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• Learning Hamiltonian using DNN

• Tensor Networks

• Machine renormalization group? 

• Physics    —>      machine learning

• Quantum information/computation

• Spin Glass Theory, Various transitions, Approximate Bayesian inference
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Topic of today 

Unsupervised learning: finding 
structures in the data matrix
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Network: 
Adjacency matrix

Clustering: 
Similarity matrix

Recommendation: 
Rating matrix

A 2 {0, 1}n⇥n A 2 Rn⇥n A 2 Rm⇥n
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Spectral methods

• Choose a matrix, such as 
• Data	
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A

P = D�1A

• Computer first several eigenvectors (or singular 
vectors) of the matrix. 

• Construct clusters or low-rank approximations using 
the eigenvectors.

L = D �A
Lsym = D�1/2LD�1/2
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Wigner’s semicircle law Marchenko Pastur law

Eingenvalues Singular values
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Reason for the deviation: 
localization

• For adjacency matrix of Erdős–Rényi random graphs

• For matrices 
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P = D�1/2A Ã = D�1/2AD�1/2

Lsym = D�1/2(D �A)D�1/2

Localization on large-degree nodes 

Localization on dangling sub-graphs
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Localization in physics:
• Wavefunction amplitudes distribution: Inverse Participation Ratio 

(IPR). 

• Entangle entropy (between two subsystems) 

• Low entanglement entropy <-> Localization. 

• Area Law, ground state.

• Energy-Level Statistic (Eigenvalue statistics)  
Poisson distribution vs. Wigner Dyson distribution

S2 = � log tr(⇢2)

IPR =
X

i

| i|4
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• Trimming: Remove rows and columns with large degree/
weights 
[Keshavan/Montanari/Oh 09’]  
[Coja-Oghlan 10’]

• Teleportation: (rank-one regularizations) 
[Joseph/Yu 13’] 
[Amini/Chen/Bickel/Levina 13’]  
[Qin/Rohe 13’]  
[Lei/Rinaldo 14’]  
[Le/Levina/Vershynin 15’]

• Using non-backtracking matrix and Bethe Hessian 
[Krzakala/Moore/Mossel/Neeman/Sly/Zdeborová/Zhang 2013] 
[Saade/Krzakala/Zdeborová 14’] 
[Saade/Krzakala/Zdeborová 15’] 
[Saade/Lelarge/Krzakala/Zdeborová 16’]  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Trimming

• However in general suboptimal [Coja-Oghlan 10’], 
usually performs worse than other methods.

• Usually works in practice

Figure taken from Keshavan/Montanari/Oh 09’ 
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Teleportation
• In practice proper regularization solves the dangling-sub-graph 

problem, as teleportation in the Google matrix G = 0.85 ⇤D�1A+ 0.15 ⇤ 11T

Â = D�1/2AD�1/2 + z11T

• It is hard to optimize the regularization parameter, and it does not help 
with noise.

SBM network, c=3 n=10000, epsilon=0.2

SBM network, c=3  
n=10000, epsilon=0.2  
with 10 size-10 cliques



Non-backtracking matrix 
and Bethe-Hessian



Non-backtracking matrix 
and Bethe-Hessian

• They work all the way down to the detectability transition in sparse 
synthetic matrices.



Non-backtracking matrix 
and Bethe-Hessian

• They work all the way down to the detectability transition in sparse 
synthetic matrices.

-1 1 2 3

-1.5

-1.0

-0.5

0.5

1.0

1.5



Non-backtracking matrix 
and Bethe-Hessian

• They work all the way down to the detectability transition in sparse 
synthetic matrices.

-1 1 2 3

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.5 3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

c
in

−c
out

O
ve

rl
a
p

 

 

Non−backtracking
Modularity
Random Walk
Adjacency
Laplacian
BP

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Average Degree

O
ve

rl
a
p

 

 

Non−backtracking
Modularity
Random Walk
Adjacency
Laplacian
BP

Fig. 5. The accuracy of spectral algorithms based on different linear operators, and of belief propagation, for two groups of equal size. On the left, we vary c
in

� c
out

while fixing the average degree c = 3; the detectability transition given by [ 1 ] occurs at c
in

� c
out

= 2
p
3 ⇡ 3.46. On the right, we set c

out

/c
in

= 0.3 and vary
c; the detectability transition is at c ⇡ 3.45. Each point is averaged over 20 instances with n = 105. Our spectral algorithm based on the non-backtracking matrix
B achieves an accuracy close to that of BP, and both remain large all the way down to the transition. Standard spectral algorithms based on the adjacency matrix,
modularity matrix, the Laplacian, and the random walk matrix fail well above the transition, doing no better than chance.

More generally, in a block model with q communities, an affinity
matrix c

ab

, and an expected fraction n
a

of vertices in each commu-
nity a, linearizing around the trivial point ⌘a

u!v

= n
a

gives a tensor
product operator

� := (T ⌦B)� , [14]

where T is the q ⇥ q matrix defined in [10].
This shows that the spectral properties of the non-backtracking

matrix are closely related to belief propagation. Specifically, the triv-
ial fixed point is unstable, leading to a fixed point that is correlated
with the community structure, exactly when T ⌦B has an eigenvalue
greater than 1. However, by avoiding the fixed point where all the ver-
tices belong to the same group, we suppress B’s leading eigenvalue;
thus the criterion for instability is ⌫µ

2

> 1 where ⌫ is T ’s lead-
ing eigenvalue and µ

2

is B’s second eigenvalue. This is equivalent
to [11] in the case where the groups are of equal size.

In general, the BP algorithm provides a slightly better agreement
with the actual group assignment, since it approximates the Bayes-
optimal inference of the block model. On the other hand, the BP up-
date rule depends on the parameters of the block model, and if these
parameters are unknown they need to be learned, which presents ad-
ditional difficulties (12). In contrast, our spectral algorithm does not
depend on the parameters of the block model, giving an advantage
over BP in addition to its computational efficiency.

Experimental Results and Discussion
In Fig. 5, we compare the spectral algorithm based on the non-

backtracking matrix B with those based on various classical opera-
tors: the adjacency matrix A, the modularity matrix M , the Lapla-
cian L, and the random walk matrix Q. We see that there is a regime
where standard spectral algorithms do no better than chance, while
the one based on B achieves a strong correlation with the true group
assignment all the way down to the detectability threshold. We also
show the performance of belief propagation, which is believed to be
asymptotically optimal (9, 10).

We measure the performance as the overlap, defined as
 
X

u

�
gu,g̃u � 1

q

!�✓
1� 1

q

◆
. [15]

Here g
u

is the group to which vertex u truly belongs, and g̃
u

is the
group label given to u by the algorithm. We break the obvious sym-
metry by maximizing over all q! permutations of the groups. The

overlap is normalized so that it is 1 for the correct labeling, and 0 for
a uniformly random labeling.

In Fig. 4 we illustrate clustering in the case q = 3. As described
above, in the detectable regime we expect to see q � 1 eigenvectors
with real eigenvalues that are correlated with the true group assign-
ment. Indeed B’s second and third eigenvector are strongly corre-
lated with the true clustering, and applying k-means in R2 gives a
large overlap. In contrast, the second and third eigenvectors of the
adjacency matrix are essentially uncorrelated with the true cluster-
ing, and similarly for the other traditional operators.

Finally we turn towards real networks to illustrate the advantages
of spectral clustering based on the non-backtracking matrix in prac-
tical applications. In Fig. 6 we show B’s spectrum for several net-
works commonly used as benchmarks for community detection. In
each case we plot a circle whose radius is the square root of the largest
eigenvalue. Even though these networks were not generated by the
stochastic block model, these spectra look qualitatively similar to the
picture discussed above (Fig. 2). This leads to several very conve-
nient properties. For each of these networks we observed that only
the eigenvectors with real eigenvalues are correlated to the group as-
signment given by the ground truth. Moreover, the real eigenvalues
that lie outside of the circle are clearly identifiable. This is very un-
like the situation for the operators used in standard spectral clustering
algorithms, where one must decide which eigenvalues are in the bulk
and which are outside.

In particular, the number of real eigenvalues outside of circle
seems to be a natural indicator for the true number q of clusters
present in the network, just as for networks generated by the stochas-
tic block model. This suggests that in the network of political books
there might in fact be 4 groups rather than 3, in the blog network
there might be more than two groups, and in the NCAA football net-
work there might be 10 groups rather than 12. However, we also note
that large real eigenvalues may correspond in some networks to small
cliques in the graph; it is a philosophical question whether or not to
count these as communities.

An important point is that clustering based on the non-
backtracking matrix B works not only in the assortative case, but
also in the disassortative one—such as the network of common ad-
jectives and nouns in the novel David Copperfield (27), for which the
corresponding real eigenvalue is negative.

Footline Author PNAS Issue Date Volume Issue Number 5

• [Krzakala/Moore/Mossel/Neeman/Sly/Zdeborová/Zhang PNAS 13’]
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while fixing the average degree c = 3; the detectability transition given by [ 1 ] occurs at c
in

� c
out

= 2
p
3 ⇡ 3.46. On the right, we set c

out

/c
in

= 0.3 and vary
c; the detectability transition is at c ⇡ 3.45. Each point is averaged over 20 instances with n = 105. Our spectral algorithm based on the non-backtracking matrix
B achieves an accuracy close to that of BP, and both remain large all the way down to the transition. Standard spectral algorithms based on the adjacency matrix,
modularity matrix, the Laplacian, and the random walk matrix fail well above the transition, doing no better than chance.

More generally, in a block model with q communities, an affinity
matrix c

ab

, and an expected fraction n
a

of vertices in each commu-
nity a, linearizing around the trivial point ⌘a

u!v

= n
a

gives a tensor
product operator

� := (T ⌦B)� , [14]

where T is the q ⇥ q matrix defined in [10].
This shows that the spectral properties of the non-backtracking

matrix are closely related to belief propagation. Specifically, the triv-
ial fixed point is unstable, leading to a fixed point that is correlated
with the community structure, exactly when T ⌦B has an eigenvalue
greater than 1. However, by avoiding the fixed point where all the ver-
tices belong to the same group, we suppress B’s leading eigenvalue;
thus the criterion for instability is ⌫µ

2

> 1 where ⌫ is T ’s lead-
ing eigenvalue and µ

2

is B’s second eigenvalue. This is equivalent
to [11] in the case where the groups are of equal size.

In general, the BP algorithm provides a slightly better agreement
with the actual group assignment, since it approximates the Bayes-
optimal inference of the block model. On the other hand, the BP up-
date rule depends on the parameters of the block model, and if these
parameters are unknown they need to be learned, which presents ad-
ditional difficulties (12). In contrast, our spectral algorithm does not
depend on the parameters of the block model, giving an advantage
over BP in addition to its computational efficiency.

Experimental Results and Discussion
In Fig. 5, we compare the spectral algorithm based on the non-

backtracking matrix B with those based on various classical opera-
tors: the adjacency matrix A, the modularity matrix M , the Lapla-
cian L, and the random walk matrix Q. We see that there is a regime
where standard spectral algorithms do no better than chance, while
the one based on B achieves a strong correlation with the true group
assignment all the way down to the detectability threshold. We also
show the performance of belief propagation, which is believed to be
asymptotically optimal (9, 10).

We measure the performance as the overlap, defined as
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�
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q

!�✓
1� 1

q

◆
. [15]

Here g
u

is the group to which vertex u truly belongs, and g̃
u

is the
group label given to u by the algorithm. We break the obvious sym-
metry by maximizing over all q! permutations of the groups. The

overlap is normalized so that it is 1 for the correct labeling, and 0 for
a uniformly random labeling.

In Fig. 4 we illustrate clustering in the case q = 3. As described
above, in the detectable regime we expect to see q � 1 eigenvectors
with real eigenvalues that are correlated with the true group assign-
ment. Indeed B’s second and third eigenvector are strongly corre-
lated with the true clustering, and applying k-means in R2 gives a
large overlap. In contrast, the second and third eigenvectors of the
adjacency matrix are essentially uncorrelated with the true cluster-
ing, and similarly for the other traditional operators.

Finally we turn towards real networks to illustrate the advantages
of spectral clustering based on the non-backtracking matrix in prac-
tical applications. In Fig. 6 we show B’s spectrum for several net-
works commonly used as benchmarks for community detection. In
each case we plot a circle whose radius is the square root of the largest
eigenvalue. Even though these networks were not generated by the
stochastic block model, these spectra look qualitatively similar to the
picture discussed above (Fig. 2). This leads to several very conve-
nient properties. For each of these networks we observed that only
the eigenvectors with real eigenvalues are correlated to the group as-
signment given by the ground truth. Moreover, the real eigenvalues
that lie outside of the circle are clearly identifiable. This is very un-
like the situation for the operators used in standard spectral clustering
algorithms, where one must decide which eigenvalues are in the bulk
and which are outside.

In particular, the number of real eigenvalues outside of circle
seems to be a natural indicator for the true number q of clusters
present in the network, just as for networks generated by the stochas-
tic block model. This suggests that in the network of political books
there might in fact be 4 groups rather than 3, in the blog network
there might be more than two groups, and in the NCAA football net-
work there might be 10 groups rather than 12. However, we also note
that large real eigenvalues may correspond in some networks to small
cliques in the graph; it is a philosophical question whether or not to
count these as communities.

An important point is that clustering based on the non-
backtracking matrix B works not only in the assortative case, but
also in the disassortative one—such as the network of common ad-
jectives and nouns in the novel David Copperfield (27), for which the
corresponding real eigenvalue is negative.
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More generally, in a block model with q communities, an affinity
matrix c

ab

, and an expected fraction n
a

of vertices in each commu-
nity a, linearizing around the trivial point ⌘a

u!v

= n
a

gives a tensor
product operator

� := (T ⌦B)� , [14]

where T is the q ⇥ q matrix defined in [10].
This shows that the spectral properties of the non-backtracking

matrix are closely related to belief propagation. Specifically, the triv-
ial fixed point is unstable, leading to a fixed point that is correlated
with the community structure, exactly when T ⌦B has an eigenvalue
greater than 1. However, by avoiding the fixed point where all the ver-
tices belong to the same group, we suppress B’s leading eigenvalue;
thus the criterion for instability is ⌫µ

2

> 1 where ⌫ is T ’s lead-
ing eigenvalue and µ

2

is B’s second eigenvalue. This is equivalent
to [11] in the case where the groups are of equal size.

In general, the BP algorithm provides a slightly better agreement
with the actual group assignment, since it approximates the Bayes-
optimal inference of the block model. On the other hand, the BP up-
date rule depends on the parameters of the block model, and if these
parameters are unknown they need to be learned, which presents ad-
ditional difficulties (12). In contrast, our spectral algorithm does not
depend on the parameters of the block model, giving an advantage
over BP in addition to its computational efficiency.

Experimental Results and Discussion
In Fig. 5, we compare the spectral algorithm based on the non-

backtracking matrix B with those based on various classical opera-
tors: the adjacency matrix A, the modularity matrix M , the Lapla-
cian L, and the random walk matrix Q. We see that there is a regime
where standard spectral algorithms do no better than chance, while
the one based on B achieves a strong correlation with the true group
assignment all the way down to the detectability threshold. We also
show the performance of belief propagation, which is believed to be
asymptotically optimal (9, 10).

We measure the performance as the overlap, defined as
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Here g
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is the group to which vertex u truly belongs, and g̃
u

is the
group label given to u by the algorithm. We break the obvious sym-
metry by maximizing over all q! permutations of the groups. The

overlap is normalized so that it is 1 for the correct labeling, and 0 for
a uniformly random labeling.

In Fig. 4 we illustrate clustering in the case q = 3. As described
above, in the detectable regime we expect to see q � 1 eigenvectors
with real eigenvalues that are correlated with the true group assign-
ment. Indeed B’s second and third eigenvector are strongly corre-
lated with the true clustering, and applying k-means in R2 gives a
large overlap. In contrast, the second and third eigenvectors of the
adjacency matrix are essentially uncorrelated with the true cluster-
ing, and similarly for the other traditional operators.

Finally we turn towards real networks to illustrate the advantages
of spectral clustering based on the non-backtracking matrix in prac-
tical applications. In Fig. 6 we show B’s spectrum for several net-
works commonly used as benchmarks for community detection. In
each case we plot a circle whose radius is the square root of the largest
eigenvalue. Even though these networks were not generated by the
stochastic block model, these spectra look qualitatively similar to the
picture discussed above (Fig. 2). This leads to several very conve-
nient properties. For each of these networks we observed that only
the eigenvectors with real eigenvalues are correlated to the group as-
signment given by the ground truth. Moreover, the real eigenvalues
that lie outside of the circle are clearly identifiable. This is very un-
like the situation for the operators used in standard spectral clustering
algorithms, where one must decide which eigenvalues are in the bulk
and which are outside.

In particular, the number of real eigenvalues outside of circle
seems to be a natural indicator for the true number q of clusters
present in the network, just as for networks generated by the stochas-
tic block model. This suggests that in the network of political books
there might in fact be 4 groups rather than 3, in the blog network
there might be more than two groups, and in the NCAA football net-
work there might be 10 groups rather than 12. However, we also note
that large real eigenvalues may correspond in some networks to small
cliques in the graph; it is a philosophical question whether or not to
count these as communities.

An important point is that clustering based on the non-
backtracking matrix B works not only in the assortative case, but
also in the disassortative one—such as the network of common ad-
jectives and nouns in the novel David Copperfield (27), for which the
corresponding real eigenvalue is negative.
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• In the sparse matrices, we know that sparsity results to high-degree or low-degree 
localizations.

• However in noisy cases, the source of localization is neither high-degree nor low-
degrees!

• What should we do without knowing the source of localization?
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My proposal: Learning a 
regularization

• Usually we do not know the source for the 
localization.

• So we should not use regularizations that target the 
“guessed” source of the localization.

• Instead, let’s learn a regularization from the existing 
localizations, i.e. localized eigenvectors.
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I(ui + ûi)� I(ui) ⇡ �4⌘
nX

l=1

X

j 6=i

u2
jlv

2
l u

4
il

�i � �j



Matrix perturbation analysis
Change of an eigenvector:
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Pairwise measurement matrix
Bethe Hessian
X−Laplacian

n=10000, q=2, Gaussian variance: 0.75, -0.75 The same as left, but with cliques

The same as top, but with hubs The same as top left, but with neighbors connected,  
as in [Javanmard/Montanari/Ricci-Tersenghi  16’] 

Model from [Saade/Lelarge/Krzakala/Zdeborová ISIT 16’]

Bethe Hessian uses correct parameters, X-Laplacian does not.
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Conclusions
• Sparsity and noise cause serious localization problems for 

spectral algorithms.

• Many methods for solving localization problem, e.g. trimming, 
non-backtracking, Bethe Hessian,… can be seen as doing 
regularizations.

• Fixed-form regularization works only when the source of 
localization is known.

• Good regularizations can be learnt from the localized 
eigenvectors.  
(Demo of the X-Laplacian can be found at http://panzhang.net)

http://panzhang.net
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