(the condensate sits at the edge of the Brillouin zone) and
then suddenly changing both!z and!rf [18] to new values
(changing both ! and t). This results in momentum space
oscillations centered at kmin. After a time # we release the
BEC, and measure as above. We fit the crystal momentum
dynamics with kxð#Þ¼kminþ"kxcosð2"#f&þ$Þ, where
"kx is the amplitude, and $ is an overall phase shift whose
average value is 0:9ð1Þ" for these measurements [14].
Figure 3(a) (circles) shows the measured Peierls tunneling
phase as a function of !z.

Measurements from the adiabatic and sudden methods
are in good agreement with each other and their expected
values [Fig. 3(a), dashed curves], highlighting the precise
experimental control offered by our rf-Raman induced
effective Zeeman lattice. This agreement also demon-
strates the robustness of our engineered Hamiltonian to
deliberate variations in !rf of up to 0:25EL, as was antici-
pated by the absence of !rf in the large !R expression for
!. We find that the hopping phase is unaltered by small
changes in !rf even when t changes significantly.

The sloshing amplitude j"kxj is displayed in Fig. 3(b).
For large initial j"kxj (shaded region) we observe the
depletion of BEC atoms and a strong damping of the center
of mass oscillation (evident from the departure of the

oscillation amplitude from the value predicted by single-
particle arguments). Both of these effects are signatures of
an energetic instability in the dynamics of a BEC moving
in a combined harmonic plus periodic potential [19]. The
region of strong damping observed in our system coincides
with the expected range "kx > 0:5kL (shaded gray region)
of this dynamical instability [19]. Figure 3(c) displays the
tunneling amplitude t, obtained from f&. For comparison, a
sinusoidal lattice would require a depth of V0 ' 8EL to
give similar parameters.
Having discussed the behavior of atoms in the lattice’s

lowest band, we now explore the full lattice by suddenly
turning it on, diabatically projecting a ground state BEC
into higher bands. At the beginning of such a pulse, an
ordinary periodic potential would first spatially modulate
the BEC’s phase before the atoms begin to move [20]; our
effective Zeeman lattice induces such a modulation but in a
spin-dependent manner. We focus on the !R ( !rf and
!R ) !rf tight-binding regimes and investigate the spin
and spatial structure of our lattice. Our data extends well
beyond the short-time phase modulation regime.
In the absence of either Raman or rf coupling, there is no

lattice. As indicated in Fig. 4(a), we use two different
methods to introduce our lattice on an initial spatially
uniform state: (i) starting with a rf-dressed state (with
kx ¼ 0), we suddenly (ton < 1 %s) turn on the Raman

(a)

(b)

FIG. 2 (color online). Effective mass. (a) Comparison of the
oscillations of a BEC in the jmF ¼ *1i state to those in a rf-
Raman-dressed BEC [@!R ¼ 12:4ð9Þ EL and @!rf ¼ 2:04ð6Þ
EL]. The curves are fits to a sinusoid from which we obtain
fx ¼ 14:0ð1Þ Hz and f& ¼ 5:3ð1Þ Hz, thus m&=m ¼ 7:0ð3Þ and
t ¼ 0:015ð1ÞEL. (b) Measurements of m&=m as a function of!R

and !rf . The curves depict the expected m&=m ratio.

(a)

(b)

(c)

FIG. 3 (color online). Peierls transformation. (a) Peierls phase
! measured using adiabatic (crosses) and sudden (circles)
changes of !z. Vertical lines denote the first Brillouin zone.
(b) Sloshing amplitude after suddenly changing !z. We ob-
served strong damping of oscillations in the region shaded in
gray. (c) Tunneling amplitude t measured from oscillation fre-
quency. The rf coupling was modulated as a function of !z to
test the robustness of the Peierls phase !. The Raman coupling
was held at @!R ¼ 10:0ð8ÞEL. The dashed curves correspond to
the expected behavior calculated from HrfþR, and the pink bands
arise from the experimental uncertainty in !R.
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k ¼ A=@. As will be detailed later on, we experimentally
observe the relaxation of the condensate quasimomentum
toward the minimum of the effective dispersion relation.
Therefore, the imprinted Peierls phase can be directly read
out from the quasimomentum distribution revealed in the
time of flight after a sudden switch off of the lattice and the
external potential.

As a central result, Fig. 2(b) shows the experimental data
together with the theoretical predictions from Eq. (3). After
increasing the forcing amplitude slowly (within up to
120 ms) to the desired value, the corresponding quasimo-
mentum distribution was recorded. From the obtained
time-of-flight images, examples of which are shown in
Fig. 2(c), we extract the Peierls phases ! [22]. We observe
an excellent agreement between experiment and theory,
thus proving the controlled generation of an arbitrary
vector gauge potential encoded into the Peierls phase ! 2
½0; 2"½. In addition, the experimental images demonstrate
the large degree of coherence maintained in the atomic
sample throughout the shaking process. As an additional
feature, Fig. 2(a) shows that the Peierls phase allows us

now to invert the sign of the effective tunneling element
without crossing jJeffj ¼ 0 via the rotation in the complex
plane.
In the following, we will discuss the details of the

relaxation of the system toward nonzero quasimomenta
superfluid states, allowing for the described direct mea-
surement of the Peierls phase. Note that for an homoge-
neous and noninteracting system, the initial Bloch wave at
ki ¼ 0 remains an eigenstate of the effective Hamiltonian.
Thus, no transfer to states with k ! 0 is expected after the
shaking is turned on. However, since we are working with
interacting bosons and an external harmonic confinement,
more effects come into play.
When the gauge potential is ramped up from 0 to Af, the

condensate acquires a nonzero group velocity, reflecting
the presence of an artificial electric force FE ¼ # _A. This
velocity induces a displacement of the condensate’s center-
of-mass position xc in the harmonic potential of frequency
f [22]. The resulting restoring force induces oscillations
both in position and momentum space [see Fig. 3(a)]. In
Fig. 3(b), we report a time-resolved measurement of the
condensate quasimomentum after a quench to a final
Peierls phase of #"=4. The oscillations around the final
quasimomentum result from an excitation of the dipole
mode: The measured frequency of 3:6$ 0:4 Hz perfectly
matches the expected dressed condensate frequencyffiffiffiffiffiffiffiffiffiffiffiffiffi
m=m%p

f for particles having an effective mass m% in the
lattice of 10$ 1Erec depth with a tunneling amplitude of
0:3Jbare (ftheo ¼ 3:5$ 0:5 Hz). The coupling to nonzero
quasimomenta results thus from the underlying harmonic
trapping potential.
In addition, this center-of-mass dynamics is subjected to

several damping mechanisms induced by the trap anhar-
monicity or the lattice discreteness, which leads to a cou-
pling to other collective modes and therefore to the
relaxation of the BEC toward the new equilibrium state.
Therefore, the duration of the ramp from 0 to Af has to be
compared with the time scale of those relaxation mecha-
nisms. In Fig. 3 we compare time-resolved measurements
of the quasimomentum distribution for a slow ramp
[Fig. 3(d)] of A to a final Peierls phase ! ¼ 3"=2, with a
sudden quench [Fig. 3(f)]. As the gauge field is slowly
increased, the BEC follows the shift of the dispersion
relation minimum, as depicted in Fig. 3(c). For the quench,
on the contrary, for which the shift of the dispersion
relation occurs within 1 ms, the system cannot follow
and thus relaxes into the nearest minimum of the effective
band structure [see Fig. 3(e)]. For the chosen value, this
minimum lies on the left with respect to the original k ¼ 0
peaks and we thus find the BEC at k ¼ #"=2d. This
demonstrates clearly that in the presence of these relaxa-
tion mechanisms, the forcing does not induce a net particle
current in the lattice, unlike for ratchets, but allows the
engineering of ground-state superfluids at arbitrary non-
zero quasimomenta.

(a)

(b)

(c)

FIG. 2 (color). Creation of complex tunneling matrix ele-
ments. (a) Absolute value of the tunneling parameter obtained
from Eq. (3) for our experimental parameters (T1 þ T2 ¼ 1 ms
and T1=T2 ¼ 2:1). (b) The measured Peierls phases in a 1D
driven optical lattice for different values of the forcing amplitude
K are depicted as circles. The dashed red curve corresponds to
the theoretically expected values [Eq. (3)]. (c) Quasimomentum
distribution of the BEC after 27 ms time of flight for different
values of K. The Peierls phase as a function of K is deduced
from the observed shifts of the interference patterns.

PRL 108, 225304 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
1 JUNE 2012

225304-3

Struck et al

H = �J
X

m

ei2��c†m+1cm +H.c.n 1D Peierls lattice NIST, Hamburg

Experimental Realization of Strong Effective Magnetic Fields in an Optical Lattice
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We use Raman-assisted tunneling in an optical superlattice to generate large tunable effective magnetic

fields for ultracold atoms. When hopping in the lattice, the accumulated phase shift by an atom is

equivalent to the Aharonov-Bohm phase of a charged particle exposed to a staggered magnetic field of

large magnitude, on the order of 1 flux quantum per plaquette. We study the ground state of this system

and observe that the frustration induced by the magnetic field can lead to a degenerate ground state for

noninteracting particles. We provide a measurement of the local phase acquired from Raman-induced

tunneling, demonstrating time-reversal symmetry breaking of the underlying Hamiltonian. Furthermore,

the quantum cyclotron orbit of single atoms in the lattice exposed to the magnetic field is directly revealed.

DOI: 10.1103/PhysRevLett.107.255301 PACS numbers: 67.85.!d, 03.65.Vf, 03.75.Lm, 73.20.!r

The application of strong magnetic fields to two-
dimensional electron gases has led to the discovery of
seminal quantum many-body phenomena, such as the in-
teger and fractional quantum Hall effect [1]. Ultracold
atoms constitute a unique experimental system for study-
ing such systems in a clean and well-controlled environ-
ment and for exploring new physical regimes, not
attainable in typical condensed matter systems [2,3].
However, charge neutrality of atoms prevents direct appli-
cation of the Lorentz force with a magnetic field. An
equivalent effect can be provided by the Coriolis force in
a rotating atomic gas, which led to the observation of
quantized vortices in a Bose-Einstein condensate [4]. The
regime of fast rotation, in which the atomic gas occupies
the lowest Landau level, was achieved in Refs. [5] but the
amplitude of the effective gauge field remained too small
to enter the strongly correlated regime that requires a
number of vortices on the order of the particle number
[2,6]. An alternative route consists in applying Raman
lasers to the gas in order to realize a Berry’s phase for a
moving particle [7,8]. The effective gauge fields generated
in such a setup resulted in the observation of a few vortices,
but were still far from the strong-field regime.

In this Letter, we demonstrate the creation of strong
effective magnetic fields for ultracold atoms in a two-
dimensional optical lattice. Inspired by the proposal of
Jaksch and Zoller [9] and subsequent work [10–12], our
technique is based on atom tunneling assisted by Raman
transitions [see Fig. 1(a)]. Because of the spatial variation
of the Raman coupling, the wave function of an atom
tunneling from one lattice site to another acquires a non-
trivial phase, which can be interpreted as an effective
Aharonov-Bohm phase. In our setup, the magnetic flux
per four-site plaquette is staggered with a zero mean,
alternating between !=2 and !!=2 [see Fig. 1(b)] [13].
We study the nature of the ground state in this optical

lattice from its momentum distribution and show, in par-
ticular, that the frustration associated with the effective
magnetic field can lead to a degenerate ground state for
single particles, similar to the prediction of Ref. [14]. We
also study the quantum cyclotron dynamics of single atoms
restricted to a four-site plaquette and obtain direct evidence
for time-reversal symmetry breaking of the Hamiltonian.
Our experimental setup consists of an ultracold gas of

87Rb atoms held in a two-dimensional square lattice, form-
ing an array of 1D Bose gases. The lattice was created by
two standing waves of laser light at "s ¼ 767 nm (‘‘short’’
lattices) and a third one with twice the wavelength

FIG. 1 (color). Experimental setup. (a) The experiment con-
sists of a 2D array of 1D potential tubes with spacing jdxj ¼
jdyj ¼ "s=2. While bare tunneling occurs along the y direction
with amplitude J, it is inhibited along x owing to a staggered
potential offset !. A pair of Raman lasers with wave vectors k1;2

and frequency difference !1 !!2 ¼ !=@, induces a resonant
tunnel coupling of magnitude K whose phase depends on posi-
tion. This realizes an effective flux ## per plaquette with
alternating sign along x. (b) Spatial distribution of the phase of
the Raman-induced tunnel coupling realized in the experiment.
The gray shaded area highlights the magnetic unit cell.
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of the lattice for fixed e⇥ective electron mass (straight lines in Fig. 7.5).
These levels follow the usual law:

E = E0 ± �⇥ (B)
�

n +
1
2

⇥
(7.2)

with the cyclotron frequency ⇥ (B) = eB/m⇥ determined by the e�ective
mass of the square lattice band extrema m⇥ = �2(d2E/dk2)�1 = �2/2a2�0.

Figure 7.6.: The Hewlett-Packard
8920A table-top calculator (nick-
named “Rumpelstilzchen”) used by D.
Hofstadter for the numerical solution
of Harper’s equation revealing the
fractal spectrum of lattice electrons in
a magnetic field. (See Fig. 7.5, im-
ages taken from Ref. [88])

7.3. Butterfly and anomalous Landau levels of
graphene

Subsequently to the work of Hofstadter on the square lattice, various
alternative topologies have been studied. The first, obvious choice was
the hexagonal lattice, which has no electron-hole symmetry, leading to
an asymmetric butterfly [55, 102]. The honeycomb lattice was studied
soon after [220], though without reference to the yet-unknown anomalous
quantum Hall e⇥ect of graphene. Finally, special Lieb and Kagome lattice
structures were also studied, featuring graphene-like massless bands in a
square symmetry [22, 130], leading to similar anomalous Landau levels.

The Hofstadter butterfly of a honeycomb lattice is displayed in Fig. 7.7.
At the top and the bottom of the energy spectrum, the structure closely
resembles that of the square lattice. The linear Landau levels are caused
by the massive bands at the �point and can again be described by Eq. (7.2),
this time with an e⇥ective mass of m⇥ = 2�2/3�0d2

CC ⌅ 0.95me. At the Fermi
energy EF however, a very di⇥erent behavior can be observed based on
the massless bands of graphene near the K points (see Sec. 2.2).

As it turns out, the linearized Hamiltonian of graphene near the Fermi
energy can be expressed formally equivalent to the relativistic Dirac equa-
tion in two dimensions. This leads to a very special spectrum that can
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tion in two dimensions. This leads to a very special spectrum that can
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energy spectrum that are distinct from the conventional
quantum Hall e�ect: i) the Hall conductance can vary
non-monotonically and can even fluctuate in sign, ii) Hall
conductance plateaus together with vanishing longitudi-
nal resistance can appear at non-integer LL filling frac-
tions, iii) the Hall conductance plateau remains quan-
tized to integral multiples of e2/h, however, the quanti-
zation integer is not directly associated with the usual LL
filling fraction. Instead, quantization is equal to the slope
of the gap trajectory in the n/no versus �/�o Wannier
diagram, in accordance with the Diophantine equation.

Mini-gaps within the fractal energy spectrum become
significant only once the magnetic length (lB =

�
~/eB),

which characterizes the cyclotron motion, is of the same
order as the wavelength of the periodic potential, which
characterizes the Bloch waves. For usual crystal lattices,
where the inter-atomic spacing is a few ångstroms, the
necessary magnetic field is impossibly large, in excess
of 10,000 T. The main experimental e�ort therefore has
been to lithographically define artificial superlattices12–20

with unit cell dimension of order tens of nanometers so
that the critical magnetic field remains small enough to
be achievable in the lab, yet still large enough so that
the quantum Hall e�ect is fully resolved without being
smeared out by disorder. Fabricating the optimally-sized
periodic lattice, while maintaining coherent registry over
the full device and without introducing substantial dis-
order has proven a formidable technical challenge. Pat-
terned GaAs/AlGaAs heterostructures with ⇥ 100 nm
periodic gates provided the first experimental support
for Hofstadter’s predictions17–19. However, limited abil-
ity to tune the carrier density or reach the fully devel-
oped quantum Hall e�ect (QHE) regime in these sam-
ples has made it di⌅cult to map out the complete spec-
trum. While similar concepts have also been pursued in
non-solid-state model systems23,24, the rich physics of the
Hofstadter spectrum remains largely unexplored.

Heterostructures consisting of atomically thin materi-
als in a multi-layer stack provide a new route towards
realizing a two-dimensional system with laterally mod-
ulated periodic structure. In particular, coupling be-
tween graphene and hexagonal boron nitride (hBN),
whose crystal lattices are isomorphic, results in a periodic
moiré pattern. The moiré wavelength is directly related
to the angular rotation between the two lattices25–27,
and is tunable through the desired length scales with-
out the need for lithographic techniques9,10. Moreover
hBN provides an ideal substrate for achieving high mo-
bility graphene devices, crucial for high resolution quan-
tum Hall measurements28,29, while field e�ect gating in
graphene allows the Fermi energy to be continuously var-
ied through the entire moiré Bloch band.

In this study, Bernal-stacked bilayer graphene (BLG)
Hall bars are fabricated on hBN substrates (Fig. 1a,b)
using mechanical exfoliation followed by co-lamination
(see methods). Fig. 1b shows a non-contact atomic force
microscopy (AFM) image acquired from an example de-
vice. In the magnified region, a moiré pattern is visible
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FIG. 1. Moiré superlattice (a) Cartoon schematic of
graphene on hBN showing the emergence of a moiré pat-
tern. The moiré wavelength varies with the mismatch angle,
�. (b) Left shows an AFM image of a multi-terminal Hall
bar. Right shows a high resolution image in a magnified re-
gion. The moiré pattern is evident as a triangular lattice (up-
per inset shows a further magnified region). FFT of the scan
area (lower inset) confirms a triangular lattice symmetry with
period 15.5 ± 0.9 nm. (c) Resistance measured versus gate
voltage at zero magnetic field. Inset shows the corresponding
conductivity versus temperature, indicating that the satellite
features disappear above ⇥100 K. (d) Longitudinal resistance
(left axis) and Hall resistance (right axis) versus gate volt-
age at B = 1 T. The Hall resistance inverts sign and passes
through zero at the same gate voltage as the satellite peaks.

with triangular symmetry. Fast Fourier transform (FFT)
analysis of the image, shown in the inset, indicates that
the moiré wavelength is 15.5 ± 0.9 nm. This is compa-
rable to the maximal wavelength of ⇥ 14 nm expected
for graphene on hBN25–27 (set by the 1.8% lattice mis-
match between the two crystals), suggesting that in this
device the BLG lattice is oriented with near zero angle
mismatch to the underlying hBN lattice.

Fig. 1c shows transport data measured from the same
device. In addition to the usual resistance peak at the
charge neutrality point (CNP), occurring at gate voltage
Vg ⇥ 2 V, two additional satellite resistance peaks ap-
pear, symmetrically located at Vsatl ⇥ ±30 V away from
the CNP. These satellite features are consistent with a
depression in the density of states (DOS) at the super-
lattice Brillouin zone band edge, analogous to previous
spectroscopic measurements of single layer graphene cou-
pled to a moiré pattern27,30. Assuming non-overlapping
bands, |Vsatl|, gives an estimate of the moiré wavelength
to be ⇥ 14.6 nm (see supplemental information), in good
agreement with the AFM measurements. The nature of
these satellite peaks can be further probed in the semi-
classical, low B-field transport regime. In Fig. 1d, lon-
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How to measure Chern # ?

 n!!" # 1

2q

X
"edge

!!!$ "edge": (6)

In all of our calculations we took q # 401, which is a
prime number allowing p to be successive integers. "
values for other small denominators of q are approximated
by properly choosing p. For instance, " # 1=10 is ap-
proximated by 40=401, 1=4 by 100=401, and 1=3 by
134=401.

We now present the density profiles for several " values.
To make a connection with experiments, we refer to the
work in Ref. [18] in which 40K atoms are stored in an
optical lattice with lattice constant a # 413 nm. We take
V0 # 5ER, which gives t # 0:066ER. The parameters at
hand yield ER=@ # 45:98 kHz and t=@ # 3:035 kHz. With
the choice !% 355 Hz, the gas extends over approxi-
mately 60 lattice sites in the radial direction, so that the
assumption of LDA is satisfied. In Figs. 2 and 3 we fixed
the number of fermions at 5000.

When the local chemical potential !l!r" lies in one of
the gaps, we have @n!r"=@!!r" # 0 because of vanishing
compressibility. Hence, as one can see by comparing
Figs. 1 and 2, corresponding to the energy gaps in the
single particle spectrum, there appear plateaus in the den-
sity profile. The discernible number of plateaus is related to
the size of the energy gaps. For instance, in Fig. 2(a), the
plateau with n # 1 is the band insulator with completely
filled band, which is topologically trivial and has vanishing
Hall conductance. Apart from that, for " # 1=3, the
chemical potential trajectory passes through two gap re-
gions which gives two plateaus with n # 0:333 and n #
0:667, respectively. While for " # 1=4, there are totally
four subbands, but two of them touch at ! # 0, so there are

also two gap regions corresponding to two plateaus with
n # 0:25 and n # 0:75. In Fig. 2(b) we choose two "’s
with larger q, where there are more gaps in the spectrum
and therefore more density plateaus. Experimentally, the
smaller gap one wants to find, the more difficult it is,
because it requires larger system size and lower
temperature.

In Fig. 3 we show the temperature effect on the visibility
of plateaus. We implement the effect of finite temperature
by incorporating the Fermi-Dirac distribution into our
calculations as

 n2D!!l!r"; T" #
1

2q

X
"edge

1

exp&!"edge $!l!r""=kBT' ( 1
:

(7)

We observe from Fig. 3 that plateaus will be smeared out
when kBT > 0:5t.

As shown by Thouless et al., the topological distinction
of the insulators we consider manifests itself in the Hall
conductance, which should be quantized in units of e2=h
[5]. Here, we propose a method to read out the information

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

r/a

n(
r)

T = 0.01 t / k
B

T = 0.1 t / k
B

T = 0.3 t / k
B

T = 0.5 t / k
B

FIG. 3 (color online). Density profile for 5000 fermions at
several temperatures when " # 1=4. Plateaus become indiscern-
ible when kBT % 0:5t.
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FIG. 2 (color online). (a) Density profiles for 5000 fermions
with " # 1=4, " # 7:2992 kHz, !? # 7:3078 kHz (solid line)
and " # 1=3, " # 9:7809 kHz, !? # 9:7873 kHz (dashed
line). (b) Density profiles for 5000 fermions with " # 1=10,
" # 2:9197 kHz, !? # 2:9412 kHz (solid line) and " # 1=7,
" # 4:1605 kHz, !? # 4:1756 kHz (dashed line). Length is
measured in units of lattice constant a. Density is given in units
of particles per lattice site.

FIG. 1 (color online). Density of states for the Hofstadter
butterfly. Darker regions imply greater density. Dashed lines
represent the trajectory of local Fermi energy from the center
to the edge of the cloud, for different values of " corresponding
to those used in Fig. 2, namely " # 1=3, 1=4, 1=7, and 1=10.
Regions marked by ) and ! have Hall conductance #xy # *1,
and marked by + and " have #xy # *2.
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 n!!" # 1

2q

X
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!!!$ "edge": (6)

In all of our calculations we took q # 401, which is a
prime number allowing p to be successive integers. "
values for other small denominators of q are approximated
by properly choosing p. For instance, " # 1=10 is ap-
proximated by 40=401, 1=4 by 100=401, and 1=3 by
134=401.

We now present the density profiles for several " values.
To make a connection with experiments, we refer to the
work in Ref. [18] in which 40K atoms are stored in an
optical lattice with lattice constant a # 413 nm. We take
V0 # 5ER, which gives t # 0:066ER. The parameters at
hand yield ER=@ # 45:98 kHz and t=@ # 3:035 kHz. With
the choice !% 355 Hz, the gas extends over approxi-
mately 60 lattice sites in the radial direction, so that the
assumption of LDA is satisfied. In Figs. 2 and 3 we fixed
the number of fermions at 5000.

When the local chemical potential !l!r" lies in one of
the gaps, we have @n!r"=@!!r" # 0 because of vanishing
compressibility. Hence, as one can see by comparing
Figs. 1 and 2, corresponding to the energy gaps in the
single particle spectrum, there appear plateaus in the den-
sity profile. The discernible number of plateaus is related to
the size of the energy gaps. For instance, in Fig. 2(a), the
plateau with n # 1 is the band insulator with completely
filled band, which is topologically trivial and has vanishing
Hall conductance. Apart from that, for " # 1=3, the
chemical potential trajectory passes through two gap re-
gions which gives two plateaus with n # 0:333 and n #
0:667, respectively. While for " # 1=4, there are totally
four subbands, but two of them touch at ! # 0, so there are

also two gap regions corresponding to two plateaus with
n # 0:25 and n # 0:75. In Fig. 2(b) we choose two "’s
with larger q, where there are more gaps in the spectrum
and therefore more density plateaus. Experimentally, the
smaller gap one wants to find, the more difficult it is,
because it requires larger system size and lower
temperature.

In Fig. 3 we show the temperature effect on the visibility
of plateaus. We implement the effect of finite temperature
by incorporating the Fermi-Dirac distribution into our
calculations as

 n2D!!l!r"; T" #
1

2q

X
"edge

1

exp&!"edge $!l!r""=kBT' ( 1
:

(7)

We observe from Fig. 3 that plateaus will be smeared out
when kBT > 0:5t.

As shown by Thouless et al., the topological distinction
of the insulators we consider manifests itself in the Hall
conductance, which should be quantized in units of e2=h
[5]. Here, we propose a method to read out the information
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FIG. 3 (color online). Density profile for 5000 fermions at
several temperatures when " # 1=4. Plateaus become indiscern-
ible when kBT % 0:5t.
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FIG. 2 (color online). (a) Density profiles for 5000 fermions
with " # 1=4, " # 7:2992 kHz, !? # 7:3078 kHz (solid line)
and " # 1=3, " # 9:7809 kHz, !? # 9:7873 kHz (dashed
line). (b) Density profiles for 5000 fermions with " # 1=10,
" # 2:9197 kHz, !? # 2:9412 kHz (solid line) and " # 1=7,
" # 4:1605 kHz, !? # 4:1756 kHz (dashed line). Length is
measured in units of lattice constant a. Density is given in units
of particles per lattice site.

FIG. 1 (color online). Density of states for the Hofstadter
butterfly. Darker regions imply greater density. Dashed lines
represent the trajectory of local Fermi energy from the center
to the edge of the cloud, for different values of " corresponding
to those used in Fig. 2, namely " # 1=3, 1=4, 1=7, and 1=10.
Regions marked by ) and ! have Hall conductance #xy # *1,
and marked by + and " have #xy # *2.
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Zak phases
3

where k±(t) = k0 ± f t, f = F/~, and the phase ⌅⇤(⌅)(t)
is given by:

⌅⇤(⌅)(t) = i

⇤ k±(t)

k0

⌅uk�n|⌃k�uk�n⇧dk⇧�1

~

⇤ t

0
⌃n(k±(t

⇧))dt⇧⇥EZt

~ ,

(6)
The first term in the above equation describes the ge-
ometrical phase, while the second and third correspond
to the dynamical phase, which depends on the speed of
motion through the band.

The Ramsey interferometry, performed after half a pe-
riod of the Bloch oscillations (period is given by T =
G/|f |), measures the phase di⇥erence picked up by the
two spin species ⌅⇤(T/2) � ⌅⌅(T/2). Using formula (6),
we obtain the Ramsey phase,

⌥tot = ⌥Zak + ⌥dyn + ⌥Zeeman, (7)

where the Zak phase is given by [27]:

⌥Zak = i

⇤ k0+G/2

k0�G/2
⌅uk�n|⌃k�uk�n⇧dk⇧ (8)

and the dynamical phase and Zeeman phases are given
by

⌥dyn = �1

~

⇤ T/2

�T/2
sign(t⇧)⌃n(k0+f t⇧)dt⇧, ⌥Zeeman = �EZT

~ .

(9)
For the case of a band structure with symmetric disper-
sion relation, ⌃n(k0 + f t⇧) = ⌃n(k0 � f t⇧), the dynamical
phase vanishes, and the Ramsey interferometry directly
gives the Zak phase. This is the case for special choices
of k0 and G1 in the experimentally relevant case of the
brick-wall lattice which we will discuss below.

Measuring Berry curvature and Chern number
of a generic band. Let us now turn to the discussion
of how Ramsey interferometry can be used to determine
the Berry curvature and the Chern number (and there-
fore the topological class) of a gapped band; no special
symmetries are assumed, except for the symmetry of dis-
persion which guarantees the cancellation of the dynam-
ical phase, and allows the separation of the Zak phase.

We choose the primitive cell in quasi-momentum space
to be a torus defined by k = K0 + �1G1 + �2G2, where
�i ⇤ [0; 1) and K0 is an arbitrary quasi-momentum (as
shown in Fig. 2). We notice that the Chern number can-
not be determined by measuring the Zak phases along
the four sides of the torus, essentially, because the Zak
phase is only defined modulo 2⇧. However, as we now
discuss, the Chern number C can be related to the wind-
ing number of the Zak phase across the BZ (see Ref. [2]
for a closely related discussion in the context of adiabatic
pumping).

We consider an experiment in which the Zak phase is
measured for torus cycles defined by G1 as a function of
�2, see Fig. 2. Experimentally, this would be achieved

FIG. 3: a) Brick-wall lattice. A and B sites are marked by
blue and red circles, nearest-neighbor hopping is assumed. b)
The Brillouin zone of the brick-wall lattice model (blue dashed
square). The band structure exhibits two Dirac points marked
by orange circles. Owing to the symmetry of the dispersion,
it is convenient to measure the Zak phase with initial quasi-
momentum k0 = (k0, 0) lying on the x axis, and applying
a force in the y direction. Measuring the variation of the
Zak phase as a function of k0, it is possible to (i) measure
the � Berry’s phase of Dirac particles, (ii) measure the Chern
number of the bands when they are separated by energy gaps.

by preparing the initial state k0 = K0 + G1/2 + �2G2

for di⇥erent values of �2.
Let us show that the small change of Zak phase as �2 is

increased by ⇤�2 is equal to the integral of the Berry cur-
vature over the rectangle ⇤S defined by the corresponding
trajectories (see Fig. 2). Equivalently, the di⇥erence of
the Zak phases ⇥ = ⌥Zak(�2+⇤�2)�⌥Zak(�2) is given by
the Berry’s phase that corresponds to the contour 1234.
It is easiest to see this by choosing a smooth gauge for
the periodic Bloch function in ⇤S (this can be done since
region ⇤S is small; in general, no smooth gauge can be
chosen in the whole BZ). The Berry’s phase ⇥ can be
represented as the sum of the Berry’s phases for the four
sides of the rectangle, ⇥ =

�4
i=1 ⇥i. Since the sides 2

and 4 are equivalent (they di⇥er by G1), but are tra-
versed in the opposite direction, their contribution van-
ishes, ⇥2 + ⇥4 = 0. Because we chose the periodic gauge,
⇥3 + ⇥1 is equal to the di⇥erence of the Zak phases for
trajectories 3 and 1. Thus, the change of the Zak phase is
related to the Berry’s phase, which can be written as an
integral of the Berry’s curvature �12, ⇥ =

⇥
⇥S d2k�12(k).

This relation can be conveniently written in terms of a
uniquely defined quantity z(�2) = ei⌅Zak(�2):

⇤

⇥S
d2k�12(k) = �iz⇥(�2)��2z(�2)⇤�2. (10)

Summing relation (10) over di⇥erent regions, and
using the definition of the Chern number C =
1
2⇤

⇥
BZ d

2k�12(k), we then obtain c via the winding of

 n!!" # 1

2q

X
"edge

!!!$ "edge": (6)

In all of our calculations we took q # 401, which is a
prime number allowing p to be successive integers. "
values for other small denominators of q are approximated
by properly choosing p. For instance, " # 1=10 is ap-
proximated by 40=401, 1=4 by 100=401, and 1=3 by
134=401.

We now present the density profiles for several " values.
To make a connection with experiments, we refer to the
work in Ref. [18] in which 40K atoms are stored in an
optical lattice with lattice constant a # 413 nm. We take
V0 # 5ER, which gives t # 0:066ER. The parameters at
hand yield ER=@ # 45:98 kHz and t=@ # 3:035 kHz. With
the choice !% 355 Hz, the gas extends over approxi-
mately 60 lattice sites in the radial direction, so that the
assumption of LDA is satisfied. In Figs. 2 and 3 we fixed
the number of fermions at 5000.

When the local chemical potential !l!r" lies in one of
the gaps, we have @n!r"=@!!r" # 0 because of vanishing
compressibility. Hence, as one can see by comparing
Figs. 1 and 2, corresponding to the energy gaps in the
single particle spectrum, there appear plateaus in the den-
sity profile. The discernible number of plateaus is related to
the size of the energy gaps. For instance, in Fig. 2(a), the
plateau with n # 1 is the band insulator with completely
filled band, which is topologically trivial and has vanishing
Hall conductance. Apart from that, for " # 1=3, the
chemical potential trajectory passes through two gap re-
gions which gives two plateaus with n # 0:333 and n #
0:667, respectively. While for " # 1=4, there are totally
four subbands, but two of them touch at ! # 0, so there are

also two gap regions corresponding to two plateaus with
n # 0:25 and n # 0:75. In Fig. 2(b) we choose two "’s
with larger q, where there are more gaps in the spectrum
and therefore more density plateaus. Experimentally, the
smaller gap one wants to find, the more difficult it is,
because it requires larger system size and lower
temperature.

In Fig. 3 we show the temperature effect on the visibility
of plateaus. We implement the effect of finite temperature
by incorporating the Fermi-Dirac distribution into our
calculations as

 n2D!!l!r"; T" #
1

2q

X
"edge

1

exp&!"edge $!l!r""=kBT' ( 1
:

(7)

We observe from Fig. 3 that plateaus will be smeared out
when kBT > 0:5t.

As shown by Thouless et al., the topological distinction
of the insulators we consider manifests itself in the Hall
conductance, which should be quantized in units of e2=h
[5]. Here, we propose a method to read out the information
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FIG. 3 (color online). Density profile for 5000 fermions at
several temperatures when " # 1=4. Plateaus become indiscern-
ible when kBT % 0:5t.
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FIG. 2 (color online). (a) Density profiles for 5000 fermions
with " # 1=4, " # 7:2992 kHz, !? # 7:3078 kHz (solid line)
and " # 1=3, " # 9:7809 kHz, !? # 9:7873 kHz (dashed
line). (b) Density profiles for 5000 fermions with " # 1=10,
" # 2:9197 kHz, !? # 2:9412 kHz (solid line) and " # 1=7,
" # 4:1605 kHz, !? # 4:1756 kHz (dashed line). Length is
measured in units of lattice constant a. Density is given in units
of particles per lattice site.

FIG. 1 (color online). Density of states for the Hofstadter
butterfly. Darker regions imply greater density. Dashed lines
represent the trajectory of local Fermi energy from the center
to the edge of the cloud, for different values of " corresponding
to those used in Fig. 2, namely " # 1=3, 1=4, 1=7, and 1=10.
Regions marked by ) and ! have Hall conductance #xy # *1,
and marked by + and " have #xy # *2.
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where k±(t) = k0 ± f t, f = F/~, and the phase ⌅⇤(⌅)(t)
is given by:

⌅⇤(⌅)(t) = i

⇤ k±(t)

k0

⌅uk�n|⌃k�uk�n⇧dk⇧�1

~
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0
⌃n(k±(t

⇧))dt⇧⇥EZt
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(6)
The first term in the above equation describes the ge-
ometrical phase, while the second and third correspond
to the dynamical phase, which depends on the speed of
motion through the band.

The Ramsey interferometry, performed after half a pe-
riod of the Bloch oscillations (period is given by T =
G/|f |), measures the phase di⇥erence picked up by the
two spin species ⌅⇤(T/2) � ⌅⌅(T/2). Using formula (6),
we obtain the Ramsey phase,

⌥tot = ⌥Zak + ⌥dyn + ⌥Zeeman, (7)

where the Zak phase is given by [27]:

⌥Zak = i

⇤ k0+G/2

k0�G/2
⌅uk�n|⌃k�uk�n⇧dk⇧ (8)

and the dynamical phase and Zeeman phases are given
by

⌥dyn = �1

~

⇤ T/2

�T/2
sign(t⇧)⌃n(k0+f t⇧)dt⇧, ⌥Zeeman = �EZT

~ .

(9)
For the case of a band structure with symmetric disper-
sion relation, ⌃n(k0 + f t⇧) = ⌃n(k0 � f t⇧), the dynamical
phase vanishes, and the Ramsey interferometry directly
gives the Zak phase. This is the case for special choices
of k0 and G1 in the experimentally relevant case of the
brick-wall lattice which we will discuss below.

Measuring Berry curvature and Chern number
of a generic band. Let us now turn to the discussion
of how Ramsey interferometry can be used to determine
the Berry curvature and the Chern number (and there-
fore the topological class) of a gapped band; no special
symmetries are assumed, except for the symmetry of dis-
persion which guarantees the cancellation of the dynam-
ical phase, and allows the separation of the Zak phase.

We choose the primitive cell in quasi-momentum space
to be a torus defined by k = K0 + �1G1 + �2G2, where
�i ⇤ [0; 1) and K0 is an arbitrary quasi-momentum (as
shown in Fig. 2). We notice that the Chern number can-
not be determined by measuring the Zak phases along
the four sides of the torus, essentially, because the Zak
phase is only defined modulo 2⇧. However, as we now
discuss, the Chern number C can be related to the wind-
ing number of the Zak phase across the BZ (see Ref. [2]
for a closely related discussion in the context of adiabatic
pumping).

We consider an experiment in which the Zak phase is
measured for torus cycles defined by G1 as a function of
�2, see Fig. 2. Experimentally, this would be achieved

FIG. 3: a) Brick-wall lattice. A and B sites are marked by
blue and red circles, nearest-neighbor hopping is assumed. b)
The Brillouin zone of the brick-wall lattice model (blue dashed
square). The band structure exhibits two Dirac points marked
by orange circles. Owing to the symmetry of the dispersion,
it is convenient to measure the Zak phase with initial quasi-
momentum k0 = (k0, 0) lying on the x axis, and applying
a force in the y direction. Measuring the variation of the
Zak phase as a function of k0, it is possible to (i) measure
the � Berry’s phase of Dirac particles, (ii) measure the Chern
number of the bands when they are separated by energy gaps.

by preparing the initial state k0 = K0 + G1/2 + �2G2

for di⇥erent values of �2.
Let us show that the small change of Zak phase as �2 is

increased by ⇤�2 is equal to the integral of the Berry cur-
vature over the rectangle ⇤S defined by the corresponding
trajectories (see Fig. 2). Equivalently, the di⇥erence of
the Zak phases ⇥ = ⌥Zak(�2+⇤�2)�⌥Zak(�2) is given by
the Berry’s phase that corresponds to the contour 1234.
It is easiest to see this by choosing a smooth gauge for
the periodic Bloch function in ⇤S (this can be done since
region ⇤S is small; in general, no smooth gauge can be
chosen in the whole BZ). The Berry’s phase ⇥ can be
represented as the sum of the Berry’s phases for the four
sides of the rectangle, ⇥ =

�4
i=1 ⇥i. Since the sides 2

and 4 are equivalent (they di⇥er by G1), but are tra-
versed in the opposite direction, their contribution van-
ishes, ⇥2 + ⇥4 = 0. Because we chose the periodic gauge,
⇥3 + ⇥1 is equal to the di⇥erence of the Zak phases for
trajectories 3 and 1. Thus, the change of the Zak phase is
related to the Berry’s phase, which can be written as an
integral of the Berry’s curvature �12, ⇥ =

⇥
⇥S d2k�12(k).

This relation can be conveniently written in terms of a
uniquely defined quantity z(�2) = ei⌅Zak(�2):

⇤

⇥S
d2k�12(k) = �iz⇥(�2)��2z(�2)⇤�2. (10)

Summing relation (10) over di⇥erent regions, and
using the definition of the Chern number C =
1
2⇤

⇥
BZ d

2k�12(k), we then obtain c via the winding of

 n!!" # 1

2q

X
"edge

!!!$ "edge": (6)

In all of our calculations we took q # 401, which is a
prime number allowing p to be successive integers. "
values for other small denominators of q are approximated
by properly choosing p. For instance, " # 1=10 is ap-
proximated by 40=401, 1=4 by 100=401, and 1=3 by
134=401.

We now present the density profiles for several " values.
To make a connection with experiments, we refer to the
work in Ref. [18] in which 40K atoms are stored in an
optical lattice with lattice constant a # 413 nm. We take
V0 # 5ER, which gives t # 0:066ER. The parameters at
hand yield ER=@ # 45:98 kHz and t=@ # 3:035 kHz. With
the choice !% 355 Hz, the gas extends over approxi-
mately 60 lattice sites in the radial direction, so that the
assumption of LDA is satisfied. In Figs. 2 and 3 we fixed
the number of fermions at 5000.

When the local chemical potential !l!r" lies in one of
the gaps, we have @n!r"=@!!r" # 0 because of vanishing
compressibility. Hence, as one can see by comparing
Figs. 1 and 2, corresponding to the energy gaps in the
single particle spectrum, there appear plateaus in the den-
sity profile. The discernible number of plateaus is related to
the size of the energy gaps. For instance, in Fig. 2(a), the
plateau with n # 1 is the band insulator with completely
filled band, which is topologically trivial and has vanishing
Hall conductance. Apart from that, for " # 1=3, the
chemical potential trajectory passes through two gap re-
gions which gives two plateaus with n # 0:333 and n #
0:667, respectively. While for " # 1=4, there are totally
four subbands, but two of them touch at ! # 0, so there are

also two gap regions corresponding to two plateaus with
n # 0:25 and n # 0:75. In Fig. 2(b) we choose two "’s
with larger q, where there are more gaps in the spectrum
and therefore more density plateaus. Experimentally, the
smaller gap one wants to find, the more difficult it is,
because it requires larger system size and lower
temperature.

In Fig. 3 we show the temperature effect on the visibility
of plateaus. We implement the effect of finite temperature
by incorporating the Fermi-Dirac distribution into our
calculations as

 n2D!!l!r"; T" #
1

2q

X
"edge

1

exp&!"edge $!l!r""=kBT' ( 1
:

(7)

We observe from Fig. 3 that plateaus will be smeared out
when kBT > 0:5t.

As shown by Thouless et al., the topological distinction
of the insulators we consider manifests itself in the Hall
conductance, which should be quantized in units of e2=h
[5]. Here, we propose a method to read out the information

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

r/a

n(
r)

T = 0.01 t / k
B

T = 0.1 t / k
B

T = 0.3 t / k
B

T = 0.5 t / k
B

FIG. 3 (color online). Density profile for 5000 fermions at
several temperatures when " # 1=4. Plateaus become indiscern-
ible when kBT % 0:5t.
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FIG. 2 (color online). (a) Density profiles for 5000 fermions
with " # 1=4, " # 7:2992 kHz, !? # 7:3078 kHz (solid line)
and " # 1=3, " # 9:7809 kHz, !? # 9:7873 kHz (dashed
line). (b) Density profiles for 5000 fermions with " # 1=10,
" # 2:9197 kHz, !? # 2:9412 kHz (solid line) and " # 1=7,
" # 4:1605 kHz, !? # 4:1756 kHz (dashed line). Length is
measured in units of lattice constant a. Density is given in units
of particles per lattice site.

FIG. 1 (color online). Density of states for the Hofstadter
butterfly. Darker regions imply greater density. Dashed lines
represent the trajectory of local Fermi energy from the center
to the edge of the cloud, for different values of " corresponding
to those used in Fig. 2, namely " # 1=3, 1=4, 1=7, and 1=10.
Regions marked by ) and ! have Hall conductance #xy # *1,
and marked by + and " have #xy # *2.
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How to measure Chern # ?

Abanin et al

Zak phases
3

where k±(t) = k0 ± f t, f = F/~, and the phase ⌅⇤(⌅)(t)
is given by:

⌅⇤(⌅)(t) = i

⇤ k±(t)

k0

⌅uk�n|⌃k�uk�n⇧dk⇧�1

~

⇤ t

0
⌃n(k±(t

⇧))dt⇧⇥EZt

~ ,

(6)
The first term in the above equation describes the ge-
ometrical phase, while the second and third correspond
to the dynamical phase, which depends on the speed of
motion through the band.

The Ramsey interferometry, performed after half a pe-
riod of the Bloch oscillations (period is given by T =
G/|f |), measures the phase di⇥erence picked up by the
two spin species ⌅⇤(T/2) � ⌅⌅(T/2). Using formula (6),
we obtain the Ramsey phase,

⌥tot = ⌥Zak + ⌥dyn + ⌥Zeeman, (7)

where the Zak phase is given by [27]:

⌥Zak = i

⇤ k0+G/2

k0�G/2
⌅uk�n|⌃k�uk�n⇧dk⇧ (8)

and the dynamical phase and Zeeman phases are given
by

⌥dyn = �1

~

⇤ T/2

�T/2
sign(t⇧)⌃n(k0+f t⇧)dt⇧, ⌥Zeeman = �EZT

~ .

(9)
For the case of a band structure with symmetric disper-
sion relation, ⌃n(k0 + f t⇧) = ⌃n(k0 � f t⇧), the dynamical
phase vanishes, and the Ramsey interferometry directly
gives the Zak phase. This is the case for special choices
of k0 and G1 in the experimentally relevant case of the
brick-wall lattice which we will discuss below.

Measuring Berry curvature and Chern number
of a generic band. Let us now turn to the discussion
of how Ramsey interferometry can be used to determine
the Berry curvature and the Chern number (and there-
fore the topological class) of a gapped band; no special
symmetries are assumed, except for the symmetry of dis-
persion which guarantees the cancellation of the dynam-
ical phase, and allows the separation of the Zak phase.

We choose the primitive cell in quasi-momentum space
to be a torus defined by k = K0 + �1G1 + �2G2, where
�i ⇤ [0; 1) and K0 is an arbitrary quasi-momentum (as
shown in Fig. 2). We notice that the Chern number can-
not be determined by measuring the Zak phases along
the four sides of the torus, essentially, because the Zak
phase is only defined modulo 2⇧. However, as we now
discuss, the Chern number C can be related to the wind-
ing number of the Zak phase across the BZ (see Ref. [2]
for a closely related discussion in the context of adiabatic
pumping).

We consider an experiment in which the Zak phase is
measured for torus cycles defined by G1 as a function of
�2, see Fig. 2. Experimentally, this would be achieved

FIG. 3: a) Brick-wall lattice. A and B sites are marked by
blue and red circles, nearest-neighbor hopping is assumed. b)
The Brillouin zone of the brick-wall lattice model (blue dashed
square). The band structure exhibits two Dirac points marked
by orange circles. Owing to the symmetry of the dispersion,
it is convenient to measure the Zak phase with initial quasi-
momentum k0 = (k0, 0) lying on the x axis, and applying
a force in the y direction. Measuring the variation of the
Zak phase as a function of k0, it is possible to (i) measure
the � Berry’s phase of Dirac particles, (ii) measure the Chern
number of the bands when they are separated by energy gaps.

by preparing the initial state k0 = K0 + G1/2 + �2G2

for di⇥erent values of �2.
Let us show that the small change of Zak phase as �2 is

increased by ⇤�2 is equal to the integral of the Berry cur-
vature over the rectangle ⇤S defined by the corresponding
trajectories (see Fig. 2). Equivalently, the di⇥erence of
the Zak phases ⇥ = ⌥Zak(�2+⇤�2)�⌥Zak(�2) is given by
the Berry’s phase that corresponds to the contour 1234.
It is easiest to see this by choosing a smooth gauge for
the periodic Bloch function in ⇤S (this can be done since
region ⇤S is small; in general, no smooth gauge can be
chosen in the whole BZ). The Berry’s phase ⇥ can be
represented as the sum of the Berry’s phases for the four
sides of the rectangle, ⇥ =

�4
i=1 ⇥i. Since the sides 2

and 4 are equivalent (they di⇥er by G1), but are tra-
versed in the opposite direction, their contribution van-
ishes, ⇥2 + ⇥4 = 0. Because we chose the periodic gauge,
⇥3 + ⇥1 is equal to the di⇥erence of the Zak phases for
trajectories 3 and 1. Thus, the change of the Zak phase is
related to the Berry’s phase, which can be written as an
integral of the Berry’s curvature �12, ⇥ =

⇥
⇥S d2k�12(k).

This relation can be conveniently written in terms of a
uniquely defined quantity z(�2) = ei⌅Zak(�2):

⇤

⇥S
d2k�12(k) = �iz⇥(�2)��2z(�2)⇤�2. (10)

Summing relation (10) over di⇥erent regions, and
using the definition of the Chern number C =
1
2⇤

⇥
BZ d

2k�12(k), we then obtain c via the winding of

We propose a new probe based on 
Topological Pumping Effect �(k

x

, y)

 n!!" # 1

2q

X
"edge

!!!$ "edge": (6)

In all of our calculations we took q # 401, which is a
prime number allowing p to be successive integers. "
values for other small denominators of q are approximated
by properly choosing p. For instance, " # 1=10 is ap-
proximated by 40=401, 1=4 by 100=401, and 1=3 by
134=401.

We now present the density profiles for several " values.
To make a connection with experiments, we refer to the
work in Ref. [18] in which 40K atoms are stored in an
optical lattice with lattice constant a # 413 nm. We take
V0 # 5ER, which gives t # 0:066ER. The parameters at
hand yield ER=@ # 45:98 kHz and t=@ # 3:035 kHz. With
the choice !% 355 Hz, the gas extends over approxi-
mately 60 lattice sites in the radial direction, so that the
assumption of LDA is satisfied. In Figs. 2 and 3 we fixed
the number of fermions at 5000.

When the local chemical potential !l!r" lies in one of
the gaps, we have @n!r"=@!!r" # 0 because of vanishing
compressibility. Hence, as one can see by comparing
Figs. 1 and 2, corresponding to the energy gaps in the
single particle spectrum, there appear plateaus in the den-
sity profile. The discernible number of plateaus is related to
the size of the energy gaps. For instance, in Fig. 2(a), the
plateau with n # 1 is the band insulator with completely
filled band, which is topologically trivial and has vanishing
Hall conductance. Apart from that, for " # 1=3, the
chemical potential trajectory passes through two gap re-
gions which gives two plateaus with n # 0:333 and n #
0:667, respectively. While for " # 1=4, there are totally
four subbands, but two of them touch at ! # 0, so there are

also two gap regions corresponding to two plateaus with
n # 0:25 and n # 0:75. In Fig. 2(b) we choose two "’s
with larger q, where there are more gaps in the spectrum
and therefore more density plateaus. Experimentally, the
smaller gap one wants to find, the more difficult it is,
because it requires larger system size and lower
temperature.

In Fig. 3 we show the temperature effect on the visibility
of plateaus. We implement the effect of finite temperature
by incorporating the Fermi-Dirac distribution into our
calculations as

 n2D!!l!r"; T" #
1

2q

X
"edge

1

exp&!"edge $!l!r""=kBT' ( 1
:

(7)

We observe from Fig. 3 that plateaus will be smeared out
when kBT > 0:5t.

As shown by Thouless et al., the topological distinction
of the insulators we consider manifests itself in the Hall
conductance, which should be quantized in units of e2=h
[5]. Here, we propose a method to read out the information
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FIG. 3 (color online). Density profile for 5000 fermions at
several temperatures when " # 1=4. Plateaus become indiscern-
ible when kBT % 0:5t.
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FIG. 2 (color online). (a) Density profiles for 5000 fermions
with " # 1=4, " # 7:2992 kHz, !? # 7:3078 kHz (solid line)
and " # 1=3, " # 9:7809 kHz, !? # 9:7873 kHz (dashed
line). (b) Density profiles for 5000 fermions with " # 1=10,
" # 2:9197 kHz, !? # 2:9412 kHz (solid line) and " # 1=7,
" # 4:1605 kHz, !? # 4:1756 kHz (dashed line). Length is
measured in units of lattice constant a. Density is given in units
of particles per lattice site.

FIG. 1 (color online). Density of states for the Hofstadter
butterfly. Darker regions imply greater density. Dashed lines
represent the trajectory of local Fermi energy from the center
to the edge of the cloud, for different values of " corresponding
to those used in Fig. 2, namely " # 1=3, 1=4, 1=7, and 1=10.
Regions marked by ) and ! have Hall conductance #xy # *1,
and marked by + and " have #xy # *2.
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Why it works? 
Topological charge pumping

Integer Quantum Hall Effect :  Laughlin Argument

Adiabatically thread a quantum of magnetic flux through cylinder.
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Why it works? 
Topological charge pumping
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Summary

Topological charge pumping is a common thread 
unifies many features of topological states

Guideline for design and detection of topological 
phases in cold atom systems



Thank you!



FAQ

Tight binding limit? Do not need 
Edge state modes, fractionalized charge ? Do not need 

Is sliding topological ? Yes 


