Born Machines A fresh approach to quantum machine learning

Lei Wang (王磊) https://wangleiphy.github.io

Institute of Physics, Beijing Chinese Academy of Sciences

Liu, LW, PRA '18 Cheng, Chen, LW, Entropy '18 Han, Wang, Fan, LW, Zhang, PRX '18

deep learning This talk: quantum physics for machine learning

Physicists' gifts to Machine Learning

Mean Field Theory

Monte Carlo Methods

Tensor Networks

Quantum Computing

Learning is more than function fitting

Discriminative

 $y = f(\mathbf{x})$ or $p(y | \mathbf{x})$

Generative

 $p(\mathbf{x}, \mathbf{y})$

Learning is more than function fitting

I do not understand. Whin compt × Sort. PO Bethe Ansitz Prob. TOLEARN Know how to solve every problem that has been solved Non Linear Dessical Hyper

"What I can not create, I do not understand"

Generated Arts

https://www.christies.com/Features/A-collaboration-between-two-artists-one-human-one-a-machine-9332-1.aspx

\$432,500 **25 October 2018 Christie's New York**

Generated Arts

https://www.christies.com/Features/A-collaboration-between-two-artists-one-human-one-a-machine-9332-1.aspx

\$432,500 25 October 2018 **Christie's New York**

Generate Molecules

Simple Distributions

Generate

Inference

Complex Distribution

Sanchez-Lengeling & Aspuru-Guzik, Science 2018

Probabilistic Generative Modeling

How to express, learn, and sample from a high-dimensional probability distribution ?

"random" images

З	4	7	8	9	0	1	2	3	4	5	6	7	8	6
5	5	4	7	8	9	2	9	3	9	3	8	2	0	5
6	5	3	5	3	8	0	0	3	4	1	5	3	0	8
1	Ĵ	8	1	1	1	З	8	9	1	6	7	4	1	6
9	8	0	6	9	4	9	9	3	7	1	9	2	2	5
4	5	6	7	8	9	D	1	2	3	4	5	6	7	0
6	7	8	9	8	1	0	5	5	1	Ŷ	0	4	7	9
8	5	0	6	5	5	3	3	3	9	8	7	4	0	6
7	7	3	2	8	8	7	8	4	6	0	2	0	3	6
9	3	R	4	9	٠4	6	5	3	Z	Ľ	5	9	4	/
З	4	5	6	7	ଞ	9	0	T	2	3	4	5	6	7
3	U	5	6	7	ଞ	9	6	4	2	6	4	7	5	6
Ŷ	3	۶	3	8	2	0	q	8	0	5	6	٥	f	0
5	4	3	4	l	5	3	0	જ	3	0	6	2	7	1
3	8	5	4	2	C	9	7	6	7	4	1	6	8	4
7	1	٩	જ	Ö	6	9	4	9	9	6	2	3	7	1
7	8	0	1	2	3	4	5	6	7	8	0	1	2	3
0	1	2	3	4	5	6	7	8	9	2	1	2	1	3
7	0	7	7	5	7	9	9	4	7	0	3	4	7	4
4	8	4	1	8	6	6	4	6	3	5	7	2	5	9

"natural" images

Proba

Ian Goodfellow, Yoshua Bengio, and Aaron Courville

How high-

"random

"... the images encountered in Al applications occupy a negligible proportion of the volume of image space."

bdeling

DEEP LEARNING

Page 159

from a ution ?

1000
11
te
0 1
Ÿ (
Ö
A A
T T
ä T
A
a ß
A A
n A
~ J
and are
a a
n M

Probabilistic Generative Modeling $p(\mathbf{x})$

How to express, learn, and sample from a high-dimensional probability distribution ?

https://blog.openai.com/generative-models/

Boltzmann Machines

$$) = \frac{e^{-E(x)}}{Z}$$

statistical physics

Generative Modeling using Boltzmann Machines

Negative log-likelihood loss $\mathscr{L} = -\frac{1}{|\mathscr{D}|} \sum_{\mathbf{r} \in \mathscr{D}} \ln p(\mathbf{x})$

Generative Modeling using Boltzmann Machines

Negative log-likelihood loss $\mathscr{L} = -\frac{1}{|\mathscr{D}|} \sum_{x \in \mathscr{D}} \ln p(x)$

Generative Modeling using Boltzmann Machines

Negative log-likelihood loss $\mathscr{L} = -\frac{1}{|\mathscr{D}|} \sum_{x \in \mathscr{D}} \ln p(x)$

Generative Modeling using Boltzmann Machines Negative log-likelihood loss $\mathscr{L} = -\frac{1}{|\mathscr{D}|} \sum_{x \in \mathscr{D}} \ln p(x) = \langle E(x) \rangle_{x \sim \mathscr{D}} + \ln Z$

Generative Modeling using Boltzmann Machines Negative log-likelihood loss $\mathscr{L} = -\frac{1}{|\mathscr{D}|} \sum_{x \in \mathscr{D}} \ln p(x) = \langle E(x) \rangle_{x \sim \mathscr{D}} + \ln Z$

Generative Modeling using Boltzmann Machines Negative log-likelihood loss $\mathscr{L} = -\frac{1}{|\mathscr{D}|} \sum_{x \in \mathscr{D}} \ln p(x) = \langle E(x) \rangle_{x \sim \mathscr{D}} + \ln Z$

Reducing the Dimensionality of Data with Neural Networks

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.

imensionality reduction facilitates the classification, visualization, communication, and storage of high-dimensional data. A simple and widely used method is principal components analysis (PCA), which

2006 VOL 313 **SCIENCE**

G. E. Hinton^{*} and R. R. Salakhutdinov

finds the directions of greatest variance in the data set and represents each data point by its coordinates along each of these directions. We describe a nonlinear generalization of PCA that uses an adaptive, multilayer "encoder" network

www.sciencemag.org

Renaissance of deep learning

Feedback to Physics

Wavefunctions ansatz

Carleo, Troyer...

Renormalization group

Beny, Metha, Schwab, ...

Quantum tomography

Torlai, Melko, Carrasquilla...

Monte Carlo update

Huang, Liu, ...

State-of-the-Art: Aut

 $p(\mathbf{x}) =$

Speech data WaveNet 1609.03499,1711.10433

PixelCNN

Multi-scale c Image data

State-of-the-Art: Aut

 $p(\mathbf{x}) =$

Speech data WaveNet 1609.03499,1711.10433

$= p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2)\cdots$

Multi-scale c Image data

https://deepmind.com/blog/wavenet-generative-model-raw-audio/ https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/ https://deepmind.com/blog/wavenet-launches-google-assistant/

WaveNet in the Real World

2018 Google I/O

https://deepmind.com/blog/wavenet-generative-model-raw-audio/ https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/ https://deepmind.com/blog/wavenet-launches-google-assistant/

WaveNet in the Real World

2018 Google I/O

 $p(\mathbf{x}$

Born Machines

$$f(x) = \frac{|\Psi(x)|^2}{Z}$$

quantum physics

 $p(\mathbf{x})$

Born Machines

$$z) = \frac{|\Psi(x)|^2}{Z}$$

quantum physics

"Teach a quantum state to write digits"

Generative modeling using Tensor Network States

Matrix Product State / **Tensor Train**

Tree Tensor Network / **Hierarchical Tucker**

Tensor Network Machine Learning

Cichocki et al 1604.05271,1609.00893,1708.09165... Kossaifi et al 1707.08308 Novikov et al 1509.06569 Stoudenmire, Schwab NIPS 2016 Liu et al 1710.04833 Hallam et al 1711.03357 Gallego, Orus 1708.01525 Stoudenmire Q. Sci. Tech. 2018 Liu et al 1803.09111 Pestun et al 1711.01416... Glasser et al 1806.05964

Nice features of MPS Born Machines

Tractable partition function via MPS contraction

Han, Wang, Fan, LW, Zhang, 1709.01662, PRX '18

Efficient and adaptive learning via DMRG

Direct sampling using "Zipper"

Image Restoration

With Han, Wang, Fan, Zhang, 1709.01662, PRX '18

U / 5 3 6 7 N A カコレイ

5 3 3 J 2/3 672 221

Image Restoration

8337

Arbitrary order, in contrast to autoregressive models

With Han, Wang, Fan, Zhang, 1709.01662, PRX '18

0735335 5 7 3 0 6 7 2 O 2241

Quantum Perspective on Deep Learning

Quantum Perspective on Deep Learning

Q: How to quantify our inductive biases?

A: Information pattern of probability distributions

Quantum Perspective on Deep Learning

Q: How to quantify our inductive biases?

A: Information pattern of probability distributions

Quantum Perspective on Deep Learning

Q: How to quantify our inductive biases?

A: Information pattern of probability distributions

Quantum Perspective on De

Quantum Perspective on Deep Learning

Classical mutual information

$$I = -\left\langle \ln \left\langle \frac{p(x, y)}{p(x', y)} \right\rangle \right\rangle$$

Quantum Renyi entanglement entropy

$$S = -\ln \left\langle \left\langle \frac{\Psi(x, y)}{\Psi(x', y)} \right\rangle \right\rangle$$

Striking similarity implies common inductive bias

+Quantitative & interpretable approaches Cheng, Chen, LW, 1712.04144, Entropy '18 +Principled structure design & learning

 $\frac{y'}{y'}p(x',y)\Big|_{x',y'}\Big|_{x',y$

 $\left| \frac{y'}{y'} \Psi(x',y) \right\rangle_{x',y'} \right\rangle_{x',y'}$

Published as a conference paper at ICLR 2018

DEEP LEARNING AND QUANTUM ENTANGLEMENT: FUNDAMENTAL CONNECTIONS WITH IMPLICATIONS TO NETWORK DESIGN

Yoav Levine, David Yakira, Nadav Cohen & Amnon Shashua The Hebrew University of Jerusalem {yoavlevine, davidyakira, cohennadav, shashua}@cs.huji.ac.il

Formal understanding of the inductive bias behind deep convolutional networks, i.e. the relation between the network's architectural features and the functions it is able to model, is limited. In this work, we establish a fundamental connection between the fields of quantum physics and deep learning, and use it for obtaining novel theoretical observations regarding the inductive bias of convolutional networks. Specifically, we show a structural equivalence between the function realized by a convolutional arithmetic circuit (ConvAC) and a quantum many-body wave function, which facilitates the use of quantum entanglement measures as quantifiers of a deep network's expressive ability to model correlations. Furthermore, the construction of a deep ConvAC in terms of a quantum Tensor Network is enabled. This allows us to perform a graph-theoretic analysis of a convolutional network, tying its expressiveness to a min-cut in its underlying graph. We demonstrate a practical outcome in the form of a direct control over the inductive bias via the number of channels (width) of each layer. We empirically validate our findings on standard convolutional networks which involve ReLU activations and max pooling. The description of a deep convolutional network in well-defined graph-theoretic tools and the structural connection to quantum entanglement, are two interdisciplinary bridges that are brought forth by this work.

ABSTRACT

Published as a conference paper at ICLR 2018

DEEP LEARNING AND QUANTUM ENTANGLEMENT: FUNDAMENTAL CONNECTIONS WITH IMPLICATIONS TO NETWORK DESIGN

Yoav Levine, David Yakira, Nadav Cohen & Amnon Shashua The Hebrew University of Jerusalem

Quantum Circuit Born Machine With Liu, 1804.04168, PRA '18

Train the quantum circuit as a probabilistic generative model Quantum sampling complexity underlines the "quantum supremacy"

Quantum Inference

p(upper | lower)

Quantum Inference

Accelerated quantum inference via Grover search

With Zeng, Wu, Liu, Hu, 1808.03425 Cf Low and Chuang, PRA '14

Quantum Inference

Accelerated quantum inference via Grover search

With Zeng, Wu, Liu, Hu, 1808.03425 Cf Low and Chuang, PRA '14

QCBM Experiments

JQI+IonQ+UCL+Cambridge Q+... 1801.07686, 1812.08862

Oak Ridge, 1811.09905

Key questions to the future of QCBM

A killer problem distribution where quantum really helps

Scale it up

- Algorithmically saving qubit number
- Quantum circuit architecture design & learning
- Differentiable learning of quantum circuits

Architecture: Qubit efficient scheme

Huggins, Patel, Whaley, Stoudenmire, 1803.11537 see also Cramer et al, Nat. Comm. 2010

Tensor network inspired quantum circuit architecture

Architecture: Qubit efficient scheme Measured qubits

Huggins, Patel, Whaley, Stoudenmire, 1803.11537 see also Cramer et al, Nat. Comm. 2010

Architecture: Qubit efficient scheme Measured qubits

Product state

Huggins, Patel, Whaley, Stoudenmire, 1803.11537 see also Cramer et al, Nat. Comm. 2010

Reuse!

Architecture: Qubit efficient scheme Measured qubits

Reuse!

Huggins, Patel, Whaley, Stoudenmire, 1803.11537 see also Cramer et al, Nat. Comm. 2010

Architecture: Qubit efficient scheme qubits ┝╸┽│┝╸┽│┝╸╸┥

Training: differentiable learning

Gradient based optimization is the engine of deep learning

Parametrized gate of the form $i\theta \mathbf{\nabla}$ $\frac{10}{2}\Sigma$ with $\Sigma^2 = 1$ eg, X, Y, Z, CNOT, SWAP...

Differentiable quantum circuits

With Liu 1804.04168, c.f. Li et al 1608.00677 Mitarai et al 1803.00745 Xanadu 1811.04968

 $\nabla \langle O \rangle_{\theta} = \left(\langle O \rangle_{\theta + \pi/2} - \langle O \rangle_{\theta - \pi/2} \right) / 2$

Differentiable Programming

Andrej Karpathy

Director of AI at Tesla. Previously Research Scientist at OpenAI and PhD student at Stanford. I like to train deep neural nets on large datasets.

https://medium.com/@karpathy/software-2-0-a64152b37c35

Writing software 2.0 by gradient search in the program space

Differentiable Programming

Benefits of Software 2.0

- Computationally homogeneous
- Simple to bake into silicon
- Constant running time
- Constant memory usage
- Highly portable & agile
- Modules can meld into an optimal whole
- Better than humans

Writing software 2.0 by gradient search in the program space

Andrej Karpathy

Director of AI at Tesla. Previously Research Scientist at OpenAI and PhD student at Stanford. I like to train deep neural nets on large datasets.

https://medium.com/@karpathy/software-2-0-a64152b37c35

- Variational quantum eigensovler (VQE)
- Quantum approximate optimization algorithm (QAOA)
- Quantum pattern recognition

. . .

• Quantum circuit Born machine (QCBM)

Quantum circuit classifier Born machine experiment TNS inspired circuit architecture Quantum generative model Quantum adversarial training

Farhi, Neven, 1802.06002 Havlicek et al, 1804.11326 Benedetti, Garcia-Pintos, Nam, Perdomo-Ortiz, 1801.07686 Huggins, Patel, Whaley, Stoudenmire, 1803.11537 Gao, Zhang, Duan, 1711.02038 Dallaire-Demers, Lloyd, Benedetti 1804.08641,1804.09139, 1806.00463

- Variational quantum eigensovler (VQE)
- Quantum approximate optimization algorithm (QAOA)
- Quantum pattern recognition

. . .

• Quantum circuit Born machine (QCBM)

Quantum circuit classifier Born machine experiment TNS inspired circuit architecture Quantum generative model Quantum adversarial training

Farhi, Neven, 1802.06002 Havlicek et al, 1804.11326 Benedetti, Garcia-Pintos, Nam, Perdomo-Ortiz, 1801.07686 Huggins, Patel, Whaley, Stoudenmire, 1803.11537 Gao, Zhang, Duan, 1711.02038 Dallaire-Demers, Lloyd, Benedetti 1804.08641,1804.09139, 1806.00463

It is a paradigm beyond quantum-classical hybrid

- Variational quantum eigensovler (VQE)
- Quantum approximate optimization algorithm (QAOA)
- Quantum pattern recognition

. . .

• Quantum circuit Born machine (QCBM)

Quantum circuit classifier Born machine experiment TNS inspired circuit architecture Quantum generative model Quantum adversarial training

Farhi, Neven, 1802.06002 Havlicek et al, 1804.11326 Benedetti, Garcia-Pintos, Nam, Perdomo-Ortiz, 1801.07686 Huggins, Patel, Whaley, Stoudenmire, 1803.11537 Gao, Zhang, Duan, 1711.02038 Dallaire-Demers, Lloyd, Benedetti 1804.08641,1804.09139, 1806.00463

It is a paradigm beyond quantum-classical hybrid

Short term:

What can we do with circuits of limited depth?

Long term:

Are we really good at programing quantum computers?

It is a paradigm beyond quantum-classical hybrid

- Variational quantum eigensovler (VQE)
- Quantum approximate optimization algorithm (QAOA)
- Quantum pattern recognition

. . .

• Quantum circuit Born machine (QCBM)

Quantum circuit classifier Born machine experiment TNS inspired circuit architecture Quantum generative model Quantum adversarial training

Farhi, Neven, 1802.06002 Havlicek et al, 1804.11326 Benedetti, Garcia-Pintos, Nam, Perdomo-Ortiz, 1801.07686 Huggins, Patel, Whaley, Stoudenmire, 1803.11537 Gao, Zhang, Duan, 1711.02038 Dallaire-Demers, Lloyd, Benedetti 1804.08641,1804.09139, 1806.00463

Quantum code

It is a paradigm beyond quantum-classical hybrid

- Variational quantum eigensovler (VQE)
- Quantum approximate optimization algorithm (QAOA)
- Quantum pattern recognition

. . .

• Quantum circuit Born machine (QCBM)

Quantum code

Try it yourself!

https://github.com/GiggleLiu/QuantumCircuitBornMachine

https://github.com/QuantumBFS/Yao.jl

http://lib.itp.ac.cn/html/panzhang/mps/tutorial/ https://github.com/wangleiphy/DL4CSRC

Thank You!

Pan Zhang **Jin-Guo Liu**

Quantum Circuits

~ 2 . Probabilistic Transformation 3. Information Processing Device

Jun Wang Jinfeng Zeng Song Cheng Xiu-Zhe Luo **Tao Xiang** Zhao-Yu Han

量子纠缠:从量子物质态到深度学习

程嵩^{1,2} 陈靖^{1,2} 王磊^{1,†}

- (1 中国科学院物理研究所 北京 100190)
- (2 中国科学院大学 北京 100049)

Quantum entanglement: from quantum states of matter to deep learning

CHENG Song^{1,2} CHEN Jing^{1,2} WANG Lei^{1,†}

- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)
- University of Chinese Academy of Sciences, Beijing 100049, China)

摘 量子纠缠在量子物质态的研究中扮演着日趋重要的角色,它可以标记传统 要 范式难以区分的新奇量子态和量子相变,并指导设计高效的数值算法来精确地研究量子多体。 问题。最近,随着一些深度学习技术在量子物理问题中的应用,人们惊奇地发现:从量子纠 缠的视角审视深度学习,或许有助于反过来理解和解决一些深度学习中的问题。量子纠缠 定量化地刻画了现实数据集的复杂度,并指导相应的人工神经网络结构设计。沿着这个思 路,物理学家们对于量子多体问题所形成的种种洞察和理论可以以一种意想不到的方式应 用在现实世界中。

量子纠缠,张量网络,人工神经网络,深度学习 关键词

2017年7月刊

email: wanglei@iphy.ac.cn DOI: 10.7693/wl20170702

Lecture Note on Deep Learning and Quantum Many-Body Computation

Institute of Physics, Chinese Academy of Sciences Beijing 100190, China

This note introduces deep learning from a computational quantum physicist's perspective. The focus is on deep learning's impacts to quantum many-body computation, and vice versa. The latest version of the note is at http://wangleiphy.github.io/. Please send comments, suggestions and corrections to the email address in below.

http://wangleiphy.github.io/ lectures/DL.pdf

* wanglei@iphy.ac.cn

Jin-Guo Liu, Shuo-Hui Li, and Lei Wang*

February 14, 2018

Abstract

CONTENTS

- **1** INTRODUCTION 2
- **2 DISCRIMINATIVE LEARNING** 4
- 2.1 Data Representation
- 2.2 Model: Artificial Neural Networks 6
- 2.3 Cost Function 9
- 2.4 Optimization 11
 - 2.4.1 Back Propagation 11
 - 2.4.2 Gradient Descend 13
- 2.5 Understanding, Visualization and Applications Beyond Classification 15
- 3 GENERATIVE MODELING 17
 - 3.1 Unsupervised Probabilistic Modeling 17
 - 3.2 Generative Model Zoo 18
 - 3.2.1 Boltzmann Machines 19
 - 3.2.2 Autoregressive Models 22
 - 3.2.3 Normalizing Flow 23
 - 3.2.4 Variational Autoencoders 25
 - 3.2.5 Tensor Networks 28
 - 3.2.6 Generative Adversarial Networks 29
 - 3.3 Summary 32
- 4 APPLICATIONS TO QUANTUM MANY-BODY PHYSICS AND MORE 33
 - 4.1 Material and Chemistry Discoveries 33
 - 4.2 Density Functional Theory 34
 - "Phase" Recognition 34
 - Variational Ansatz 34
 - Renormalization Group 4.5 35
 - 4.6 Monte Carlo Update Proposals 35
 - 4.7 Tensor Networks 36
 - 4.8 Quantum Machine Leanring 37
 - 4.9 Miscellaneous 37
- 5 HANDS ON SESSION 39
 - 5.1 Computation Graph and Back Propagation 39
 - 5.2 Deep Learning Libraries 41
 - 5.3 Generative Modeling using Normalizing Flows 42
 - 5.4Restricted Boltzmann Machine for Image Restoration43
 - 5.5 Neural Network as a Quantum Wave Function Ansatz 43
- 6 CHALLENGES AHEAD 45
- 7 RESOURCES 46

BIBLIOGRAPHY 47

Lecture Note on Deep Learning and Quantum Many-Body Computation

Jin-Guo Liu, Shuo-Hui Li, and Lei Wang*

Institute of Physics, Chinese Academy of Sciences Beijing 100190, China

This note introduces deep learning from a computational quantum physicist's perspective. The focus is on deep learning's impacts to quantum many-body computation, and vice versa. The latest version of the note is at http://wangleiphy.github.io/. Please send comments, suggestions and corrections to the email address in below.

http://wangleiphy.github.io/ lectures/DL.pdf

* wanglei@iphy.ac.cn

February 14, 2018

Abstract

CONTENTS

1	INTRODUCTION	2

- **2** DISCRIMINATIVE LEARNING 4
- 2.1 Data Representation
- 2.2 Model: Artificial Neural Networks 6
- 2.3 Cost Function 9
- 2.4 Optimization 11
 - 2.4.1 Back Propagation 11
 - 2.4.2 Gradient Descend 13
- 2.5 Understanding, Visualization and Applications Beyond Classification 15
- 3 GENERATIVE MODELING 17
 - 3.1 Unsupervised Probabilistic Modeling 17
 - 3.2 Generative Model Zoo 18
 - 3.2.1 Boltzmann Machines 19
 - 3.2.2 Autoregressive Models 22
 - 3.2.3 Normalizing Flow 23
 - 3.2.4 Variational Autoencoders 25
 - 3.2.5 Tensor Networks 28
 - 3.2.6 Generative Adversarial Networks 29
 - 3.3 Summary 32
- 4 APPLICATIONS TO QUANTUM MANY-BODY PHYSICS AND MORE 33
 - 4.1 Material and Chemistry Discoveries 33
 - 4.2 Density Functional Theory 34
 - "Phase" Recognition 34
 - Variational Ansatz 34
 - Renormalization Group 35
 - 4.6 Monte Carlo Update Proposals 35
 - 4.7 Tensor Networks 36
 - 4.8 Quantum Machine Leanring 37
 - 4.9 Miscellaneous 37
- HANDS ON SESSION 39
- 5.1 Computation Graph and Back Propagation 39
- 5.2 Deep Learning Libraries 41
- 5.3 Generative Modeling using Normalizing Flows 42
- 5.4Restricted Boltzmann Machine for Image Restoration43
- 5.5 Neural Network as a Quantum Wave Function Ansatz
- 6 CHALLENGES AHEAD 45
- 7 RESOURCES 46

BIBLIOGRAPHY 47

Catch up with latest updates

Machine Learning for Quantum Many-Body Physics

Coordinators: Roger Melko, Amnon Shashua, Miles Stoudenmire, and Matthias Troyer Scientific Advisors: Juan Carrasquilla, Pankaj Mehta, Lei Wang, and Lenka Zdeborova

This KITP program will bring together experts from both physics and computer science to discuss the uses of machine learning in theoretical and experimental many-body physics. Machine learning will be explored as a complementary method to current computational techniques, including Monte Carlo and tensor networks, as well as a method to analyze "big data" generated in experiment. The program will include applications in the design of quantum computers and devices, such as the use of neural networks for the purposes of decoding, quantum error correction, and tomography. Theoretical connections between deep learning, the renormalization group, and tensor networks, will be examined in detail. Foundational questions in machine learning will be addressed, such as the formal concepts on information, intelligence, and interpretability. Finally, the theoretical possibility of a quantum

Jan 28, 2019 - Mar 22, 2019 INFORMATION Apply

KITP, Santa Barbara Program ML for Quantum Many-Body Physics Jan 28-Mar 22, 2019

APS March meeting focus session ML in Condensed Matter Physics Boston, Mar 4-8, 2019

