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2.D applications 49

Figure 2.D.3: VAEs can be used for image re-synthesis. In this example by
White [2016], an original image (left) is modified in a latent space in the
direction of a smile vector, producing a range of versions of the original, from
smiling to sadness. Notice how changing the image along a single vector in
latent space, modifies the image in many subtle and less-subtle ways in pixel
space.

of images in latent space along a "smile vector" in order to make them more
happy, or more sad looking. See figure 2.D.3 for an example.

Latent space interpolation

White, 1609.04468



Probabilistic Generative Modeling

How to express, learn, and sample from a 
high dimensional probability distribution ? 
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How to express, learn, and sample from a 
high dimensional probability distribution ? 
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“… the images encountered in 
AI applications occupy a 
negligible proportion of

the volume of image space.”
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Mean Field Theory
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.

21A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

 



Quantum Machine Learning

Next, a single-qubit measurement is made on the
ancillary qubit alone (the other qubits are simply ignored),
projecting it onto the state

jϕi ¼ ðjujj0i − jvjj1iÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj2 þ jvj2

q
: ð2Þ

The success probability p of this projective measurement
can be estimated by repeated measurements. Remarkably,
the inner product between jui and jvi can be directly
calculated from the p:

hujvi ¼ ð0.5 − pÞðjuj2 þ jvj2Þ=jujjvj; ð3Þ

and the distance between ~u and ~v can then be obtained:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðjuj2 þ jvj2Þ

q
: ð4Þ

It is important to note that such an estimation can achieve a
desired statistical accuracy simply by a sufficient number of
repeated measurements, but is independent of the size (N)
of the vectors, which gives a quantum speed-up.
This algorithm can be understood intuitively; the more

difference between the pure states jui and jvi, the more
entangled the Eq. (1) is. For examples, if jui and jvi are
identical, then the ancillary qubit is in the state ðj0iþ j1iÞ=ffiffiffi
2

p
, separable from the vector qubits, and p ¼ 0, D ¼ 0.

If jui and jvi are orthogonal, then the Eq. (1) is maximally
entangled, and p ¼ 0.5, D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj2 þ jvj2

p
.

In our experiment, we use single photons as qubits,
where j0i and j1i are encoded with the photon’s horizontal
(H) and vertical (V) polarization, respectively. A schematic
drawing of the experimental setup is illustrated in Fig. 1.
Polarization-entangled photon pairs are generated by spon-
taneous parametric down-conversion [17] and prepared in
the state

ðj0iancj0ivec þ j1iancj1ivecÞ=
ffiffiffi
2

p
: ð5Þ

One photon (anc) is used as the ancillary qubit, and the other
one (vec) will be used to encode the reference and incoming
vectors using Sagnac-like interferometers (see Fig. 1).
To generate three- and four-photon entanglement

resource states, we create two entangled photon pairs.
Two single photons, one from each pair, are temporally and
spatially superposed on a polarizing beam splitter (PBS).
We select the events where one and only one single photon
emits from each output. It can be concluded that the four
photons are either all H polarized or V polarized, two cases
that are quantum mechanically indistinguishable when all
the other degrees of freedom of the photons are erased
(see the caption of Fig. 1), thus projecting the four photons
into the Greenberger-Horne-Zeilinger entangled state [18]:

anc123

DT

DRD1D2D3

BBO BBO

HWP

PBS

PBS
NBS

PBS
NBS

PBS
NBS

Prism

PBS
HWPHWP

HWPHWPHWP

HWP

BBO HWP
BBO

HWP
BBO

HWP

BBO

PrismPrism

FIG. 1 (color). Experimental setup for quantum machine learning with photonic qubits. Ultraviolet laser pulses with a central
wavelength of 394 nm, pulse duration of 120 fs, and a repetition rate of 76 MHz pass through two type-II β-barium borate (BBO)
crystals with a thickness of 2 mm to produce two entangled photon pairs. The photons pass through pairs of birefringent compensators
consisting of a 1-mm BBO crystal and a HWP to compensate the walk-off between horizontal and vertical polarization, and are prepared
in the quantum state: ðjHijViþ jVijHiÞ=

ffiffiffi
2

p
. Two extra HWPs placed in arm 3 and anc are used to transform the state into

ðjHijHiþ jVijViÞ=
ffiffiffi
2

p
. Two single photons, one from each pair, are temporally and spatially superposed on a PBS to generate a four-

photon entangled state: ðjHijHijHijHiþ jVijVijVijViÞ=
ffiffiffi
2

p
. The photons 1, 2, and 3 are sent to Sagnac-like interferometers, where

each single photon splits into two spatial modes by the PBS with regard to its polarization, and recombines on a nonpolarizing beam
splitter (NBS). Various vectors are independently encoded into the two spatial modes using HWPs. The specially designed beam splitter
cube is half-PBS coated and half-NBS coated. High-precision small-angle prisms are inserted for fine adjustments of the relative delay
of the two different paths. The photons are detected by five single-photon detectors (quantum efficiency > 60%), and the two four-
photon coincidence events, D3D2D1DT and D3D2D1DR, are simultaneously registered by a homemade FPGA-based coincidence unit.

PRL 114, 110504 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

20 MARCH 2015

110504-2

Cai et al, PRL 114, 110504 (2015) 

4

FIG. 2. (Color online) The schematic diagram of the quantum SVM. An ancillary qubit is added here to readout the classification
result. The auxiliary registers for matrix inversion are not shown here.
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FIG. 3. (Color online)(a) Properties of the 13C-iodotrifluroethylene. The chemical shifts ⌫
i

and scalar coupling constants (J
jk

)
are on the lower diagonal in the table, respectively. The chemical shifts are given with respect to reference frequencies of 100.62
MHz (Carbon) and 376.48 MHz (Fluorines). (b) The quantum circuit for building the kernel matrix K. After discarding the
training-data register (the second qubit), the desired kernel matrix K is obtained as the quantum density matrix of the first
qubit. (c) The quantum circuit for classification. Here H and S are the Hadamard and phase gate, respectively.

realized [15, 16], with an exponentially speedup. Using the same method, the hyperplane parameters are determined

by
�
b, ~↵T

�
T

= F̃�1
�
0, ~yT

�
T

, where the vectors here represent quantum states.

The classification results in Eq. (2) could be reproduced by the overlap of two quantum states : y(~x) = sign(hx̃0 |ũ i),
with the training-data state |ũi = 1p

N

ũ

(b|0i|0i +
P

M

k=1 abs(~xk

)↵
k

|ki|~x
k

i) and the query-state |x̃0i = 1p
N

x̃0

(|0i|0i +
P

M

k=1 abs(~x0)|ki| ~x0i). Here the training-data state |ũi could be easily obtained by calling the training-data oracle

on
�
b, ~↵T

�
T

. By applying a inverse operation U
x0 = |00i hx̃0|, the expansion coe�cients h00|U

x0 |ũi = hx̃0| |ũi will
produce the classification result y(~x) [17]. A schematic diagram of this part is shown in Fig. 2. Note that the
unitary operations are conditional operations here, controlled by an ancillary qubit. Hence the final state will be
| i = |�i |1i

A

+ |00i |0i
A

, where |�i = U
x0 |ũi and the subscript ”A” indicates the state of ancillary qubit. By

measuring the expectation value of coherent term O ⌘ |00i h00| ⌦ (|0i h1|)
A

, the classification result will be revealed

Li et al, PRL 114, 140504 (2015) 

Review “Quantum machine learning”, Biamonte et al, Nature 2017

“Use a quantum computer to speed up 
ML subroutines”

• Search 
• Sampling 
• Clustering 
• Optimization 
• Linear system solver 
• Support vector machines 
• Principal component analysis 
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Evidence for quantum annealing with more than
one hundred qubits

Supplementary material for “Evidence for quantum annealing with more than one
hundred qubits”

Sergio Boixo,1 Troels F. Rønnow,2 Sergei V. Isakov,2 Zhihui Wang,3 David
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I. OVERVIEW

Here we provide additional details in support of the
main text. Section II shows details of the chimera graph
used in our study and the choice of graphs for our simula-
tions. Section III expands upon the algorithms employed
in our study. Section IV presents additional success prob-
ability histograms for different numbers of qubits and for
instances with magnetic fields, explains the origin of easy
and hard instances, and explains how the final state can
be improved via a simple error reduction scheme. Section
V presents further correlation plots and provide more
details on gauge averaging. Section VI gives details on
how we determined the scaling plots and how quantum
speedup can be detected on future devices. Finally, sec-
tion VII explains how the spectral gaps were calculated
by quantum Monte Carlo (QMC) simulations.

II. THE CHIMERA GRAPH OF THE D-WAVE
DEVICE.

The qubits and couplers in the D-Wave device can be
thought of as the vertices and edges, respectively, of a
bipartite graph, called the “chimera graph”, as shown in
figure 1. This graph is built from unit cells containing
eight qubits each. Within each unit cell the qubits and
couplers realise a complete bipartite graph K4,4 where
each of the four qubits on the left is coupled to all of the
four on the right and vice versa. Each qubit on the left
is furthermore coupled to the corresponding qubit in the
unit cell above and below, while each of the ones on the
right is horizontally coupled to the corresponding qubits
in the unit cells to the left and right (with appropriate
modifications for the boundary qubits). Of the 128 qubits
in the device, the 108 working qubits used in our tests of
the device are shown in green, and the couplers between
them are marked as black lines.
For our scaling analysis we follow the standard pro-

cedure for scaling of finite dimensional models by con-
sidering the chimera graph as an L × L square lattice
with an eight-site unit cell and open boundary condi-
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FIG. 1: Qubits and couplers in the D-Wave device.
The D-Wave One Rainer chip consists of 4 × 4 unit cells of
eight qubits, connected by programmable inductive couplers
as shown by lines.

tions. The sizes we typically used in our numerical sim-
ulations are L = 1, . . . , 8 corresponding to N = 8L2 =
8, 32, 72, 128, 200, 288, 392 or 512 spins. For the simu-
lated annealers and exact solvers on sizes of 128 and
above we used a perfect chimera graph. For sizes below
128 where we compare to the device we use the working
qubits within selections of L×L eight-site unit cells from
the graph shown in figure 1.

In references [1, 2] it was shown that an optimisation
problem on a complete graph with

√
N vertices can be

mapped to an equivalent problem on a chimera graph
with N vertices through minor-embedding. The tree
width of

√
N mentioned in the main text arises from this

mapping. See Section VIA for additional details about
the tree width and tree decomposition of a graph.
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I. OVERVIEW

Here we provide additional details in support of the
main text. Section II shows details of the chimera graph
used in our study and the choice of graphs for our simula-
tions. Section III expands upon the algorithms employed
in our study. Section IV presents additional success prob-
ability histograms for different numbers of qubits and for
instances with magnetic fields, explains the origin of easy
and hard instances, and explains how the final state can
be improved via a simple error reduction scheme. Section
V presents further correlation plots and provide more
details on gauge averaging. Section VI gives details on
how we determined the scaling plots and how quantum
speedup can be detected on future devices. Finally, sec-
tion VII explains how the spectral gaps were calculated
by quantum Monte Carlo (QMC) simulations.

II. THE CHIMERA GRAPH OF THE D-WAVE
DEVICE.

The qubits and couplers in the D-Wave device can be
thought of as the vertices and edges, respectively, of a
bipartite graph, called the “chimera graph”, as shown in
figure 1. This graph is built from unit cells containing
eight qubits each. Within each unit cell the qubits and
couplers realise a complete bipartite graph K4,4 where
each of the four qubits on the left is coupled to all of the
four on the right and vice versa. Each qubit on the left
is furthermore coupled to the corresponding qubit in the
unit cell above and below, while each of the ones on the
right is horizontally coupled to the corresponding qubits
in the unit cells to the left and right (with appropriate
modifications for the boundary qubits). Of the 128 qubits
in the device, the 108 working qubits used in our tests of
the device are shown in green, and the couplers between
them are marked as black lines.
For our scaling analysis we follow the standard pro-

cedure for scaling of finite dimensional models by con-
sidering the chimera graph as an L × L square lattice
with an eight-site unit cell and open boundary condi-
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FIG. 1: Qubits and couplers in the D-Wave device.
The D-Wave One Rainer chip consists of 4 × 4 unit cells of
eight qubits, connected by programmable inductive couplers
as shown by lines.

tions. The sizes we typically used in our numerical sim-
ulations are L = 1, . . . , 8 corresponding to N = 8L2 =
8, 32, 72, 128, 200, 288, 392 or 512 spins. For the simu-
lated annealers and exact solvers on sizes of 128 and
above we used a perfect chimera graph. For sizes below
128 where we compare to the device we use the working
qubits within selections of L×L eight-site unit cells from
the graph shown in figure 1.

In references [1, 2] it was shown that an optimisation
problem on a complete graph with

√
N vertices can be

mapped to an equivalent problem on a chimera graph
with N vertices through minor-embedding. The tree
width of

√
N mentioned in the main text arises from this

mapping. See Section VIA for additional details about
the tree width and tree decomposition of a graph.
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