Tensor Networks for Generative Modeling

Lei Wang (王磊) https://wangleiphy.github.io

Institute of Physics, Beijing Han, Wang, Fan, LW, Zhang, PRX18' Chen, Cheng, Xie, LW, Xiang, PRB 18' Chinese Academy of Sciences Cheng, Chen, LW, Entropy 18'+unpublished

From Boltzmann machines to Born machines, and back

TNSAA: Live long and prosper

Quantum circuits architecture and parametrization

Neural networks and Probabilistic graphical models

Bristlecone-72

+ quantum tomography, quantum annealing, quantum error correction, holographic duality, and more

the era of quantum computing

Noise-resilient quantum circuits with TNS architecture

Kim and Swingle, 1711.07500

TNSAA in the era of deep learning **Hidden Markov Model** $p(h_t | h_{t-1})$ Hidden Observation

- passing, Viterbi, Baum-Welch) => Think of positive MPS

Zhao, Jaeger, Neural Comput. 2010 Bailly, J. Mach. Learn. Res. 2011 Robeva, Seigal, 1710.01437 Chen, Cheng, Xie, LW, Xiang, 1701.04831

• Widely used in speech recognition, bioinformatics, cryptography...

• Learning, inference, and sampling algorithms (Forward-backward message Temme, Verstraete, 1003.2545 Critch, Morton, 1210.2812

Unleash the power of tensor network states and algorithms for generative modeling

Discriminative and generative learning

 $y = f(\mathbf{x})$ or $p(y | \mathbf{x})$

 $p(\mathbf{x}, \mathbf{y})$

Discriminative and generative learning

I do not understand. Whin compt × Sout PO TOLEARN Bethe Aments Prob. Know how to solve every problem that has been solved Non Linear Dessical Hype

"What I can not create, I do not understand"

Generated Arts

https://www.christies.com/Features/A-collaboration-between-two-artists-one-human-one-a-machine-9332-1.aspx

\$432,500 **25 October 2018 Christie's New York**

Generated Arts

https://www.christies.com/Features/A-collaboration-between-two-artists-one-human-one-a-machine-9332-1.aspx

\$432,500 **25 October 2018 Christie's New York**

Generate Molecules

Simple Distributions

Generate

Inference

Complex Distribution

Sanchez-Lengeling & Aspuru-Guzik, Science 2018

Probabilistic Generative Modeling

How to express, learn, and sample from a high-dimensional probability distribution ?

"random" images

З	4	7	8	9	0	1	2	3	4	5	6	7	8	6
5	5	4	7	8	9	2	9	3	9	3	8	2	0	5
6	5	3	5	3	8	0	0	3	4	1	5	3	0	8
1	Ĵ	8	1	1	1	З	8	9	1	6	7	4	1	6
9	8	0	6	9	4	9	9	3	7	1	9	2	2	5
4	5	6	7	8	9	D	1	2	3	4	5	6	7	0
6	7	8	9	8	1	0	5	5	1	Ŷ	0	4	7	9
8	5	0	6	5	5	3	3	3	9	8	7	4	0	6
7	7	3	2	8	8	7	8	4	6	0	2	0	3	6
9	3	R	4	9	٠4	6	5	3	Z	Ľ	5	9	4	/
З	4	5	6	7	ଞ	9	0	T	2	3	4	5	6	7
3	U	5	6	7	ଞ	9	6	4	2	6	4	7	5	6
Ŷ	3	۶	3	8	2	0	q	8	0	5	6	٥	f	0
5	4	3	4	l	5	3	0	જ	3	0	6	2	7	1
3	8	5	4	2	C	9	7	6	7	4	1	6	8	4
7	1	٩	જ	Ö	6	9	4	9	9	6	2	3	7	1
7	8	0	1	2	3	4	5	6	7	8	0	1	2	3
0	1	2	3	4	5	6	7	8	9	2	1	2	1	3
7	0	7	7	5	7	9	9	4	7	0	3	4	7	4
4	8	4	1	8	6	6	4	6	3	5	7	2	5	9

"natural" images

Proba

Ian Goodfellow, Yoshua Bengio, and Aaron Courville

How high-

"random

"... the images encountered in Al applications occupy a negligible proportion of the volume of image space."

bdeling

DEEP LEARNING

Page 159

from a ution ?

1000
11
te
0 1
Ÿ (
Ö
A A
T T
ä T
A
a ß
A A
n A
~ J
and are
a a
n M

Probabilistic Generative Modeling $p(\mathbf{x})$

How to express, learn, and sample from a high-dimensional probability distribution ?

https://blog.openai.com/generative-models/

Boltzmann Machines

$$) = \frac{e^{-E(x)}}{Z}$$

statistical physics

Generative Modeling using Boltzmann Machines

Negative log-likelihood loss $\mathscr{L} = -\frac{1}{|\mathscr{D}|} \sum_{\mathbf{r} \in \mathscr{D}} \ln p(\mathbf{x})$

Generative Modeling using Boltzmann Machines

Negative log-likelihood loss $\mathscr{L} = -\frac{1}{|\mathscr{D}|} \sum_{x \in \mathscr{D}} \ln p(x)$

Generative Modeling using Boltzmann Machines

Negative log-likelihood loss $\mathscr{L} = -\frac{1}{|\mathscr{D}|} \sum_{x \in \mathscr{D}} \ln p(x)$

Generative Modeling using Boltzmann Machines Negative log-likelihood loss $\mathscr{L} = -\frac{1}{|\mathscr{D}|} \sum_{x \in \mathscr{D}} \ln p(x) = \langle E(x) \rangle_{x \sim \mathscr{D}} + \ln Z$

Generative Modeling using Boltzmann Machines Negative log-likelihood loss $\mathscr{L} = -\frac{1}{|\mathscr{D}|} \sum_{x \in \mathscr{D}} \ln p(x) = \langle E(x) \rangle_{x \sim \mathscr{D}} + \ln Z$

Generative Modeling using Boltzmann Machines Negative log-likelihood loss $\mathscr{L} = -\frac{1}{|\mathscr{D}|} \sum_{x \in \mathscr{D}} \ln p(x) = \langle E(x) \rangle_{x \sim \mathscr{D}} + \ln Z$

Reducing the Dimensionality of Data with Neural Networks

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.

imensionality reduction facilitates the classification, visualization, communication, and storage of high-dimensional data. A simple and widely used method is principal components analysis (PCA), which

```
2006
```

Feedback to physics

G. E. Hinton^{*} and R. R. Salakhutdinov

finds the directions of greatest variance in the data set and represents each data point by its coordinates along each of these directions. We describe a nonlinear generalization of PCA that uses an adaptive, multilayer "encoder" network

VOL 313 **SCIENCE** www.sciencemag.org

Renaissance of deep learning

Wavefunctions ansatz Quantum state tomography Quantum error correction

Monte Carlo updates Renormalization group see next talk !

State-of-the-Art: Aut

 $p(\mathbf{x}) =$

Speech data WaveNet 1609.03499,1711.10433

PixelCNN

Multi-scale c Image data

State-of-the-Art: Aut

 $p(\mathbf{x}) =$

Speech data WaveNet 1609.03499,1711.10433

$= p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2)\cdots$

Multi-scale c Image data

https://deepmind.com/blog/wavenet-generative-model-raw-audio/ https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/ https://deepmind.com/blog/wavenet-launches-google-assistant/

WaveNet in the Real World

2018 Google I/O

https://deepmind.com/blog/wavenet-generative-model-raw-audio/ https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/ https://deepmind.com/blog/wavenet-launches-google-assistant/

WaveNet in the Real World

2018 Google I/O

 $p(\mathbf{x}$

Born Machines

$$f(x) = \frac{|\Psi(x)|^2}{Z}$$

quantum physics

 $p(\mathbf{x})$

Born Machines

$$z) = \frac{|\Psi(x)|^2}{Z}$$

quantum physics

"Teach a quantum state to write digits"

Generative modeling using Tensor Network States

Matrix Product State / **Tensor Train**

Tree Tensor Network / **Hierarchical Tucker**

Tensor Network Machine Learning

Cichocki et al 1604.05271,1609.00893,1708.09165... Kossaifi et al 1707.08308 Novikov et al 1509.06569 Stoudenmire, Schwab NIPS 2016 Liu et al 1710.04833 Hallam et al 1711.03357 Gallego, Orus 1708.01525 Stoudenmire Q. Sci. Tech. 2018 Liu et al 1803.09111 Pestun et al 1711.01416... Glasser et al 1806.05964

Name of the game

The ultimate goal is "learn to forget"

Name of the game

The ultimate goal is "learn to forget"

Name of the game

The ultimate goal is "learn to forget"

Learning

Inference

Nice features of an MPS Born Machine $p(\mathbf{x}) = \left| \frac{\partial \partial \partial \partial}{\partial \partial} \right|^2 / Z$

Sampling

Expressibility

Glasser, Clark, Deng, Gao, Chen, Huang... 17'
Tractable Likelihood

*applies to TTN and MERA as well **Efficient & unbiased learning compared to** models with intractable partition functions

tractable via efficient tensor contraction

Adaptive Learning

Training images

*applies to 2-site optimization

Adaptively grows the bond dimensions, thus dynamically tuning the expressibility

Bond dimensions

*applies to TTN and MERA as well slow mixing Gibbs sampling of Boltzmann Machines

 $p(\mathbf{x}) = \prod_{i} p(x_i | \mathbf{x}_{< i}) = \prod_{i} \frac{p(\mathbf{x}_{< i+1})}{p(\mathbf{x}_{< i})}$ Ferris & Vidal 2012

No thermalization issue compared to

*applies to TTN No thermalization issue compared to and MERA as well slow mixing Gibbs sampling of Boltzmann Machines

 $p(\mathbf{x}) = \prod_{i} p(x_i | \mathbf{x}_{< i}) = \prod_{i} \frac{p(\mathbf{x}_{< i+1})}{p(\mathbf{x}_{< i})}$ Ferris & Vidal 2012

*applies to TTN and MERA as well slow mixing Gibbs sampling of Boltzmann Machines

 $p(\mathbf{x}) = \prod_{i} p(x_i | \mathbf{x}_{< i}) = \prod_{i} \frac{p(\mathbf{x}_{< i+1})}{p(\mathbf{x}_{< i})}$ Ferris & Vidal 2012

No thermalization issue compared to

*applies to TTN and MERA as well slow mixing Gibbs sampling of Boltzmann Machines

 $p(\mathbf{x}) = \prod_{i} p(x_i | \mathbf{x}_{< i}) = \prod_{i} \frac{p(\mathbf{x}_{< i+1})}{p(\mathbf{x}_{< i})}$

Ferris & Vidal 2012

No thermalization issue compared to

Image Restoration

Han, Wang, Fan, LW, Zhang, 1709.01662, PRX 18'

U / 5 3 6 7 N A カコレイ

5 3 3 J 2/3 672 221

Image Restoration

8337

Arbitrary order, in contrast to autoregressive models

Han, Wang, Fan, LW, Zhang, 1709.01662, PRX 18'

0735335 5 7 3 0 6 7 2 O $2 \frac{1}{2} \frac{1}{2} \frac{1}{2}$

Q: How to quantify our inductive biases?

A: Information pattern of probability distributions

Q: How to quantify our inductive biases?

A: Information pattern of probability distributions

Q: How to quantify our inductive biases?

A: Information pattern of probability distributions

Quantum Perspective on De

Classical mutual information

$$I = -\left\langle \ln \left\langle \frac{p(x, y)}{p(x', y)} \right\rangle \right\rangle$$

Quantum Renyi entanglement entropy

$$S = -\ln \left\langle \left\langle \frac{\Psi(x, y)}{\Psi(x', y)} \right\rangle \right\rangle$$

Striking similarity implies common inductive bias

+Quantitative & interpretable approaches Cheng, Chen, LW, 1712.04144, Entropy 18' +Principled structure design & learning

 $\frac{y'}{y'}p(x',y)\Big|_{x',y'}\Big|_{x',y$

 $\left| \frac{y'}{y'} \Psi(x',y) \right\rangle_{x',y'} \right\rangle_{x',y'}$

Published as a conference paper at ICLR 2018

DEEP LEARNING AND QUANTUM ENTANGLEMENT: FUNDAMENTAL CONNECTIONS WITH IMPLICATIONS TO NETWORK DESIGN

Yoav Levine, David Yakira, Nadav Cohen & Amnon Shashua The Hebrew University of Jerusalem {yoavlevine, davidyakira, cohennadav, shashua}@cs.huji.ac.il

Formal understanding of the inductive bias behind deep convolutional networks, i.e. the relation between the network's architectural features and the functions it is able to model, is limited. In this work, we establish a fundamental connection between the fields of quantum physics and deep learning, and use it for obtaining novel theoretical observations regarding the inductive bias of convolutional networks. Specifically, we show a structural equivalence between the function realized by a convolutional arithmetic circuit (ConvAC) and a quantum many-body wave function, which facilitates the use of quantum entanglement measures as quantifiers of a deep network's expressive ability to model correlations. Furthermore, the construction of a deep ConvAC in terms of a quantum Tensor Network is enabled. This allows us to perform a graph-theoretic analysis of a convolutional network, tying its expressiveness to a min-cut in its underlying graph. We demonstrate a practical outcome in the form of a direct control over the inductive bias via the number of channels (width) of each layer. We empirically validate our findings on standard convolutional networks which involve ReLU activations and max pooling. The description of a deep convolutional network in well-defined graph-theoretic tools and the structural connection to quantum entanglement, are two interdisciplinary bridges that are brought forth by this work.

ABSTRACT

Published as a conference paper at ICLR 2018

DEEP LEARNING AND QUANTUM ENTANGLEMENT: FUNDAMENTAL CONNECTIONS WITH IMPLICATIONS TO NETWORK DESIGN

Yoav Levine, David Yakira, Nadav Cohen & Amnon Shashua The Hebrew University of Jerusalem

Physicists' gifts to Machine Learning

Mean Field Theory

Monte Carlo Methods

Tensor Networks

Quantum Computing

Quantum Circuit Born Machine

With Liu, Zeng, Wu, Hu 1804.04168, 1808.03425

Train the quantum circuit as a probabilistic generative model Quantum sampling complexity underlines the "quantum supremacy"

see also Cramer et al, Nat. Comm. 2010

Huggins, Patel, Whaley, Stoudenmire, 1803.11537

Tensor network inspired quantum circuit architecture

Huggins, Patel, Whaley, Stoudenmire, 1803.11537 see also Cramer et al, Nat. Comm. 2010

Product state

Measured qubits

Huggins, Patel, Whaley, Stoudenmire, 1803.11537 see also Cramer et al, Nat. Comm. 2010

Product state

Measured qubits

Huggins, Patel, Whaley, Stoudenmire, 1803.11537 see also Cramer et al, Nat. Comm. 2010

Product

state

Measured qubits

Product

state

*Lower test NLL may not imply better sample quality, Theis et al, 1511.01844

Binarized MNIST test NLL, lower is better*

*Lower test NLL may not imply better sample quality, Theis et al, 1511.01844

Binarized MNIST test NLL, lower is better*

101.5 MPS (D=100)

Han et al, PRX 18'

*Lower test NLL may not imply better sample quality, Theis et al, 1511.01844

Binarized MNIST test NLL, lower is better*

Pan Zhang, unpublished

Han et al, PRX 18'

Probability model

 $\boldsymbol{\sigma}$

Probability model

- No need for double layer tensor

Loss function

 $\mathcal{L} = -\left\langle \ln\left(\frac{\partial}{\partial x}\right)\right\rangle_{x \sim \mathcal{D}} + \ln\left(\frac{\partial}{\partial x}\right)$

Contract for each given sample

Contract once

Probability model

- No need for double layer tensor

Loss function

Contract for each given sample Contract once

Contract 28x28 PEPS 60000+1 times per epoch!

Quantitative Performance						
Binarized MNIST test NLL, lower is better						
81.3	~84.6	~86.3	94.3	101.5		
PixelCNN	DBM	RBM	TTN (D=50)	MPS (D=100)		

Loss function

$\mathcal{L} = -\langle \ln(\omega) \rangle$

Contract for each given sample Contract once

Contract 28x28 PEPS 60000+1 times per epoch!

$$\rangle\rangle_{x\sim \mathcal{D}} + \ln(\mathcal{D})$$

Quantitative Performance **Binarized MNIST test NLL, lower is better** 81.3 ~86. ~84.6 PixelCNN DBM RB

Loss function

$\mathcal{L} = -\langle \ln(\psi) \rangle$

Contract for each given sample Contract once

Contract 28x28 PEPS 60000+1 times per epoch!

3	92	94.3	101.5
M	PEPS+	TTN	MPS
	(D=5)	(D=50)	(D=100)

With Song Cheng & Pan Zhang, unpublished

$$\left| \right\rangle_{x \sim \mathcal{D}} + \ln\left(\frac{2}{2}\right)$$

Binarized MNIST test NLL, lower is better

3	92	94.3	101.5
M	PEPS+	TTN	MPS
	(D=5)	(D=50)	(D=100)
		Š	
		4	533
		-3-	405

Binarized MNIST test NLL, lower is better

Quantitative Performance

Direct Sampling PEPS+

 $p(\mathbf{x}) = \prod_{i} p(x_i | \mathbf{x}_{< i}) = \prod_{i} \frac{p(\mathbf{x}_{< i+1})}{p(\mathbf{x}_{< i})}$

 $p(x_1, x_2, x_3) \sim$

See also Rams et al, 1811.06518

Differentiable tensor libraries with GPU/TPU/FPGA/... support

Ronus:

What does deep learning offer to tensor network states & algorithms?

The engine of deep learning: Back-Propagation algorithm

computation graph

Computes gradients efficiently & accurately Via reverse mode automatic differentiation

$$\frac{\ell}{\ell}\left(\frac{\partial x^{\ell+1}}{\partial x^{\ell}}\right)$$
 Jacobian-Vector Product

Differentiable Programming

Benefits

- Computationally homogeneous
- Simple to bake into silicon
- Constant running time
- Constant memory usage
- Highly portable & agile
- Modules can meld into an optimal whole
- Better than humans

Writing software 2.0 by gradient search in the program space

Andrej Karpathy

Director of AI at Tesla. Previously Research Scientist at OpenAI and PhD student at Stanford. I like to train deep neural nets on large datasets.

https://medium.com/@karpathy/software-2-0-a64152b37c35

Differentiable Scientific Programming

- Most linear algebra operations (Eigen, SVD!) are <u>differentiable</u>
- Loop/Condition/Sort/Permutations are also differentiable
- ODE integrators are differentiable with O(1) memory
- Differentiable ray tracer and Differentiable fluid simulations
- Differentiable Monte Carlo/Tensor Network/Functional RG/ Dynamical Mean Field Theory/Density Functional Theory...

Differentiable programming is more than training neural networks

Differentiable Eigensolver

 $H\Psi = \Psi \Lambda$

What happen if H = H + dH? **Forward mode:** Perturbation theory

Reverse mode: How should I change H given Inverse perturbation theory $\partial \mathscr{L}/\partial \Psi$ and $\partial \mathscr{L}/\partial \Lambda$?

Hamiltonian engineering via differentiable programming

https://github.com/wangleiphy/DL4CSRC/tree/master/2-ising

Automatic differentiation for high order gradients

Differentiable Levin-Nave TRG computation graph

Contraction

K_{ij} random couplings

TNS studies of Ising spin glasses: Wang, Qin, Zhou, PRB 2014 Rams et al, 1811.06518

Differentiable spin glass solver

 $Z = \sum_{\{\sigma\}} \exp\left(\frac{1}{2}K_{ij}\sigma_i\sigma_j\right)$

 $\rightarrow \ln Z$

 $Z = \sum_{\{\sigma\}} \exp\left(\frac{1}{2}K_{ij}\sigma_i\sigma_j\right)$

Contraction Differentiation $\rightarrow \ln Z$

 K_{ij} random couplings

TNS studies of Ising spin glasses: Wang, Qin, Zhou, PRB 2014 Rams et al, 1811.06518

Differentiable spin glass solver

 K_{ij} random couplings

Tensor network solver for inverse Ising problems

TNS studies of Ising spin glasses: Wang, Qin, Zhou, PRB 2014 Rams et al, 1811.06518

Differentiable spin glass solver

Contraction Differentiation $\rightarrow \ln Z$

Gradient descend

 dK_{ii}

Gradient based variational optimization

 $\mathcal{L} = \langle E(\mathbf{x}) \rangle$

 $\mathscr{L} = \ln \langle \Psi | \hat{H} |$

Generative Modeling

$$\left(\right) \right\rangle_{x \sim \mathcal{D}} + \ln Z$$

- **Gradient optimization works fine**
- Variational ground state, why not?

$$\Psi \rangle - \ln \langle \Psi | \Psi \rangle$$

Vanderstraeten et al, PRB 16'

Human only cares about tensor contraction **Differentiable programing takes care of the gradients**

Song Cheng Jin-Guo Liu Jing Chen Zhiyuan Xie Pan Zhang **Tao Xiang**

