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 Machine learning —> physics
(Why? learn complex features by machines!)

* Classification of matter using DNN

* Learning Hamiltonian using DNN

 Jensor Networks

Machine renormalization group? IR L
* Physics —> machine learning
e Quantum information/computation

e Spin Glass Theory, Various transitions, Approximate Bayesian inference
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Machine Learning

e Supervised learning
« Classification

 Regression

° .. ... e Semi-supervised Learning
* Active Learning
e Unsupervised learning « Transfer Learning
» Clustering

 Dimensionality reduction



Machine Learning Methods

* Supervised learning



Machine Learning Methods

* Supervised learning
* Deep neural networks
e Support Vector Machines
* Logistic Regression

* Unsupervised learning



Machine Learning Methods

* Supervised learning
* Deep neural networks
e Support Vector Machines
* Logistic Regression

* Unsupervised learning

* Principled Component Analysis

Singular Value Decompositions

Hidden Markov Models

Expectation-Maximization

Graphical Models



Supervised Learning
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Topic of today

Unsupervised learning: finding
structures in the data matrix
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Network:
Adjacency matrix
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Data matrices

Network: Clustering:
Adjacency matrix Similarity matrix
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| ow-rank matrix factorization
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Spectral methods

e Choose a matrix, such as
e Data matrix A

e Laplacians L=D-—A
« Normalized Laplacian Lg,,, = D™'/2LD~1/2
« Random walk matrix P=D"1'A4

 Computer first several eigenvectors (or singular
vectors) of the matrix.

e Construct clusters or low-rank approximations using
the eigenvectors.
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However they do not work
well In large sparse matrices
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Reason for the deviation:
localization

e For adjacency matrix of Erdds—Reényi random graphs
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Reason for the deviation:
localization

e For adjacency matrix of Erdds—Reényi random graphs

p _ logn
"""" mar T log logn
T AT — logn
2 XT A A[E )\ > dm X ~
)‘max > 2T mar — 4 lOg logn

z = {0,0,0...1...0,0,0}

S| Localization on large-degree nodes

e Formatrices P=D"Y24 A =D 1/24AD"1/2
Leym = D7Y/2(D — A)D~1/2

Localization on dangling sub-graphs
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L ocalization In physics:

* Wavefunction amplitudes distribution: Inverse Participation Ratio
(IPR). 4
[PR= ) ¢
i

* Entangle entropy (between two subsystems)
Sy = —log tr(p?)
* [ ow entanglement entropy <-> Localization.
* Area Law, ground state.

* Energy-Level Statistic (Eigenvalue statistics)
Poisson distribution vs. Wigner Dyson distribution
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Approaches for localizations
N sparse matrices

e Trimming: Remove rows and columns with large degree/
weights

[Keshavan/Montanari/Oh 09’]
[Coja-Oghlan 10’]

e Jeleportation: (rank-one regularizations)

[Joseph/Yu 13’]
[Amini/Chen/Bickel/Levina 13’]
[Qin/Rohe 13’]

[Lei/Rinaldo 14’]
[Le/Levina/Vershynin 15’]

e Using non-backtracking matrix and Bethe Hessian

[Krzakala/Moore/Mossel/Neeman/Sly/Zdeborovéa/Zhang 2013]
[Saade/Krzakala/Zdeborova 14’]

[Saade/Krzakala/Zdeborova 15°]
[Saade/Lelarge/Krzakala/Zdeborovéa 16’]



Trimming

e Usually works in practice
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Figure 1: Histogram of the singular values of a partially revealed matrix M ¥ before trimming (left) and after
trimming (right) for 10* x 10* random rank-3 matrix M with € = 30 and ¥ = diag(1,1.1,1.2). After trimming
the underlying rank-3 structure becomes clear. Here the number of revealed entries per row follows a heavy
tail distribution with P{N = k} = const./k>.

Figure taken from Keshavan/Montanari/Oh 09’
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Figure 1: Histogram of the singular values of a partially revealed matrix M ¥ before trimming (left) and after
trimming (right) for 10* x 10* random rank-3 matrix M with € = 30 and ¥ = diag(1,1.1,1.2). After trimming
the underlying rank-3 structure becomes clear. Here the number of revealed entries per row follows a heavy

tail distribution with P{N = k} = const./k>.

Figure taken from Keshavan/Montanari/Oh 09’

* However in general suboptimal icssoghan 10,

usually performs worse than other methods.
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* |n practice proper regularization solves the dangling-sub-graph
problem, as teleportation in the Gooale matrix G =0.85%* D1 A +0.15 % 117
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* |tis hard to optimize the regularization parameter, and it does not help
with noise.
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* |n practice proper regularization solves the dangling-sub-graph
problem, as teleportaﬂon Ig the Gooqle matrix G =0.85x DA+ 0.15x 1171
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Non-pbacktracking matrix
and Bethe-Hessian

* They work all the way down to the detectability transition in sparse
synthetic matrices. T

Modularity
* Random Walk
- - - Adjacency
0.81 Laplacian
—BP

. [Krzakala/I\/Ioore/I\/IosseI/Neeman/SIy/Zdeborova/Zhang PNAS 13']

 However, they are suboptimal when the graph has short-loops, or when
system has noise. S
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Figure taken from Javanmard/Montanari/Ricci-Tersenghi, PNAS16’
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Non-pbacktracking matrix
and regularization

Bi ik =0i1(1 — 0 ;) Bv = \v
JEL Y . (Uln) (vlﬂ)>
A —
VUout = ZjEi Vi—j ((UOUt)) (D — 1 0 ) ((UOU’E)
2 o lhara’s relation in theory of
det [)‘A — Al — (D o I)} =0 graph zeta functions

Avip = [A = A"Y(D — I)] vy

L Essentially the Bethe Hessian
Lp=A—-2z2D or z-Laplacian

[Ihara 1966’

[Krzakala/Moore/Mossel/Neeman/Sly/Zdeborova/Zhang PNAS 13
[Saade/Krzakala/Zdeborova NIPS 14’
[Banks/Moore/Newman/Zhang 14’

e e e e
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Why they fail in other (noisy) case”
Incorrect guess of source of localization!

Point-of-view of Function of the

Approaches

regularization regularization
Regularization extracts
Trimming Ly = A+ Ry rows and columns of high
degree
Teleportation L — D-12AD-1/2 4 ;117 Regularization p.unls..hes
low degree localizations
Non-packtracking and In— A— 2D Regularization punishes
Bethe-Hessian B high degree localizations

¢ [n the sparse matrices, we know that sparsity results to high-degree or low-degree

ocalizations.

e However in noisy cases, the source of localization is neither high-degree nor low-
degrees!

e \What should we do without knowing the source of localization?
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My proposal: Learning a
regularization

e Usually we do not know the source for the
localization.

* SO we should not use regularizations that target the
‘guessed” source of the localization.

* |nstead, let’s learn a regularization from the existing
localizations, 1.e. localized eigenvectors.
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Algorithm:
the X-Laplacian

LX:A+X

Inverse participation ratio of eigenvector u: I(u) => ", uf

1= (4

Algorithm 1: Regularization Learning

Input: Real symmetric matrix A, number of eigenvectors ¢, learning rate n = O(1), threshold A.
Output: X-Laplacian, L x, whose leading eigenvectors reveal the global structures in A.

1. Set X to be all-zero matrix.
2. Find set of eigenvectors U = {u1,us, ..., 4, } associated with the first ¢ largest eigenvalues (in algebra) of Lx.

3. Identify the eigenvector v that has the largest inverse participation ratio among the q eigenvectors in U. l.e.
find v = argmax, ¢y I(u).
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Algorithm 1: Regularization Learning

Input: Real symmetric matrix A, number of eigenvectors ¢, learning rate n = O(1), threshold A.
Output: X-Laplacian, L x, whose leading eigenvectors reveal the global structures in A.

1. Set X to be all-zero matrix.

2. Find set of eigenvectors U = {u1,us, ..., 4, } associated with the first ¢ largest eigenvalues (in algebra) of Lx.

3. Identify the eigenvector v that has the largest inverse participation ratio among the q eigenvectors in U. l.e.
find v = argmax, ¢y I(u).

4. if I(v) < A, return Ly = A + X; Otherwise, Vi, X;; < X;; — nv?, then go to step 2.
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Learning:  Xi « Xi; — nv? n=0(1) v;=0(1/n)

Matrix perturbation:

LXuZ- — )\@’LLZ
(Lx + L)(u; + 4;) = (A + N) (ws + @)

Change of an eigenvalue: \;
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Change of the selected eigenvalue: A\, = —n ) v} = —nl(v)
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After perturbation, the eigenvalue of selected eigenvector v decreases by amount
proportional to its Inverse Participate Ratio
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After perturbation, the leading eigenvectors are delocalizing.



Matrix perturpation analysis

TLuZ
Change of an eigenvector:  4i; = » W I =—m?
J#i 5
U kv Uk
e L L
Ai — A
J71
U
Change of the IPR of an eigenvector: I(u; + @;) — I(u;) =~ —4777 My )\”l_l y
[=1 57#1

After perturbation, the leading eigenvectors are delocalizing.

0.4 t=0
03
0.2
o1l
0 }«
°s
04070 01 02 03 04

The second eigenvector vs. the third eigenvector, during learning
Network is generated by SBM with n=42000 nodes, average degree ¢c=3, =3 groups, c_out/c_in=0.08.



Matrix perturpation analysis

TLuZ
Change of an eigenvector:  4i; = » W I =—m?
J#i 5
U kv Uk
I e L L
Ai — A
J71
U
Change of the IPR of an eigenvector: I(u; + @;) — I(u;) =~ —4777 My )\”l_l y
[=1 57#1

After perturbation, the leading eigenvectors are delocalizing.

0.3

0.2

0.1

\
0 .}v}l: -
®
B S

01 02 03 04 01 -005 0 005 01 015

The second eigenvector vs. the third eigenvector, during learning
Network is generated by SBM with n=42000 nodes, average degree ¢c=3, =3 groups, c_out/c_in=0.08.



Matrix perturpation analysis

TLu
' ~ ) A
Change of an eigenvector:  4i; = » W I =—m?
J#i 5
k “kakuzk
=-n)_ u;
Ai — A
J7F1
. . vt
Change of the IPR of an eigenvector: I(u; + @;) — I(u;) ~ —4777 My )\3 )\
[=1 57#1
After perturbation, the leading eigenvectors are delocalizing.
0.4 . t=0 01 t=4 ] 0.05
0.3f 0
0.2
0.1 ‘L 0.1 R ’
0 .’:V:L"'-ﬂ T 0.2| -0.05
%4 o 01 o0z o3 o4 01 -005 0 005 0.1 015 -0.05 0 0.05

The second eigenvector vs. the third eigenvector, during learning
Network is generated by SBM with n=42000 nodes, average degree ¢c=3, =3 groups, c_out/c_in=0.08.



ExXperimental evaluations



ExXperimental evaluations

Community detection in sparse graphs with noise.

[Krzakala/Moore/Mossel/Neeman/Sly/Zdeborova/Zhang PNAS 13’]
[Saade/Krzakala/Zdeborova NIPS 14°]
[Javanmard/Montanari/Ricci-Tersenghi PNAS16’]




Experimental evaluations

* Community detection in sparse graphs with noise.

[Krzakala/Moore/Mossel/Neeman/Sly/Zdeborova/Zhang PNAS 13’]
[Saade/Krzakala/Zdeborova NIPS 14°]
[Javanmard/Montanari/Ricci-Tersenghi PNAS16’]

* Clustering from sparse pairwise similarities.
[Saade/Lelarge/Krzakala/Zdeborova ISIT 16°]




ExXperimental evaluations

* Community detection in sparse graphs with noise.

[Krzakala/Moore/Mossel/Neeman/Sly/Zdeborova/Zhang PNAS 13’]
[Saade/Krzakala/Zdeborova NIPS 14°]
[Javanmard/Montanari/Ricci-Tersenghi PNAS16’]

* Clustering from sparse pairwise similarities.
[Saade/Lelarge/Krzakala/Zdeborova ISIT 16°]

_u,..! .lT!' .' -.-J-l
| |’ - o
R L g

* Rank estimation and matrix completion.

[Keshavan/Oh/Montanari 09']
[Saade/Krzakala/Zdeborova NIPS 157]
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Conclusions

Sparsity and noise cause serious localization problems for
spectral algorithms.

Many methods for solving localization problem, e.g. trimming,
non-backtracking, Bethe Hessian,... can be seen as doing
regularizations.

Fixed-form regularization works only when the source of
localization is known.

Good regularizations can be learnt from the localized
elgenvectors.
(Demo of the X-Laplacian can be found at http://panzhang.net)
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