Simulating dynamics and topological phases of cold fermionic gases

Lei Wang ETH Zurich

Collaborators:

Zürich

Ping Nang Ma Ilia Zintchenko Alexey Soluyanov Matthias Troyer

Sebastiano Pilati

Xi Dai

Numerical simulations for dynamics of fermionic atoms in high dimensions

In

✤ It is difficult

✤ But, there were experiments...

Collision in a 3D trap

Numerical simulations for dynamics of fermionic atoms in high dimensions

In

✤ It is difficult

✤ But, there were experiments...

Collision in a 3D trap

Density functional theory

Hohenberg and Kohn 1964

$$\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$$

 $\mathbb{R}^{3N} \mapsto \mathbb{C}$

 $ho(\mathbf{r})$ $\mathbb{R}^3\mapsto\mathbb{R}$

- Hohenberg-Kohn theorem: All properties of the system are completely determined by the ground state density.
- Exact ground state density and energy can be obtained by minimizing a universal density functional.

Density functional theory

Hohenberg and Kohn 1964

$$\Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_N)$$

 $\mathbb{R}^{3N}\mapsto\mathbb{C}$

 $egin{aligned} &
ho(\mathbf{r})\ &\mathbb{R}^3\mapsto\mathbb{R} \end{aligned}$

- Hohenberg-Kohn theorem: All properties of the system are completely determined by the ground state density.
- Exact ground state density and energy can be obtained by minimizing a universal density functional.
- In practice, obtain many-particle density from an auxiliary noninteracting system

 $\left(-\frac{\hbar^2 \nabla^2}{2m} + V_{\text{ext}} + V_{\text{H}}[\rho] + V_{\text{XC}}[\rho]\right)\psi_j = \varepsilon_j \psi_j$

Kohn and Sham 1965

Time-dependent DFT

Runge and Gross, 1984

- Time-dependent density also plays a central role for non-equilibrium systems
- In practice, it is obtained from

$$i\frac{\partial}{\partial t}\psi_j(\mathbf{r},t) = \left[-\frac{\hbar^2\nabla^2}{2m} + V_{\text{ext}}(\mathbf{r},t) + V_{\text{H}}(\mathbf{r},t) + V_{\text{xc}}[\rho(\mathbf{r}',t')](\mathbf{r},t)\right]\psi_j(\mathbf{r},t)$$

Time-dependent DFT

```
Runge and Gross, 1984
```

- Time-dependent density also plays a central role for non-equilibrium systems
- In practice, it is obtained from

$$i\frac{\partial}{\partial t}\psi_j(\mathbf{r},t) = \left[-\frac{\hbar^2\nabla^2}{2m} + V_{\text{ext}}(\mathbf{r},t) + V_{\text{H}}(\mathbf{r},t) + V_{\text{xc}}[\rho(\mathbf{r}',t')](\mathbf{r},t)\right]\psi_j(\mathbf{r},t)$$

• We use the adiabatic local-density approximation

 Vxc from diffusion Monte-Carlo simulation of uniform atomic gases Pilati et al 2010, Ping Nang Ma et al 2012

Simulation of cloud collisions

Simulation of cloud collisions

 $H = -\sum t_{ij} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum v_i^{\text{ext}} \hat{n}_{i\sigma} + U \sum \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$ $_{i,j,\sigma}$ $_{i,\sigma}$

 $H = -\sum_{i,j,\sigma} t_{ij} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{i,\sigma} v_i^{\text{ext}} \hat{n}_{i\sigma} + U \sum_i \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$

 $\left| \Psi(t) \right\rangle = \prod_{i} \hat{\mathcal{P}}_{i} \left| \text{Slater} \right\rangle$

 $H = -\sum_{i,j,\sigma} t_{ij} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{i,\sigma} v_i^{\text{ext}} \hat{n}_{i\sigma} + U \sum_i \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$

 $|\Psi(t)\rangle = \prod_{i} \hat{\mathcal{P}}_{i} |\text{Slater}\rangle$

 $H_B = \sum_{i} \hat{b}_i^{\dagger} \mathcal{H}_{iB} \hat{b}_i$ $\hat{b}_i = \left(\begin{array}{c} e \\ \uparrow \\ \downarrow \\ d \end{array}\right)$

Schiro and Fabrizio, 2010

 $H = -\sum_{i,j,\sigma} t_{ij} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{i,\sigma} v_i^{\text{ext}} \hat{n}_{i\sigma} + U \sum_i \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$

 $|\Psi(t)\rangle = \prod_{i} \hat{\mathcal{P}}_{i} |\text{Slater}\rangle$

 $H_B = \sum \hat{b}_i^{\dagger} \mathcal{H}_{iB} \hat{b}_i$ $\hat{b}_i = \left(\begin{array}{c} e \\ \uparrow \\ \downarrow \\ d \end{array}\right)$

 $H_F = -\sum_{i,j,\sigma} t_{ij}^* \hat{c}_{i\sigma}^\dagger \hat{c}_{j\sigma} + \sum_{i,\sigma} v_i^{\text{ext}} \hat{n}_{i\sigma}$

 $t_{ij}^* = z_i^* t_{ij} z_j$

 $H = -\sum_{i,j,\sigma} t_{ij} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{i,\sigma} v_i^{\text{ext}} \hat{n}_{i\sigma} + U \sum_i \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$

 $|\Psi(t)\rangle = \prod_{i} \hat{\mathcal{P}}_{i} |\text{Slater}\rangle$

 $H_F = -\sum_{i,j,\sigma} t_{ij}^* \hat{c}_{i\sigma}^\dagger \hat{c}_{j\sigma} + \sum_{i,\sigma} v_i^{\text{ext}} \hat{n}_{i\sigma}$ $H_B = \sum \hat{b}_i^{\dagger} \mathcal{H}_{iB} \hat{b}_i$ $\hat{b}_i = \left(\begin{array}{c} e \\ \uparrow \\ \downarrow \\ d \end{array}\right)$ $t_{ij}^* = z_i^* t_{ij} z_j$

Repulsive interaction

Topological charge pumping of cold atoms

 $j(x,t) \longrightarrow$

Pumps

A **pump** is a device that moves fluids, or sometimes slurries, by mechanical action.

Pumps

A **pump** is a device that moves fluids, or sometimes slurries, by mechanical action.

Pumps

A **pump** is a device that moves fluids, or sometimes slurries, by mechanical action.

Archimedes' screw ~250 BC

• conductor penetrated by Aharonov-Bohm fluxes x , x

Archimedes' screw ~250 BC

Switkes et al 1999

Topological pump

A **topological pump** transfers quantized charge in each pumping cycle. Thouless, Niu, 1980s

- $Currfr(k) \cong d(k)$ instating state
- Nordissipation δt) + $(t \delta t) \cos ka$
- Dynamical analog of quantum Hall effect $d_{-}(k) = 0$

Experimental progresses

Optical Superlattice

Fölling et al, Atala et al

in-situ imaging

Gemelke, et al, Sherson et al, Bakr et al

$$V_{\rm OL}(x) = V_1 \cos^2\left(\frac{2\pi x}{d}\right) + V_2 \cos^2\left(\frac{\pi x}{d} - \varphi\right)$$

Full (independent) dynamical

°O

Su, Schrieffer, Heeger, 1979

 $0 \quad A == B - A == B$

Rice, Mele, 1982

T/4 A ----- B ----- B

$$T/2 \quad A - B = A - B$$

Quantum dynamics

 $j(x,t) \longrightarrow$

 $H(x,t) = -\frac{\hbar^2}{2m}\nabla^2 + V_{\rm OL}(x,t)$ $i\frac{\partial}{\partial t}|\Psi\rangle = H(x,t)|\Psi\rangle$

1D pump and 2D QHE

$$\left(H(k_x,t) = H(k_x,t+T)\right)$$

$$\begin{array}{c} \mathbf{0} \\ \mathbf{$$

Adiabatically thread a quantum of magnetic flux through cylinder.

$$\Delta Q = \int_{0}^{T} \sigma_{xy} \frac{d\Phi}{dt} dt = \sigma_{xy} \frac{h}{e}$$

$$Laughlin, 1981$$

Laughlin, 1981

Von Klitzing et al, 1980

Gap & Chern number

Gap & Chern number

Gap & Chern number

Gap & Chern number

Gap & Chern number

Gap & Chern number

Practical issues

✤ Detection

- External trap
- Temperature effect
- Non-adiabatic effect

Trapping & Detection

 $\langle x \rangle / d = \Delta n$

Trapping & Detection

 $\langle x \rangle / d = \Delta n$

Temperature & Non-adiabatic effect

Temperature $\ll \frac{\Delta}{k_B}$ $T \gg \frac{\hbar}{\Lambda}$

Temperature & Non-adiabatic effect

Measuring Chern number from topological charge pumping

Synthetic gauge-field in optical lattices

Imprint complex phases to the hopping amplitude

✤ 1D Peierls lattice NIST, Hamburg

$$H = -J\sum_{m} e^{i2\pi\Phi} c_{m+1}^{\dagger} c_m + H.c.$$

Aidelsburger *et al*

Hofstadter optical lattice

 $H = -J \sum e^{i2\pi n\Phi} c_{m+1,n}^{\dagger} c_{m,n} + c_{m,n+1}^{\dagger} c_{m,n} + H.c. \quad \Phi = p/q$ m,n

 Φ_{\bigstar}

É

Hofstadter optical lattice

 Φ_{\bigstar}

 $H = -J \sum e^{i2\pi n\Phi} c^{\dagger}_{m+1,n} c_{m,n} + c^{\dagger}_{m,n+1} c_{m,n} + H.c. \quad \Phi = p/q$ m.n

Hofstadter optical lattice

 Φ_{\bigstar}

 $H = -J \sum e^{i2\pi n\Phi} c_{m+1,n}^{\dagger} c_{m,n} + c_{m,n+1}^{\dagger} c_{m,n} + H.c. \quad \Phi = p/q$ m.n

arXiv: 1212.4783 Hofstadter's butterfly in moire superlattices: A fractal quantum Hall effect

Density profile

Umucalilar *et al*

Time-of-flight

Alba *et al*, Zhao *et al*

Time-of-flight

Alba et al, Zhao et al

Time-of-flight

Alba et al, Zhao et al

Time-of-flight

Alba et al, Zhao et al

 $\dot{\mathbf{r}} = \frac{1}{\hbar} \frac{\partial \varepsilon(\mathbf{k})}{\partial \mathbf{k}} - \frac{\mathbf{F}}{\hbar} \times \hat{\mathbf{z}} \Omega(\mathbf{k})$

We propose a new probe based on Topological Pumping Effect

 $\rho(\mathbf{k_x}, y)$

Hybrid ToF

 $\Phi = 3/7 \quad C = -2$

$\Phi = 1/7 \ C = 1$

 $\Phi = 3/7 \quad C = -2$

0.135

0.120

0.105

0.090

0.075

0.060

0.045

0.030

0.015

0.000

Why it works? Topological charge pumping

 $E = \frac{1}{2\pi R} \frac{d\Phi}{dt}$ dt + Q $I = 2\pi R \sigma_{xy} E$

Τ ...

Why it works? Topological charge pumping

F

Why it works? Topological charge pumping $\Phi = 1/7$

Why it works? Topological charge pumping

Summary

Topological charge pumping is a common thread unifies many features of topological states

Guideline for design and detection of topological phases in cold atom systems

FAO

Tight binding limit? Do not need Edge state modes, fractionalized charge ? Do not need Is sliding topological ? Yes