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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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Learning is more than function fitting
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“What I can not create, I do not understand”
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can deal practically with approximationmethods
for the graph isomorphism problem.
Additionally, improved sequence generation

models are possible with the ability to read and
write to memory (69). These approaches demon-
strate better ability for learning long- and short-
termpatterns.Morework is neededonRiemannian
optimization methods that exploit the geometry
of latent space. Structured architectures such as
multilevel VAE (85) offer newways of organizing
latent space and are promising research direc-
tions. New approaches also lie in inverse RL,
geared toward learning a reward or loss function
(86). Research in this direction will allow for the
discovery of reward functions associated with
different materials discovery tasks.

Outlook

Inverse design is an important component of the
complex framework required to designmatter at
an accelerated pace. The tools for inverse design,
especially those stemming from the field of ma-
chine learning, have shown rapid progress in
the last several years and have allowed chemical
space to be framed into probabilistic data-driven
models. Generativemodels produce large numbers
of candidate molecules, and the physical realiza-
tions of these candidates will require automated
high-throughput efforts to validate the genera-
tive approach. The community has yet has to
show more than a few examples of successful

closed-loop approaches for the design of matter
(87). The blurring of the barriers between theory
and experiment will lead to AI-enabled auto-
mated laboratories (88, 89).
The combination of inverse design tools with

active learning approaches such as Bayesian
optimization (90, 91) can enable a model that
adapts as it explores chemical space, which
allows for expanding a model in regions of
high uncertainty and enabling the discovery
of regions of molecular space with desirable
properties as a function of composition. Active
learning in the space of objective functions could
lead to a better understanding of the best rewards
to seek while carrying out machine learning.
As seen, central to machine learning meth-

odologies is the representation of molecules;
representations that encode the relevant physics
will tend to generalize better. Despite consider-
able progress, much work remains. Graph and
hierarchical representations of molecules are an
area requiring further study.
The integration of machine learning as a new

pillar of knowledge in the curricula of chemical,
biochemical, medicinal, and materials sciences
will allow for a more rapid adoption of themeth-
odologies summarized in this work.
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Fig. 4. Schematic representation of several architectures found in
generative models. RNNs are used for sequence generation. The VAE
shows the semi-supervised variant, jointly trained by molecules (x) and
properties (y). Latent space is denoted with Z, and latent vectors with z.
In the GAN setting, the noise eventually acquires structure via the

adversarial training. Reinforcement learning (RL) shows a policy
gradient with MTCS in the task of SMILES completion with
arbitrary rewards. Shown in the lower right are hybrid architectures
such as AAE (adversarial autoencoders) and ORGAN, which represents
GAN and RL.
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can deal practically with approximationmethods
for the graph isomorphism problem.
Additionally, improved sequence generation

models are possible with the ability to read and
write to memory (69). These approaches demon-
strate better ability for learning long- and short-
termpatterns.Morework is neededonRiemannian
optimization methods that exploit the geometry
of latent space. Structured architectures such as
multilevel VAE (85) offer newways of organizing
latent space and are promising research direc-
tions. New approaches also lie in inverse RL,
geared toward learning a reward or loss function
(86). Research in this direction will allow for the
discovery of reward functions associated with
different materials discovery tasks.

Outlook

Inverse design is an important component of the
complex framework required to designmatter at
an accelerated pace. The tools for inverse design,
especially those stemming from the field of ma-
chine learning, have shown rapid progress in
the last several years and have allowed chemical
space to be framed into probabilistic data-driven
models. Generativemodels produce large numbers
of candidate molecules, and the physical realiza-
tions of these candidates will require automated
high-throughput efforts to validate the genera-
tive approach. The community has yet has to
show more than a few examples of successful

closed-loop approaches for the design of matter
(87). The blurring of the barriers between theory
and experiment will lead to AI-enabled auto-
mated laboratories (88, 89).
The combination of inverse design tools with

active learning approaches such as Bayesian
optimization (90, 91) can enable a model that
adapts as it explores chemical space, which
allows for expanding a model in regions of
high uncertainty and enabling the discovery
of regions of molecular space with desirable
properties as a function of composition. Active
learning in the space of objective functions could
lead to a better understanding of the best rewards
to seek while carrying out machine learning.
As seen, central to machine learning meth-

odologies is the representation of molecules;
representations that encode the relevant physics
will tend to generalize better. Despite consider-
able progress, much work remains. Graph and
hierarchical representations of molecules are an
area requiring further study.
The integration of machine learning as a new

pillar of knowledge in the curricula of chemical,
biochemical, medicinal, and materials sciences
will allow for a more rapid adoption of themeth-
odologies summarized in this work.
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Fig. 4. Schematic representation of several architectures found in
generative models. RNNs are used for sequence generation. The VAE
shows the semi-supervised variant, jointly trained by molecules (x) and
properties (y). Latent space is denoted with Z, and latent vectors with z.
In the GAN setting, the noise eventually acquires structure via the

adversarial training. Reinforcement learning (RL) shows a policy
gradient with MTCS in the task of SMILES completion with
arbitrary rewards. Shown in the lower right are hybrid architectures
such as AAE (adversarial autoencoders) and ORGAN, which represents
GAN and RL.
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Probabilistic Generative Modeling

How to express, learn, and sample from a 
high-dimensional probability distribution ? 
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“… the images encountered in 
AI applications occupy a 
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to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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The setup for measuring the SHG is described
in the supporting online material (22). We expect
that the SHG strongly depends on the resonance
that is excited. Obviously, the incident polariza-
tion and the detuning of the laser wavelength
from the resonance are of particular interest. One
possibility for controlling the detuning is to
change the laser wavelength for a given sample,
which is difficult because of the extremely broad
tuning range required. Thus, we follow an
alternative route, lithographic tuning (in which
the incident laser wavelength of 1.5 mm, as well
as the detection system, remains fixed), and tune
the resonance positions by changing the SRR
size. In this manner, we can also guarantee that
the optical properties of the SRR constituent
materials are identical for all configurations. The
blue bars in Fig. 1 summarize the measured SHG
signals. For excitation of the LC resonance in Fig.
1A (horizontal incident polarization), we find
an SHG signal that is 500 times above the noise
level. As expected for SHG, this signal closely
scales with the square of the incident power
(Fig. 2A). The polarization of the SHG emission
is nearly vertical (Fig. 2B). The small angle with
respect to the vertical is due to deviations from
perfect mirror symmetry of the SRRs (see
electron micrographs in Fig. 1). Small detuning
of the LC resonance toward smaller wavelength
(i.e., to 1.3-mm wavelength) reduces the SHG
signal strength from 100% to 20%. For ex-
citation of the Mie resonance with vertical
incident polarization in Fig. 1D, we find a small
signal just above the noise level. For excitation
of the Mie resonance with horizontal incident
polarization in Fig. 1C, a small but significant
SHG emission is found, which is again po-

larized nearly vertically. For completeness, Fig.
1B shows the off-resonant case for the smaller
SRRs for vertical incident polarization.

Although these results are compatible with
the known selection rules of surface SHG from
usual nonlinear optics (23), these selection rules
do not explain the mechanism of SHG. Follow-
ing our above argumentation on the magnetic
component of the Lorentz force, we numerically
calculate first the linear electric and magnet-
ic field distributions (22); from these fields,
we compute the electron velocities and the
Lorentz-force field (fig. S1). In the spirit of a
metamaterial, the transverse component of the
Lorentz-force field can be spatially averaged
over the volume of the unit cell of size aby a
by t. This procedure delivers the driving force
for the transverse SHG polarization. As usual,
the SHG intensity is proportional to the square
modulus of the nonlinear electron displacement.
Thus, the SHG strength is expected to be
proportional to the square modulus of the
driving force, and the SHG polarization is
directed along the driving-force vector. Cor-
responding results are summarized in Fig. 3 in
the same arrangement as Fig. 1 to allow for a
direct comparison between experiment and
theory. The agreement is generally good, both
for linear optics and for SHG. In particular, we
find a much larger SHG signal for excitation of
those two resonances (Fig. 3, A and C), which
are related to a finite magnetic-dipole moment
(perpendicular to the SRR plane) as compared
with the purely electric Mie resonance (Figs.
1D and 3D), despite the fact that its oscillator
strength in the linear spectrum is comparable.
The SHG polarization in the theory is strictly
vertical for all resonances. Quantitative devia-
tions between the SHG signal strengths of ex-
periment and theory, respectively, are probably
due to the simplified SRR shape assumed in
our calculations and/or due to the simplicity of
our modeling. A systematic microscopic theory
of the nonlinear optical properties of metallic

metamaterials would be highly desirable but is
currently not available.
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Reducing the Dimensionality of
Data with Neural Networks
G. E. Hinton* and R. R. Salakhutdinov

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural
network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent
can be used for fine-tuning the weights in such ‘‘autoencoder’’ networks, but this works well only if
the initial weights are close to a good solution. We describe an effective way of initializing the
weights that allows deep autoencoder networks to learn low-dimensional codes that work much
better than principal components analysis as a tool to reduce the dimensionality of data.

D
imensionality reduction facilitates the
classification, visualization, communi-
cation, and storage of high-dimensional

data. A simple and widely used method is
principal components analysis (PCA), which

finds the directions of greatest variance in the
data set and represents each data point by its
coordinates along each of these directions. We
describe a nonlinear generalization of PCA that
uses an adaptive, multilayer Bencoder[ network

Fig. 3. Theory, presented as the experiment (see
Fig. 1). The SHG source is the magnetic compo-
nent of the Lorentz force on metal electrons in
the SRRs.
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Renaissance of deep learning
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State-of-the-Art: Autoregressive Models
p(x) = ∏

i

p(xi |x<i)

1601.06759, 1606.05328

Pixel Recurrent Neural Networks
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Figure 2. Left: To generate pixel xi one conditions on all the pre-
viously generated pixels left and above of xi. Center: To gen-
erate a pixel in the multi-scale case we can also condition on the
subsampled image pixels (in light blue). Right: Diagram of the
connectivity inside a masked convolution. In the first layer, each
of the RGB channels is connected to previous channels and to the
context, but is not connected to itself. In subsequent layers, the
channels are also connected to themselves.

ply them to large-scale modeling of natural images. The
resulting PixelRNNs are composed of up to twelve, fast
two-dimensional Long Short-Term Memory (LSTM) lay-
ers. These layers use LSTM units in their state (Hochreiter
& Schmidhuber, 1997; Graves & Schmidhuber, 2009) and
adopt a convolution to compute at once all the states along
one of the spatial dimensions of the data. We design two
types of these layers. The first type is the Row LSTM layer
where the convolution is applied along each row; a similar
technique is described in (Stollenga et al., 2015). The sec-
ond type is the Diagonal BiLSTM layer where the convolu-
tion is applied in a novel fashion along the diagonals of the
image. The networks also incorporate residual connections
(He et al., 2015) around LSTM layers; we observe that this
helps with training of the PixelRNN for up to twelve layers
of depth.

We also consider a second, simplified architecture which
shares the same core components as the PixelRNN. We ob-
serve that Convolutional Neural Networks (CNN) can also
be used as sequence model with a fixed dependency range,
by using Masked convolutions. The PixelCNN architec-
ture is a fully convolutional network of fifteen layers that
preserves the spatial resolution of its input throughout the
layers and outputs a conditional distribution at each loca-
tion.

Both PixelRNN and PixelCNN capture the full generality
of pixel inter-dependencies without introducing indepen-
dence assumptions as in e.g., latent variable models. The
dependencies are also maintained between the RGB color
values within each individual pixel. Furthermore, in con-
trast to previous approaches that model the pixels as con-
tinuous values (e.g., Theis & Bethge (2015); Gregor et al.
(2014)), we model the pixels as discrete values using a
multinomial distribution implemented with a simple soft-
max layer. We observe that this approach gives both repre-
sentational and training advantages for our models.

The contributions of the paper are as follows. In Section
3 we design two types of PixelRNNs corresponding to the
two types of LSTM layers; we describe the purely convo-
lutional PixelCNN that is our fastest architecture; and we
design a Multi-Scale version of the PixelRNN. In Section 5
we show the relative benefits of using the discrete softmax
distribution in our models and of adopting residual connec-
tions for the LSTM layers. Next we test the models on
MNIST and on CIFAR-10 and show that they obtain log-
likelihood scores that are considerably better than previous
results. We also provide results for the large-scale Ima-
geNet dataset resized to both 32 ⇥ 32 and 64 ⇥ 64 pixels;
to our knowledge likelihood values from generative models
have not previously been reported on this dataset. Finally,
we give a qualitative evaluation of the samples generated
from the PixelRNNs.

2. Model

Our aim is to estimate a distribution over natural images
that can be used to tractably compute the likelihood of im-
ages and to generate new ones. The network scans the im-
age one row at a time and one pixel at a time within each
row. For each pixel it predicts the conditional distribution
over the possible pixel values given the scanned context.
Figure 2 illustrates this process. The joint distribution over
the image pixels is factorized into a product of conditional
distributions. The parameters used in the predictions are
shared across all pixel positions in the image.

To capture the generation process, Theis & Bethge (2015)
propose to use a two-dimensional LSTM network (Graves
& Schmidhuber, 2009) that starts at the top left pixel and
proceeds towards the bottom right pixel. The advantage of
the LSTM network is that it effectively handles long-range
dependencies that are central to object and scene under-
standing. The two-dimensional structure ensures that the
signals are well propagated both in the left-to-right and top-
to-bottom directions.

In this section we first focus on the form of the distribution,
whereas the next section will be devoted to describing the
architectural innovations inside PixelRNN.

2.1. Generating an Image Pixel by Pixel

The goal is to assign a probability p(x) to each image x
formed of n⇥n pixels. We can write the image x as a one-
dimensional sequence x1, ..., xn2 where pixels are taken
from the image row by row. To estimate the joint distri-
bution p(x) we write it as the product of the conditional
distributions over the pixels:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1) (1)

Pixel Recurrent Neural Networks

PixelCNN Row LSTM Diagonal BiLSTM

Figure 4. Visualization of the input-to-state and state-to-state
mappings for the three proposed architectures.

3.2. Diagonal BiLSTM

The Diagonal BiLSTM is designed to both parallelize the
computation and to capture the entire available context for
any image size. Each of the two directions of the layer
scans the image in a diagonal fashion starting from a cor-
ner at the top and reaching the opposite corner at the bot-
tom. Each step in the computation computes at once the
LSTM state along a diagonal in the image. Figure 4 (right)
illustrates the computation and the resulting receptive field.

The diagonal computation proceeds as follows. We first
skew the input map into a space that makes it easy to ap-
ply convolutions along diagonals. The skewing operation
offsets each row of the input map by one position with re-
spect to the previous row, as illustrated in Figure 3; this
results in a map of size n ⇥ (2n � 1). At this point we can
compute the input-to-state and state-to-state components of
the Diagonal BiLSTM. For each of the two directions, the
input-to-state component is simply a 1⇥1 convolution Kis

that contributes to the four gates in the LSTM core; the op-
eration generates a 4h ⇥ n ⇥ n tensor. The state-to-state
recurrent component is then computed with a column-wise
convolution Kss that has a kernel of size 2 ⇥ 1. The step
takes the previous hidden and cell states, combines the con-
tribution of the input-to-state component and produces the
next hidden and cell states, as defined in Equation 3. The
output feature map is then skewed back into an n ⇥ n map
by removing the offset positions. This computation is re-
peated for each of the two directions. Given the two out-
put maps, to prevent the layer from seeing future pixels,
the right output map is then shifted down by one row and
added to the left output map.

Besides reaching the full dependency field, the Diagonal
BiLSTM has the additional advantage that it uses a con-
volutional kernel of size 2 ⇥ 1 that processes a minimal
amount of information at each step yielding a highly non-
linear computation. Kernel sizes larger than 2 ⇥ 1 are not
particularly useful as they do not broaden the already global
receptive field of the Diagonal BiLSTM.

3.3. Residual Connections

We train PixelRNNs of up to twelve layers of depth. As
a means to both increase convergence speed and propagate
signals more directly through the network, we deploy resid-
ual connections (He et al., 2015) from one LSTM layer to
the next. Figure 5 shows a diagram of the residual blocks.
The input map to the PixelRNN LSTM layer has 2h fea-
tures. The input-to-state component reduces the number of
features by producing h features per gate. After applying
the recurrent layer, the output map is upsampled back to 2h
features per position via a 1 ⇥ 1 convolution and the input
map is added to the output map. This method is related to
previous approaches that use gating along the depth of the
recurrent network (Kalchbrenner et al., 2015; Zhang et al.,
2016), but has the advantage of not requiring additional
gates. Apart from residual connections, one can also use
learnable skip connections from each layer to the output.
In the experiments we evaluate the relative effectiveness of
residual and layer-to-output skip connections.
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Figure 5. Residual blocks for a PixelCNN (left) and PixelRNNs.

3.4. Masked Convolution

The h features for each input position at every layer in the
network are split into three parts, each corresponding to
one of the RGB channels. When predicting the R chan-
nel for the current pixel xi, only the generated pixels left
and above of xi can be used as context. When predicting
the G channel, the value of the R channel can also be used
as context in addition to the previously generated pixels.
Likewise, for the B channel, the values of both the R and
G channels can be used. To restrict connections in the net-
work to these dependencies, we apply a mask to the input-
to-state convolutions and to other purely convolutional lay-
ers in a PixelRNN.

We use two types of masks that we indicate with mask A
and mask B, as shown in Figure 2 (Right). Mask A is ap-
plied only to the first convolutional layer in a PixelRNN
and restricts the connections to those neighboring pixels
and to those colors in the current pixels that have already
been predicted. On the other hand, mask B is applied to
all the subsequent input-to-state convolutional transitions
and relaxes the restrictions of mask A by also allowing the
connection from a color to itself. The masks can be eas-
ily implemented by zeroing out the corresponding weights
in the input-to-state convolutions after each update. Simi-

WaveNet 1609.03499,1711.10433 PixelCNN

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
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Hidden Layer
Dilation = 4

Output
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Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1⇥1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)
ln (1 + µ)

,
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Figure 2. Left: To generate pixel xi one conditions on all the pre-
viously generated pixels left and above of xi. Center: To gen-
erate a pixel in the multi-scale case we can also condition on the
subsampled image pixels (in light blue). Right: Diagram of the
connectivity inside a masked convolution. In the first layer, each
of the RGB channels is connected to previous channels and to the
context, but is not connected to itself. In subsequent layers, the
channels are also connected to themselves.

ply them to large-scale modeling of natural images. The
resulting PixelRNNs are composed of up to twelve, fast
two-dimensional Long Short-Term Memory (LSTM) lay-
ers. These layers use LSTM units in their state (Hochreiter
& Schmidhuber, 1997; Graves & Schmidhuber, 2009) and
adopt a convolution to compute at once all the states along
one of the spatial dimensions of the data. We design two
types of these layers. The first type is the Row LSTM layer
where the convolution is applied along each row; a similar
technique is described in (Stollenga et al., 2015). The sec-
ond type is the Diagonal BiLSTM layer where the convolu-
tion is applied in a novel fashion along the diagonals of the
image. The networks also incorporate residual connections
(He et al., 2015) around LSTM layers; we observe that this
helps with training of the PixelRNN for up to twelve layers
of depth.

We also consider a second, simplified architecture which
shares the same core components as the PixelRNN. We ob-
serve that Convolutional Neural Networks (CNN) can also
be used as sequence model with a fixed dependency range,
by using Masked convolutions. The PixelCNN architec-
ture is a fully convolutional network of fifteen layers that
preserves the spatial resolution of its input throughout the
layers and outputs a conditional distribution at each loca-
tion.

Both PixelRNN and PixelCNN capture the full generality
of pixel inter-dependencies without introducing indepen-
dence assumptions as in e.g., latent variable models. The
dependencies are also maintained between the RGB color
values within each individual pixel. Furthermore, in con-
trast to previous approaches that model the pixels as con-
tinuous values (e.g., Theis & Bethge (2015); Gregor et al.
(2014)), we model the pixels as discrete values using a
multinomial distribution implemented with a simple soft-
max layer. We observe that this approach gives both repre-
sentational and training advantages for our models.

The contributions of the paper are as follows. In Section
3 we design two types of PixelRNNs corresponding to the
two types of LSTM layers; we describe the purely convo-
lutional PixelCNN that is our fastest architecture; and we
design a Multi-Scale version of the PixelRNN. In Section 5
we show the relative benefits of using the discrete softmax
distribution in our models and of adopting residual connec-
tions for the LSTM layers. Next we test the models on
MNIST and on CIFAR-10 and show that they obtain log-
likelihood scores that are considerably better than previous
results. We also provide results for the large-scale Ima-
geNet dataset resized to both 32 ⇥ 32 and 64 ⇥ 64 pixels;
to our knowledge likelihood values from generative models
have not previously been reported on this dataset. Finally,
we give a qualitative evaluation of the samples generated
from the PixelRNNs.

2. Model

Our aim is to estimate a distribution over natural images
that can be used to tractably compute the likelihood of im-
ages and to generate new ones. The network scans the im-
age one row at a time and one pixel at a time within each
row. For each pixel it predicts the conditional distribution
over the possible pixel values given the scanned context.
Figure 2 illustrates this process. The joint distribution over
the image pixels is factorized into a product of conditional
distributions. The parameters used in the predictions are
shared across all pixel positions in the image.

To capture the generation process, Theis & Bethge (2015)
propose to use a two-dimensional LSTM network (Graves
& Schmidhuber, 2009) that starts at the top left pixel and
proceeds towards the bottom right pixel. The advantage of
the LSTM network is that it effectively handles long-range
dependencies that are central to object and scene under-
standing. The two-dimensional structure ensures that the
signals are well propagated both in the left-to-right and top-
to-bottom directions.

In this section we first focus on the form of the distribution,
whereas the next section will be devoted to describing the
architectural innovations inside PixelRNN.

2.1. Generating an Image Pixel by Pixel

The goal is to assign a probability p(x) to each image x
formed of n⇥n pixels. We can write the image x as a one-
dimensional sequence x1, ..., xn2 where pixels are taken
from the image row by row. To estimate the joint distri-
bution p(x) we write it as the product of the conditional
distributions over the pixels:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1) (1)

Pixel Recurrent Neural Networks

PixelCNN Row LSTM Diagonal BiLSTM

Figure 4. Visualization of the input-to-state and state-to-state
mappings for the three proposed architectures.

3.2. Diagonal BiLSTM

The Diagonal BiLSTM is designed to both parallelize the
computation and to capture the entire available context for
any image size. Each of the two directions of the layer
scans the image in a diagonal fashion starting from a cor-
ner at the top and reaching the opposite corner at the bot-
tom. Each step in the computation computes at once the
LSTM state along a diagonal in the image. Figure 4 (right)
illustrates the computation and the resulting receptive field.

The diagonal computation proceeds as follows. We first
skew the input map into a space that makes it easy to ap-
ply convolutions along diagonals. The skewing operation
offsets each row of the input map by one position with re-
spect to the previous row, as illustrated in Figure 3; this
results in a map of size n ⇥ (2n � 1). At this point we can
compute the input-to-state and state-to-state components of
the Diagonal BiLSTM. For each of the two directions, the
input-to-state component is simply a 1⇥1 convolution Kis

that contributes to the four gates in the LSTM core; the op-
eration generates a 4h ⇥ n ⇥ n tensor. The state-to-state
recurrent component is then computed with a column-wise
convolution Kss that has a kernel of size 2 ⇥ 1. The step
takes the previous hidden and cell states, combines the con-
tribution of the input-to-state component and produces the
next hidden and cell states, as defined in Equation 3. The
output feature map is then skewed back into an n ⇥ n map
by removing the offset positions. This computation is re-
peated for each of the two directions. Given the two out-
put maps, to prevent the layer from seeing future pixels,
the right output map is then shifted down by one row and
added to the left output map.

Besides reaching the full dependency field, the Diagonal
BiLSTM has the additional advantage that it uses a con-
volutional kernel of size 2 ⇥ 1 that processes a minimal
amount of information at each step yielding a highly non-
linear computation. Kernel sizes larger than 2 ⇥ 1 are not
particularly useful as they do not broaden the already global
receptive field of the Diagonal BiLSTM.

3.3. Residual Connections

We train PixelRNNs of up to twelve layers of depth. As
a means to both increase convergence speed and propagate
signals more directly through the network, we deploy resid-
ual connections (He et al., 2015) from one LSTM layer to
the next. Figure 5 shows a diagram of the residual blocks.
The input map to the PixelRNN LSTM layer has 2h fea-
tures. The input-to-state component reduces the number of
features by producing h features per gate. After applying
the recurrent layer, the output map is upsampled back to 2h
features per position via a 1 ⇥ 1 convolution and the input
map is added to the output map. This method is related to
previous approaches that use gating along the depth of the
recurrent network (Kalchbrenner et al., 2015; Zhang et al.,
2016), but has the advantage of not requiring additional
gates. Apart from residual connections, one can also use
learnable skip connections from each layer to the output.
In the experiments we evaluate the relative effectiveness of
residual and layer-to-output skip connections.
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Figure 5. Residual blocks for a PixelCNN (left) and PixelRNNs.

3.4. Masked Convolution

The h features for each input position at every layer in the
network are split into three parts, each corresponding to
one of the RGB channels. When predicting the R chan-
nel for the current pixel xi, only the generated pixels left
and above of xi can be used as context. When predicting
the G channel, the value of the R channel can also be used
as context in addition to the previously generated pixels.
Likewise, for the B channel, the values of both the R and
G channels can be used. To restrict connections in the net-
work to these dependencies, we apply a mask to the input-
to-state convolutions and to other purely convolutional lay-
ers in a PixelRNN.

We use two types of masks that we indicate with mask A
and mask B, as shown in Figure 2 (Right). Mask A is ap-
plied only to the first convolutional layer in a PixelRNN
and restricts the connections to those neighboring pixels
and to those colors in the current pixels that have already
been predicted. On the other hand, mask B is applied to
all the subsequent input-to-state convolutional transitions
and relaxes the restrictions of mask A by also allowing the
connection from a color to itself. The masks can be eas-
ily implemented by zeroing out the corresponding weights
in the input-to-state convolutions after each update. Simi-

WaveNet 1609.03499,1711.10433 PixelCNN

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).
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Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1⇥1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)
ln (1 + µ)

,
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(a) (b) (c)

Figure 1. Illustration of the swap operation in Eq. (5) and Eq. (6)
using handwritten digits from the MNIST dataset. (a) Two original
images. (b) Swapped images for up/down bipartition. (c) Swapped
images for checkerboard bipartition of the pixels. The blue and red
colors indicate the regions of the bipartition X and Y respectively.

Finally, Section V summarizes our main points and outlook
for future directions.

II. COMPLEXITY OF DATASET: CLASSICAL MUTUAL
INFORMATION AND QUANTUM ENTANGLEMENT

ENTROPY

Modeling data probability using an energy based model
(1) calls for a classical information theoretical analysis. Mu-
tual information (MI) is a fundamental information theoretical
concept which quantifies the complexity of probability distri-
bution ⇡(v) associated with the dataset. Assuming x 2 X and
y 2 Y are two subset of the variables and v = x [ y, their
marginal probability distributions are ⇡(x) =

P
y2Y ⇡(x, y),

and ⇡(y) =
P

x2X ⇡(x, y) respectively. The MI reads

I(X : Y) =
X

x2X,y2Y
⇡(x, y) ln

"
⇡(x, y)
⇡(x)⇡(y)

#
. (3)

The MI measures the amount of information shared between
the two sets of variables. MI is zero only for independent
variables. In this sense, the MI is a stronger criterion than the
correlation of variables since having zero correlation does not
necessarily imply vanishing MI. The MI can be used as the
objective functions in machine learning applications [32–34].
Here we adopt a di↵erent point view, which treats MI as a
complexity measure of the dataset to be modeled.

On the other hand, if we view the target dataset as snapshots
of the same quantum state collapsed on a fixed basis (2), it
is natural to measure its complexity using the second Rényi
entanglement entropy

S R = � ln Tr(⇢2
X), (4)

where (⇢X)x,x0 =
P

y2Y  (x, y) (x0, y) is the reduced density
matrix, and  (v = x [ y) is the probability amplitude associ-

ated with the probability, such that p(v) in Eq. (2) approaches
to the data probability distribution ⇡(v). The second Rényi
entanglement entropy is a lower bound of the von Neumann
entanglement entropy S vN = �Tr[⇢X ln(⇢X)].

To reveal connection of the classical and quantum informa-
tion theoretical measures, we write the MI as
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where the expected value h· · · ix,y is with respect to the dataset
probability ⇡(x, y).

There are apparent similarities between Eqs. (5) and (6).
Both equations contain swap ratios of probability or probabil-
ity amplitude [35, 36]. To illustrated the e↵ect of the swap
ratio, Figure 1(a) shows two samples from the MNIST data
set [(x, y) and (x0, y0)] and Fig. 1(b,c) show the corresponding
swapped images [(x0, y) and (x, y0)] for up/down and checker-
board bipartitions. The ratio in Eq. (5) and Eq. (6) would be
smaller if the swapped images are less likely to appear in the
original dataset ⇡(v), therefore makes larger contribution to
the mutual information or the entanglement entropy. Refer-
ence [37] argues that the dominant correlations in the natural
datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
di�culty one may consider to compute alternative quantities
such as the Rényi mutual information [80].
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Figure 1. Illustration of the swap operation in Eq. (5) and Eq. (6)
using handwritten digits from the MNIST dataset. (a) Two original
images. (b) Swapped images for up/down bipartition. (c) Swapped
images for checkerboard bipartition of the pixels. The blue and red
colors indicate the regions of the bipartition X and Y respectively.
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variables. In this sense, the MI is a stronger criterion than the
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necessarily imply vanishing MI. The MI can be used as the
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Here we adopt a di↵erent point view, which treats MI as a
complexity measure of the dataset to be modeled.
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set [(x, y) and (x0, y0)] and Fig. 1(b,c) show the corresponding
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board bipartitions. The ratio in Eq. (5) and Eq. (6) would be
smaller if the swapped images are less likely to appear in the
original dataset ⇡(v), therefore makes larger contribution to
the mutual information or the entanglement entropy. Refer-
ence [37] argues that the dominant correlations in the natural
datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
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is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
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scaling for various quantum states [31] are very instructive
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Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
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is not merely a “metaphorical vehicle” to measure the com-
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if one models the data using the quantum approach Eq. (2).
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scaling for various quantum states [31] are very instructive
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INFORMATION AND QUANTUM ENTANGLEMENT

ENTROPY

Modeling data probability using an energy based model
(1) calls for a classical information theoretical analysis. Mu-
tual information (MI) is a fundamental information theoretical
concept which quantifies the complexity of probability distri-
bution ⇡(v) associated with the dataset. Assuming x 2 X and
y 2 Y are two subset of the variables and v = x [ y, their
marginal probability distributions are ⇡(x) =

P
y2Y ⇡(x, y),

and ⇡(y) =
P

x2X ⇡(x, y) respectively. The MI reads

I(X : Y) =
X

x2X,y2Y
⇡(x, y) ln

"
⇡(x, y)
⇡(x)⇡(y)

#
. (3)

The MI measures the amount of information shared between
the two sets of variables. MI is zero only for independent
variables. In this sense, the MI is a stronger criterion than the
correlation of variables since having zero correlation does not
necessarily imply vanishing MI. The MI can be used as the
objective functions in machine learning applications [32–34].
Here we adopt a di↵erent point view, which treats MI as a
complexity measure of the dataset to be modeled.

On the other hand, if we view the target dataset as snapshots
of the same quantum state collapsed on a fixed basis (2), it
is natural to measure its complexity using the second Rényi
entanglement entropy

S R = � ln Tr(⇢2
X), (4)

where (⇢X)x,x0 =
P

y2Y  (x, y) (x0, y) is the reduced density
matrix, and  (v = x [ y) is the probability amplitude associ-

ated with the probability, such that p(v) in Eq. (2) approaches
to the data probability distribution ⇡(v). The second Rényi
entanglement entropy is a lower bound of the von Neumann
entanglement entropy S vN = �Tr[⇢X ln(⇢X)].

To reveal connection of the classical and quantum informa-
tion theoretical measures, we write the MI as

I(X : Y) = �
*
ln
*
⇡(x, y0)⇡(x0, y)
⇡(x0, y0)⇡(x, y)

+

x0,y0

+

x,y
, (5)

and the second Rényi entropy as

S R = � ln
**
 (x, y0) (x0, y)
 (x0, y0) (x, y)

+

x0,y0

+

x,y
, (6)

where the expected value h· · · ix,y is with respect to the dataset
probability ⇡(x, y).

There are apparent similarities between Eqs. (5) and (6).
Both equations contain swap ratios of probability or probabil-
ity amplitude [35, 36]. To illustrated the e↵ect of the swap
ratio, Figure 1(a) shows two samples from the MNIST data
set [(x, y) and (x0, y0)] and Fig. 1(b,c) show the corresponding
swapped images [(x0, y) and (x, y0)] for up/down and checker-
board bipartitions. The ratio in Eq. (5) and Eq. (6) would be
smaller if the swapped images are less likely to appear in the
original dataset ⇡(v), therefore makes larger contribution to
the mutual information or the entanglement entropy. Refer-
ence [37] argues that the dominant correlations in the natural
datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
di�culty one may consider to compute alternative quantities
such as the Rényi mutual information [80].
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Figure 1. Illustration of the swap operation in Eq. (5) and Eq. (6)
using handwritten digits from the MNIST dataset. (a) Two original
images. (b) Swapped images for up/down bipartition. (c) Swapped
images for checkerboard bipartition of the pixels. The blue and red
colors indicate the regions of the bipartition X and Y respectively.
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ABSTRACT
Formal understanding of the inductive bias behind deep convolutional networks,
i.e. the relation between the network’s architectural features and the functions it
is able to model, is limited. In this work, we establish a fundamental connection
between the fields of quantum physics and deep learning, and use it for obtain-
ing novel theoretical observations regarding the inductive bias of convolutional
networks. Specifically, we show a structural equivalence between the function re-
alized by a convolutional arithmetic circuit (ConvAC) and a quantum many-body
wave function, which facilitates the use of quantum entanglement measures as
quantifiers of a deep network’s expressive ability to model correlations. Further-
more, the construction of a deep ConvAC in terms of a quantum Tensor Network
is enabled. This allows us to perform a graph-theoretic analysis of a convolutional
network, tying its expressiveness to a min-cut in its underlying graph. We demon-
strate a practical outcome in the form of a direct control over the inductive bias
via the number of channels (width) of each layer. We empirically validate our
findings on standard convolutional networks which involve ReLU activations and
max pooling. The description of a deep convolutional network in well-defined
graph-theoretic tools and the structural connection to quantum entanglement, are
two interdisciplinary bridges that are brought forth by this work.

1 INTRODUCTION
A central factor in the application of machine learning to a given task is the restriction of the hypoth-
esis space of learned functions known as inductive bias. In deep convolutional networks, inductive
bias manifests itself in architectural features such as number of layers, number of channels per layer,
and more (LeCun et al., 2015). Formal understanding of the inductive bias behind convolutional net-
works is limited – the assumptions encoded into these models, which seem to form an excellent prior
knowledge for different types of data (e.g. Krizhevsky et al. (2012); He et al. (2016); van den Oord
et al. (2016)), are for the most part a mystery.

An important aspect of the influence that a certain architectural feature has on the inductive bias, is its
effect on the network’s ability to model correlations between regions of its input. In this regard, one
typically considers partitions that divide input regions into disjoint sets, and asks how far the function
realized by the network is from being separable with respect to these partitions(Cohen and Shashua,
2017; Levine et al., 2017). For example, Cohen and Shashua (2017) show that when separability is
measured through the algebraic notion of separation-rank, deep Convolutional Arithmetic Circuits
(ConvACs) (Cohen et al., 2016b) support exponential (in network size) separation-ranks for certain
input partitions, while being limited to polynomial separation-ranks for others. ConvACs are a
special class of convolutional networks, characterized by linear activations and product pooling,
which served a key role in theoretical analyses of convolutional networks, in virtue of their algebraic
structure.

In this work, we draw upon formal similarities between how physicists describe a system of many-
particles as a quantum mechanical wave function, and how machine learning practitioners map a
high-dimensional input (e.g. image) to a set of output labels through a deep network. In particular,
we show that there is a structural equivalence between a function modeled by a ConvAC and a
many-body quantum wave function, which relies on their underlying tensorial structure. This allows
employment of the well-established physical notion of quantum entanglement measures (Plenio and
Virmani, 2007), which subsumes other algebraic notions of separability such as the separation-rank
mentioned above, for the analysis of correlations modeled by deep convolutional networks.
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:
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The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as
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For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.

21A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

Physics genes of generative models



Tensor Network States

Goodfellow,  
NIPS tutorial, 1701.00160 p(x)

<latexit sha1_base64="l+MU6Wop3O4gDLGg4JnxmuonPhM=">AAACEHicbVDNSsNAGNzUv1r/oj16WSxCvZREBPVW9OKxgrGFNpTNZtMu3WzC7kYaQp7CB/Cqj+BJvPoGPoGv4abNwbYOLDvMfB/fMF7MqFSW9W1U1tY3Nreq27Wd3b39A/Pw6FFGicDEwRGLRM9DkjDKiaOoYqQXC4JCj5GuN7kt/O4TEZJG/EGlMXFDNOI0oBgpLQ3NOoybAy9ivkxD/WXT/AwOzYbVsmaAq8QuSQOU6AzNn4Ef4SQkXGGGpOzbVqzcDAlFMSN5bZBIEiM8QSPS15SjkEg3m4XP4alWfBhEQj+u4Ez9u5GhUBbh9GSI1Fgue4X4n9dPVHDlZpTHiSIczw8FCYMqgkUT0KeCYMVSTRAWVGeFeIwEwkr3tXBFTYtoMq/pZuzlHlaJc966bln3F432TVlRFRyDE9AENrgEbXAHOsABGKTgBbyCN+PZeDc+jM/5aMUod+pgAcbXL/rwnUs=</latexit><latexit sha1_base64="l+MU6Wop3O4gDLGg4JnxmuonPhM=">AAACEHicbVDNSsNAGNzUv1r/oj16WSxCvZREBPVW9OKxgrGFNpTNZtMu3WzC7kYaQp7CB/Cqj+BJvPoGPoGv4abNwbYOLDvMfB/fMF7MqFSW9W1U1tY3Nreq27Wd3b39A/Pw6FFGicDEwRGLRM9DkjDKiaOoYqQXC4JCj5GuN7kt/O4TEZJG/EGlMXFDNOI0oBgpLQ3NOoybAy9ivkxD/WXT/AwOzYbVsmaAq8QuSQOU6AzNn4Ef4SQkXGGGpOzbVqzcDAlFMSN5bZBIEiM8QSPS15SjkEg3m4XP4alWfBhEQj+u4Ez9u5GhUBbh9GSI1Fgue4X4n9dPVHDlZpTHiSIczw8FCYMqgkUT0KeCYMVSTRAWVGeFeIwEwkr3tXBFTYtoMq/pZuzlHlaJc966bln3F432TVlRFRyDE9AENrgEbXAHOsABGKTgBbyCN+PZeDc+jM/5aMUod+pgAcbXL/rwnUs=</latexit><latexit sha1_base64="l+MU6Wop3O4gDLGg4JnxmuonPhM=">AAACEHicbVDNSsNAGNzUv1r/oj16WSxCvZREBPVW9OKxgrGFNpTNZtMu3WzC7kYaQp7CB/Cqj+BJvPoGPoGv4abNwbYOLDvMfB/fMF7MqFSW9W1U1tY3Nreq27Wd3b39A/Pw6FFGicDEwRGLRM9DkjDKiaOoYqQXC4JCj5GuN7kt/O4TEZJG/EGlMXFDNOI0oBgpLQ3NOoybAy9ivkxD/WXT/AwOzYbVsmaAq8QuSQOU6AzNn4Ef4SQkXGGGpOzbVqzcDAlFMSN5bZBIEiM8QSPS15SjkEg3m4XP4alWfBhEQj+u4Ez9u5GhUBbh9GSI1Fgue4X4n9dPVHDlZpTHiSIczw8FCYMqgkUT0KeCYMVSTRAWVGeFeIwEwkr3tXBFTYtoMq/pZuzlHlaJc966bln3F432TVlRFRyDE9AENrgEbXAHOsABGKTgBbyCN+PZeDc+jM/5aMUod+pgAcbXL/rwnUs=</latexit>

G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads
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removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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The same density of states is also realized for a random
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dent random variables with variance t ij
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d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:
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The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
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For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads
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FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.

21A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

U
 

Physics genes of generative models



2

in deep learning, in which deep neural networks can even
reach billions of parameters [33]. In the history of machine
learning, gradient-free algorithms were employed to optimize
small-scale neural networks [34]. However, they failed to
scale up to a larger number of parameters. It is the back-
propagation algorithm [35] which can e�ciently compute the
gradient of the neural network output with respect to the
network parameters enables scalable training of deep neural
nets. It is thus highly demanded to have scalable quantum al-
gorithms for estimating gradients on actual quantum circuits.

Recently, gradient-based learning of quantum circuits has
been devised for quantum control [36] and discriminative
tasks [37, 38]. Although they are still less e�cient compared
to the back-propagation algorithm for neural networks, these
unbiased gradient algorithms can already greatly accelerate
the quantum circuit learning. Unfortunately, direct application
of these gradient algorithms [36–38] to QCBM training is still
non-trivial since the output of the generative model is gen-
uinely bit strings which follow high-dimensional probability
distributions. In fact, it is even an ongoing research topic
in deep learning to perform di↵erentiable learning of implicit
generative model with discrete outputs [24, 39].

In this paper, we develop an e�cient gradient-based learn-
ing algorithm to train the QCBM. In what follows, we first
present a practical quantum-classical hybrid algorithm to train
the quantum circuit as a generative model in Sec. II, thus
realize a Born machine. Then we apply the algorithm on
3 ⇥ 3 Bars-and-Stripes and double Gaussian peaks datasets
in Sec. III. We show that the training is robust to moderate
sampling noise, and is scalable in circuit depth. Increasing
the circuit depth significantly improves the representational
power for generative tasks. Finally, we conclude and discuss
caveats and future research directions about the QCBM in
Sec. IV.

II. MODEL AND LEARNING ALGORITHM

Given a dataset D = {x} containing independent and iden-
tically distributed (i.i.d.) samples from a target distribution
⇡(x), we set up a QCBM to generate samples close to the
unknown target distribution. As shown in Fig. 1, the QCBM
takes the product state |0i as an input and evolves it to a
final state | ✓i by a sequence of unitary gates. Then we can
measure this output state on computation basis to obtain a
sample of bits x ⇠ p✓(x) = |hx| ✓i|2. The goal of the training
is to let the model probability distribution p✓ approach to ⇡.

We employ a classical-quantum hybrid feedback loop as
the training strategy. The setup is similar to the Quantum
Approximate Optimization Algorithm (QAOA) [40–42] and
the Variational Quantum Eigensolver (VQE) [43–45]. By
constructing the circuits and performing measurements re-
peatedly we collect a batch of samples from the QCBM.
Then we introduce two-sample test as a measure of distance
between generated samples and training set, which is used
as our di↵erentiable loss. Using a classical optimizer which
takes the gradient information of the loss function, we can
push the generated sample distribution towards the target

Figure 1. Illustration of the di↵erentiable QCBM training scheme.
Top left is the quantum circuit which produce bit string samples. The
dashed box on the right denotes two-sample test on the generated
samples and training samples, with the loss function (Eq. (1)) and
corresponding gradients (Eq. (2)) as outputs. �✓ is the amount of
updated to be applied to the circuit parameters, which are computed
by a classical optimizer. The outcome of the training is to produce
a quantum circuit which generates samples according to the learned
probability distribution on the computational basis.

distribution.

A. Quantum Circuit Architecture Design

The overall circuit layout is similar to the IBM variational
quantum eigensolver [45], where one interweaves single qubit
rotation layers and entangler layers shown in Fig. 1. The
rotation layers are parameterized by rotation angles ✓ = {✓↵

l
},

where the layer index l runs from 0 to d, with d the maximum
depth of the circuit. ↵ is a combination of qubit index j and
arbitrary rotation gate index, where the arbitrary rotation gate
has the form U(✓ j

l
) = Rz(✓

j,1
l

)Rx(✓ j,2
l

)Rz(✓
j,3
l

) with Rm(✓) ⌘
exp
⇣�i✓�m

2

⌘
. The total number of parameters in this QCBM

is (3d + 1)n, with n the number of qubits [46].
We employ CNOT gates with no learnable parameters for

the entangle layers to induce correlations between qubits. In
light of experimental constraints on the connectivity of the
circuits, we make the connection of the entangle layers to be
sparse by requiring its topology as a tree (i.e. the simplest
connected graph). From the classical probabilistic graph-
ical model’s perspective [13], the tree graph that captures
information content of the dataset most e�ciently is Chow-
Liu tree [47]. Since controlled unitary gates have a close
relation with classical probability graphical models [48], we
employ the same Chow-Liu tree as the topology of CNOT
gates. To construct the Chow-Liu tree we first compute mutual
information between all pairs of the bits for samples in the
training set as weights, and then construct the maximum
spanning tree using, for example, the Kruskal’s algorithm.
The assignment of the control bit and the target bit on a bond
is random, since the Chow-Liu algorithm treated directed

Quantum Circuit Born Machine
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Quantum sampling complexity underlines the “quantum supremacy” 

With Liu,1804.04168, PRA ‘18



Quantum Inference 2

(a) (b) (c)

Figure 1. Illustration of the swap operation in Eq. (5) and Eq. (6)
using handwritten digits from the MNIST dataset. (a) Two original
images. (b) Swapped images for up/down bipartition. (c) Swapped
images for checkerboard bipartition of the pixels. The blue and red
colors indicate the regions of the bipartition X and Y respectively.

Finally, Section V summarizes our main points and outlook
for future directions.

II. COMPLEXITY OF DATASET: CLASSICAL MUTUAL
INFORMATION AND QUANTUM ENTANGLEMENT

ENTROPY

Modeling data probability using an energy based model
(1) calls for a classical information theoretical analysis. Mu-
tual information (MI) is a fundamental information theoretical
concept which quantifies the complexity of probability distri-
bution ⇡(v) associated with the dataset. Assuming x 2 X and
y 2 Y are two subset of the variables and v = x [ y, their
marginal probability distributions are ⇡(x) =

P
y2Y ⇡(x, y),

and ⇡(y) =
P

x2X ⇡(x, y) respectively. The MI reads

I(X : Y) =
X

x2X,y2Y
⇡(x, y) ln

"
⇡(x, y)
⇡(x)⇡(y)

#
. (3)

The MI measures the amount of information shared between
the two sets of variables. MI is zero only for independent
variables. In this sense, the MI is a stronger criterion than the
correlation of variables since having zero correlation does not
necessarily imply vanishing MI. The MI can be used as the
objective functions in machine learning applications [32–34].
Here we adopt a di↵erent point view, which treats MI as a
complexity measure of the dataset to be modeled.

On the other hand, if we view the target dataset as snapshots
of the same quantum state collapsed on a fixed basis (2), it
is natural to measure its complexity using the second Rényi
entanglement entropy

S R = � ln Tr(⇢2
X), (4)

where (⇢X)x,x0 =
P

y2Y  (x, y) (x0, y) is the reduced density
matrix, and  (v = x [ y) is the probability amplitude associ-

ated with the probability, such that p(v) in Eq. (2) approaches
to the data probability distribution ⇡(v). The second Rényi
entanglement entropy is a lower bound of the von Neumann
entanglement entropy S vN = �Tr[⇢X ln(⇢X)].

To reveal connection of the classical and quantum informa-
tion theoretical measures, we write the MI as

I(X : Y) = �
*
ln
*
⇡(x, y0)⇡(x0, y)
⇡(x0, y0)⇡(x, y)

+

x0,y0

+

x,y
, (5)

and the second Rényi entropy as

S R = � ln
**
 (x, y0) (x0, y)
 (x0, y0) (x, y)

+

x0,y0

+

x,y
, (6)

where the expected value h· · · ix,y is with respect to the dataset
probability ⇡(x, y).

There are apparent similarities between Eqs. (5) and (6).
Both equations contain swap ratios of probability or probabil-
ity amplitude [35, 36]. To illustrated the e↵ect of the swap
ratio, Figure 1(a) shows two samples from the MNIST data
set [(x, y) and (x0, y0)] and Fig. 1(b,c) show the corresponding
swapped images [(x0, y) and (x, y0)] for up/down and checker-
board bipartitions. The ratio in Eq. (5) and Eq. (6) would be
smaller if the swapped images are less likely to appear in the
original dataset ⇡(v), therefore makes larger contribution to
the mutual information or the entanglement entropy. Refer-
ence [37] argues that the dominant correlations in the natural
datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
di�culty one may consider to compute alternative quantities
such as the Rényi mutual information [80].
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S ¼ lnð30Þ, within an accuracy of 1 × 10−10. Here, what
the MPS has accomplished is memorizing the 30 images
rigidly, by increasing the probability of the instances that
appear in the data set, and suppressing the probability of
not-shown instances towards zero. We have checked that
the result is insensitive to the choice of hyperparameters.
The bond dimensions of the learned MPS have been

annotated in Fig. 1(b). It is clear that part of the symmetry
of the data set has been preserved. For instance, the 180°
rotation around the center or the transposition of the second
and the third rows would change neither the data set nor the
bond dimension distribution. The open boundary condition
results in the decrease of bond dimensions at both ends. In
fact, when conducting SVD at bond k, there are at most
2minðk;N−kÞ nonzero singular values because the two parts
linked by bond k have their Hilbert spaces of dimension 2k,
2N−k. In addition, the turnings bonds have slightly smaller
bond dimension (D4 ¼ D8 ¼ D12 ¼ 15) than others inside
the second row and the third row, which can be explained
qualitatively as these bonds carrying less entanglement than
the bonds in the bulk.
One can directly write down the exact “quantum wave

function” of the BS data set, which has finite and uniform
amplitudes for the training images and zero amplitude for
other images. For division on each bond, one can construct
the reduced density matrix whose eigenvalues are the
square of the singular values. Analyzed in this way, it is
confirmed that the trained MPS achieves the minimal
number of required bond dimension to exactly describe
the BS data set.
We have generated Ns ¼ 106 independent samples

from the learned MPS. All these samples are training
images shown in Fig. 1(a). Carrying out the likelihood
ratio test [49], we got the log-likelihood ratio statistic
G2 ¼ 2NsDKLðfnj=NsgjjfpjgÞ ¼ 22.0, equivalently
DKLðfnj=NsgjjfpjgÞ¼1.10×10−5. The reason for adopting
this statistic is that it is asymptotically χ2-distributed [49].
The p-value of this test is 0.820, which indicates a high

probability that the uniform distribution holds true for the
sampling outcomes.
Note that DKLðfnj=NsgjjfpjgÞ quantifies the deviation

from the expected distribution to the sampling outcomes, so
it reflects the performance of the sampling method rather
than merely the training performance. In contrast to our
model, for energy-based models, one typically has to resort
to the MCMC method for sampling new patterns. It suffers
from the slow mixing problem, since various patterns in the
BS data set differ substantially, and it requires many
MCMC steps to obtain one independent pattern.

B. Random patterns

Capacity represents how much about data could be
learned by the model. Usually, it is evaluated using
randomly generated patterns as data. For the classic
Hopfield model [12] with pairwise interactions given by
Hebb’s rule among N → ∞ variables, it has been shown
[50] that, in the low-temperature region at the thermody-
namic limit, there is the retrieval phase, where, at most,
jT jc ¼ 0.14N random binary patterns could be remem-
bered. In this sense, each sample generated by the model
has a large overlap with one of the training patterns. If the
number of patterns in the Hopfield model is larger than
jT jc, the model would enter the spin glass state, where
samples generated by the model are not correlated with any
training pattern.
Thanks to the tractable evaluation of the partition

function Z in MPS, we are able to evaluate exactly the
likelihood of every training pattern. Thus, the capability of
the model can be easily characterized by the mean negative
log-likelihood L. In this section, we focus on the behavior
of L with varying numbers of training samples and varying
system sizes.
In Fig. 2(a), we plot L as a function of the number of

patterns used for training for several maximal bond dimen-
sionsDmax. The figure shows that we obtainL ¼ ln jT j for a

(a) (b)

FIG. 1. (a) The Bars and Stripes data set. (b) Ordering of the
pixels when transforming the image into a one-dimensional
vector. The numbers between pixels indicate the bond dimensions
of the well-trained MPS.

(a) (b)

FIG. 2. NLL averaged as a function of (a) number of random
patterns used for training, with system size N ¼ 20. (b) System
size N, trained using jT j ¼ 100 random patterns. In both (a) and
(b), different symbols correspond to different values of maximal
bond dimension Dmax. Each data point is averaged over 10
random instances (i.e., sets of random patterns); error bars are
also plotted, although they are much smaller than symbol size.
The black dashed lines in figures denote L ¼ ln jT j.
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FIG. 2. DDQCL on the bars and stripes (BAS) data set. The top left corner shows patterns that belong to BAS22 and that
we would like our quantum circuit to generate. For completeness, the top central image shows undesired patterns. On the top
right corner, we show a possible mapping of the 4 pixels to N = 4 qubits, and we show some of the entangling layer topologies
that can be set up in the ion trap (e.g chain, star, and all). The bottom left corner shows results of DDQCL simulations for
shallow circuits with di↵erent topologies. We show the bootstrapped median and 90% confidence interval over the distribution
of medians of the KL divergence as learning progresses for 100 iterations. The mean-field-like circuit L = 1 (green crosses)
severely underperforms. A significant improvement is obtained with L = 2, where most of the angles for XX gates have been
learned to their maximum entangling value. These observations indicate that entanglement is a key resource for learning the
BAS data set. Note that for L = 2 the choice of topology becomes a key factor for improving the performance. The chain
topology (purple squares) performs slightly better than the star topology (red stars) even though they have the same number
of parameters. The all-to-all topology (orange circles) significantly outperform all the others as it has more expressive power.
The bottom central image extends the previous analysis to deeper circuits with L = 4 and approximatively twice the number
of parameters. All the topologies achieve a lower median KL divergence and the confidence intervals shrink. The bottom right
corner shows the bootstrapped mean qBAS22 and 95% confidence interval for simulations (green bars) and experiments on the
ion trap quantum computer hosted at University of Maryland (pink bars).

depth, gate fidelities, and any other architectural design
aspects such as its qubit-qubit connectivity, in addition
to the native set of single and two-qubit gates available
in hardware.

When framed in the context of information retrieval,
the qBASnm score can be seen as an instantiation of
the widely used F1 score. To score high, it is insu�-
cient to simply retrieve states, which belong to BASnm.
This quantity alone corresponds to the so called precision
(denoted here as p), and it determines the ratio between
the number of measurements belonging to BASnm di-
vided by the total number of measurements [46]. One
also needs to score high in the so called recall (denoted
here by r) which determines the capacity of the circuit
model to retrieve the whole spectrum of patterns belong-

ing to the BASnm. In our context, it is a measure of
“fair sampling”, or the capacity to uniformly retrieve
all the states from BASnm. Within the F1 score, re-
call is a general quantity that can always be computed
as the number of di↵erent BASnm patterns appearing in
the Nreads measurements divided by the total number of
states NBASnm that belong to the data set. If we denote
the number of di↵erent patterns that were measured as
d(Nreads), then r = d(Nreads)/NBASnm. The F1 score is
defined as the harmonic mean of the precision and the re-
call, i.e., F1 = 2pr/(p + r), and to score high (F1 ⇡ 1.0)
it is required to have both a high precision (p ⇡ 1.0)
and high recall in retrieving of all the NBASnm patterns
(r ⇡ 1.0). The F1 score is a useful measure for the qual-
ity of information retrieval and classification algorithms,

Generative modeling now becomes a calibration score for quantum circuits
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FIG. 12. Mapping of the generative matrix product state
(MPS) quantum circuit with V = 3 to a bond dimension
D = 23 MPS tensor network diagram. First (a) interpret the
circuit diagram as a tensor diagram by interpreting reference
states h0| as vectors [1, 0]; qubit lines as dimension 2 tensor
indices; and measurements as setting indices to fixed values.
Then (b) contract the reference states into the unitary tensors
and (c) redraw the tensors in a linear chain. Finally, (d) merge
three D = 2 indices into a single D = 8 dimensional index on
each bond.

Given the ability to measure and reset a subset of phys-
ical qubits, a key advantage of implementing a discrim-
inative or generative tensor network model based on an
MPS is that for a model with V virtual qubits, an arbi-
trary number of inputs or outputs can be processed by
using only V +1 physical qubits. The circuits illustrating
how this can be done are shown in Fig. 11.

The implementation of the discriminative algorithm
shown in Fig. 11(a) begins by preparing and entangling
V input qubit states. One of the qubits is measured and
reset to the next input state. Then all V + 1 qubits are
entangled and a single qubit measured and re-prepared.
Continuing in this way, one can process all of the inputs.
Once all inputs are processed, the model output is ob-
tained by sampling one or more of the physical qubits.

To implement the generative MPS algorithm shown in
Fig. 11(b), one prepares all qubits to a reference state

|0i⌦V +1 and after entangling the qubits, one measures
and records a single qubit to generate the first output
value. This qubit is reset to the state |0i and all the
qubits are then acted on by another (V + 1) qubit uni-
tary. A single qubit is again measured to generate the
second output value, and the algorithm continues until
N outputs have been generated.

To understand the equivalence of the generative circuit
of Fig. 11(b) to conventional tensor diagram notation for
an MPS, interpret the circuit diagram Fig. 12(a) as a ten-
sor network diagram, treating elements such as reference
states h0| as tensors or vectors [1, 0]. One can contract
or sum over the reference state indices and merge any V

qubit indices into a single index of dimension D = 2V .
The result is a standard MPS tensor network diagram
Fig. 12(d) for the amplitude of observing a particular set
of values of the measured qubits.

C. Noise Resilience

Any implementation of our proposed approach on
near-term quantum hardware will have to contend with
a significant level of noise due to qubit and gate imper-
fections. But one intuition about noise e↵ects in our
tree models is that an error which corrupts a qubit only
scrambles the information coming from the patch of in-
puts belonging to the past “causal cone” of that qubit.
And because the vast majority of the operations occur
near the leaves of the tree, the most likely errors there-
fore correspond to scrambling only small patches of the
input data. We note that a good classifier should nat-
urally be robust to small deformations and corruptions
of the input, and, in fact, adding various kinds of noise
during training is a commonly used strategy in classical
machine learning. Based on these intuitions, we expect
our circuits could demonstrate a high level of tolerance
to noise.

In order to quantitatively understand the robustness of
our proposed approach to noise on quantum hardware,

FIG. 13. The test accuracy for each of the pairwise classifiers
under noise corresponding to a T1 of 5µs, a T2 of 7µs, and
a gate time of 200 ns. In most cases, the accuracy is compa-
rable to the results from training without noise. Note that it
was necessary to choose a di↵erent set of hyper-parameters to
enable successful training under noise.

see also Cramer et al, Nat. Comm. 2010
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MPS is that for a model with V virtual qubits, an arbi-
trary number of inputs or outputs can be processed by
using only V +1 physical qubits. The circuits illustrating
how this can be done are shown in Fig. 11.
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shown in Fig. 11(a) begins by preparing and entangling
V input qubit states. One of the qubits is measured and
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|0i⌦V +1 and after entangling the qubits, one measures
and records a single qubit to generate the first output
value. This qubit is reset to the state |0i and all the
qubits are then acted on by another (V + 1) qubit uni-
tary. A single qubit is again measured to generate the
second output value, and the algorithm continues until
N outputs have been generated.

To understand the equivalence of the generative circuit
of Fig. 11(b) to conventional tensor diagram notation for
an MPS, interpret the circuit diagram Fig. 12(a) as a ten-
sor network diagram, treating elements such as reference
states h0| as tensors or vectors [1, 0]. One can contract
or sum over the reference state indices and merge any V

qubit indices into a single index of dimension D = 2V .
The result is a standard MPS tensor network diagram
Fig. 12(d) for the amplitude of observing a particular set
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scrambles the information coming from the patch of in-
puts belonging to the past “causal cone” of that qubit.
And because the vast majority of the operations occur
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fore correspond to scrambling only small patches of the
input data. We note that a good classifier should nat-
urally be robust to small deformations and corruptions
of the input, and, in fact, adding various kinds of noise
during training is a commonly used strategy in classical
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Given the ability to measure and reset a subset of phys-
ical qubits, a key advantage of implementing a discrim-
inative or generative tensor network model based on an
MPS is that for a model with V virtual qubits, an arbi-
trary number of inputs or outputs can be processed by
using only V +1 physical qubits. The circuits illustrating
how this can be done are shown in Fig. 11.

The implementation of the discriminative algorithm
shown in Fig. 11(a) begins by preparing and entangling
V input qubit states. One of the qubits is measured and
reset to the next input state. Then all V + 1 qubits are
entangled and a single qubit measured and re-prepared.
Continuing in this way, one can process all of the inputs.
Once all inputs are processed, the model output is ob-
tained by sampling one or more of the physical qubits.

To implement the generative MPS algorithm shown in
Fig. 11(b), one prepares all qubits to a reference state

|0i⌦V +1 and after entangling the qubits, one measures
and records a single qubit to generate the first output
value. This qubit is reset to the state |0i and all the
qubits are then acted on by another (V + 1) qubit uni-
tary. A single qubit is again measured to generate the
second output value, and the algorithm continues until
N outputs have been generated.

To understand the equivalence of the generative circuit
of Fig. 11(b) to conventional tensor diagram notation for
an MPS, interpret the circuit diagram Fig. 12(a) as a ten-
sor network diagram, treating elements such as reference
states h0| as tensors or vectors [1, 0]. One can contract
or sum over the reference state indices and merge any V

qubit indices into a single index of dimension D = 2V .
The result is a standard MPS tensor network diagram
Fig. 12(d) for the amplitude of observing a particular set
of values of the measured qubits.

C. Noise Resilience

Any implementation of our proposed approach on
near-term quantum hardware will have to contend with
a significant level of noise due to qubit and gate imper-
fections. But one intuition about noise e↵ects in our
tree models is that an error which corrupts a qubit only
scrambles the information coming from the patch of in-
puts belonging to the past “causal cone” of that qubit.
And because the vast majority of the operations occur
near the leaves of the tree, the most likely errors there-
fore correspond to scrambling only small patches of the
input data. We note that a good classifier should nat-
urally be robust to small deformations and corruptions
of the input, and, in fact, adding various kinds of noise
during training is a commonly used strategy in classical
machine learning. Based on these intuitions, we expect
our circuits could demonstrate a high level of tolerance
to noise.

In order to quantitatively understand the robustness of
our proposed approach to noise on quantum hardware,

FIG. 13. The test accuracy for each of the pairwise classifiers
under noise corresponding to a T1 of 5µs, a T2 of 7µs, and
a gate time of 200 ns. In most cases, the accuracy is compa-
rable to the results from training without noise. Note that it
was necessary to choose a di↵erent set of hyper-parameters to
enable successful training under noise.
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see also Cramer et al, Nat. Comm. 2010
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A method to study strongly interacting quantum many-body systems at and away from criticality
is proposed. The method is based on a MERA-like tensor network that can be e�ciently and reliably
contracted on a noisy quantum computer using a number of qubits that is much smaller than the
system size. We prove that the outcome of the contraction is stable to noise and that the estimated
energy upper bounds the ground state energy. The stability, which we numerically substantiate,
follows from the positivity of operator scaling dimensions under renormalization group flow. The
variational upper bound follows from a particular assignment of physical qubits to di↵erent locations
of the tensor network plus the assumption that the noise model is local. We postulate a scaling
law for how well the tensor network can approximate ground states of lattice regulated conformal
field theories in d spatial dimensions and provide evidence for the postulate. Under this postulate,
a O(logd(1/�))-qubit quantum computer can prepare a valid quantum-mechanical state with energy
density � above the ground state. In the presence of noise, � = O(✏ logd+1(1/✏)) can be achieved,
where ✏ is the noise strength.

I. INTRODUCTION

Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.
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FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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A method to study strongly interacting quantum many-body systems at and away from criticality
is proposed. The method is based on a MERA-like tensor network that can be e�ciently and reliably
contracted on a noisy quantum computer using a number of qubits that is much smaller than the
system size. We prove that the outcome of the contraction is stable to noise and that the estimated
energy upper bounds the ground state energy. The stability, which we numerically substantiate,
follows from the positivity of operator scaling dimensions under renormalization group flow. The
variational upper bound follows from a particular assignment of physical qubits to di↵erent locations
of the tensor network plus the assumption that the noise model is local. We postulate a scaling
law for how well the tensor network can approximate ground states of lattice regulated conformal
field theories in d spatial dimensions and provide evidence for the postulate. Under this postulate,
a O(logd(1/�))-qubit quantum computer can prepare a valid quantum-mechanical state with energy
density � above the ground state. In the presence of noise, � = O(✏ logd+1(1/✏)) can be achieved,
where ✏ is the noise strength.

I. INTRODUCTION

Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.
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FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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A method to study strongly interacting quantum many-body systems at and away from criticality
is proposed. The method is based on a MERA-like tensor network that can be e�ciently and reliably
contracted on a noisy quantum computer using a number of qubits that is much smaller than the
system size. We prove that the outcome of the contraction is stable to noise and that the estimated
energy upper bounds the ground state energy. The stability, which we numerically substantiate,
follows from the positivity of operator scaling dimensions under renormalization group flow. The
variational upper bound follows from a particular assignment of physical qubits to di↵erent locations
of the tensor network plus the assumption that the noise model is local. We postulate a scaling
law for how well the tensor network can approximate ground states of lattice regulated conformal
field theories in d spatial dimensions and provide evidence for the postulate. Under this postulate,
a O(logd(1/�))-qubit quantum computer can prepare a valid quantum-mechanical state with energy
density � above the ground state. In the presence of noise, � = O(✏ logd+1(1/✏)) can be achieved,
where ✏ is the noise strength.

I. INTRODUCTION

Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.
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FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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A method to study strongly interacting quantum many-body systems at and away from criticality
is proposed. The method is based on a MERA-like tensor network that can be e�ciently and reliably
contracted on a noisy quantum computer using a number of qubits that is much smaller than the
system size. We prove that the outcome of the contraction is stable to noise and that the estimated
energy upper bounds the ground state energy. The stability, which we numerically substantiate,
follows from the positivity of operator scaling dimensions under renormalization group flow. The
variational upper bound follows from a particular assignment of physical qubits to di↵erent locations
of the tensor network plus the assumption that the noise model is local. We postulate a scaling
law for how well the tensor network can approximate ground states of lattice regulated conformal
field theories in d spatial dimensions and provide evidence for the postulate. Under this postulate,
a O(logd(1/�))-qubit quantum computer can prepare a valid quantum-mechanical state with energy
density � above the ground state. In the presence of noise, � = O(✏ logd+1(1/✏)) can be achieved,
where ✏ is the noise strength.

I. INTRODUCTION

Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.

Quantum
Processor

Classical
Optimizer

Energy
Lowered

Energy
Measured

FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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is proposed. The method is based on a MERA-like tensor network that can be e�ciently and reliably
contracted on a noisy quantum computer using a number of qubits that is much smaller than the
system size. We prove that the outcome of the contraction is stable to noise and that the estimated
energy upper bounds the ground state energy. The stability, which we numerically substantiate,
follows from the positivity of operator scaling dimensions under renormalization group flow. The
variational upper bound follows from a particular assignment of physical qubits to di↵erent locations
of the tensor network plus the assumption that the noise model is local. We postulate a scaling
law for how well the tensor network can approximate ground states of lattice regulated conformal
field theories in d spatial dimensions and provide evidence for the postulate. Under this postulate,
a O(logd(1/�))-qubit quantum computer can prepare a valid quantum-mechanical state with energy
density � above the ground state. In the presence of noise, � = O(✏ logd+1(1/✏)) can be achieved,
where ✏ is the noise strength.

I. INTRODUCTION

Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.
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FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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Quantum entanglement: from quantum states of
matter to deep learning
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摘 要 量子纠缠在量子物质态的研究中扮演着日趋重要的角色，它可以标记传统

范式难以区分的新奇量子态和量子相变，并指导设计高效的数值算法来精确地研究量子多体

问题。最近，随着一些深度学习技术在量子物理问题中的应用，人们惊奇地发现：从量子纠

缠的视角审视深度学习，或许有助于反过来理解和解决一些深度学习中的问题。量子纠缠

定量化地刻画了现实数据集的复杂度，并指导相应的人工神经网络结构设计。沿着这个思

路，物理学家们对于量子多体问题所形成的种种洞察和理论可以以一种意想不到的方式应

用在现实世界中。

关键词 量子纠缠，张量网络，人工神经网络，深度学习

Abstract Quantum entanglement is playing an increasingly significant role in the studies
of quantum states of matter. It identifies novel phases and phase transitions beyond the traditional
paradigms, and guides efficient simulation of quantum systems using classical computers. Recently,
along with the application of deep learning technology to quantum many-body systems, a new
perspective on deep learning emerges through the lens of quantum entanglement. Entanglement
quantifies the complexity of a real dataset in machine learning and can guide the architecture
design of artificial neural networks. Along this line, insights and theories originally developed for
quantum many-body systems may find unexpected applications in real-world problems.

Keywords Quantum entanglement, tensor network states, artificial neural networks, deep
learning

1 引言

经典物理学的主角是物质和能量。20世纪

初，爱因斯坦写下 E =mc2 ，将质量和能量统一

在了一起。而从那之后，一个新角色——信息

(Information)——逐渐走向了物理学舞台的中央。

信息是关于不确定程度的度量。Shannon创立信

息论的初衷是为了定量化地描述信息的存储和传

输。Jaynes从信息论的角度研究多粒子体系，重

新阐释了统计力学
[1]
。原来，物理学家所熟知的

热力学熵与 Shannon用来衡量信息量的信息熵

(Information Entropy)系出同源。Landauer指出擦
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