Generative Modeling From Boltzmann Machines to Born Machines

Lei Wang (王磊) Institute of Physics, CAS <u>https://wangleiphy.github.io</u>

write

read

 $p(\mathbf{x}, y)$

 $y = f(\mathbf{x})$ or $p(y|\mathbf{x})$

 $y = f(\mathbf{x})$ or $p(y|\mathbf{x})$

 $p(y|\mathbf{x}) = \frac{p(\mathbf{x}, y)}{p(\mathbf{x})}$

I do not understand. To Why coust × Sort .PC Bethe Ansitz Prob. Why const × Sort . PO Know how to solve every problem that has been solved Non Linear Ormal Hype

I do not understand. To Why coust × Sort .PC Bethe Ansitz Prob. Why const × sort. Po Know how to solve every problem that has been solved Non Linear Openical Hype

"What I can not create, I do not understand"

To recognize shapes, first learn to generate images

Geoffrey E. Hinton 📥 🕅

Department of Computer Science, University of Toronto, 10 Kings College Road, Toronto, M5S 3G4 Canada

Generative Modeling

"Auto-Encoding Variational Bayes", Kingma and Welling, 1312.6114

Generative Modeling

"Auto-Encoding Variational Bayes", Kingma and Welling, 1312.6114

Latent space interpolation

White, 1609.04468

Probabilistic Generative Modeling $p(\mathbf{x})$

How to express, learn, and sample from a high dimensional probability distribution ?

"random" images

"natural" images

Prob

DEEP LEARNING

Ian Goodfellow, Yoshua Bengio, and Aaron Courville

How the high c

from a oution ?

deling

Page 159

"... the images encountered in Al applications occupy a negligible proportion of the volume of image space."

"random

Probabilistic Generative Modeling $p(\mathbf{x})$

How to express, learn, and sample from a high dimensional probability distribution ?

https://blog.openai.com/generative-models/

Generative Modeling and Physics

Boltzmann Machines

$$p(\mathbf{x}) = \frac{e^{-E(\mathbf{x})}}{\mathcal{Z}}$$

statistical physics

"Born" Machines

$$p(\mathbf{x}) = \frac{|\Psi(\mathbf{x})|^2}{\mathcal{N}}$$

quantum physics

Generative Modeling and Physics

Boltzmann Machines

"Born" Machines

$$p(\mathbf{x}) = \frac{|\Psi(\mathbf{x})|^2}{\mathcal{N}}$$

quantum physics

$$p(\mathbf{x}) = \frac{e^{-E(\mathbf{x})}}{\mathcal{Z}}$$

statistical physics

Gifts from Physicists

Mean Field Theory

Tensor Networks

Monte Carlo Methods

Quantum Computing

Quantum Machine Learning

- Search
- Sampling
- Clustering
- Optimization
- Linear system solver
- Support vector machines
- Principal component analysis

Cai et al, PRL 114, 110504 (2015)

	¹³ C	F ₁	F ₂	F ₃
¹³ C	15479.9Hz			F_3
<i>F</i> ₁	-297.7Hz	-33130.1Hz	I	13C
<i>F</i> ₂	-275.7Hz	64.6Hz	-42681.4Hz	
<i>F</i> ₃	39.1Hz	51.5Hz	-129.0Hz	-56443.5Hz
T_2^*	1.22s	0.66s	0.63s	0.61s
<i>T</i> ₂	7.9s	4.4s	6.8s	4.8s

Li et al, PRL 114, 140504 (2015)

few qubits demo

"Use a quantum computer to speed up ML subroutines"

Review "Quantum machine learning", Biamonte et al, Nature 2017

Quantum Boltzmann Machines

\$15 million "analog quantum device"

II. THE CHIMERA GRAPH OF THE D-WAVE DEVICE. Is there any advantage of this FIGUARDING architecture of the qubits and couplers in the D-Wave device can be thought of as the vertices and edges, respectively, of a hipartite graph called for "thince graph", a Showd in figure 1. This graph is built from unit cells containing eight qubits each. Within each unit cell the qubits and

+Matrix Product States Jun Wang, Zhao-Yu Han

+Matrix Product States Jun Wang, Zhao-Yu Han