# My years at ETH

01.09.2011-today

Lei Wang



Lei Wang

August 30, 2011 at 5:46 AM

WL

To: Matthias Troyer See you in Zurich

Dear Prof. Troyer,

I am Lei Wang from the Institute of Physics, Beijing. I am very honored to have the opportunity to work with you and your prestigious group members.

I will arrive in Zurich on September 1st. I am eager to start my work and life in Switzerland. See you soon!

All the Best,

Lei Wang Institute of Physics Chinese Academy of Sciences wanglei@aphy.iphy.ac.cn



Dear Lei Wang,

Will you arrive on the 1st or already the day before? I unfortunately have to go to the US for a week on short notice on the 1st. Tama Ma can help you get settled and started. I hope to see you as soon as possible.

Matthias

On 30 Aug 2011, at 05:46, Lei Wang wrote:

Dear Prof. Troyer,

I am Lei Wang from the Institute of Physics, Beijing. I am very honored to have the opportunity to work with you and your prestigious group members.

I will arrive in Zurich on September 1st. I am eager to start my work and life in Switzerland. See you soon!

All the Best,

Lei Wang Institute of Physics Chinese Academy of Sciences wanglei@aphy.iphy.ac.cn



"Apply DFT to ultracold atoms"



"Apply DFT to ultracold atoms"



"Here is the xc functional, you are welcome!"



#### "Apply DFT to ultracold atoms"





















#### "Apply DFT to ultracold atoms"











"Garbage"











"How about build a topological pump for ultracold atoms?"





"How about build a topological pump for ultracold atoms?"





"How about build a topological pump for ultracold atoms?"





"Wannier charge center of ultracold atoms!"



"How about build a topological pump for ultracold atoms?"





"Wannier charge center of ultracold atoms!"

#### Lesson1: Opportunity lies in the interface



"How about build a topological pump for ultracold atoms?"





"Wannier charge center of ultracold atoms!"

Lesson1: Opportunity lies in the interface Lesson2: Talk to your boss/colleagues



"How about build a topological pump for ultracold atoms?"





"Wannier charge center of ultracold atoms!"

Lesson1: Opportunity lies in the interface Lesson2: Talk to your boss/colleagues Lesson3: There is no waste of time

"Topological pumping is great, I'd like to do more of it."



"Topological pumping is great, I'd like to do more of it."



arXiv.org > cond-mat > arXiv:1311.0034

**Condensed Matter > Strongly Correlated Electrons** 

#### Solution to sign problems in half-filled spin-polarized electronic systems

Emilie Fulton Huffman, Shailesh Chandrasekharan

(Submitted on 31 Oct 2013)

"Topological pumping is great, I'd like to do more of it."

arXiv.org > cond-mat > arXiv:1311.0034

**Condensed Matter > Strongly Correlated Electrons** 

#### Solution to sign problems in half-filled spin-polarized electronic systems

Emilie Fulton Huffman, Shailesh Chandrasekharan

(Submitted on 31 Oct 2013)



"Topological pumping is great, I'd like to do more of it."

arXiv.org > cond-mat > arXiv:1311.0034

**Condensed Matter > Strongly Correlated Electrons** 

Solution to sign problems in half-filled spin-polarized electronic systems

Emilie Fulton Huffman, Shailesh Chandrasekharan

(Submitted on 31 Oct 2013)

"Now I have this nice CT-QMC code, what else can I do with it?"







"Topological pumping is great, I'd like to do more of it."

arXiv.org > cond-mat > arXiv:1311.0034

**Condensed Matter > Strongly Correlated Electrons** 

Solution to sign problems in half-filled spin-polarized electronic systems

Emilie Fulton Huffman, Shailesh Chandrasekharan

(Submitted on 31 Oct 2013)

"Now I have this nice CT-QMC code, what else can I do with it ?"

Lesson4: Life is like a box of chocolates...



B



"Topological pumping is great, I'd like to do more of it."

arXiv.org > cond-mat > arXiv:1311.0034

**Condensed Matter > Strongly Correlated Electrons** 

Solution to sign problems in half-filled spin-polarized electronic systems

Emilie Fulton Huffman, Shailesh Chandrasekharan

(Submitted on 31 Oct 2013)

"Now I have this nice CT-QMC code, what else can I do with it ?"



Lesson4: Life is like a box of chocolates...

Lesson5: Always bring new insights/techniques when shifting to a new field



"My CT-QMC code is slow..."

"My CT-QMC code is slow..."



"I have a nice trick to make it linear scaling!"



"My CT-QMC code is slow..."



"I have a nice trick to make it linear scaling!"



"Any other advantage of LCT-QMC?"







fidelity susceptibility

"My CT-QMC code is slow..."



"I have a nice trick to make it linear scaling!"



"Any other advantage of LCT-QMC?"

"De-sign principle?"







fidelity susceptibility





sign problem

"My CT-QMC code is slow..."



"I have a nice trick to make it linear scaling!"



"Any other advantage of LCT-QMC?"

"De-sign principle?"







fidelity susceptibility





sign problem

Lesson6: Faith and persistent

# Thank **all of you** and goodbye!