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Difficulties in strongly correlated systems

Solutions and limitations: DMRG and QMC
Artificial neural network: a new solution?
Some examples: success and failure

How to improve?



Diﬂ‘iculties: Exponential explosion of
the dimension of Hilbert space of quantum
many-body systems !
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Bosonization solutions

Quantum Monte Carlo
Slave boson/fermion . .
Schwinger boson ...... Dynamical mean-field
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Two examples:

*Completely random state (excited states) c[0,0, ‘'O, | = random number
*AKLT state:  c[0,0, 0, 1 =Tr[M{"M,> - M "]
Purpose: Using a specific form of function f to approximate 6[0'1(72 “'O’L]
floo, o, {W|=cdo,o, o]
Wy =W, W, -W,} N<<e* (polynomial)
1. MPS or DMRG: f[0,0, - 0,1 =Tr[WOW, > - W], N ~LDd

2. Variationalamc: EQW}) = Z lfz[{O'},{W}]<{O'}|H|{O'}>
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Artificial Neural network: a powerful function

approximating machine
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_ Extract the rules that may be too
" -, complex to be captured by
anh figmoid  ° ‘cos  programming or designing

explicit algorithms !

The gold is to express the ground states of many-body systems in terms of
neural networks with of feasible size and merely a few hidden layers, and most
importantly, within learning time polynomial scaled with the system size.



Example | : Ground state of free bosons/fermions

The success of the expressibility relies on the specialty of the ground state
compared to a generic eigenstate, where the the information encoded in its
wave function is significantly reduced by the physical rules behind it, which
on the other hand can be extracted by the neutral networks through big
amount of training.

P = 1_ | <‘PExact |‘PANN> |

1Dfreebosons:‘1’FB — ZnC’FB[an) \n) :\nl...nL)

Crgpln] = \/L!/nl!...nL!/LL/2 L=12, N=12: P~107{-4}

1D free fermion: C'pp[n| = detlM] M,;; = fi(x;) f.?-(i?) — %g”"i-"

L=24, N=11: P~10~{-4}
2D free fermion: L=24 (4*6), N=5: P~10"{-3}

L=24 (4*6), N=13: P~0.06



Larger systems sizes: Monte Carlo sampling

1D free fermion with L=64, N=31: Opn = T Z;(”-f ?’?-;.+1>)

we first implement importance sampling to generate millions of
“representative®

configurations, and use them to train the ANN and approximate the
characteristic

function.

After the training is finished, a new set of “representative

“ configurations

are genefaEéEéi:fb?dﬂg,%}:}%éibﬁ;ﬁ;dic@q by the ANN, and we
calculate

stk ik )
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7 = fz[{a}, W Difference between the exact and

ANN values ~10A{-3}
Sampled {0}



AF ferromagnetism v.s. Frustration
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Absolute Sign

Output value
layer Without frustration: Marshall sign
_ rule:

myers. S[o1=1/0ifin the total number of
down spins in the odd sites is even/
odd.

Input

layer With frustration: Sign rule ???
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Practical application: ANN as a variational ground

state wavefunction
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