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Why metal is metal ?

H = −
N

∑
i=1

ℏ2 ∇2
i

2m
+ ∑

i<j

e2

|ri − rj |

Metal density: Coulomb interaction is not 
perturbative compared to kinetic energy

rs ≪ 1 High density: kinetic energy dominants 

rs ≫ 1 Low density: Coulomb interaction dominants 

Richard Martin,  Electronic structure

2 < rs < 6

110 Uniform Electron Gas and sp-Bonded Metals

Table 5.1. Typical rs values in elemental solids in units of the Bohr radius a0. The
valence is indicated by Z. The alkalis have bcc structure; Al, Cu, and Pb are fcc; the
other group IV elements have diamond structure; and other elements have various
structures. The values for metals are taken from [285] and [300]; precise values

depend on temperature.

Z = 1 Z = 2 Z = 1 Z = 2 Z = 3 Z = 4

Li 3.23 Be 1.88 B C 1.31
Na 3.93 Mg 2.65 Al 2.07 Si 2.00
K 4.86 Ca 3.27 Cu 2.67 Zn 2.31 Ga 2.19 Ge 2.08
Rb 5.20 Sr 3.56 Ag 3.02 Cd 2.59 In 2.41 Sn 2.39
Cs 5.63 Ba 3.69 Au 3.01 Hg 2.15 Tl Pb 2.30

lattice constant; expressions for fcc and bcc, and the VI, III–V, and II–VI semiconductors
are given in Exercises 5.1 and 5.2.

Of course, density is not constant in a real solid and it is interesting to determine the
variation in density. In ordinary diamond-structure Si, there is a significant volume with
low density (the open parts of the diamond structure). However, in the compressed metallic
phase of Si with Sn structure, the variation in rs is only ± ≈20%. The distribution of local
values of the density parameter rs for valence electrons in Si can be found in [299].

The hamiltonian for the homogeneous system is derived by replacing the nuclei in
Eq. (3.1) with a uniform positively charged background, which leads to
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where the second expression is in Hartree atomic units h̄ = me = e = 4π/ε0 = 1, where
lengths are given in units of the Bohr radius a0. The last term is the average background
term, which must be included to cancel the divergence due to Coulomb interaction among
the electrons. The total energy is given by

E = 〈Ĥ 〉 = 〈T̂ 〉 + 〈V̂int〉 − 1
2

∫
d3rd3r ′ n2

|r − r′|
, (5.3)

where the first term is the kinetic energy of interacting electrons and the last two terms
are the difference between the potential energy of the actual interacting electrons and the
self-interaction of a classical uniform negative charge density, i.e., the exchange–correlation

rs

Uniform electron gas

∼ r−2
s ∼ r−1

s



Landau fermi liquid theory

e2

rs
≳ EF ≫ T

Physics happens around the Fermi surface with strongly constrained phase-space

Fermi sea

K = {k1, k2, …, kN}



31.5 The Landau Fermi liquid 281

A rather different way of understanding metals in terms of fictitious par-
ticles was formulated by Lev Landau13 and is known as Fermi liquid

13Lev Landau (1908–1968) was a So-
viet physicist and one of the great-
est scientists of the twentieth century
who made contributions in many ar-
eas, including phase transitions, mag-
netism, superconductivity, superfluid-
ity, plasma physics and neutrinos. He
was also the model for the principal
character, Viktor Shtrum, in Vassily
Grossman’s novel Life and Fate.

theory. It has been so useful in understanding metals that it is lit-
tle exaggeration to claim that it has become the standard model of the
metal.14 Landau’s theory is phenomenological, but appealingly intuitive

14The concept of a Fermi liquid is a
high successful phenomenological the-
ory of interacting electrons. It is a bit
of a departure from our main theme
of field theories of interacting systems,
but it is too useful to omit and more ad-
vanced treatments than the one given
here demonstrate that the machinery of
diagrammatic perturbation theory can
indeed be employed to derive important
results in Fermi liquid theory.

since it involves a description of a strongly interacting metal as being
almost identical to the non-interacting Fermi gas! Moreover Fermi liq-
uid theory allows the complete description of an interacting system in
terms of a small number of parameters, while avoiding all of the com-
plexities of perturbation theory. Central to the model is the fact that
Landau describes an interacting metal in terms of quasiparticles; but
these are different to the field theory quasiparticles described thus far
in this chapter. We will call the former Landau quasiparticles to avoid
confusion.

In Landau’s picture we pay particular attention to the process of ‘turn-
ing on’ the interaction between the non-interacting electrons of the Fermi
gas. Landau assumed that if we very slowly turn on the interaction the
system evolves continuously from Fermi gas to Fermi liquid, with each
single-particle momentum eigenstate of the gas evolving into a single-
particle momentum eigenstate of the liquid. This adiabatic turning on
may be shown in ordinary quantum mechanics to lead to a very small
amplitude for transitions out of the level, providing the density of final
states is small, as it is for electrons within the Fermi sea as a result of
the Pauli principle.

Vital to Landau’s Fermi liquid concept is the notion that all of the
the states |p〉 occupied by an electron in the gas with n(0)

p = 1 be-
come single-particle eigenstates |p〉 in the liquid occupied by a Landau
quasiparticle. The Landau quasiparticles in the interacting ground state
therefore also have momentum distribution n(0)

p . We say that there is a
one-to-one correspondence between the free particles and Landau quasi-
particles. On turning on the interaction the Landau quasiparticles take
on an effective mass m∗ which parametrizes the change in energy of the
eigenstates due to the effect of the field from the other quasiparticles.

| 〉
| 〉 | 〉

| 〉

| 〉
| 〉 | 〉

| 〉

Fig. 31.6 Turning on interactions
changes the states but the energy lev-
els shouldn’t cross during the turning
on process. Thus we can have (a) but
not (b).

Despite the change in energy, there should be no ambiguity in the
identity of an occupied eigenstate after turning on the interaction and
therefore the energy levels of the states shouldn’t cross during the turn-
ing on process. That is to say, upon turning on the interaction we must
have the process shown in Fig. 31.6(a) rather than that in Fig. 31.6(b).
We might ask whether this non-crossing of levels is a realistic propo-
sition. Recall that when two eigenstates are related by a symmetry
transformation which leaves the Hamiltonian invariant we obtain a de-
generacy in energy. If we turn on a perturbing potential V which leads
to a nonzero matrix element δ between the two states we have a Hamil-

tonian H =

(
E δ
δ E

)
which leads to a splitting in energy of 2δ. It’s

as if the energy levels repel each other by virtue of a matrix element δ
existing between them, which prevents them from ever crossing. The
consequence of this for the metal is that, as we turn on the interaction,
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Where the Fermi liquid and quantum field theories coincide is in the
description of the weakly excited states of the metal. The excited Landau
quasiparticles have exactly the same properties as our quantum field
theory quasiparticles and the argument about their lifetime applies to
both. Near the Fermi surface the energy of an excited quasiparticle may
be written Ep ≈ pF

m∗ (|p| − pF) and its decay rate Γp ∝ (|p| − pF)2 We
see that for small (|p| − pF) the real part of the quasiparticle energy
will be larger than the imaginary part, or Ep > Γp, and a meaningful
quasiparticle exists in the metal.

(a) (b)

Fig. 31.8 A cartoon of the Landau
Fermi liquid. (a) The non-interacting
Fermi gas with a single electron pro-
moted into an excited state (indicated
as a dotted line). (b) In the Landau
Fermi liquid the interactions are turned
on so that the electrons become quasi-
particles and the holes become quasi-
holes. There is a one-to-one corre-
spondence between the quasiparticles
and quasiholes in the interacting liquid
and the electrons and holes in the non-
interacting picture.

We now complete our description of the Landau Fermi liquid with
a discussion of the total energy of a weakly excited state of a metal.
In the spirit of many of Landau’s arguments, in which any ignorance
of microscopic details is no barrier to formulating a meaningful power
series expansion, we write the energy of the Fermi liquid in the limit of
a low density of quasiparticles as

E = Eg +
∑

p

(E(0)
p − µ) δnp +

1

2

∑

pp′

fpp′ δnp δnp′ + · · · , (31.20)

where δnp = np−n(0)
p is the difference between a distribution with exci-

tations and the ground state distribution18 and Eg =
∑

p E(0)
p n(0)

p is the

18This implies that it is neither np nor

n
(0)
p that is the crucial quantity, but

rather it is their difference δnp , which
tells us the number of excitations in the
excited state. This is fortunate since we
know neither np nor n

(0)
p with much ac-

curacy, but we can find δnp .

energy of the ground state. The term linear in δnp describes the excita-

tion of isolated quasiparticles of energy E(0)
p −µ = ∂E/∂np. The second-

order coefficient19 fpp′ = ∂2E/∂np∂np′ describes the contribution from

19The partial differentials in the ex-

pressions for E
(0)
p −µ and fpp′ are eval-

uated about the ground state configu-
rations, i.e. a frozen Fermi sea.

quasiparticle–quasiparticle scattering (i.e. from interactions), and can
be described via an interaction Hamiltonian HI = 1

2

∑
pp′ fpp′ δnp δnp′ .

Example 31.4

To understand the scattering process in more detail, one should include spin and
this amounts to replacing fpp′ by fpσ;p′σ′ . One can show20 that for spin-conserving

20Further details and a fuller account
may be found in the book by P. Cole-
man.

interactions this quantity can be written as

fpσ;p′σ′ = f s(cos θ) + fa(cos θ)σ · σ′, (31.21)

where cos θ = p·p′

|p||p′| . The functions f s and fa can be expanded in terms of Legendre
polynomials so that

fs,a(cos θ) =
1

g(EF)

∞X

"=0

P"(cos θ)F
s,a
" , (31.22)

where F s
" and F a

" are Landau parameters and g(EF) is the density of states at
the Fermi level.21 These expressions allow some of the key properties of the Landau 21See Chapter 43.
Fermi liquid to be deduced. For example, one can show that the effective mass is
m∗ = m(1+F s

1) and the spin susceptibility is χ = µ0µ2
Bg(EF)/(1+F a

0 ). Many of the
predictions of Landau’s Fermi liquid theory may be shown (after much hard graft!)
to coincide with those of quantum field theory and, owing to its comparative ease of
use, it is still regarded as the best way of understanding the results of experiment on
numerous condensed matter systems.

We have seen in this chapter that renormalization is an essential step
in understanding what happens to particles in an interacting quantum
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Landau fermi liquid theory

Lancaster & Blundell , QFT for the Gifted Amateur 
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Adiabatic continuity

Predicts a large number of physical properties based on a few parameters
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Quasi-particles effective mass 

A fundamental quantity appears in nearly all physical properties of a Fermi liquid

cV χN(0) s
Density of states entropy specific heat magnetic susceptibility

Richard D. Mattuck, 

A Guide to Feynman 

Diagrams in the Many-
body Problem



Quasi-particles effective mass of 3d electron gas 

> 50 years of conflicting results !

ONE —PARTICLE GREEN'S FUNCTION

l.20

I.l 5

I lo-

1.05

0.95

SPECIFlC HEAT OF AN ELECTRON GAS same effect has been noted earlier in case of a dilute
I'ermi gas, "and is there supposed to disappear when
higher order terms are taken into account. To see if this
attraction might be strong enough to make a spherical
Fermi surface unstable, we considered the following
distortion,

1+8)k/ko) 1, 8(rj'. Sist(k, 8)= 1
1+8&k/k, &1, 8&~—q: his (k,8)=1
1&k/k, &1—-',~'8:

(its+(k, 8) =8is (k,8) =—1, 8 ~ 0, rI —+ 0.
The lowering in energy from f relative to the increase in
energy from I' then becomes ag'lnq where a, the co-
efFicient of the singular term in f, ranges between 0.015
and 0.038 when r, goes from 1 to 6. The attraction is
thus far too weak to be of any importance.
It should be pointed out that it is not clear if there

should be a s' factor in f when we use an approximation
Go instead of the self-consistent G. To see this we use the
results from Appendix 8 and write

0.90

OCC

E=Q t e(k)+ V,(((k)]+AL':,

FIG. 12. Specific heat of an electron gas. The specific heat of
an interacting electron gas divided by that of a non-interacting
or Sommerfeld electron gas (L'1+ (third column from the right in
Table VI)A 'l is plotted against r.

Since f,"i depends on e(((,0) and e(((,0) depends on f,
%atabe can write down an equation for y from a self-
consistency requirement:

~-'=1—Z—hs~ hi(X~/(1+l ~)). (11'?)

Watabe's expressions for Cs/C —1 and Xs/X—1 are the
same as those in Eq. (114)multiplied by y ' a,nd with li
replaced by )y. This is obvious from Eq. (116a).
Specifically he thus obtains X/Xs ——p. Watabe's result
for y ranges from 1.12 to 1.32 when r, goes from 1 to 5.
Our values for y as given by Eq. (116b) using fs, f.('i
and f,('i with the s' factor agree with Watabe's within
1'Po. Also Glick's result" for y at r, =2 agrees accurately
with Katabe's and ours. This is a quite remarkable
coincidence, which we cannot explain.
%e now make a few remarks on the analytical be-

havior of the different contributions to f, (8). f,"'(8)
varies between —0.25 and —0.25(l~/(1+X/2)). The slope
of f, ' (()&i8s zero at 8 and 8=rr. fs(8) and f. (8()s&start
out with finite values at 0=0 and go to infinity at 8=m
as ln(1+cos8). The coeScients of the ln term have
opposite signs and roughly the same magnitude. Ke
thus have a singular attraction between quasiparticles
of opposite momenta and opposite spin giving a tendency
towards a superconducting state. This effect does rot
come from the logarithmic singularity in e(((,0). The

gI:= (l Ly(k', G)+e*"
(2s.)'
XTr(V.((G+G 'G—1—lnGo 'G)ldk'(, l,

G (k, ) = ( —(k)—V„. (k))—'; e(k) = (k'k'/2m) .

Suppose now that we approximate G by Go in hI&., which
since AP: is stationary might not be too serious. %e then
have

Since

I.=g e(k)+ 0 @(k'; G)dk'(, i.
(2') 4

8Gs(k)/Siss ——2s.i8(k—k') 8(e—s(k)—V,r((k)) (120)

we have that

E(k)= 8E/8ms= e(k)+M(kq e(k)+ Vgff(k)),
f(k,k') =RE(k)/its 2sss 'I(k, k');

e= c'= e(ks)+ V,(((ks) .

Suppose on the other hand that we start from

E(k) = e(k)+M(k, I;(k)),

(121)

(122)

"See A. A. Abrikosov eI gt. , (Ref. 2), p. 36.

where 3f is a functional of Gs. We then have for f
f(k,k') =2sss 'I(k, k'); e= e = e(ks)+ Veff(kE) (123)

The equations for f, (121) and (123), may be compared
to Eq. (32). We thus get different results depending on

Hedin Phy. Rev. 1965
5

FIG. 3. Quasiparticle e↵ective masses m⇤ of paramagnetic
and ferromagnetic 3D-HEGs as functions of 1/N , where N is
the system size.

GW calculations with a random-phase-approximation-
screened free-electron model (SRPA) [55], suggest that
the e↵ective mass decreases at low density. The GW ap-
proximation is expected to be accurate at high density
(rs  1), which is consistent with the behavior shown
in Fig. 4, where the di↵erences between the various GW

results reduce as the density increases. Indeed, the dif-
ference between the DMC and GW e↵ective masses is
quite small at rs = 1. Recently, the single-particle exci-
tation spectra and quasiparticle e↵ective masses of 3D-
HEGs have been calculated using variational diagram-
matic Monte Carlo (VDMC) [53], in which high-order
Feynman diagrams are sampled using Monte Carlo meth-
ods [56]. The behavior of the VDMC e↵ective mass as a
function of density is close to some of the GW results, as
can be observed from Fig. 4. To the best of our knowl-
edge, there are no reliable experimental results for the ef-
fective mass of the 3D-HEG. However, the bandwidth of
Na metal, which has a band e↵ective mass (incorporating
crystal lattice e↵ects) of 1.23, has been measured [61, 62]
and can be compared with that of the 3D-HEG at den-
sity parameter rs = 4. Neither our DMC results nor the

FIG. 4. Quasiparticle e↵ective masses m⇤ of paramagnetic
(Para) and ferromagnetic (Ferro) 3D-HEGs at the infinite-
system-size limit as functions of density parameter rs. Padé
functions were fitted to the DMC quasiparticle energy bands
to determine the e↵ective mass. The many-body GWx and
variational diagrammatic Monte Carlo (VDMC) results are
from Refs. [52] and [53], respectively. The GW -SS and GW -
SRPA results are from Refs. [54] and [55], respectively. The
GW results are for paramagnetic 3D-HEGs.

existing VDMC and GW results explain the experimen-
tally estimated 18–25% bandwidth narrowing relative to
self-consistent band theoretical calculations [61, 62].

In summary, we have calculated the single-particle en-
ergy bands and quasiparticle e↵ective masses of para-
magnetic and ferromagnetic 3D-HEGs using the DMC
method. Two fitting functions, of Padé and quartic form,
have been used to obtain the gradient of the energy band
at the Fermi wavevector and hence the e↵ective mass
at each finite system size studied. We found that the
e↵ective masses of paramagnetic and ferromagnetic sys-
tems of any given finite size are almost independent of
the choice of trial wave function and the fitting func-
tion used. The DMC bandwidths of paramagnetic and
ferromagnetic 3D-HEGs are larger than that of the free-
electron model but smaller than the HF bandwidth at
all densities considered. The DMC bandwidth for a 3D-
HEG with density parameter rs = 4 agrees with previous
QMC results for the bandwidth of Na. A su�ciently
high precision is achieved in our simulations that the
systematic finite-size errors in the e↵ective masses can
be eliminated by extrapolation to the thermodynamic
limit. Our DMC results predict that the e↵ective mass
of the 3D-HEG decreases as the density decreases from
r1 = 1 to rs = 10. This reduction is more pronounced in
the ferromagnetic system than the paramagnetic system.
The good agreement between DMC results for Na and
the 3D-HEG indicates that the 3D-HEG provides a good

Azadi, Drummond, Foulkes, PRL 2021



Layer thickness, valley, disorder, spin-orbit coupling…

Two dimensional electron gas experiments

m * /m > 1
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Conflicting results even from the SAME numerical method

606 Variational Monte Carlo
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Figure 23.3. The left panel shows the inverse effective mass of the 2D HEG versus rs as computed
with two different ways of extracting the information from QMC; in [1044] (solid triangles),
computed using k-values very close to kF ; in [1045] (open circles), averaged over excitations
0 ≤ k ≤ 1.3kF . Also shown are analytic calculations using a local field factor [1046] (dashed line),
or using the screened RPA [1047] (solid line). The right figure shows the finite-size effects in the
QMC effective mass calculations at rs = 10, from [1044].

mass differs because of the way it is calculated from the QMC energies. Drummond and
Needs [1045] fitted the excitation energy over a wide range of excitations 0 ≤ k ≤ 1.3kF

and specifically excluded values near the Fermi surface; the effective mass was determined
by differentiating the analytic fit. Holzmann et al. [1044] only used excitations near the
Fermi surface and applied a large finite-size correction to the effective mass, as shown in
the right panel of Fig. 23.3. Resolving these different methods of analysis comes down to
deciding the range of validity of Fermi liquid theory. For an infinite system, Fermi liquid
theory only applies for excitations near the Fermi surface. Since excitations away from kF

acquire a finite lifetime, it is not clear whether the QMC excitation energies of the finite
system correspond to quasi-particle peaks in the spectral function and whether using them
can introduce a bias in the determination of the effective mass.

23.8 Strengths and weaknesses of VMC

The variational method is very powerful and intuitively pleasing. By only assuming a func-
tional form for the wavefunction, one obtains an upper bound to the energy. In contrast to
other many-body correlated methods, no further uncontrolled approximations need to be
made. The only restriction on the trial function is that it must be computable. With a Slater–
Jastrow trial wavefunction one can do calculations with thousands of electrons. To be sure,
the numerical work has to be done very carefully, e.g., the convergence of the random walk
has to be tested and dependence on system size needs to be corrected for. To motivate the
methods to be described in the next two chapters, we list some of the intrinsic problems
with the variational method.

! The variational method is biased to give a relatively lower energy to a simple state over
a more complicated state. Consider the estimation of the melting density of the Wigner

Martin, Reining, Ceperley, Interacting Electrons ‘16

23.7 Excitations and orthogonality 605

as the guiding function17 and generate a set of M many-body coordinates {R(k)}. Using a
random walk sampling |ψG|2, the two matrices18 can be estimated as:

N̄ij = 1
M

M∑

k=1

f ∗i (R(k))fj(R(k)), H̄ij = 1
M

M∑

k=1

f ∗i (R(k))fj(R(k))ELj(R(k)), (23.30)

where fj(R) ≡ "j(R)/"G(R) is the weight of the jth state and ELj(R) is its local energy. The
energy differences will have a much smaller error than the individual energies do, since
fluctuations unconnected with the excitation will cancel, an example of what is called in
Monte Carlo “correlated sampling.” See [1043] for details.

A fundamental problem with excited states is that with higher excitations, the wave-
functions get more complex and the approximations we use for the ground state are less
accurate. An accurate variational treatment would require a much larger basis. Other meth-
ods, such as path-integral Monte Carlo, described in Ch. 25, which is formulated at finite
temperature, are more appropriate when there are many states to sum over. In the correla-
tion function quantum Monte Carlo method (Sec. 25.7) one uses the hamiltonian to project
out lower-energy excitations from the wavefunction basis, thus achieving tighter upper
bounds. If convergence can be achieved, one attains the exact energy within the statistical
error.

As an application of the calculation of excited states, consider the Fermi liquid
parameters defined in Sec. 3.4. Using the method described above, we can calculate
the ground state and the lowest excitations of the system. For the homogeneous elec-
tron gas the ground state at high density consists of filled shells of plane-wave orbitals
allowed by periodic boundary conditions; see Fig. 6.1. We consider excited states where
a single electron from the last occupied shell is replaced by one in the first unoccu-
pied shell. Because these excitations have different total momenta from each other and
from the ground state, the states are orthogonal so calculation of the overlap matrix
is not needed. Two different excitations, spin-parallel excitations and spin-antiparallel
ones, are possible; the results are reported in [1043]. Because the electron and hole
states will interact in a finite system, the excitation energy will have important finite-
size corrections. An alternative procedure [1044, 1045] is to add or subtract a single
electron from the ground state. This does not have a problem with the electron–hole
interaction, but there are other finite-size effects to consider, and one can only calculate
parameters having to do with a single-particle excitation such as the effective mass and
bandwidth.

The effective mass is defined in Sec. 3.4. Two quite different QMC results for the 2D
HEG are shown in Fig. 23.3 and compared with screened RPA and local field method
results. The two different QMC calculations were done in a similar way, but the effective

17 Optimizing the variance of the excitation energies [1041] finds that the optimal guiding function will have the
form "G(R)2 = ∑

k |#k(R)|2; i.e., it is determined by the states to be calculated. This “guiding function” is
non-negative and zero only where all states under consideration have zeros.

18 Due to fluctuations, H will not be symmetric. One should not symmetrize it, since that will destroy the zero-
variance property; see [1042].
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Figure 23.3. The left panel shows the inverse effective mass of the 2D HEG versus rs as computed
with two different ways of extracting the information from QMC; in [1044] (solid triangles),
computed using k-values very close to kF ; in [1045] (open circles), averaged over excitations
0 ≤ k ≤ 1.3kF . Also shown are analytic calculations using a local field factor [1046] (dashed line),
or using the screened RPA [1047] (solid line). The right figure shows the finite-size effects in the
QMC effective mass calculations at rs = 10, from [1044].

mass differs because of the way it is calculated from the QMC energies. Drummond and
Needs [1045] fitted the excitation energy over a wide range of excitations 0 ≤ k ≤ 1.3kF

and specifically excluded values near the Fermi surface; the effective mass was determined
by differentiating the analytic fit. Holzmann et al. [1044] only used excitations near the
Fermi surface and applied a large finite-size correction to the effective mass, as shown in
the right panel of Fig. 23.3. Resolving these different methods of analysis comes down to
deciding the range of validity of Fermi liquid theory. For an infinite system, Fermi liquid
theory only applies for excitations near the Fermi surface. Since excitations away from kF

acquire a finite lifetime, it is not clear whether the QMC excitation energies of the finite
system correspond to quasi-particle peaks in the spectral function and whether using them
can introduce a bias in the determination of the effective mass.

23.8 Strengths and weaknesses of VMC

The variational method is very powerful and intuitively pleasing. By only assuming a func-
tional form for the wavefunction, one obtains an upper bound to the energy. In contrast to
other many-body correlated methods, no further uncontrolled approximations need to be
made. The only restriction on the trial function is that it must be computable. With a Slater–
Jastrow trial wavefunction one can do calculations with thousands of electrons. To be sure,
the numerical work has to be done very carefully, e.g., the convergence of the random walk
has to be tested and dependence on system size needs to be corrected for. To motivate the
methods to be described in the next two chapters, we list some of the intrinsic problems
with the variational method.

! The variational method is biased to give a relatively lower energy to a simple state over
a more complicated state. Consider the estimation of the melting density of the Wigner

m* of 2d electron gas
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How to represent variational density-matrix so it is physical & optimizable ? 

The variational free-energy

F =
1
β

Tr(ρ ln ρ) + Tr(Hρ)

Trρ = 1 ρ ≻ 0 ρ† = ρ ⟨R |ρ |R′￼⟩ = ( − )𝒫⟨𝒫R |ρ |R′￼⟩

≥ −
1
β

ln Z

A variational density-matrix approach

Z = Tr(e−βH)



Variational density-matrix ansatz

ρ = ∑
K

p(K) ΨK⟩⟨ΨK

Normalized probability 
distribution 

Orthonormal many-electron 

states

∑
K

p(K) = 1 ⟨ΨK |ΨK′￼
⟩ = δK,K′￼

How to represent them ???  

Generative machine learning + physical considerations 



or
p(x, y)y = f(x)

p(y |x)

Generative learningDiscriminative learning
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.

21A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

U
 

Generative models and their physics genes
Goodfellow, 
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Known: samples

Unknown: generating distribution

Known: energy function

Unknown: samples, partition function

Statistical physicsGenerative modeling

Density estimation

ℒ = − 𝔼x∼dataset [ln p(x)]
“learn from data”

Variational calculation

F = 𝔼x∼p(x) [ 1
β

ln p(x) + H(x)]
“learn from Hamiltonian”

see, e.g., Wu, LW, Zhang, PRL ’19



Generative models

https://blog.openai.com/glow/

Glow 1807.03039

Normalizing flow
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Normalizing flow for |ΨK⟩

ΨK(R) =
det(eiki⋅ζj/L)

N!
⋅ det ( ∂ζ

∂R )
1
2

The flow implements a many-body unitary transformation

Electron 

coordinates

Quasi-particle 

coordinates

Jacobian of a 

bijective neural network

R ζ

Eger & Gross 1963

⟨ΨK |ΨK′￼
⟩ = δK,K′￼

ensures orthonormalityL

R = {ri} ζ = {ζi}↔



Intuition

If the mapping f is 1-to-1, then the total area (or volume) should

not change after the transformation from x to z .

Figure 1: Mapping from one probability density to another. Source:

Lecture 19 notes

12

Normalizing flow in a nutshell
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Neural renormalization group, Li, LW,  PRL ‘18
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Lattice field theoryMolecular simulation

Although no reference for this free-energy dif-
ference in the given simulationmodel is known,
the temperature profile admits basic consistency
checks: The x-ray structure is identified as the
most stable structure at temperatures below
330 K. The internal energy and entropy terms of
the free-energy difference (Eq. 1) are both positive
across all temperatures. Therefore, the free-energy
decreases at high temperatures as the entropic

stabilization becomes stronger. A higher configu-
rational entropy of the “O” state is consistent with
its more open loop structure (compare Fig. 5, G
and H) and the higher degree of fluctuations in
the “O” state observed by the analysis in (30).

Discussion and conclusion

Boltzmann generators can overcome rare event-
sampling problems in many-body systems by

generating independent samples from different
metastable states in one shot. We have demon-
strated this for dense and unstructured many-
body systems with up to 892 atoms (over 2600
dimensions) that are placed simultaneously, with
most samples having globally and locally valid
structures and potential energies in the range of
the equilibrium distribution. In contrast to other
generative neural networks, Boltzmann generators

Noé et al., Science 365, eaaw1147 (2019) 6 September 2019 7 of 11

Fig. 5. One-shot sampling of all-atom structures in different
conformations of the BPTI protein. (A) Boltzmann generator for
macromolecules: Backbone atoms are whitened using PCA; side-chain
atoms are described in normalized internal coordinates (crds). (B) BPTI
x-ray crystal structure (PDB: 5PTI). Cysteine disulfide bridges and
aromatic residues are shown for orientation. (C) One-shot Boltzmann
generator sample of all 892 atoms (2670 dimensions) of the BPTI
protein similar to the x-ray structure. (D) Potential energy distribution
from MD simulation (gray) and Boltzmann generator one-shot samples

(blue). (E) Distribution of bonds and angles compared between
MD simulation (black) and Boltzmann generator (blue).
(F) Representative snapshots of four clusters of structures
generated with the Boltzmann generator. Backbone root mean
square deviation from the x-ray structure is given below the
structure (in angstroms). Marked are the x-ray–like structure
“X” and the open structure “O.” (G and H) Magnification of the
most variable parts of the Boltzmann-generated samples from the
“X” and “O” states. Side chains are shown in atomistic resolution.
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Normalizing flow for physics
Gravitational wave detection

Green et al, MLST ‘21Noe et al, Science ‘19
Kanwar et al, PRL ‘20
Albergo et al, PRD ‘19

Wirnsberger et al, JCP ‘20 Dex et al, PRL ‘21



Flow of electron coordinates

𝒯 ∘ 𝒫(R) = 𝒫 ∘ 𝒯(R)

Normalizing  

flow 𝒯RElectron 


coordinates

Flow should be equivariant to preserve physical symmetries
we use equivariant FermiNet layers Pfau et al, 1909.02487 

ζQuasiparticle

coordinates



Backflow as a normalizing flow

ζi = ri + ∑
j≠i

η( |ri − rj | )(rj − ri)

Wigner & Seitz 1934, Feynman 1954, …

Backflow is an equivariant residual flow Behrmann et al, 1811.00995

Chen et al, 1906.02735 
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Backflow can be made unitary (if we track its Jacobian)



Neural backflow transformations
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ζ

Composition of residual blocks has an 
interesting connection to continuous dynamics

E Commun. Math. Stat 17’,  Harbor el al 1705.03341, Lu et al 1710.10121, Chen et al, 1806.07366



Xie, Zhang, LW, 2105.08644

Electron density in a 2D quantum dot

Continuous flow from noninteracting density to Wigner molecule



Autoregressive model for p(K)

p(K) = p(k1)p(k2 |k1)p(k3 |k1, k2)⋯
K = {ki}

“… quick brown fox jumps …”
p( jumps | . . . )

particle number   sentence lengthN →
momentum grids   vocabularyM →

Except that we are modeling a set of words: no repetition; order does not matter
We use masked casual self-attention Vaswani et al 1706.03762; Alternative solution: Hibat-Allah et al, 2002.02793, Barret et al, 2109.12606

 possibilities(M
N )



S = − Trρ ln ρ = − 𝔼
K∼p(K)

[ln p(K)]Directly estimate entropy

ρ = ∑
K

p(K) ΨK⟩⟨ΨK

Normalized classical 
probability for momenta ∑

K

p(K) = 1

Tractable probabilistic model despite of combinatorial large space

Autoregressive model for p(K)

(49
13) = 262596783764
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A rather different way of understanding metals in terms of fictitious par-
ticles was formulated by Lev Landau13 and is known as Fermi liquid

13Lev Landau (1908–1968) was a So-
viet physicist and one of the great-
est scientists of the twentieth century
who made contributions in many ar-
eas, including phase transitions, mag-
netism, superconductivity, superfluid-
ity, plasma physics and neutrinos. He
was also the model for the principal
character, Viktor Shtrum, in Vassily
Grossman’s novel Life and Fate.

theory. It has been so useful in understanding metals that it is lit-
tle exaggeration to claim that it has become the standard model of the
metal.14 Landau’s theory is phenomenological, but appealingly intuitive

14The concept of a Fermi liquid is a
high successful phenomenological the-
ory of interacting electrons. It is a bit
of a departure from our main theme
of field theories of interacting systems,
but it is too useful to omit and more ad-
vanced treatments than the one given
here demonstrate that the machinery of
diagrammatic perturbation theory can
indeed be employed to derive important
results in Fermi liquid theory.

since it involves a description of a strongly interacting metal as being
almost identical to the non-interacting Fermi gas! Moreover Fermi liq-
uid theory allows the complete description of an interacting system in
terms of a small number of parameters, while avoiding all of the com-
plexities of perturbation theory. Central to the model is the fact that
Landau describes an interacting metal in terms of quasiparticles; but
these are different to the field theory quasiparticles described thus far
in this chapter. We will call the former Landau quasiparticles to avoid
confusion.

In Landau’s picture we pay particular attention to the process of ‘turn-
ing on’ the interaction between the non-interacting electrons of the Fermi
gas. Landau assumed that if we very slowly turn on the interaction the
system evolves continuously from Fermi gas to Fermi liquid, with each
single-particle momentum eigenstate of the gas evolving into a single-
particle momentum eigenstate of the liquid. This adiabatic turning on
may be shown in ordinary quantum mechanics to lead to a very small
amplitude for transitions out of the level, providing the density of final
states is small, as it is for electrons within the Fermi sea as a result of
the Pauli principle.

Vital to Landau’s Fermi liquid concept is the notion that all of the
the states |p〉 occupied by an electron in the gas with n(0)

p = 1 be-
come single-particle eigenstates |p〉 in the liquid occupied by a Landau
quasiparticle. The Landau quasiparticles in the interacting ground state
therefore also have momentum distribution n(0)

p . We say that there is a
one-to-one correspondence between the free particles and Landau quasi-
particles. On turning on the interaction the Landau quasiparticles take
on an effective mass m∗ which parametrizes the change in energy of the
eigenstates due to the effect of the field from the other quasiparticles.

| 〉
| 〉 | 〉

| 〉

| 〉
| 〉 | 〉

| 〉

Fig. 31.6 Turning on interactions
changes the states but the energy lev-
els shouldn’t cross during the turning
on process. Thus we can have (a) but
not (b).

Despite the change in energy, there should be no ambiguity in the
identity of an occupied eigenstate after turning on the interaction and
therefore the energy levels of the states shouldn’t cross during the turn-
ing on process. That is to say, upon turning on the interaction we must
have the process shown in Fig. 31.6(a) rather than that in Fig. 31.6(b).
We might ask whether this non-crossing of levels is a realistic propo-
sition. Recall that when two eigenstates are related by a symmetry
transformation which leaves the Hamiltonian invariant we obtain a de-
generacy in energy. If we turn on a perturbing potential V which leads
to a nonzero matrix element δ between the two states we have a Hamil-

tonian H =

(
E δ
δ E

)
which leads to a splitting in energy of 2δ. It’s

as if the energy levels repel each other by virtue of a matrix element δ
existing between them, which prevents them from ever crossing. The
consequence of this for the metal is that, as we turn on the interaction,
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Where the Fermi liquid and quantum field theories coincide is in the
description of the weakly excited states of the metal. The excited Landau
quasiparticles have exactly the same properties as our quantum field
theory quasiparticles and the argument about their lifetime applies to
both. Near the Fermi surface the energy of an excited quasiparticle may
be written Ep ≈ pF

m∗ (|p| − pF) and its decay rate Γp ∝ (|p| − pF)2 We
see that for small (|p| − pF) the real part of the quasiparticle energy
will be larger than the imaginary part, or Ep > Γp, and a meaningful
quasiparticle exists in the metal.

(a) (b)

Fig. 31.8 A cartoon of the Landau
Fermi liquid. (a) The non-interacting
Fermi gas with a single electron pro-
moted into an excited state (indicated
as a dotted line). (b) In the Landau
Fermi liquid the interactions are turned
on so that the electrons become quasi-
particles and the holes become quasi-
holes. There is a one-to-one corre-
spondence between the quasiparticles
and quasiholes in the interacting liquid
and the electrons and holes in the non-
interacting picture.

We now complete our description of the Landau Fermi liquid with
a discussion of the total energy of a weakly excited state of a metal.
In the spirit of many of Landau’s arguments, in which any ignorance
of microscopic details is no barrier to formulating a meaningful power
series expansion, we write the energy of the Fermi liquid in the limit of
a low density of quasiparticles as

E = Eg +
∑

p

(E(0)
p − µ) δnp +

1

2

∑

pp′

fpp′ δnp δnp′ + · · · , (31.20)

where δnp = np−n(0)
p is the difference between a distribution with exci-

tations and the ground state distribution18 and Eg =
∑

p E(0)
p n(0)

p is the

18This implies that it is neither np nor

n
(0)
p that is the crucial quantity, but

rather it is their difference δnp , which
tells us the number of excitations in the
excited state. This is fortunate since we
know neither np nor n

(0)
p with much ac-

curacy, but we can find δnp .

energy of the ground state. The term linear in δnp describes the excita-

tion of isolated quasiparticles of energy E(0)
p −µ = ∂E/∂np. The second-

order coefficient19 fpp′ = ∂2E/∂np∂np′ describes the contribution from

19The partial differentials in the ex-

pressions for E
(0)
p −µ and fpp′ are eval-

uated about the ground state configu-
rations, i.e. a frozen Fermi sea.

quasiparticle–quasiparticle scattering (i.e. from interactions), and can
be described via an interaction Hamiltonian HI = 1

2

∑
pp′ fpp′ δnp δnp′ .

Example 31.4

To understand the scattering process in more detail, one should include spin and
this amounts to replacing fpp′ by fpσ;p′σ′ . One can show20 that for spin-conserving

20Further details and a fuller account
may be found in the book by P. Cole-
man.

interactions this quantity can be written as

fpσ;p′σ′ = f s(cos θ) + fa(cos θ)σ · σ′, (31.21)

where cos θ = p·p′

|p||p′| . The functions f s and fa can be expanded in terms of Legendre
polynomials so that

fs,a(cos θ) =
1

g(EF)

∞X

"=0

P"(cos θ)F
s,a
" , (31.22)

where F s
" and F a

" are Landau parameters and g(EF) is the density of states at
the Fermi level.21 These expressions allow some of the key properties of the Landau 21See Chapter 43.
Fermi liquid to be deduced. For example, one can show that the effective mass is
m∗ = m(1+F s

1) and the spin susceptibility is χ = µ0µ2
Bg(EF)/(1+F a

0 ). Many of the
predictions of Landau’s Fermi liquid theory may be shown (after much hard graft!)
to coincide with those of quantum field theory and, owing to its comparative ease of
use, it is still regarded as the best way of understanding the results of experiment on
numerous condensed matter systems.

We have seen in this chapter that renormalization is an essential step
in understanding what happens to particles in an interacting quantum
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Interacting density matrix

Neural canonical transformations 

Transformation of electron coordinates 

p(K) ↔ Rζ

Variational optimization over an ensemble of unitarily transformed states

Momentum 
distribution

ρ

Adiabatic continuity



Limiting case 1: Interacting electrons at T=0

Reduces to ground state variational Monte Carlo 

with a single normalizing flow wavefunction

E = 𝔼
R∼ ΨK(R)

2 [ ⟨R |H |ΨK⟩
⟨R |ΨK⟩ ]

 for the closed shell 

momentum configuration

p(K) = 1

R ζ

K = {ki}



Limiting case 2: Noninteracting electrons at T>0

F = 𝔼
K∼p(K) [ 1

β
ln p(K) +

N

∑
i=1

ℏ2k2
i

2m ]
A classical statistical mechanics problem:


Noninteracting fermions in canonical ensemble

Distribute fermions within the momentum cutoff to minimize free-energy

(Not as trivial as you might think) Borrmann & Franke, J. Chem. Phys. 1993 

K = {ki}



General case: double expectation

Jointly optimize  and  to minimize the variational free-energy |ΨK⟩ p(K)

F = 𝔼
K∼p(K)

1
β

ln p(K) + 𝔼
R∼ ⟨R |ΨK⟩

2 [ ⟨R |H |ΨK⟩
⟨R |ΨK⟩ ]

Boltzmann

distribution

Born 

rule 



Benchmarks on spin-polarized electron gases

3D electron gas T/TF=0.0625

Brown et al, PRL ‘13

Restricted PIMC N=33, rs=10

102

epochs
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Effective mass of spin-polarized 2DEG

We’ve found more pronounced suppression of m* than previous predictions
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Entropy measurement of 2DEG
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Strongly correlated two-dimensional plasma
explored from entropy measurements
A.Y. Kuntsevich1,2, Y.V. Tupikov3, V.M. Pudalov1,2 & I.S. Burmistrov2,4

Charged plasma and Fermi liquid are two distinct states of electronic matter intrinsic to dilute

two-dimensional electron systems at elevated and low temperatures, respectively. Probing

their thermodynamics represents challenge because of lack of an adequate technique. Here,

we report a thermodynamic method to measure the entropy per electron in gated structures.

Our technique appears to be three orders of magnitude superior in sensitivity to a.c.

calorimetry, allowing entropy measurements with only 108 electrons. This enables us to

investigate the correlated plasma regime, previously inaccessible experimentally in two-

dimensional electron systems in semiconductors. In experiments with clean two-dimensional

electron system in silicon-based structures, we traced entropy evolution from the plasma to

Fermi liquid regime by varying electron density. We reveal that the correlated plasma regime

can be mapped onto the ordinary non-degenerate Fermi gas with an interaction-enhanced

temperature-dependent effective mass. Our method opens up new horizons in studies of

low-dimensional electron systems.
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It would be interesting to directly compare calculated entropy with experiment

the modified effective mass. Lacking a microscopic theory for
non-degenerate strongly interacting electron system, we fitted our
results using equation (4) with a density dependent effective mass
m*(n) as a fitting parameter.

Thus extracted effective mass for different temperatures is
shown in Fig. 2b. In the high temperature limit T\UcEF,
the kinetic energy of electrons is given by temperature; hence,
the 2D electron gas turns out to be weakly interacting and
qS/qn is expected to be described by equation (4) with the
density-independent effective mass close to the band mass
value mb.

In general, for a given temperature, the effective mass exhibits a
re-entrant behaviour: as density decreases m* first grows, then
passes through a maximum and falls down approaching a value of
the order of mb. The lower the temperature, the higher maximum
value the effective mass reaches. The enhanced effective mass is in
a qualitative agreement with the low-temperature Shubnikov-de-
Haas measurements of ref. 4 (shown with a thick curve in
Fig. 2b).

The low-density region, where the effective mass falls as
density decreases, corresponds to a non-degenerate strongly
correlated electron plasma regime (EFtToU). We are not aware
of any theory describing this domain. To treat the data in this
regime, we suggest the following phenomenological approach.
For the degenerate clean 2D Fermi liquid, renormalization of its
physical parameters, and, particularly, the effective mass, is
governed by a single dimensionless variable equal to the ratio of
the potential interaction energy U to the kinetic Fermi energy,
rs ¼ 1= a"B

ffiffiffiffiffiffi
pn

p" #
=EF (ref. 14). Here a"B ¼ k‘ 2= mbe2ð Þ stands for

the effective Bohr radius with average dielectric constant.

As explained above, when temperature increases, the interac-
tions for a given density weaken and cannot be characterized
anymore by rspU/EF. Correspondingly, to describe our m*(n,T)
data set over the wide range of densities and temperatures,
we suggest a phenomenological effective interaction parameter
~rs ¼ pa2Bnþ aTgþ b=Eg

FU
b

" #& 1=2
; which interpolates the two

limits, of the degenerate Fermi liquid and non-degenerate
correlated plasma. It appears that all nonmonotonic m*(n)
dependencies for various temperatures collapse onto a single
curve, when we choose a¼ 0.4, b¼ 1 and g¼ 1 (see the inset in
Fig. 2b). Some supporting reasonings from the plasma physics
can be found in Supplementary Note 7, though the precision of
our measurements is not too high to exclude other possible
~rs n;Tð Þ functional forms.

Role of the in-plane magnetic field. To have a deeper insight
into the effective mass renormalization in the low-density regime,
we repeat the same measurements with the in-plane magnetic
fields B||¼ 5.5, and 9 T, which produce Zeeman splitting EZ: 0.5
and 1meV, respectively (see Fig. 2c). At low densities (EFuT,
region A in Fig. 2c) the plasma is spin-polarized by B||¼ 9 T.
Therefore, both, S and qS/qn at B||¼ 9 T are expected to be less
than the respective zero field values.

Region A is located in the vicinity of the critical density for
sample Si-UW2 (nc E8' 1010 cm& 2) and below it. If the free
spins existed in the 2D system in the region A, as the Mott–
Wigner scenario of the 2D MIT predicts19, they would be fully
polarized by the magnetic field gmBB4T (that is, at both B||¼ 9 T
and B||¼ 5.5 T), and the entropy would fall significantly by ns ln2
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Figure 2 | Entropy per electron in zero perpendicular field. (a) The entropy per electron qS/qn versus density (symbols) for various temperatures,
sample Si-UW2. Inset: the same data versus dimensionless density (EF/T), the solid curve is the expectation for the Fermi gas with the Si band parameters,
the dashed curve is the expectation for the FL with negative qm*/qn (see text); (b) the effective mass m* versus density. The black curve corresponds to
the approximation of m* from the Shubnikov-de-Haas measurements4. Symbols are the m*(n,T) data determined using equation (4) from the measured
qS/qn values. Different symbols correspond to different temperatures (shown in the inset). Scaling of the effective mass versus effective interaction
parameter ~rs is shown in the inset(see text). (c) The signal qS/qn(n) at 3.2 K for Si-UW2 is shown with filled symbols: at zero field (black boxes), B||¼ 5.5 T
(blue triangles) and 9T (red boxes). Empty symbols (right axis) are the corresponding effective masses at B¼0 (black) and B||¼9T (red). The bars
illustrate schematically the band diagram for two spin subbands in the regions A, B and C. Vertical dashed lines depict schematic borders between the
regions A, B and C. (d) The entropy of the 2D electron system measured in Si-UW2 for three temperatures (symbols). Inset: temperature dependence of
the entropy for n¼ 10.5' 1011 cm& 2 (EF¼ 75K) and 3.9' 1011 cm& 2 (EF¼ 30K). Dashed curves denote the upper estimate for the entropy.
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Future: ab-initio study of quantum matters 

at finite temperature
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Hamburg, Germany;25,26 and the upcoming FAIR facility at GSI
Darmstadt, Germany.27,28 A particularly exciting application is inertial
confinement fusion18–20 where electronic quantum effects are impor-
tant during the initial phase. Aside from dense plasmas, many con-
densed matter systems exhibit WDM behavior – if they are subject to
strong excitation, e.g., by lasers or free electron lasers.29,30

The behavior of all these very diverse systems is characterized by,
among others, electronic quantum effects, moderate to strong
Coulomb correlations, and finite temperature (FT) effects. Quantum
effects of electrons are of relevance at a low temperature and/or if mat-
ter is very highly compressed, such that the temperature is of the order
of (or lower than) the Fermi temperature (for the relevant parameter
range, see Fig. 1 and, for the parameter definitions, see Sec. II).

An important role in the theoretical description of quantum plas-
mas is being played by the quantum kinetic theory.31–38 During the last
25years, improved and generalized quantum kinetic equations have been
derived starting from reduced density operators, e.g., Refs. 39 and 40, or
nonequilibrium Green functions (NEGFs);41–44 for text books, see Refs.
40 and 45–47 and references therein. Another direction in quantum
plasma theory is first principles computer simulations such as quantum
Monte Carlo (QMC),4,48–55 semiclassical molecular dynamics (SC-MD)
with quantum potentials, e.g., Ref. 56, electronic force fields,57,58 and vari-
ous variants of quantumMD, e.g., Refs. 59–63.

A recent breakthrough occurred with the application of
Kohn–Sham density functional theory (DFT) simulations because
they, for the first time, enabled the self-consistent simulation of realis-
tic warm dense matter that includes both plasma and condensed mat-
ter phases, e.g., Refs. 64–66. Further developments include orbital-free

DFT (OF-DFT) methods, e.g., Refs. 67 and 68, and time-dependent
DFT (TD-DFT), e.g., Ref. 69. In DFT simulations, however, a bottle-
neck is the exchange–correlation (XC) functional for which a variety
of options exist, the accuracy of which is often poorly known, what
limits the predictive power of the method. This requires tests against
independent methods such as quantum Monte Carlo simulations for
the electron component4 or against electron-ion quantum Monte
Carlo.70–72 Also, the use of finite-temperature functionals was shown
to be important73,74 when the XC-contribution is comparable to the
thermal energy, see Ref. 75 for a topical discussion and Ref. 76 for an
extensive investigation of hydrogen. One goal of this paper is to pre-
sent an overview of these results and discuss future research
directions.

Motivated by time-resolved experiments, e.g., Ref. 77, the theo-
retical description of the nonequilibrium dynamics of warm dense
matter is attracting increasing interest, e.g., Ref. 78. Time-dependent
x-ray Thomson scattering was modeled in Refs. 79 and 80. Here, the
powerful methods are quantum kinetic equations81,82 and nonequilib-
rium Green functions, e.g., Refs. 83 and 84.

All of the above-mentioned simulation approaches are complex
and require substantial amounts of computer time. At the same time,
the above-mentioned simulations are currently only feasible for small
length scales and simulation durations. Therefore, simplified models
that would allow to reach larger length and time scales are highly
desirable. Possible candidates are fluid models for quantum plasmas
that are obtained via a suitable coarse graining procedure, as in the
case of classical plasmas. Quantum hydrodynamics (QHD) models for
dense plasmas have experienced high activity since the work of
Manfredi and Haas.85,86 However, their version of QHD involved sev-
eral assumptions, the validity of which remained open for a long time.
Corrections of the coefficients in the QHD equations were recently
obtained in Refs. 87 and 88, and a systematic derivation of the QHD
equations from the time-dependent Kohn-Sham equations is given in
Ref. 89. We also mention a recent alternative approach that is based
on the computation of semiclassical Bohm trajectories.90

The goal of this paper is to present a summary of some of the
recent ab initio simulations of the electron gas under warm dense mat-
ter conditions, including thermodynamic functions and local field cor-
rections developments. Furthermore, we summarize recent progress in
the field of QHD for quantum plasmas. In addition to an overview of
recent developments, we present new results for (a) the application
of the finite-temperature exchange correlation free energy in DFT sim-
ulations of dense hydrogen and carbon (Sec. IV); (b) for the dynamic
density response function, vðx; qÞ (Sec. IIIC); (c) for the screened
potential of an ion in a correlated plasma, based on the ab initioQMC
input for the local field correction (Sec. VF); and (d) on the dispersion
of ion-acoustic modes in a correlated quantum plasma (Sec. VG).

This paper is organized as follows: in Sec. II, we recall the main
parameters of warm dense matter and the relevant temperature and
density range. Section III presents an overview on recent quantum
Monte Carlo simulations followed by finite-temperature DFT results
in Sec. IV. WDM out of equilibrium and its treatment via a QHD
model is discussed in Sec. V.

II. WARM DENSE MATTER PARAMETERS
Let us recall the basic parameters of warm dense matter:40,89 the

first are the electron degeneracy parameters h ¼ kBT=EF and

FIG. 1. Density-temperature plane with examples of plasmas and characteristic
plasma parameters. ICF denotes inertial confinement fusion. Metals (semicon-
ductors) refer to the electron gas in metals (electron–hole plasma in semicon-
ductors). Weak electronic coupling is found outside the line Ceff ¼ 0:1, cf.
Eq. (4). Electronic (ionic) quantum effects are observed to the right of the line
v ¼ 1 (vp ¼ 1). The coupling strength of quantum electrons increases with rs
(with decreasing density). Atomic ionization due to thermal effects (due to pres-
sure ionization) is dominant above (to the right of) the red line, aion ¼ 0:5, for
the case of an equilibrium hydrogen plasma.91 The values of vp and rs refer to
the case of hydrogen. Figure modified from Ref. 89.
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evolution of the walkers, as derived from Eq. (23), can be
found elsewhere.45,67 The form of q̂ is known exactly at infi-
nite temperature (b¼ 0, q̂ ¼ 1̂), providing an initial condi-
tion for Eq. (22). For the electron gas, however, it turns out
that simulating a differential equation that evolves a mean-
field density matrix at inverse temperature b to the exact
density matrix at inverse temperature b is much more effi-
cient than solving Eq. (22), an insight that leads to the
“interaction picture” version of DMQMC39,46 used through-
out this work.

The sign problem manifests itself in DMQMC as an
exponential growth in the number of walkers required for the
sampled density matrix to emerge from the statistical
noise.67–70 Working in a discrete Hilbert space helps to reduce
the noise by ensuring a more efficient cancellation of positive
and negative contributions, enabling larger systems and lower
temperatures to be treated than would otherwise be possible.
Nevertheless, at some point, the walker numbers required
become overwhelming and approximations are needed.
Recently, we have applied the initiator approximation71–73 to
DMQMC (i"DMQMC). In principle, at least, this allows a
systematic approach to the exact result with an increasing
walker number. More details on the use of the initiator
approximation in DMQMC and its limitations can be found in
Ref. 39.

F. Applicability of the QMC methods

To conclude the discussion of Quantum Monte Carlo, in
Fig. 2, we give a schematic overview of the parameter com-
binations where the different methods can be used to obtain
results in the thermodynamic limit (for a discussion of finite-
size corrections, see Sec. V) with a relative accuracy of
DV=V # 0:003. Standard PIMC (black) is only useful for
high temperatures and low densities where fermionic
exchange does not play an important role and, therefore,
does not give access to the WDM regime. PB-PIMC (green)
significantly extends the possible parameter combinations to

lower temperature (down to h ¼ 0:5 for rs $ 1) and is avail-
able over the entire density range for h ! 2. In contrast, both
CPIMC (red) and DMQMC (blue) are feasible for all h at
small rs and eventually break down with increasing rs due to
coupling effects. Despite their apparent similar range of
applicability, it turns out that CPIMC is significantly more
efficient at higher temperature, while DMQMC is superior at
low h.

IV. SIMULATION RESULTS FOR THE FINITE SYSTEM

The first step towards obtaining QMC results for the
warm dense electron gas in the thermodynamic limit is to
carry out accurate simulations of a finite model system. In
Fig. 3, we compare results for the density dependence of the
exchange correlation energy Exc of the UEG for N¼ 33 spin-
polarized electrons and two different temperatures. The first
results, shown as blue squares, were obtained with RPIMC31

for rs $ 1. Subsequently, Groth, Dornheim, and co-work-
ers44,51 showed that the combination of PB-PIMC (red
crosses) and CPIMC (red circles) allows for an accurate
description of this system for h $ 0:5. In addition, it was
revealed that RPIMC is afflicted with a systematic nodal error
for densities greater than the relatively low value at which
rs¼ 6. Nevertheless, the FSP precludes the use of PB-PIMC
at lower temperatures and, even at h ¼ 0:5 and rs¼ 2, the sta-
tistical uncertainty becomes large. The range of applicability
of DMQMC is similar to that of CPIMC, and the DMQMC
results (green diamonds) fully confirm the CPIMC results.39,46

Further, the introduction of the initiator approximation (i-
DMQMC) has made it possible to obtain results up to rs¼ 2
for h ¼ 0:5. Although i-DMQMC is, in principle, systemati-
cally improvable and controlled, the results suggest that the
initiator approximation may introduce a small systematic shift
at lower densities.

In summary, the recent progress in fermionic QMC
methods has resulted in a consensus regarding the finite-N
UEG for temperatures h $ 0:5. However, there remains a
gap at rs % 2" 6 and h < 0:5 where, at the moment, no reli-
able data are available.

FIG. 2. Density-temperature-plane around the WDM regime. Shown are the
parameter combinations where standard PIMC (black), PB-PIMC (green),
CPIMC (red), and DMQMC (blue) can be used to obtain data in the thermo-
dynamic limit with an accuracy of DV=V # 0:003.

FIG. 3. Exchange-correlation energy of N¼ 33 spin-polarized electrons as a
function of the density parameter rs for two isotherms. Shown are results
from CPIMC and PB-PIMC taken from Ref. 51, restricted PIMC from Ref.
31, and DMQMC from Ref. 39. For h ¼ 0:5, all data have been shifted by
0.05 Hartree. In the case of DMQMC, the initiator approximation is used.
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Why now ? 
Variational free-energy is a fundamental principle for T>0 
quantum systems

Now, it is has became possible by integrating recent advances in 
generative machine learning

However, it was under exploited for solving practical problems 
(mostly due to intractable entropy for nontrivial density matrices)



FAQs
Where are data ?

Do I understand the “black box” model  ?

How do we know it is correct ?

There is no training dataset. Data are self-generated from the model.

Variational principle: lower free-energy is better.

a) I don’t care (as long as it is sufficiently accurate).


b)  contains the Landau energy functional

       illustrates adiabatic continuity.
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ζ ↔ R
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ρ = ∑
x

p(x)U |x⟩⟨x |U†x ∼ p(x)
Unitary Tensor Network


or Quantum Circuit

A tensor network/quantum computing approach

Variational optimize classically tractable unitary tensor networks, 
or, quantum circuits

F =
1
β

Tr(ρ ln ρ) + Tr(Hρ) ≥ −
1
β

ln Z

Martyn et al 1812.01015

Verdon et al 1910.02071


Autoregressive net + Q circuit, Liu et al, 1912.11381 

Experiment, Guo et al, 2107.06234 
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Summary

m*: new ML-powered method, new results on 2DEG and more 

More quantities: Landau fermi parameters and spectral functions

Beyond electron gases: warm dense matter, hydrogen plasma, ultracold 
fermi gases, thermal density functionals…
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