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Disclamer

• It will be VERY subjective 

• Not all important papers are reviewed  

• Some are shown for negative reasons 

• The purpose is to trigger discussion
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• One can define the direction of a new field  

• Overhype hurts the field in the long term  

• Be practical: really solve problems  

• 宠辱不不惊，看庭前花开花落 

Lessons
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The problem we’d like to solve
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Fig. 18.2. Schematic representation of the Hamiltonian matrix of the Hubbard model with
L = 4, N↑ = 3, N↓ = 2, and periodic boundary conditions

constructed using the projector

Pk =
1
L

L−1∑

j=0

e2πijk/LT j . (18.14)

Clearly, for a given (unsymmetrized) state |n⟩, the state Pk|n⟩ is an eigenstate of T ,

TPk|n⟩ =
1
L

L−1∑

j=0

e2πijk/LT j+1|n⟩ = e−2πik/LPk|n⟩ , (18.15)

where the corresponding eigenvalue is exp(−2πik/L) and 2πk/L is the discrete
lattice momentum. Here we made use of the fact that T L = 1 (on a ring with L
sites, L translations by one site let you return to the origin). This property also
implies exp(−2πik) = 1, hence k has to be an integer. Due to the periodicity of the
exponential, we can restrict ourselves to k = 0, 1, . . . , (L − 1).

The normalization of the state Pk|n⟩ requires some care. We find

P †
k =

1
L

L−1∑

j=0

e−2πijk/LT−j =
1
L

L−1∑

j′=0

e2πij′k/LT j′ = Pk

P 2
k =

1
L2

L−1∑

i,j=0

e2πi(i−j)k/LT i−j =
1
L

L−1∑

j′=0

e2πij′k/LT j′ = Pk , (18.16)

as we expect for a projector. Hence, ⟨n|P †
kPk|n⟩ = ⟨n|P 2

k |n⟩ = ⟨n|Pk|n⟩. For
most |n⟩ the states T j|n⟩ with j = 0, 1, . . . , (L − 1) will differ from each other,
therefore ⟨n|Pk|n⟩ = 1/L. However, some states are mapped onto themselves by a
translation T νn with νn < L, i.e., T νn |n⟩ = eiφn |n⟩ with a phase φn (usually 0 or
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Machine Learning 101

Supervised learning Unsupervised learning 

Classification

Spam detection 
Image recognition

Clustering

Online advertising 
Recommender system 

?
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WARNING

Proceed with caution!!!

They may spoil your fun 
of imagination & creation

The following content 
may contain spoilers 



Deep Learning and RG

“An exact mapping between the Variational Renormalization Group 
and Deep Learning”, Mehta and Schwab, 1410.3831  
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Deep Learning and RG

“An exact mapping between the Variational Renormalization Group 
and Deep Learning”, Mehta and Schwab, 1410.3831  
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FIG. 2. RG and deep learning in the one-dimensional Ising Model. (A) A decimation based renormalization trans-
formation for the ferromagnetic 1-D Ising model. At each step, half the spins are decimated, doubling the effective lattice
spacing. After, n successive decimations, the spins can be described using a new 1-D Ising models with a coupling Jn between
spins. Couplings at a given layer are related to couplings at a previous layer through the square of the hyberbolic tangent
function. (B) Decimation-based renormalization transformations can also be realized using the deep architecture where the
weights between the n + 1 and n-th hidden layer are given by Jn. (C) Visualizing the renormalization group flow of the
couplings for 1-D Ferromagnetic Ising model. Under four successive decimations or equivalently as we move up four layers in
the deep architecture, the couplings (marked by red dots) get smaller. Eventually, the couplings are attracted to stable fixed
point J = 0.

the two approaches employ distinct variational approxi-
mation schemes for coarse graining. Finally, notice that
the correspondence does not rely on the explicit form of
the energy E({hj}, {vj}) and hence holds for any Boltz-
mann Machine.

IV. EXAMPLES

To gain intuition about the mapping between RG
and deep learning, it is helpful to consider some sim-
ple examples in detail. We begin by examining the one-
dimensional nearest-neighbor Ising model where the RG
transformation can be carried out exactly. We then nu-
merically explore the two-dimensional nearest-neighbor
Ising model using an RBM-based deep learning architec-
ture.

A. One dimensional Ising Model

The one-dimensional Ising model describes a collection
of binary spins {vi} organized along a one-dimensional
lattice with lattice spacing a. Such a system is described
by a Hamiltonian of the form

H = −J
∑

i

vivi+1, (23)

where J is a ferromagnetic coupling that energetically
favors configurations where neighboring spins align. To
perform a RG transformation, we decimate (marginalize
over) every other spin. This doubles the lattice spacing
a → 2a and results in a new effective interaction J (1) be-
tween spins (see Figure 2). If we denote the coupling af-
ter performing n successive RG transformations by J (n),

then a standard calculation shows that these coefficients
satisfy the RG equations

tanh [J (n+1)] = tanh2 [J (n)], (24)

where we have defined J (0) = J [14]. This recursion
relationship can be visualized as a one-dimensional flow
in the coupling space J from J = ∞ to J = 0. Thus,
after performing RG the interactions become weaker and
weaker and J → 0 as n → ∞.

This RG transformation also naturally gives rise to the
deep learning architecture shown in Figure 2. The spins
at a given layer of the DNN have a natural interpretation
as the decimated spins when performing the RG trans-
formation in the layer below. Notice that the coupled
spins in the bottom two layers of the DNNs in Fig. 2B
form an “effective” one-dimensional chain isomorphic to
the original spin chain. Thus, marginalizing over spins in
the bottom layer in the DNN is identical to decimating
every other spin in the original spin systems. This im-
plies that the “hidden” spins in the second layer of the
DNN are also described by the RG transformed Hamil-
tonian with a coupling J (1) between neighboring spins.
Repeating this argument for spins coupled between the
second and third layers and so on, one obtains the deep
learning architecture shown in Fig. 2B which implements
decimation.

The advantage of the simple deep architecture pre-
sented here is that it is easy to interpret and requires no
calculations to construct. However, an important short-
coming is that it contains no information about half of
the visible spins, namely the spins that do not couple to
the hidden layer.

1D Ising model: Block spin RG vs deep neural nets 

cf. “Deep learning and the renormalization group”, Bény, 1301.3124 
“PCA meets RG”, Braddea and Bialek, 1610.09733

Deep Learning and RG

https://arxiv.org/abs/1301.3124


Pirsa: 16080006 Page 13/34

Dictionary: RG vs deep learning

From Schwab’s talk at PI: http://pirsa.org/displayFlash.php?id=16080006

http://pirsa.org/displayFlash.php?id=16080006


https://www.quantamagazine.org/20141204-a-common-logic-to-seeing-cats-and-cosmos/

Comment on the quantum magazine website



Deep learning and physics

“Why does deep and cheap learning work so well?” 
Lin and Tegmark,1608.08225 



• It is not only a math, but also a physics question 

• The class of functions of practical interests (natural 
scenes, drawings etc) can be approximated through 
“deep and cheap learning” because they follow the 
laws of physics  

• Symmetry, locality, compositionality and polynomial 
log-probability 

“Why does deep and cheap learning work so well?” 
Lin and Tegmark,1608.08225 

Why deep learning works ?
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Physics Machine learning
Hamiltonian Surprisal � ln p
Simple H Cheap learning
Quadratic H Gaussian p
Locality Sparsity
Translationally symmetric H Convnet
Computing p from H Softmaxing
Spin Bit
Free energy di↵erence KL-divergence
E↵ective theory Nearly lossless data distillation
Irrelevant operator Noise
Relevant operator Feature

TABLE I: Physics-ML dictionary.

that flattening polynomials is exponentially expensive,
with 2n neurons required to multiply n numbers using
a single hidden layer, a task that a deep network can
perform using only ⇠ 4n neurons.

Strengthening the analytic understanding of deep learn-
ing may suggest ways of improving it, both to make it
more capable and to make it more robust. One promis-
ing area is to prove sharper and more comprehensive
no-flattening theorems, placing lower and upper bounds
on the cost of flattening networks implementing various
classes of functions.
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Appendix A: The polynomial no-flattening theorem

We saw above that network can compute polynomials ac-
curately and e�ciently at linear cost, using only about 4
neurons per multiplication. For example, if n is a power
of two, then the monomial

Qn
i=1

xi can be evaluated us-
ing 4n neurons arranged in a binary tree network with
log

2

n hidden layers. In this appendix, we will prove a no-
flattening theorem demonstrating that flattening poly-
nomials is exponentially expensive. Specifically, we will
show the following.

Theorem: The smallest neural network that can imple-
ment the function

Qn
i=1

xi using a single hidden layer has
2n neurons in the hidden layer.

1. Group-theoretic notation

Let us first introduce the group-theoretical notation and
tools that will underpin our proof. Consider the multi-
plication gate

µ(x
1

, · · · , xn) ⌘
nY

i=1

xi. (A1)

This function has important symmetry properties. First
of all, it is invariant under permutations of its arguments.
Second, let us consider the symmetry group G that is
generated by reversing the sign of some of its arguments;
xi ! �xi. The function µ is not invariant under G, but
as we will now see, it is a one-dimensional representation
of it.

An arbitrary element g 2 G can be represented by a
string of length n, indicating which variables get their
signs flipped. If n = 5, for example, the element that
flips the sign of x

3

and x
4

can be represented as g =
(1, 1,�1,�1, 1). In general, we write g = (g

1

, g
2

, · · · gn),
where gi = ±1. Hence |G| = 2n. The group multiplica-
tion law is defined by gh ⌘ (g

1

h
1

, g
2

h
2

, · · · , gnxn).

Let us define the operator Lg to be the action of g on an
arbitrary function of n variables:

Lgf(x1

, x
2

, · · · , xn) ⌘ f(g
1

x
1

, g
2

x
2

, · · · , gnxn). (A2)

It is trivial to verify that the operator Lg is linear:

Lg[f1 + ↵f
2

] = Lgf1 + ↵Lgf2. (A3)

The mapping g ! Lg is thus a group homomorphism
from G to the set of all linear transformations on func-
tions of n variables, and can be thought of as a represen-
tation of the group G.

Let us also consider the simpler mapping � : G ! {1,�1}
defined by

�(g) =
nY

i=1

gi. (A4)

It is easy to show that � is a group homomorphism. The
kernel of � (the set of all elements that get sent to the
identity) are precisely the elements g with an even num-
ber of sign flips (negative gi-values). Hence �(g) tells us
whether or not g is an even or odd group element.

With this basic formalism in place, let us now consider
the specific function µ from equation (A1) that simply
multiplies all its arguments together. µ is not invariant
under the action of G but covariant, transforming in a
particularly simple way:

Lgµ =
nY

i=1

(gixi) =
nY

i=1

gi

nY

i=1

xi = �(g)µ. (A5)

In the jargon of group theory, we say that the vector
space ↵µ where ↵ 2 R furnishes a one-dimensional rep-
resentation of G: the action of G merely multiplies µ by
a scalar (in this case �1 or 1).

“Why does deep and cheap learning work so well?” 
Lin and Tegmark,1608.08225 
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Why machine learning  
for many-body physics ? 

• Conceptual connections: a new and natural way 
to think about (quantum) many-body systems 

• Data driven approach: making scientific 
discovery based on big datasets  

• Techniques: neural networks, kernel methods, 
feature extraction, dimensional reduction, 
clustering analysis, probabilistic modeling,    
deep learning, hardware acceleration…
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A general way to do fitting and interpolations

Solving inverse problems 

Variational wave functions 

Algorithmic development

Conceptual connections to RG

Classification/discovery phases of matter 

Quantum error correction



Material Discovery
High throughput 

computation Database

Train a model to make 
predictions

Crystal structures Material properties  
electrical, thermal, topological

Growth conditions

cf. Hongbin Ren’s talk tomorrow



Classify phases of matter
Ising configurations

ferromagnetic
disordered
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“Machine Learning Phase of Matter”



The net computes |total magnetization| for discrimination
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FIG. 1. Machine learning the ferromagnetic Ising model. (A) The trained neural network learns

representations of the low- and high-temperature Ising states. The average output layer (B) and

accuracy (C) over the test sets vs. temperature. (D) Toy model of a neural network for the Ising

model. (E) The average output layer and accuracy of the toy model are displayed in (E) and

(F), respectively. The orange lines signal T
c

of the model in the thermodynamic limit, T
c

/J =

2/ ln
�
1 +

p
2
�
[11].

Carrasquilla and Melko, 1605.01735 
“Machine Learning Phase of Matter”

Classify phases of matter
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Train on square lattice, predict on triangle lattice 

Also fails to learn the topology of Ising gauge fields*
Train for ferromagnets, predict on anti-ferromagnets

Carrasquilla and Melko, 1605.01735 
“Machine Learning Phase of Matter”

Classify phases of matter

*The convnet learns about  
local constraints but not  

the topological invariance



Sign problem in the Hubbard model

“Machine learning quantum phases of matter beyond the  
 fermion sign problem”, Broecker, Carrasquilla, Melko, Trebst, 1608.07848 

3

The architecture of the CNN we use is depicted schemati-
cally in Fig. 1 with a more detailed technical discussion of the
individual components presented in the Methods section. We
feed the CNN with Monte Carlo configurations (illustrated
on the left), which, processed through the network, provide a
two-component softmax output layer (on the right). The two
components of this function, which by construction always
add up to one, can be interpreted as the probabilities that a
given configuration belongs to the two different phases under
consideration and can thus be used for classification. In the
initial training step, we optimize the CNN on a set of (typi-
cally) 2⇥ 8192 representative configurations sampled deep in
the two fermionic phases. The question of which fundamental
features, contained in the Monte Carlo configurations, are
used in the resulting function F to characterize the phases
under consideration, is automatically discovered during the
training procedure (and beyond our direct influence).

Machine learning fermionic quantum phases

We apply this QMC + machine learning framework to a fam-
ily of Hubbard-like fermion models where the competition be-
tween kinetic and potential terms gives rise to a phase transi-
tion between an itinerant metallic phase and a charge-ordered
Mott insulating phase. As a first example we consider a sys-
tem of spinful fermions on the honeycomb lattice subject to
the Hamiltonian

H = K + V = �t
X

hi,ji,�

c†i,�cj,� + U
X

i

n",in#,i , (4)

with a kinetic term K and a potential term V . At zero temper-
ature and half-filling, this system is well known to undergo a
quantum phase transition from a Dirac semi-metal to an insu-
lator with antiferromagnetic spin-density wave (SDW) order
at Uc/t ⇡ 3.85 [27]. For convenience, we will set t = 1 in
the following.

To sample configurations for different values of the tuning
parameter U we employ determinantal quantum Monte Carlo
(DQMC) in its projective zero-temperature formulation. In
this scheme, a carefully chosen test wave function | T i is pro-
jected onto the actual ground state function | i

| i = e�✓H | T i . (5)

To compute this projection, we first apply a Trotter decompo-
sition to discretize the projection time ✓ into N⌧ = ✓/�⌧ time
steps and separate the kinetic and potential terms

e�✓H
=

N⌧Y

n=1

e��⌧Ke��⌧V ⌘ B(✓) . (6)

The quartic interaction term is then decomposed by applying
a Hubbard-Stratonovich (HS) transformation on each on-site
interaction Vi and on each time slice ⌧

e��⌧Vi
=

1

2

X

s=±1

Y

�=",#
e�Vi(s,⌧,�), (7)
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Figure 2. (Color online) Results from training the neural network
on Hubbard-Stratonovich field configurations of a spinful Hubbard
model on a 2 · 6 ⇥ 6 lattice with on-site interaction U . Reference
points for training were U = 1.0 and U = 16.0, marked by red
dots in the figure. Despite intensive training, the network depicted
in Fig. 1 is unable to distinguish the auxiliary field configurations of
the two reference points and as a consequence can not be used to
discriminate between the two phases.

introducing one auxiliary variable s = ±1 per site and sep-
arating the two spin species �. The entirety of the auxiliary
variables makes up the Hubbard Stratonovich field and will
be denoted as s in the following. The probability for choosing
a configuration is given by

p(s, s0) =

h (s)| (s0)iP
ss0

h (s)| (s0)i , (8)

where s and s0 denote the Hubbard-Stratonovich fields as-
sociated with the projection of the wavefunction used as
bra and ket, respectively. The weight of the configuration
h (s)| (s0)i evaluates to a determinant

h (s)| (s0)i = det

⇥
P †B(✓, s0)B(✓, s0)P

⇤
(9)

where P is the matrix representation of the test wave func-
tion | T i. For auxiliary field approaches the modified statis-
tical ensemble of absolute weights implies that the sign of the
fermionic determinant will be ignored – importantly, such a
modified ensemble retains the fermionic exchange statistics,
but becomes insensitive to the parity of the total number of
fermionic exchanges for a given configuration (which is pre-
cisely what is reflected in the sign of the determinant). This
should be contrasted to world-line QMC approaches where
the modified ensemble weighted by |WC | would not preserve
any fermionic exchange statistics at all, but effectively sample
a bosonic system.

In order to implement our machine learning approach, we
begin by choosing the classical configuration space C over
which the expectation values in Eqs. (1) and (3) are taken.
An obvious candidate is the auxiliary field s. This approach
is illustrated in Fig. 2, where the CNN has been trained at
parameters U = 1 and U = 16, i.e. deep within the Dirac
semi-metal and the antiferromagnetic SDW phase, respec-

Fails to detect the 
phase transition in 
the auxiliary fields



Sign problem in the Hubbard model

“Machine learning quantum phases of matter beyond the  
 fermion sign problem”, Broecker, Carrasquilla, Melko, Trebst, 1608.07848 

3

The architecture of the CNN we use is depicted schemati-
cally in Fig. 1 with a more detailed technical discussion of the
individual components presented in the Methods section. We
feed the CNN with Monte Carlo configurations (illustrated
on the left), which, processed through the network, provide a
two-component softmax output layer (on the right). The two
components of this function, which by construction always
add up to one, can be interpreted as the probabilities that a
given configuration belongs to the two different phases under
consideration and can thus be used for classification. In the
initial training step, we optimize the CNN on a set of (typi-
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We apply this QMC + machine learning framework to a fam-
ily of Hubbard-like fermion models where the competition be-
tween kinetic and potential terms gives rise to a phase transi-
tion between an itinerant metallic phase and a charge-ordered
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ature and half-filling, this system is well known to undergo a
quantum phase transition from a Dirac semi-metal to an insu-
lator with antiferromagnetic spin-density wave (SDW) order
at Uc/t ⇡ 3.85 [27]. For convenience, we will set t = 1 in
the following.

To sample configurations for different values of the tuning
parameter U we employ determinantal quantum Monte Carlo
(DQMC) in its projective zero-temperature formulation. In
this scheme, a carefully chosen test wave function | T i is pro-
jected onto the actual ground state function | i
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the two reference points and as a consequence can not be used to
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introducing one auxiliary variable s = ±1 per site and sep-
arating the two spin species �. The entirety of the auxiliary
variables makes up the Hubbard Stratonovich field and will
be denoted as s in the following. The probability for choosing
a configuration is given by

p(s, s0) =

h (s)| (s0)iP
ss0

h (s)| (s0)i , (8)

where s and s0 denote the Hubbard-Stratonovich fields as-
sociated with the projection of the wavefunction used as
bra and ket, respectively. The weight of the configuration
h (s)| (s0)i evaluates to a determinant

h (s)| (s0)i = det

⇥
P †B(✓, s0)B(✓, s0)P

⇤
(9)

where P is the matrix representation of the test wave func-
tion | T i. For auxiliary field approaches the modified statis-
tical ensemble of absolute weights implies that the sign of the
fermionic determinant will be ignored – importantly, such a
modified ensemble retains the fermionic exchange statistics,
but becomes insensitive to the parity of the total number of
fermionic exchanges for a given configuration (which is pre-
cisely what is reflected in the sign of the determinant). This
should be contrasted to world-line QMC approaches where
the modified ensemble weighted by |WC | would not preserve
any fermionic exchange statistics at all, but effectively sample
a bosonic system.

In order to implement our machine learning approach, we
begin by choosing the classical configuration space C over
which the expectation values in Eqs. (1) and (3) are taken.
An obvious candidate is the auxiliary field s. This approach
is illustrated in Fig. 2, where the CNN has been trained at
parameters U = 1 and U = 16, i.e. deep within the Dirac
semi-metal and the antiferromagnetic SDW phase, respec-
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Figure 3. (Color online) Machine learning of the phase transition
from a semi-metal to an antiferromagnetic insulator in the spinful
Hubbard model (4) on a honeycomb lattice using the Green’s func-
tion approach (see main text). Visualized in the side panels are rep-
resentative samples of the Green’s function (calculated from the aux-
iliary field) for a 2 · 9 ⇥ 9 system in the two respective phases. The
complex entries of these matrices are color-converted by interpreting
their absolute value as the hue of the color while their angle is chosen
as the saturation (HSV coloring scheme [29]). The main panel shows
the output of the discriminating function F obtained from a CNN
trained for parameters in the two fermionic phases (indicated by the
red dots). Data for different system sizes 2 · L⇥ L are shown where
the colors were selected to highlight an apparent even-odd effect in
the linear system size. The vertical solid line indicates the position
of the phase transition in the thermodynamic limit [27], while the
dashed line marks the position at which the antiferromagnetic order
breaks down [30] for the finite system sizes of the current study.

tively. The side panels show representative reference con-
figurations of the auxiliary field at each of these training pa-
rameters. Interestingly, the configurations displayed in Fig. 2
show no discernible difference between the two auxiliary field
configurations, apparent to the human eye. Indeed, we find
that optimizing the CNN of Fig. 1 to extract information di-
rectly from these auxiliary field configurations does not yield
a function F that allows one to distinguish between the two
phases. This apparent inability is possibly rooted in the par-
ticular choice of the employed Hubbard-Stratonovich trans-
formation, which preserves SU(2) spin symmetry by decou-
pling in the charge channel. There is a multitude of alter-
native Hubbard-Stratonovich transformations that one could
choose for this problem that would result in different configu-
rations of the auxiliary field. It is thus possible, yet not guar-
anteed, that the training could succeed for another choice of
the Hubbard-Stratonovich transformation [28].

To alleviate this difficulty, we instead consider the Green’s
function G(i, j) = hci c

†
ji as input for our machine learning

approach. The Green’s function is an essential quantity in
statistical physics, which allows e.g. for the calculation of
equal-time correlation functions, and while it can easily be
calculated from a given auxiliary field configuration it is
not sensitive to the specifics of the Hubbard-Stratonovich
transformation. Instead of the bare auxiliary fields, we thus
train the CNN on the unprocessed complex valued Green’s
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Figure 4. (Color online) Prediction of a CNN for the phase transition
from a Dirac semi-metal to a charge density wave (CDW) ordered
state in the half-filled spinless fermion Hubbard model (10) on the
honeycomb lattice of size 2 · L ⇥ L. The CNN has been trained
on 8192 representative samples of the bare Green’s function deep
inside the two phases (indicated by the red dots). The images in the
left and right columns are color-converted instances of the Green’s
function used in the training. The inset shows a comparison of the
prediction for the L = 9 system when feeding the CNN with the bare
Green’s function or the Green’s function multiplied by the relative
sign / complex phase associated with each configuration (of a given
Markov chain).

matrices Gs(i, j) = hci c
†
jis calculated for a given auxiliary

field configuration s. For the training, we used 2 ⇥ 8192

(2 ⇥ 4096 for L = 15) samples of the Green’s function.
This modified approach gives a striking improvement in
results, as illustrated in Fig. 3. The side panels now show
representative examples of the Green’s matrices Gs(i, j) for
the two coupling parameters well inside the two respective
fermionic phases. For the purpose of visualization, we con-
vert the complex-valued entries of the Green’s matrices to a
polar representation which are then interpreted as HSV colors
and finally converted to RGB for illustration [29]. Contrary
to the visual inspection of the auxiliary field configuration
in Fig. 2, the image-converted Green’s function exhibits a
clearly visible distinction for the two phases. Indeed the
CNN trained and applied to the image-converted Green’s
function now succeeds in discriminating the two phases
by producing a function F that indicates a phase transition
around a value of the interaction U ⇡ 4.1 ± 0.1. For a given
finite system size L, we identify the location of the phase
transition with the parameter U for which the averaged state
function F is 1/2, i.e. the parameter for which the CNN
cannot make any distinction between the two phases and
therefore assigns equal probability to both phases. These
estimates for the location of the phase transition and their
finite-size trends are in good agreement with the critical value
of Uc(L = 15) ⇡ 4.3 obtained from Monte Carlo simulations
for similar system sizes [30] and slightly above the critical
value Uc(L ! 1) ⇡ 3.85 of the thermodynamic limit [27].

Sign-problematic many-fermion systems

We now turn to many-fermion systems that exhibit a sign

Seems to work with 
the Green’s function

Fails to detect the 
phase transition in 
the auxiliary fields

hcic†ji↵



Problems with the paper

This is the partition function of a Ising model where the weight of each configuration is

W ({sr⌧}) = Z0

Y

�

det



1+
Y

⌧

ev⌧�ek
�

, (v⌧�)rr0 = ��sr⌧�rr0 , (k)rr0 = ⌧1trr0 . (1.83)

Similarly, expectations of observables can usually be written as weighted averages,

hÂi = Z�1Tr Âe��Ĥ =
X

{s}

W [s]A[s]

�

X

{s}

W [s]. (1.84)

Thus the Hubbard model in d dimensions maps to an Ising model in d+ 1 dimensions.
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Figure 1.35: Pedagogical illustration of quantities in DQMC. In each case, the top panel shows examples
of configurations of the Hubbard-Stratonovich Ising field sr⌧ = ±1, where blue represents +1 and light red
presents �1, site index r = 0, 1, 2, . . . , N � 1 runs horizontally, and imaginary time ⌧/⌧

1

= 0, 1, 2, . . . , L
⌧

� 1
runs vertically. The lower panels show the spin-up fermion density nr", one row Gr" of the Green function
matrix (see text), and the weight W [s] of the configuration. Parameters were N = 12, L

⌧

= 20, t = 1, µ = 0,
U = 1, � = 8. A second-order Trotter decomposition was used instead of the first-order one in the text.

Basic algorithm: Let us describe the algorithm explicitly in a simple case. Consider a Hubbard
model with N = 4 sites and L⌧ slices in imaginary time with tunneling t, chemical potential µ,
repulsion U , and temperature T = 1/�. Define ⌧1 = �/L⌧ and � = arccosh exp(U⌧1/2). Set up
a N ⇥ L⌧ array of random Ising spins, sr⌧ = ±1, where r = 1, 2, . . . , N and ⌧/⌧1 = 1, 2, . . . , L⌧ .

52

Duchon, Loh, Trivedi, 1311.0543 

28 DISCRETE HUBBARD-STRATONOVICH TRANSFORMATION FOR. . . 4061

TABLE Il. Spin-spin correlation functIon 6(Iz ly) [Eq (19)j for a two-dimensional Hubbard model on a
4&4 lattice. U-2, p 3, 4r =0.25. Results were obtained from averaging over 500 lattice sweeps. In the
Gaussian formulation, the step size was chosen so that the acceptance fraction was 0.5. We also show exact
results for U=O for comparison.

(0,0) (0,1) (0,2) (1,2) (2,2)

Ising
Gaussian
Exact (U=0)

0.638(1)
0.637(2)
0.5

—0.113(4)
—0.115(9)
—0.0699

0.027(5)
0.024 (11)
0

0.024(4)
0.019(9)
0

—0.025 (4)
—0.025 (8)
—0.0077

0.033(4)
0.031(9)
0

., y) = N X(S(ly)S(l+I,J+I„))1 (19)
lj

in a two-dimensional Hubbard model on a 4x 4 lattice [(i,j )
denote the (x,y ) coordinates].
In summary, we have discussed a new transformation for

interacting fermion systems on a lattice which maps the
models into Ising models in one higher dimension. It
should be interesting to explore the effectiveness of various
approximate techniques that have been used with the
Gaussian formulation when used with the Ising formulation.
For example, with use of the Gaussian formulation the
Hubbard model is often reduced to a binary-alloy model by
restricting the field to take only two values. With the Ising
formulation, the mapping to a binary alloy can be obtained
directly. As another example, the single-impurity Anderson
model has been mapped to an Ising model with I/R' in-
teractions by choosing a class of important paths in the
Gaussian functional integral. ' We believe that his mapping
can be obtained more directly and have a wider range of
validity with use of the Ising formulation. We have ex-
plored the convergence of the formulation as function of
the time-slice size 47 for the case of the Hubbard model
and have shown that it is more convenient than the usual
Gaussian formulation for numerical calculations. A detailed
Monte Carlo study of the properties of the two-dimensional
Hubbard model is in progress.

(S;(r)S~(0))= (1—e '") '(o;(r)a J(0)), (18)

with S;= n; l
—n, t. (For r =0, this relation does not hold

for i =j). For an attractive Hubbard model one would use
(10b) and the o-o correlations would be related to fermion
charge-charge correlations.
We compute the thermodynamic averages using a Monte

Carlo method. To compute the fermion determinant at
each step, we use the powerful algorithm proposed recently
by Blankenbecler, Scalapino, and Sugar, 9 which involves N'
operations per update (N number of spatial sites) and
yields an exact determinant.
To assess the convergence of the procedure, we study

various quantities as a function of h~ for the case N = 2,
where exact results are easily obtained. Table I shows
results for P= 2 and various values of hr for the cases
U-2, 4, and 8. The results to converge to the exact
answers as 4~ 0. For an accuracy of a few percent, it ap-
pears adequate to choose E~U=0.5. For other tempera-
tures, the errors found are similar. Note that the statistical
error in computing spin-spin correlation functions through
Eq. (18) is larger than using fermion Green's functions.
We have compared the performance of the Ising formula-

tion with the one based on the Gaussian formulation, Eq.
(9). For small systems, the advantage of the Ising formula-
tion is obvious, since one can easily cover a significant frac-
tion of the total phase space. We find that also for large
systems the Ising formulation converges more rapidly and
yields smaller statistical errors, a factor of 2 or better. As
an example, Table II shows results for the spin-spin correla-
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and convolutional neural networks (CNNs), we show that
one can successfully classify finite-temperature phases of
quantum systems and estimate transition temperatures
with a reasonable degree of accuracy on relatively small
lattice sizes.
The Fermi-Hubbard Hamiltonian [13, 14] in the

particle-hole invariant form is expressed as

H = −t ∑
⟨ij⟩σ

c†iσcjσ +U∑
i

(ni↑−
1

2
)(ni↓−

1

2
)−µ∑

iσ

niσ, (1)

where ciσ (c†iσ) annihilates (creates) a fermion with spin

σ on site i, niσ = c†iσciσ is the number operator, U
is the onsite Coulomb interaction, ⟨..⟩ denotes nearest
neighbors, t is the corresponding hopping integral, and
µ is the chemical potential. µ = 0 corresponds to the
half-filled model (average density of one fermion per site,
n = 1). We set t = 1 as the unit of energy, and consider
the model on three-dimensional (3D) cubic lattices.
The 3D model at half filling realizes a finite-

temperature transition to the antiferromagnetic Néel
phase for any U > 0, analogous to the magnetic
ordering in the 2D classical Ising model. The transition
temperature, TN , which is relatively well known from
the analysis of the staggered spin structure factor, or
the staggered susceptibility [15, 20–22, 25–27], is a
non-monotonic function of the interaction strength; it
increases rapidly with increasing U in the weak-coupling
regime (U ≲ 8), a result that can be captured using
the random phase approximation [15], and decreases
at large U . In the strong-coupling regime (U ≳ 12),
the half-filled model can be effectively described by
the antiferromagnetic (AFM) Heisenberg model, whose
exchange constant, and hence, Néel temperature, is
proportional to 1/U [16].
Our goal here is to train a CNN to identify finite-

temperature phase boundaries of the Hubbard model.
We utilize the determinantal quantum Monte Carlo
(DQMC) [17], which reduces the numerical evaluation
of the observables of the Fermi-Hubbard model to a
stochastic averaging over a set of discrete auxiliary
fields extending in space and along an imaginary time
dimension. The spin correlations of the model can
be written directly in terms of the correlations in our
particularly chosen auxiliary field [18], rendering it an
obvious choice to be used in the identification of magnetic
phases through machine learning, although a previous
attempt including two of the authors has not been
successful [19]. The training is done using the field
configurations generated during DQMC simulations in a
range of temperatures around one or two critical points.
The objective is to use the trained network to map
out the entire phase boundary associated with the same
critical phenomenon by varying the parameters driving
the transition and generating “test” data sets of the field
configurations. In this work, we focus on the magnetic

FIG. 2. Prediction of the Néel transition temperature by the
neural network. Using the auxiliary spin configurations, the
network is trained separately at U = 5 and U = 16 for N = 43,
and simultaneously at U = 5 and 16 for N = 43 and N = 83.
The critical temperatures used for the training of the network
with N = 43 are shown as stars (see text). Grey filled symbols
are the estimates for TN in the thermodynamic limit from
DQMC and NLCE simulations. Grey pentagons, hexagons
and circles for weak-, intermediate-, and strong-coupling
regimes are taken from Refs. 20, 21, and 22, respectively. The
dashed line shows the asymptotic behavior for TN at large U
(3.83/U). The solid line is a guide to the eye.

properties of the Hubbard model.
We use a 3D CNN, originally developed for human

action recognition in videos [23], implemented in
Tensorflow [24]. Convolutions are designed to return
information about spatial dimension and locality to the
simpler idea of a fully-connected feed-forward neural
network. In our case, the three spatial dimensions of the
cubic lattice are treated with the convolution, while slices
in the fourth imaginary time axis are used as different
filter channels [1]. A schematic picture of the network is
shown in Fig. 1. We use 3 or 4 hidden layers, depending
on the spatial size of the system, for feature extraction
followed by a fully connected layer before the output
layer [18]. The optimal number of neurons in each layer
(resulting in the largest accuracy) is found using a Monte
Carlo optimization procedure [18].
To benchmark our results and validate our approach,

we start with the 3D Hubbard model at half filling
and explore the accuracy with which we can predict
the Néel phase boundary in the temperature-interaction
space. We train the network to distinguish (by activating
the corresponding output neuron) spin configurations
belonging to the ordered phase (T < TN ) from those of the
unordered high-temperature phase. The approximately
80,000 labeled configurations at various temperatures
around TN are generated through DQMC simulations
for two interactions strengths, U = 5 and 16, one in
the weak-coupling and one in the strong-coupling regime,

3D Hubbard model

Ch'ng, Carrasquilla, Melko, Khatami, 1609.02552
“Machine Learning Phases of Strongly Correlated Fermions” 

Can recognize AF phase transition 
from the auxiliary field configurations

However, has to train both for U=5 and U=16
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and convolutional neural networks (CNNs), we show that
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quantum systems and estimate transition temperatures
with a reasonable degree of accuracy on relatively small
lattice sizes.
The Fermi-Hubbard Hamiltonian [13, 14] in the

particle-hole invariant form is expressed as
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is the onsite Coulomb interaction, ⟨..⟩ denotes nearest
neighbors, t is the corresponding hopping integral, and
µ is the chemical potential. µ = 0 corresponds to the
half-filled model (average density of one fermion per site,
n = 1). We set t = 1 as the unit of energy, and consider
the model on three-dimensional (3D) cubic lattices.
The 3D model at half filling realizes a finite-

temperature transition to the antiferromagnetic Néel
phase for any U > 0, analogous to the magnetic
ordering in the 2D classical Ising model. The transition
temperature, TN , which is relatively well known from
the analysis of the staggered spin structure factor, or
the staggered susceptibility [15, 20–22, 25–27], is a
non-monotonic function of the interaction strength; it
increases rapidly with increasing U in the weak-coupling
regime (U ≲ 8), a result that can be captured using
the random phase approximation [15], and decreases
at large U . In the strong-coupling regime (U ≳ 12),
the half-filled model can be effectively described by
the antiferromagnetic (AFM) Heisenberg model, whose
exchange constant, and hence, Néel temperature, is
proportional to 1/U [16].
Our goal here is to train a CNN to identify finite-

temperature phase boundaries of the Hubbard model.
We utilize the determinantal quantum Monte Carlo
(DQMC) [17], which reduces the numerical evaluation
of the observables of the Fermi-Hubbard model to a
stochastic averaging over a set of discrete auxiliary
fields extending in space and along an imaginary time
dimension. The spin correlations of the model can
be written directly in terms of the correlations in our
particularly chosen auxiliary field [18], rendering it an
obvious choice to be used in the identification of magnetic
phases through machine learning, although a previous
attempt including two of the authors has not been
successful [19]. The training is done using the field
configurations generated during DQMC simulations in a
range of temperatures around one or two critical points.
The objective is to use the trained network to map
out the entire phase boundary associated with the same
critical phenomenon by varying the parameters driving
the transition and generating “test” data sets of the field
configurations. In this work, we focus on the magnetic

FIG. 2. Prediction of the Néel transition temperature by the
neural network. Using the auxiliary spin configurations, the
network is trained separately at U = 5 and U = 16 for N = 43,
and simultaneously at U = 5 and 16 for N = 43 and N = 83.
The critical temperatures used for the training of the network
with N = 43 are shown as stars (see text). Grey filled symbols
are the estimates for TN in the thermodynamic limit from
DQMC and NLCE simulations. Grey pentagons, hexagons
and circles for weak-, intermediate-, and strong-coupling
regimes are taken from Refs. 20, 21, and 22, respectively. The
dashed line shows the asymptotic behavior for TN at large U
(3.83/U). The solid line is a guide to the eye.

properties of the Hubbard model.
We use a 3D CNN, originally developed for human

action recognition in videos [23], implemented in
Tensorflow [24]. Convolutions are designed to return
information about spatial dimension and locality to the
simpler idea of a fully-connected feed-forward neural
network. In our case, the three spatial dimensions of the
cubic lattice are treated with the convolution, while slices
in the fourth imaginary time axis are used as different
filter channels [1]. A schematic picture of the network is
shown in Fig. 1. We use 3 or 4 hidden layers, depending
on the spatial size of the system, for feature extraction
followed by a fully connected layer before the output
layer [18]. The optimal number of neurons in each layer
(resulting in the largest accuracy) is found using a Monte
Carlo optimization procedure [18].
To benchmark our results and validate our approach,

we start with the 3D Hubbard model at half filling
and explore the accuracy with which we can predict
the Néel phase boundary in the temperature-interaction
space. We train the network to distinguish (by activating
the corresponding output neuron) spin configurations
belonging to the ordered phase (T < TN ) from those of the
unordered high-temperature phase. The approximately
80,000 labeled configurations at various temperatures
around TN are generated through DQMC simulations
for two interactions strengths, U = 5 and 16, one in
the weak-coupling and one in the strong-coupling regime,
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FIG. 4. (a) Magnetic phase diagram of the 3D Hubbard
model away from half filling for U = 9. Empty color
(filled grey) symbols are estimates for the Néel temperatures,
with (without) taking the minus sign problem into account,
obtained from a neural network that is trained to identify
the phase at half filling. Lines are guides to the eye. Inset:
equations of state (density vs µ) for U = 9 at T = 0.24,
0.28, and 0.32 (solid lines from top to bottom, respectively).
The grey dashed line is calculated without taking the sign
problem into account at T = 0.32. (b) Average neuron output
calculated with and without considering the sign problem in
the DQMC at T = 0.28. The grey solid line is a fit to data
near the 0.5 crossing point. Inset: ⟪SO⟫/⟪S⟫ at T = 0.32 and
0.30 vs µ. Solid line is the fit to estimate TN at T = 0.32.

calculated in the conventional way by including the sign
in the averaging and dividing by the average sign, typical
for DQMC [18]. This procedure is valid as long as the
average sign does not vanish.

The results are summarized in Fig. 4(a), where we show
the dependence of TN on µ. Similarly to half filling,
TN is estimated as the temperature the average neuron
output crosses 0.5. To note the effect of the negative sign
problem on our results, we also show the average neuron
output if the sign is ignored during the calculation of
the expectation value (grey filled points). Regardless,
the transition temperature remains nonzero at n ≠ 1, but
rapidly decreases as soon as µ < −1.0. The flat region at
µ > −1.0 is a direct consequence of the Mott physics near
half filling setting in. However, at the temperatures we
have access to, the Mott gap is not fully developed yet,
and the density starts deviating from 1 around µ = −1.0.
This is more clearly seen in the equations of state

shown in the inset of Fig. 4(a) at T = 0.24,0.28 and
0.32. They also show that, for example, at T = 0.32
and µ = −1.4, which is approximately the onset of the
Néel phase, the density is n ∼ 0.97. The equation of
state at T = 0.32 sets a lower bound of ∼ 0.96 also for the
density at the transition point when T = 0.30. The actual
density is likely closer to n = 0.97. These observations
are consistent with results from other more conventional
methods [22], and show that, even though the critical
µ decreases rapidly by decreasing the temperature, the
opening of the Mott gap is keeping the critical density

very close to unity. In Fig. 4(b), we show the average
neuron output with and without taking the sign problem
into account vs µ at T = 0.28. We also show the average
of the sign itself. As the latter approaches zero around
µ = −1.5, the accuracy in the expectation value of the
neuron output is largely compromised.
Figure 4(a) also shows that ignoring the sign problem

leads to an underestimation of TN at a given chemical
potential. However, it also leads to a smaller average
density at a given µ (see the grey dashed line in the
inset). One may wonder if two wrongs can make a
right in this case; will the magnetic phase diagram in
the temperature-density space be the same regardless of
whether or not we take the sign problem into account?
The answer to this question may be relevant to a recent
suggestion that the sign problem can be circumvented
using networks trained in sign problematic regions [19].
Note that here, we are “transfer learning” by applying
our network, trained on the sign-problem-free parameter
region, to the sign problematic region, an approach that
can potentially be taken to track down the onset of the
pseudogap phase in the 2D Hubbard model away from
half filling.
At T = 0.32, the critical density corresponding to

the critical µ = −0.9 [see diamonds in Figure 4(a)] is
n ∼ 0.98 according to the equation of state obtained
by ignoring the sign problem. Even though this value
seems significantly different from n ∼ 0.97 obtained with
taking the sign problem into account, we cannot rule out
an agreement given the uncertainties associated with the
estimation of TN from the 0.5 crossing of neuron outputs.
At lower T , lack of reliable data due to the sign problem
prevents us from performing a similar comparison.
We have utilized neural network machine learning

techniques to predict the onset of the finite-temperature
magnetically ordered phases of the 3D Fermi-Hubbard
model. We train a 3D CNN using auxiliary spin
configurations for a range of temperatures around the
transition temperature, sampled over during DQMC
simulations of two systems in the weak- and strong-
coupling regimes. We show that the trend in the Néel
temperature of the half-filled model as a function of
the interaction strength can be captured by using the
trained network to classify configurations generated for
other interaction strengths. We then train a network
at half filling for U = 9 and use it to predict the fate
of the ordered phase as the system is doped away from
half filling. We find that the instability persists in
the latter region, however, in a close proximity of the
commensurate filling.
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FIG. 1. Schematic illustration of our machine learning algo-
rithm consisting of TQL topography and a neural network
architecture. The TQL topography for each site j consists
of 4 TQL’s of length d = 1. One TQL of length d = 3 also
shown for illustration. All TQL’s of length ≤ dc form aD(dc)-
dimensional vector for each site j, e.g., D(1) = 4 on a square
lattice.

of length ≤ dc with one vertex at site j (see Fig. 1).
Each entry of this vector is a chained products of two-
point correlators on each sides of a triangle that acts on
independent Monte Carlo steps without averaging over
Markov chain. For instance TQL data associated with
site j for the triangle made of sites k and l would be

P̃jkP̃klP̃lj (1)

where P̃jk ≡
〈

c†jck
〉

α
for free fermions evaluated with a

particular Monte Carlo sample α. Hence TQL topogra-
phy can be systematically expanded to include more and
more non-local correlations involving site j by increasing
cut-off length scale dc. Conversely, when the outcome
converges for small dc, the TQL topography will be a
three dimensional image that is quasi two-dimensional.
Clearly TQL topography is not restricted to any partic-
ular lattice geometry as different lattice geomtery will
only enter through different dimension D(dc) for given
dc. Moreover, the entire procedure takes place in real
space without any need for diagonalization or flux inser-
tion and the procedure does not depend on translational
invariance. Hence TQL topography should be able to
naturally accommodate heterogeneity, disorder and in-
teraction by construction.[33] In the rest of this paper we
use VMC, without loss of generality, to build the TQL
topography by sampling the many-body ground state of
interest at randomly selected Monte Carlo steps (see Ap-
pendix).
Once the TQL topography is obtained for a given

model, we feed the image x into a neural network(Fig. 1).
For this, we designed a feed-forward fully-connected neu-
ral network with only one hidden layer consisting of
n = 10 sigmoid neurons. The network takes the TQL
topography as an input x and each neurons processes the

FIG. 2. Model illustration of Eq. 2. The unit cell consists of
two sublattice sites A and B. Hopping strengths are different
for horizontal and vertical bonds and staggered. The diagonal
hopping is iκ (−iκ) along (against) the arrow. The red arrows
denotes a triangle that defines the operators of our TQL.

input through independent weights and biases w · x + b.
After the sigmoid function, the the outcome is fed for-
ward to be processed by the output neuron. The final
output y corresponds to the neural network’s judgement
whether the input TQL topography is topological. We
use cross entropy as the cost function with L2 regulariza-
tion to avoid over-training and a mini-batch size of 10[20].
For the rest of this paper, we use randomly-mixed 20000
data samples within the VMC Metropolis of the topologi-
cal and trivial phases as the training group. We reserve a
separate group of 4000 data samples (also half trivial and
half topological) for validation purposes including learn-
ing speed control and termination[20]. Then the resulting
neural network is used to identify different models also
processed using TQL topography, whose output is sta-
tistically analyzed over the Monte Carlo samples for the
ratio p of a ‘topological’ response.
Topological quantum phase transition in a free fermion

model– We first apply the TQL topography-based ma-
chine learning to the topological quantum phase transi-
tion between a trivial insulator and a Chern insulator.
Consider the following tight-binding model on a square
lattice:

H(κ) =
∑

r⃗

(−1)yc†r⃗+x̂cr⃗ + [1 + (−1)y(1 − κ)]c†r⃗+ŷcr⃗

+ (−1)y
iκ

2

[

c†r⃗+x̂+ŷcr⃗ + c†r⃗+x̂−ŷcr⃗
]

+ h.c. (2)

where r⃗ = (x, y) (see Fig. 2) and κ is a tuning parameter
with 0 ≤ κ ≤ 1. The κ = 1 limit is the π-flux square
lattice model for a Chern insulator with a Chern number
C = 1 [5], while the κ = 0 limit amounts to decoupled
two-leg ladders. H(κ) interpolates between a Chern insu-
lator and a trivial insulator with a topological quantum
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lattice.

of length ≤ dc with one vertex at site j (see Fig. 1).
Each entry of this vector is a chained products of two-
point correlators on each sides of a triangle that acts on
independent Monte Carlo steps without averaging over
Markov chain. For instance TQL data associated with
site j for the triangle made of sites k and l would be

P̃jkP̃klP̃lj (1)

where P̃jk ≡
〈

c†jck
〉

α
for free fermions evaluated with a

particular Monte Carlo sample α. Hence TQL topogra-
phy can be systematically expanded to include more and
more non-local correlations involving site j by increasing
cut-off length scale dc. Conversely, when the outcome
converges for small dc, the TQL topography will be a
three dimensional image that is quasi two-dimensional.
Clearly TQL topography is not restricted to any partic-
ular lattice geometry as different lattice geomtery will
only enter through different dimension D(dc) for given
dc. Moreover, the entire procedure takes place in real
space without any need for diagonalization or flux inser-
tion and the procedure does not depend on translational
invariance. Hence TQL topography should be able to
naturally accommodate heterogeneity, disorder and in-
teraction by construction.[33] In the rest of this paper we
use VMC, without loss of generality, to build the TQL
topography by sampling the many-body ground state of
interest at randomly selected Monte Carlo steps (see Ap-
pendix).
Once the TQL topography is obtained for a given

model, we feed the image x into a neural network(Fig. 1).
For this, we designed a feed-forward fully-connected neu-
ral network with only one hidden layer consisting of
n = 10 sigmoid neurons. The network takes the TQL
topography as an input x and each neurons processes the

FIG. 2. Model illustration of Eq. 2. The unit cell consists of
two sublattice sites A and B. Hopping strengths are different
for horizontal and vertical bonds and staggered. The diagonal
hopping is iκ (−iκ) along (against) the arrow. The red arrows
denotes a triangle that defines the operators of our TQL.

input through independent weights and biases w · x + b.
After the sigmoid function, the the outcome is fed for-
ward to be processed by the output neuron. The final
output y corresponds to the neural network’s judgement
whether the input TQL topography is topological. We
use cross entropy as the cost function with L2 regulariza-
tion to avoid over-training and a mini-batch size of 10[20].
For the rest of this paper, we use randomly-mixed 20000
data samples within the VMC Metropolis of the topologi-
cal and trivial phases as the training group. We reserve a
separate group of 4000 data samples (also half trivial and
half topological) for validation purposes including learn-
ing speed control and termination[20]. Then the resulting
neural network is used to identify different models also
processed using TQL topography, whose output is sta-
tistically analyzed over the Monte Carlo samples for the
ratio p of a ‘topological’ response.
Topological quantum phase transition in a free fermion

model– We first apply the TQL topography-based ma-
chine learning to the topological quantum phase transi-
tion between a trivial insulator and a Chern insulator.
Consider the following tight-binding model on a square
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with 0 ≤ κ ≤ 1. The κ = 1 limit is the π-flux square
lattice model for a Chern insulator with a Chern number
C = 1 [5], while the κ = 0 limit amounts to decoupled
two-leg ladders. H(κ) interpolates between a Chern insu-
lator and a trivial insulator with a topological quantum
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FIG. 1. Schematic illustration of our machine learning algo-
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of 4 TQL’s of length d = 1. One TQL of length d = 3 also
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P̃jkP̃klP̃lj (1)
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〈

c†jck
〉

α
for free fermions evaluated with a
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FIG. 2. Model illustration of Eq. 2. The unit cell consists of
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hopping is iκ (−iκ) along (against) the arrow. The red arrows
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input through independent weights and biases w · x + b.
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ing speed control and termination[20]. Then the resulting
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processed using TQL topography, whose output is sta-
tistically analyzed over the Monte Carlo samples for the
ratio p of a ‘topological’ response.
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FIG. 4. Application to a ν = 1/3 FCI. The topological phase
transition in the parent Chern insulator at κ = 0.5 is marked
by a vertical red dashed line. The inset shows the results
using neural network trained with the parent free fermion
model, where p is calculated over 20000 samples for each κ
to reduce statistical error. The main panel shows the results
using FCI wave functions for both training (κ = 0.1 for trivial
and κ = 1.0 for FCI) and testing. dc = 2 for both.

puts from both square and honeycomb lattice models, the
network can distinguish topological phases on both lat-
tices with little to no penalty on accuracy (see Fig. 5). We
also note that the network becomes aware of the topologi-
cal index in the data set used for training and recognizes
a Chern insulator with a different Chern number (e.g.,
C = −1 as supposed to C = 1) to be distinct.
Conclusion– In summary we have successfully im-

plemented supervised machine learning for topological
phases by introducing on TQL topography as the rel-
evant input data interfacing the quantum many-body
problem with a simple neural network. A valuable the-
oretical insight into the success of the TQL topography
can be gleaned by observing the connection between Hall
conductivity and two-point correlators on triangles as
pointed out by Kitaev [36]:

σxy =
e2

h
·
1

N

∑

4πiPjkPklPljS△jkl (4)

where Pij ≡ ⟨c†i cj⟩ is the equal-time two-point correla-
tor between site i and site j, S△jkl is the signed area
of the triangle jkl, and N is the total number of sites.
Our alternative proof of Eq. (4) (see Appendix) builds on
adiabatic continuity protected by the gap in the spectra
without requiring the system be made of free fermions.
Hence it is plausible TQL’s which are Monte Carlo sam-
ples of these loop-products of equal-time two-point cor-
relators form generally promising inputs for topological
properties.
Three major strengths of our TQL topography based

machine learning approach are 1) efficiency, 2) accuracy,

FIG. 5. The ratio p of ‘topologically nontrivial’ response from
the neural networks for the honeycomb lattice model (Ap-
pendix) over the parameter region κ ∈ [0.1, 1, 0]. The topo-
logical phase transition is at κ = 0.5 (vertical red dashed line).
The neural networks are trained using the Chern insulators
and trivial insulators only on the honeycomb lattice, only on
the square lattice, and on both. dc = 2 for all.

and 3) versatility. Due to the fast convergence with dc,
the network can be trained with quasi-two dimensional
topography. Furthermore since the TQL topography for-
goes averaging over Markov chain, one can quickly scan
the phase space once the network is trained. The accu-
racy of the output indicates that the neural network capi-
talizes on the discrete nature of the topological properties
to tell the difference without trying to calculate the num-
ber. Finally, since the TQL topography is a completely
real space formulation independent of translational sym-
metry and it does not require any diagonalization or flux
insertion it is extremely adaptable. Specifically, our ap-
proach can be applied to systems with disorder or with
higher Chern numbers as well as to higher dimensional
systems. Moreover there is nothing restricting TQL to-
pography to VMC data. It can be applied to determi-
nant Monte-Carlo samples as well as to other representa-
tions of many-body wave functions such as matrix prod-
uct states and PEPS. Hence our construction opens door
to broad application of machine learning approach to the
problems in topological phases of matter and beyond.
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FIG. 3: Two-point correlation function g
2

for moments and ḡ
2

for anti-moments at a separation of one lattice site
for U/t = 7.2(1). (a) g

2

(1) for moments. (b) ḡ
2

(1) for anti-moments. Blue circles: experimental data. Blue solid
line: NLCE theory. Gray triangles: DQMC theory. Both NLCE and DQMC calculations are performed at

T/t = 1.22, and are not adjusted for the experimental imaging fidelity of 95%. Black dotted lines: non-interacting
gas. The doping x is zero at maximum moment and one at zero moment; intermediate values of doping as a function

of local moment are determined from NLCE theory at T/t = 1.22, with adjustment for imaging fidelity. Inset:
typical image showing neighboring anti-moments (imaged holes) near half-filling.

g
2

persists at short distances on the order of the aver-
age interparticle spacing, a feature known as the Pauli
hole. While implications of this fermion “anti-bunching”
have been observed in the suppression of density fluctua-
tions [35, 36] and momentum space correlations [37, 38],
the real space suppression g

2

(r) has not been observed in
situ before. In a non-interacting two-spin mixture, the
strength of the Pauli hole is halved, as only two iden-
tical fermions experience the Pauli hole. Nevertheless,
repulsive interactions between opposite spins also sup-
press g

2

(r), leading to a combined Pauli and correlation
hole.

In Fig. 3(a), we show the directly measured g
2

(1) as
a function of moment at an intermediate interaction of
U/t = 7.2. The strong suppression of g

2

(1) at low fillings
(large interparticle spacing) is observed, and is stronger
than Pauli suppression alone, reflecting short-range anti-
correlations due to repulsive interactions. As shown in
Fig. 3(a), the data is well described by NLCE and DQMC
calculations.

While g
2

(r) describes the probability of finding two
moments a distance r from each other, near half-filling,
where hm̂2

zi ⇠ 1, the correlations arise mainly from sites
where the moment is zero, i.e. sites with holes and dou-
blons. The number of holes and doublons, which appear
empty after imaging, is given by h1 � m̂2

zi. The cor-
responding two-point correlation function ḡ

2

(r) of these

“anti-moments” is thus

ḡ
2

(r) =
⌦�

1� m̂2

z(r)
� �

1� m̂2

z(0)
�↵

/h1� m̂2

zi2. (5)

In Fig. 3(b), we observe that ḡ
2

(1) is strongly enhanced
near half-filling beyond the uncorrelated value of 1. ḡ

2

(1)
thus reveals the strong bunching of holes and doublons.
There are three contributions to ḡ

2

(1): correlations be-
tween pairs of holes, between pairs of doublons, and be-
tween holes and doublons. One expects neighboring holes
and neighboring doublons to show negative correlations,
due to Pauli suppression and strong repulsion. Hence
the bunching behavior must originate from positive cor-
relations between neighboring doublon-hole pairs. This
expectation is confirmed by NLCE and DQMC calcula-
tions (see Supplemental Material).
The strong doublon-hole correlation near half-filling

in the presence of antiferromagnetic correlations can
be qualitatively captured by a simple two-site Hubbard
model, experimentally realized in [39]. While in the
strongly interacting limit (U � t) the doublon density
vanishes and the ground state is a spin singlet, at in-
termediate interaction strengths, tunneling admixes a
doublon-hole pair into the ground state wavefunction,
with an amplitude ⇠t/U . Thus, short-range singlet cor-
relations at moderate U/t occur naturally together with
nearest-neighbor doublon-hole correlations.
At a separation of one lattice site, we have revealed the

competition between Pauli- and interaction-driven repul-
sion of singly-occupied sites and the e↵ective attraction

Temperature

LW, Zi Cai, Unpublished 
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Figure 1. Artificial Neural network encoding a many-
body quantum state of N spins. Shown is a restricted
Boltzmann machine architecture which features a set of N

visible artificial neurons (yellow dots) and a set of M hid-
den neurons (grey dots). For each value of the many-body
spin configuration S = (�z

1 ,�
z
2 , . . .�

z
N ), the artificial neural

network computes the value of the wave function  (S).

tic framework for reinforcement learning of the param-
eters W allowing for the best possible representation of
both ground-state and time-dependent physical states of
a given quantum Hamiltonian H. The parameters of
the neural network are then optimized (trained, in the
language of neural networks) either by static variational
Monte Carlo (VMC) sampling [21], or in time-dependent
VMC [22, 23], when dynamical properties are of inter-
est. We validate the accuracy of this approach study-
ing the Ising and Heisenberg models in both one and
two-dimensions. The power of the neural-network quan-
tum states (NQS) is demonstrated obtaining state-of-the-
art accuracy in both ground-state and out-of-equilibrium
dynamics. In the latter case, our approach effectively
solves the phase-problem traditionally affecting stochas-
tic Quantum Monte Carlo approaches, since their intro-
duction.

Neural-Network Quantum States — Consider a quan-
tum system with N discrete-valued degrees of freedom
S = (S1, S2 . . . S

N

), which may be spins, bosonic occu-
pation numbers, or similar. The many-body wave func-
tion is a mapping of the N�dimensional set S to (expo-
nentially many) complex numbers which fully specify the
amplitude and the phase of the quantum state. The point
of view we take here is to interpret the wave function as
a computational black box which, given an input many-
body configuration S, returns a phase and an amplitude
according to  (S). Our goal is to approximate this com-
putational black box with a neural network, trained to
best represent  (S). Different possible choices for the ar-
tificial neural-network architectures have been proposed
to solve specific tasks, and the best architecture to de-
scribe a many-body quantum system may vary from one
case to another. For the sake of concreteness, in the
following we specialize our discussion to restricted Boltz-

mann machines (RBM) architectures, and apply them to
describe spin 1/2 quantum systems. In this case, RBM
artificial networks are constituted by one visible layer of
N nodes, corresponding to the physical spin variables in a
chosen basis (say for example S = �z

1 , . . . �z

N

) , and a sin-
gle hidden layer of M auxiliary spin variables (h1 . . . h

M

)
(see Fig. 1). This description corresponds to a varia-
tional expression for the quantum states which reads:

 

M

(S; W) =

X

{hi}

e
P

j aj�

z
j +

P
i bihi+

P
ij Wijhi�

z
j ,

where h
i

= {�1, 1} is a set of M hidden spin variables,
and the weights W = {a

i

, b
j

, W
ij

} fully specify the re-
sponse of the network to a given input state S. Since this
architecture features no intra-layer interactions, the hid-
den variables can be explicitly traced out, and the wave
function reads  (S; W) = e

P
i ai�

z
i ⇥ ⇧M

i=1Fi

(S), where
F

i

(S) = 2 cosh

h
b
i

+

P
j

W
ij

�z

j

i
. The network weights

are, in general, to be taken complex-valued in order to
provide a complete description of both the amplitude and
the wave-function’s phase.

The mathematical foundations for the ability of NQS
to describe intricate many-body wave functions are the
numerously established representability theorems [24–
26], which guarantee the existence of network approxi-
mates of high-dimensional functions, provided a sufficient
level of smoothness and regularity is met in the function
to be approximated. Since in most physically relevant
situations the many-body wave function reasonably sat-
isfies these requirements, we can expect the NQS form
to be of broad applicability. One of the practical ad-
vantages of this representation is that its quality can, in
principle, be systematically improved upon increasing the
number of hidden variables. The number M (or equiva-
lently the density ↵ = M/N) then plays a role analogous
to the bond dimension for the MPS. Notice however that
the correlations induced by the hidden units are intrinsi-
cally non local in space and are therefore well suited to
describe quantum systems in arbitrary dimension. An-
other convenient point of the NQS representation is that
it can be formulated in a symmetry-conserving fashion.
For example, lattice translation symmetry can be used
to reduce the number of variational parameters of the
NQS ansatz, in the same spirit of shift-invariant RBM’s
[27, 28]. Specifically, for integer hidden variable density
↵ = 1, 2, . . . , the weight matrix takes the form of feature
filters W (f)

j

, for f 2 [1, ↵]. These filters have a total of
↵N variational elements in lieu of the ↵N2 elements of
the asymmetric case (see Supp. Mat. for further details).

Given a general expression for the quantum many-
body state, we are now left with the task of solving the
many-body problem upon machine learning of the net-
work parameters W. In the most interesting applications
the exact many-body state is unknown, and it is typi-
cally found upon solution either of the static Schrödinger
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a given quantum Hamiltonian H. The parameters of
the neural network are then optimized (trained, in the
language of neural networks) either by static variational
Monte Carlo (VMC) sampling [21], or in time-dependent
VMC [22, 23], when dynamical properties are of inter-
est. We validate the accuracy of this approach study-
ing the Ising and Heisenberg models in both one and
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tum states (NQS) is demonstrated obtaining state-of-the-
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dynamics. In the latter case, our approach effectively
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duction.
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26], which guarantee the existence of network approxi-
mates of high-dimensional functions, provided a sufficient
level of smoothness and regularity is met in the function
to be approximated. Since in most physically relevant
situations the many-body wave function reasonably sat-
isfies these requirements, we can expect the NQS form
to be of broad applicability. One of the practical ad-
vantages of this representation is that its quality can, in
principle, be systematically improved upon increasing the
number of hidden variables. The number M (or equiva-
lently the density ↵ = M/N) then plays a role analogous
to the bond dimension for the MPS. Notice however that
the correlations induced by the hidden units are intrinsi-
cally non local in space and are therefore well suited to
describe quantum systems in arbitrary dimension. An-
other convenient point of the NQS representation is that
it can be formulated in a symmetry-conserving fashion.
For example, lattice translation symmetry can be used
to reduce the number of variational parameters of the
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[27, 28]. Specifically, for integer hidden variable density
↵ = 1, 2, . . . , the weight matrix takes the form of feature
filters W (f)
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, for f 2 [1, ↵]. These filters have a total of
↵N variational elements in lieu of the ↵N2 elements of
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of view we take here is to interpret the wave function as
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to describe intricate many-body wave functions are the
numerously established representability theorems [24–
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to be approximated. Since in most physically relevant
situations the many-body wave function reasonably sat-
isfies these requirements, we can expect the NQS form
to be of broad applicability. One of the practical ad-
vantages of this representation is that its quality can, in
principle, be systematically improved upon increasing the
number of hidden variables. The number M (or equiva-
lently the density ↵ = M/N) then plays a role analogous
to the bond dimension for the MPS. Notice however that
the correlations induced by the hidden units are intrinsi-
cally non local in space and are therefore well suited to
describe quantum systems in arbitrary dimension. An-
other convenient point of the NQS representation is that
it can be formulated in a symmetry-conserving fashion.
For example, lattice translation symmetry can be used
to reduce the number of variational parameters of the
NQS ansatz, in the same spirit of shift-invariant RBM’s
[27, 28]. Specifically, for integer hidden variable density
↵ = 1, 2, . . . , the weight matrix takes the form of feature
filters W (f)

j

, for f 2 [1, ↵]. These filters have a total of
↵N variational elements in lieu of the ↵N2 elements of
the asymmetric case (see Supp. Mat. for further details).

Given a general expression for the quantum many-
body state, we are now left with the task of solving the
many-body problem upon machine learning of the net-
work parameters W. In the most interesting applications
the exact many-body state is unknown, and it is typi-
cally found upon solution either of the static Schrödinger
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Figure 1. Artificial Neural network encoding a many-
body quantum state of N spins. Shown is a restricted
Boltzmann machine architecture which features a set of N

visible artificial neurons (yellow dots) and a set of M hid-
den neurons (grey dots). For each value of the many-body
spin configuration S = (�z
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N ), the artificial neural

network computes the value of the wave function  (S).

tic framework for reinforcement learning of the param-
eters W allowing for the best possible representation of
both ground-state and time-dependent physical states of
a given quantum Hamiltonian H. The parameters of
the neural network are then optimized (trained, in the
language of neural networks) either by static variational
Monte Carlo (VMC) sampling [21], or in time-dependent
VMC [22, 23], when dynamical properties are of inter-
est. We validate the accuracy of this approach study-
ing the Ising and Heisenberg models in both one and
two-dimensions. The power of the neural-network quan-
tum states (NQS) is demonstrated obtaining state-of-the-
art accuracy in both ground-state and out-of-equilibrium
dynamics. In the latter case, our approach effectively
solves the phase-problem traditionally affecting stochas-
tic Quantum Monte Carlo approaches, since their intro-
duction.

Neural-Network Quantum States — Consider a quan-
tum system with N discrete-valued degrees of freedom
S = (S1, S2 . . . S

N

), which may be spins, bosonic occu-
pation numbers, or similar. The many-body wave func-
tion is a mapping of the N�dimensional set S to (expo-
nentially many) complex numbers which fully specify the
amplitude and the phase of the quantum state. The point
of view we take here is to interpret the wave function as
a computational black box which, given an input many-
body configuration S, returns a phase and an amplitude
according to  (S). Our goal is to approximate this com-
putational black box with a neural network, trained to
best represent  (S). Different possible choices for the ar-
tificial neural-network architectures have been proposed
to solve specific tasks, and the best architecture to de-
scribe a many-body quantum system may vary from one
case to another. For the sake of concreteness, in the
following we specialize our discussion to restricted Boltz-

mann machines (RBM) architectures, and apply them to
describe spin 1/2 quantum systems. In this case, RBM
artificial networks are constituted by one visible layer of
N nodes, corresponding to the physical spin variables in a
chosen basis (say for example S = �z

1 , . . . �z

N

) , and a sin-
gle hidden layer of M auxiliary spin variables (h1 . . . h

M

)
(see Fig. 1). This description corresponds to a varia-
tional expression for the quantum states which reads:
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sponse of the network to a given input state S. Since this
architecture features no intra-layer interactions, the hid-
den variables can be explicitly traced out, and the wave
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are, in general, to be taken complex-valued in order to
provide a complete description of both the amplitude and
the wave-function’s phase.

The mathematical foundations for the ability of NQS
to describe intricate many-body wave functions are the
numerously established representability theorems [24–
26], which guarantee the existence of network approxi-
mates of high-dimensional functions, provided a sufficient
level of smoothness and regularity is met in the function
to be approximated. Since in most physically relevant
situations the many-body wave function reasonably sat-
isfies these requirements, we can expect the NQS form
to be of broad applicability. One of the practical ad-
vantages of this representation is that its quality can, in
principle, be systematically improved upon increasing the
number of hidden variables. The number M (or equiva-
lently the density ↵ = M/N) then plays a role analogous
to the bond dimension for the MPS. Notice however that
the correlations induced by the hidden units are intrinsi-
cally non local in space and are therefore well suited to
describe quantum systems in arbitrary dimension. An-
other convenient point of the NQS representation is that
it can be formulated in a symmetry-conserving fashion.
For example, lattice translation symmetry can be used
to reduce the number of variational parameters of the
NQS ansatz, in the same spirit of shift-invariant RBM’s
[27, 28]. Specifically, for integer hidden variable density
↵ = 1, 2, . . . , the weight matrix takes the form of feature
filters W (f)

j

, for f 2 [1, ↵]. These filters have a total of
↵N variational elements in lieu of the ↵N2 elements of
the asymmetric case (see Supp. Mat. for further details).

Given a general expression for the quantum many-
body state, we are now left with the task of solving the
many-body problem upon machine learning of the net-
work parameters W. In the most interesting applications
the exact many-body state is unknown, and it is typi-
cally found upon solution either of the static Schrödinger

where
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Figure 3. Finding the many-body ground-state energy with neural-network quantum states. Shown is the error of
the NQS ground-state energy relative to the exact value, for several test cases. Arbitrary precision on the ground-state energy
can be obtained upon increasing the hidden units density, ↵. (Left panel) Accuracy for the one-dimensional TFI model, at a
few values of the field strength h, and for a 80 spins chain with PBC. Points below 10�8 are not shown to easy readability.
(Central panel) Accuracy for the one-dimensional AFH model, for a 80 spins chain with PBC, compared to the Jastrow ansatz
(horizontal dashed line). (Right panel) Accuracy for the AFH model on a 10 ⇥ 10 square lattice with PBC, compared to the
precision obtained by EPS (upper dashed line) and PEPS (lower dashed line). For all cases considered here the NQS description
reaches MPS-grade accuracies in 1D, while it systematically improves the best known variational states for 2D finite lattice
systems.

accuracy which is compatible with a power-law behavior
in ↵. The hardest to learn ground-state is at the quan-
tum critical point h = 1, where nonetheless a remarkable
accuracy of one part per million can be easily achieved
with a relatively modest density of hidden units. The
same remarkable accuracy is obtained for the more com-
plex one-dimensional AFH model (central panel). In this
case we observe as well a systematic drop in the ground-
state energy error, which for a small ↵ = 4 attains the
same very high precision obtained for the TFI model at
the critical point. Our results are compared with the
accuracy obtained with the spin-Jastrow ansatz (dashed
line in the central panel), which we improve by several
orders of magnitude. It is also interesting to compare
the value of ↵ with the MPS bond dimension M , needed
to reach the same level of accuracy. For example, on
the AFH model with PBC, we find that with a standard
DMRG implementation [30] we need M ⇠ 160 to reach
the accuracy we have at ↵ = 4. This points towards a
more compact representation of the many-body state in
the NQS case, which features about 3 orders of magni-
tude less variational parameters than the corresponding
MPS ansatz.

We next study the AFH model on a two-dimensional
square lattice, comparing in the right panel of Fig. 3
to QMC results [31]. As expected from entanglement
considerations, the 2D case proves harder for the NQS.
Nonetheless, we always find a systematic improvement
of the variational energy upon increasing ↵, qualitatively
similar to the 1D case. The increased difficulty of the
problem is reflected in a slower convergence. We still ob-
tain results at the level of existing state-of-the-art meth-
ods or better. In particular, with a relatively small hid-

den unit density (↵ ⇠ 4) we already obtain results at
the same level than the best known variational ansatz
to-date for finite clusters (the EPS of Ref. [32] and the
PEPS states of Ref. [33]). Further increasing ↵ then
leads to a sizable improvement and consequently yields
the best variational results so-far-reported for this 2D
model on finite lattices.

Unitary Dynamics — NQS are not limited to ground-
state problems but can be extended to the time-
dependent Schrödinger equation. For this purpose we de-
fine complex-valued and time-dependent network weights
W(t) which at each time t are trained to best reproduce
the quantum dynamics, in the sense of the Dirac-Frenkel
time-dependent variational principle [34, 35]. In this con-
text, the variational residuals

R(t; ˙W(t)) = dist(@
t

 (W(t)), �iH ) (3)

are the objective functions to be minimized as a func-
tion of the time derivatives of the weights ˙W(t) (see
Supp. Mat.) In the stochastic framework, this is achieved
by a time-dependent VMC method [22, 23], which sam-
ples | 

M

(S; W(t))|2 at each time and provides the best
stochastic estimate of the ˙W(t) that minimize R2

(t), with
a computational cost O(↵N2

). Once the time derivatives
determined, these can be conveniently used to obtain the
full time evolution after time-integration.

To demonstrate the effectiveness of the NQS in the
dynamical context, we consider the unitary dynamics in-
duced by quantum quenches in the coupling constants of
our spin models. In the TFI model we induce a non-
trivial quantum dynamics by means of an instantaneous
change in the transverse field: the system is initially pre-
pared in the ground-state of the TFI model for some

1d TFIM 
L=80, PBC

1d Heisenberg 
L=80, PBC

2d Heisenberg 
L=10, PBC

cf Xiaopeng Li and Zi Cai’s talk in the afternoon
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Quantum Error Correction

A Neural Decoder for Topological Codes
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(Dated: October 17, 2016)

We present an algorithm for error correction in topological codes that exploits modern machine
learning techniques. Our decoder is constructed from a stochastic neural network called a Boltzmann
machine, of the type extensively used in deep learning. We provide a general prescription for the
training of the network and a decoding strategy that is applicable to a wide variety of stabilizer codes
with very little specialization. We demonstrate the neural decoder numerically on the well-known
two dimensional toric code with phase-flip errors.

Introduction: Much of the success of modern machine
learning stems from the flexibility of a given neural net-
work architecture to be employed for a multitude of dif-
ferent tasks. This generalizability means that neural net-
works can have the ability to infer structure from vastly
di↵erent data sets with only a change in optimal hyper-
parameters. For this purpose, the machine learning com-
munity has developed a set of standard tools, such as
fully-connected feed forward networks [1] and Boltzmann
machines [2]. Specializations of these underlie many of
the more advanced algorithms, including convolutional
networks [3] and deep learning [4, 5], encountered in
real-world applications such as image or speech recog-
nition [6].

These machine learning techniques may be harnessed
for a multitude of complex tasks in science and engineer-
ing [7–16]. An important application lies in quantum
computing. For a quantum logic operation to succeed,
noise sources which lead to decoherence in a qubit must
be mitigated. This can be done through some type of
quantum error correction – a process where the logical
state of a qubit is encoded redundantly so that errors can
be corrected before they corrupt it. A leading candidate
for this is the implementation of fault-tolerant hardware
through surface codes, where a logical qubit is stored as a
topological state of an array of physical qubits [17]. Ran-
dom errors in the states of the physical qubits can be
corrected before they proliferate and destroy the logical
state. The quantum error correction protocols that per-
form this correction are termed “decoders”, and must be
implemented by classical algorithms running on conven-
tional computers [18].

In this paper we demonstrate how one of the simplest
stochastic neural networks for unsupervised learning, the
restricted Boltzmann machine [19], can be used to con-
struct a general error-correction protocol for stabilizer
codes. Give a syndrome, defined by a measurement of
the end points of an (unknown) chain of physical qubit
errors, we use our Boltzmann machine to devise a proto-
col with the goal of correcting errors without corrupting
the logical bit. Our decoder works for generic degen-
erate stabilizers codes that have a probabilistic relation
between syndrome and errors, which does not have to be

Ẑ(1)
L

Ẑ(2)
L

�

�

e

r�

r��

� �

�

FIG. 1. Several operations on a 2D toric code. Logical oper-
ators Ẑ(1)

L and Ẑ(1)
L (orange) are non-trivial cycles on the real

lattice. A physical error chain e (purple) and its syndrome
S(e) (black squares). A recovery chain r0 (green), with the
combined operator on the cycle e � r0 being a product of
stabilizers Ẑ↵Ẑ�Ẑ� (recovery success). A recovery chain r00

(red) whose cycle has non-trivial homology and acts on the

code state as Ẑ(1)
L (logical failure).

a priori known. Importantly, it is very simple to imple-
ment, requiring no specialization regarding code locality,
dimension, or structure. We test our decoder numerically
on a simple two-dimensional surface code with phase-flip
errors.
The 2D Toric Code. Most topological codes can be

described in terms of the stabilizer formalism [20]. A sta-
bilizer code is a particular class of error-correcting code
characterized by a protected subspace C defined by a sta-
bilizer group S. The simplest example is the 2D toric
code, first introduced by Kitaev [21]. Here, the quan-
tum information is encoded into the homological degrees
of freedom, with topological invariance given by the first
homology group [22]. The code features N qubits placed
on the links of a L ⇥ L square lattice embedded on a
torus. The stabilizers group is S = {Ẑ

p

, X̂
v

}, where the
plaquette and vertex stabilizers are defined respectively
as Ẑ

p

=
N

`2p

�̂z

`

and X̂
v

=
N

`2v

�̂x

`

, with �̂z

`

and �̂x

`

acting respectively on the links contained in the plaque-
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tte p and the links connected to the vertex v. There are
two encoded logical qubits, manipulated by logical oper-

ators Ẑ(1,2)
L

as �̂z acting on the non-contractible loops on

the real lattice and logical X̂(1,2)
L

as the non-contractible
loops on the dual lattice (Fig 1).

Given a reference state | 0i 2 C, let us consider the
simple phase-flip channel described by a Pauli operator
where �̂z is applied to each qubit with probability p

err

.
This operator can be e�ciently described by a mapping
between the links and Z2, called an error chain e, whose
boundary is called a syndrome S(e). In a experimen-
tal implementation, only the syndrome (and not the er-
ror chain) can be measured. Error correction (decoding)
consists of applying a recovery operator whose chain r
generates the same syndrome, S(e) = S(r). The recov-
ery succeeds only if the combined operation is described
by a cycle (i.e. a chain with no boundaries) e � r that
belongs to the trivial homology class h0, describing con-
tractable loops on the torus. On the other hand, if the
cycle belongs to a non-trivial homology class (being non-
contractible on the torus), the recovery operation directly
manipulates the encoded logical information, leading to
a logical failure (Fig 1).

Several decoders have been proposed for the 2D toric
code, based on di↵erent strategies [23–27]. Maximum
likelihood decoding consists of finding a recovery chain
r with the most likely homology class [28, 29]. A di↵er-
ent recovery strategy, designed to reduce computational
complexity, consists of generating the recovery chain r
compatible with the syndrome simply by using the min-
imum number of errors. Such a procedure, called Min-
imum Weight Perfect Matching [30] (MWPM), has the
advantage that can be performed without the knowledge
of the error probability p

err

. This algorithm is however
sub-optimal (with lower threshold probability [22]) since
it does not take into account the high degeneracy of the
error chains given a syndrome.

The Neural Decoder. Neural networks are commonly
used to extract features from raw data in terms of prob-
ability distributions. In order to exploit this for error
correction, we first build a dataset made of error chains
and their syndromes D = {e, S}, and train a neural net-
work to model the underlying probability distribution
p

data

(e, S). Our goal is to then generate error chains
to use for the recovery. We use a generative model called
a Boltzmann machine, a powerful stochastic neural net-
work widely used in the pre-training of the layers of deep
neural networks [31, 32]. The network architecture fea-
tures three layers of stochastic binary neurons, the syn-
drome layer S 2 {0, 1}N/2, the error layer e 2 {0, 1}N ,
and one hidden layer h 2 {0, 1}nh (Fig. 2). Symmet-
ric edges connect both the syndrome and the error layer
with the hidden layer. We point out the this network is
equivalent to a traditional bilayer restricted Boltzmann
machine, where we have here divided the visible layer

b

c

d

U

W

S

h

e

FIG. 2. The neural decoder architecture. The hidden layer h
is fully-connected to the syndrome and error layers S and e
with weights U and W respectively.

into two separate layers for clarity. The weights on the
edges connecting the network layers are given by the ma-
trices U and W with zero diagonal. Moreover, we also
add external fields b, c and d coupled to the every neu-
ron in each layer. The probability distribution that the
probabilistic model associates to this graph structure is
the Boltzmann distribution [33]

p�(e, S, h) =
1

Z�
e�E�(e,S,h) (1)

where Z� = Tr{h,S,E} e�E�(e,S,h) is the partition func-
tion, � = {U , W , b, c, d} is the set of parameters of the
model, and the energy is

E�(e, S, h) = �
X

ik

U
ik

h
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e
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+
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d
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.
(2)

The joint probability distribution over (e, S) is obtained
after integrating out the hidden variables from the full
distribution

p�(e, S) =
X

h

p�(e, S, h) =
1

Z�
e�E�(e,S) (3)

where the e↵ective energy E�(e, S) can be computed
exactly. Moreover, given the structure of the net-
work, the conditional probabilities p�(e |h), p�(S |h)
and p�(h | e, S) are also known exactly. The training of
the machine consists of tuning the parameters � until the
model probability p�(e, S) becomes close to the target
distribution p

data

(E, S) of the dataset. This translates
into solving an optimization problem over the parameters
� by minimizing the distance between the two distribu-
tion, defined as the Kullbach-Leibler (KL) divergence,
KL / �

P
(e,S)2D log p�(e, S). Details about the Boltz-

mann machine and its training algorithm are reported in
the Supplementary Materials.

error

syndrome

Approximate the probability 
p(S|e) with an RBM 
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Next, a single-qubit measurement is made on the
ancillary qubit alone (the other qubits are simply ignored),
projecting it onto the state

jϕi ¼ ðjujj0i − jvjj1iÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj2 þ jvj2

q
: ð2Þ

The success probability p of this projective measurement
can be estimated by repeated measurements. Remarkably,
the inner product between jui and jvi can be directly
calculated from the p:

hujvi ¼ ð0.5 − pÞðjuj2 þ jvj2Þ=jujjvj; ð3Þ

and the distance between ~u and ~v can then be obtained:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðjuj2 þ jvj2Þ

q
: ð4Þ

It is important to note that such an estimation can achieve a
desired statistical accuracy simply by a sufficient number of
repeated measurements, but is independent of the size (N)
of the vectors, which gives a quantum speed-up.
This algorithm can be understood intuitively; the more

difference between the pure states jui and jvi, the more
entangled the Eq. (1) is. For examples, if jui and jvi are
identical, then the ancillary qubit is in the state ðj0iþ j1iÞ=ffiffiffi
2

p
, separable from the vector qubits, and p ¼ 0, D ¼ 0.

If jui and jvi are orthogonal, then the Eq. (1) is maximally
entangled, and p ¼ 0.5, D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj2 þ jvj2

p
.

In our experiment, we use single photons as qubits,
where j0i and j1i are encoded with the photon’s horizontal
(H) and vertical (V) polarization, respectively. A schematic
drawing of the experimental setup is illustrated in Fig. 1.
Polarization-entangled photon pairs are generated by spon-
taneous parametric down-conversion [17] and prepared in
the state

ðj0iancj0ivec þ j1iancj1ivecÞ=
ffiffiffi
2

p
: ð5Þ

One photon (anc) is used as the ancillary qubit, and the other
one (vec) will be used to encode the reference and incoming
vectors using Sagnac-like interferometers (see Fig. 1).
To generate three- and four-photon entanglement

resource states, we create two entangled photon pairs.
Two single photons, one from each pair, are temporally and
spatially superposed on a polarizing beam splitter (PBS).
We select the events where one and only one single photon
emits from each output. It can be concluded that the four
photons are either all H polarized or V polarized, two cases
that are quantum mechanically indistinguishable when all
the other degrees of freedom of the photons are erased
(see the caption of Fig. 1), thus projecting the four photons
into the Greenberger-Horne-Zeilinger entangled state [18]:

anc123

DT

DRD1D2D3

BBO BBO

HWP

PBS

PBS
NBS

PBS
NBS

PBS
NBS

Prism

PBS
HWPHWP

HWPHWPHWP

HWP

BBO HWP
BBO

HWP
BBO

HWP

BBO

PrismPrism

FIG. 1 (color). Experimental setup for quantum machine learning with photonic qubits. Ultraviolet laser pulses with a central
wavelength of 394 nm, pulse duration of 120 fs, and a repetition rate of 76 MHz pass through two type-II β-barium borate (BBO)
crystals with a thickness of 2 mm to produce two entangled photon pairs. The photons pass through pairs of birefringent compensators
consisting of a 1-mm BBO crystal and a HWP to compensate the walk-off between horizontal and vertical polarization, and are prepared
in the quantum state: ðjHijViþ jVijHiÞ=

ffiffiffi
2

p
. Two extra HWPs placed in arm 3 and anc are used to transform the state into

ðjHijHiþ jVijViÞ=
ffiffiffi
2

p
. Two single photons, one from each pair, are temporally and spatially superposed on a PBS to generate a four-

photon entangled state: ðjHijHijHijHiþ jVijVijVijViÞ=
ffiffiffi
2

p
. The photons 1, 2, and 3 are sent to Sagnac-like interferometers, where

each single photon splits into two spatial modes by the PBS with regard to its polarization, and recombines on a nonpolarizing beam
splitter (NBS). Various vectors are independently encoded into the two spatial modes using HWPs. The specially designed beam splitter
cube is half-PBS coated and half-NBS coated. High-precision small-angle prisms are inserted for fine adjustments of the relative delay
of the two different paths. The photons are detected by five single-photon detectors (quantum efficiency > 60%), and the two four-
photon coincidence events, D3D2D1DT and D3D2D1DR, are simultaneously registered by a homemade FPGA-based coincidence unit.

PRL 114, 110504 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

20 MARCH 2015

110504-2

Cai et al, PRL 114, 110504 (2015) 

4

FIG. 2. (Color online) The schematic diagram of the quantum SVM. An ancillary qubit is added here to readout the classification
result. The auxiliary registers for matrix inversion are not shown here.
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FIG. 3. (Color online)(a) Properties of the 13C-iodotrifluroethylene. The chemical shifts ⌫
i

and scalar coupling constants (J
jk

)
are on the lower diagonal in the table, respectively. The chemical shifts are given with respect to reference frequencies of 100.62
MHz (Carbon) and 376.48 MHz (Fluorines). (b) The quantum circuit for building the kernel matrix K. After discarding the
training-data register (the second qubit), the desired kernel matrix K is obtained as the quantum density matrix of the first
qubit. (c) The quantum circuit for classification. Here H and S are the Hadamard and phase gate, respectively.

realized [15, 16], with an exponentially speedup. Using the same method, the hyperplane parameters are determined

by
�
b, ~↵T

�
T

= F̃�1
�
0, ~yT

�
T

, where the vectors here represent quantum states.

The classification results in Eq. (2) could be reproduced by the overlap of two quantum states : y(~x) = sign(hx̃0 |ũ i),
with the training-data state |ũi = 1p

N

ũ

(b|0i|0i +
P

M

k=1 abs(~xk

)↵
k

|ki|~x
k

i) and the query-state |x̃0i = 1p
N

x̃0

(|0i|0i +
P

M

k=1 abs(~x0)|ki| ~x0i). Here the training-data state |ũi could be easily obtained by calling the training-data oracle

on
�
b, ~↵T

�
T

. By applying a inverse operation U
x0 = |00i hx̃0|, the expansion coe�cients h00|U

x0 |ũi = hx̃0| |ũi will
produce the classification result y(~x) [17]. A schematic diagram of this part is shown in Fig. 2. Note that the
unitary operations are conditional operations here, controlled by an ancillary qubit. Hence the final state will be
| i = |�i |1i

A

+ |00i |0i
A

, where |�i = U
x0 |ũi and the subscript ”A” indicates the state of ancillary qubit. By

measuring the expectation value of coherent term O ⌘ |00i h00| ⌦ (|0i h1|)
A

, the classification result will be revealed
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I. OVERVIEW

Here we provide additional details in support of the
main text. Section II shows details of the chimera graph
used in our study and the choice of graphs for our simula-
tions. Section III expands upon the algorithms employed
in our study. Section IV presents additional success prob-
ability histograms for different numbers of qubits and for
instances with magnetic fields, explains the origin of easy
and hard instances, and explains how the final state can
be improved via a simple error reduction scheme. Section
V presents further correlation plots and provide more
details on gauge averaging. Section VI gives details on
how we determined the scaling plots and how quantum
speedup can be detected on future devices. Finally, sec-
tion VII explains how the spectral gaps were calculated
by quantum Monte Carlo (QMC) simulations.

II. THE CHIMERA GRAPH OF THE D-WAVE
DEVICE.

The qubits and couplers in the D-Wave device can be
thought of as the vertices and edges, respectively, of a
bipartite graph, called the “chimera graph”, as shown in
figure 1. This graph is built from unit cells containing
eight qubits each. Within each unit cell the qubits and
couplers realise a complete bipartite graph K4,4 where
each of the four qubits on the left is coupled to all of the
four on the right and vice versa. Each qubit on the left
is furthermore coupled to the corresponding qubit in the
unit cell above and below, while each of the ones on the
right is horizontally coupled to the corresponding qubits
in the unit cells to the left and right (with appropriate
modifications for the boundary qubits). Of the 128 qubits
in the device, the 108 working qubits used in our tests of
the device are shown in green, and the couplers between
them are marked as black lines.
For our scaling analysis we follow the standard pro-

cedure for scaling of finite dimensional models by con-
sidering the chimera graph as an L × L square lattice
with an eight-site unit cell and open boundary condi-
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FIG. 1: Qubits and couplers in the D-Wave device.
The D-Wave One Rainer chip consists of 4 × 4 unit cells of
eight qubits, connected by programmable inductive couplers
as shown by lines.

tions. The sizes we typically used in our numerical sim-
ulations are L = 1, . . . , 8 corresponding to N = 8L2 =
8, 32, 72, 128, 200, 288, 392 or 512 spins. For the simu-
lated annealers and exact solvers on sizes of 128 and
above we used a perfect chimera graph. For sizes below
128 where we compare to the device we use the working
qubits within selections of L×L eight-site unit cells from
the graph shown in figure 1.

In references [1, 2] it was shown that an optimisation
problem on a complete graph with

√
N vertices can be

mapped to an equivalent problem on a chimera graph
with N vertices through minor-embedding. The tree
width of

√
N mentioned in the main text arises from this

mapping. See Section VIA for additional details about
the tree width and tree decomposition of a graph.
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bipartite graph, called the “chimera graph”, as shown in
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eight qubits each. Within each unit cell the qubits and
couplers realise a complete bipartite graph K4,4 where
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unit cell above and below, while each of the ones on the
right is horizontally coupled to the corresponding qubits
in the unit cells to the left and right (with appropriate
modifications for the boundary qubits). Of the 128 qubits
in the device, the 108 working qubits used in our tests of
the device are shown in green, and the couplers between
them are marked as black lines.
For our scaling analysis we follow the standard pro-

cedure for scaling of finite dimensional models by con-
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FIG. 1: Qubits and couplers in the D-Wave device.
The D-Wave One Rainer chip consists of 4 × 4 unit cells of
eight qubits, connected by programmable inductive couplers
as shown by lines.

tions. The sizes we typically used in our numerical sim-
ulations are L = 1, . . . , 8 corresponding to N = 8L2 =
8, 32, 72, 128, 200, 288, 392 or 512 spins. For the simu-
lated annealers and exact solvers on sizes of 128 and
above we used a perfect chimera graph. For sizes below
128 where we compare to the device we use the working
qubits within selections of L×L eight-site unit cells from
the graph shown in figure 1.

In references [1, 2] it was shown that an optimisation
problem on a complete graph with

√
N vertices can be

mapped to an equivalent problem on a chimera graph
with N vertices through minor-embedding. The tree
width of

√
N mentioned in the main text arises from this

mapping. See Section VIA for additional details about
the tree width and tree decomposition of a graph.
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FIG. 2. Input data is mapped to a normalized order N tensor
with a trivial (rank 1) product structure.

II. ENCODING INPUT DATA

The most successful use of tensor networks in physics
so far has been in quantum mechanics, where combining
N independent systems corresponds to taking the tensor
product of their individual state vectors. With the goal
of applying similar tensor networks to machine learning,
we choose a feature map of the form

�s1s2···sN (x) = �

s1(x1) ⌦ �

s2(x2) ⌦ · · · �sN (x
N

) . (2)

The tensor �s1s2···sN is the tensor product of the same
local feature map �

sj (x
j

) applied to each input x

j

, where
the indices s

j

run from 1 to d; the value d is known as
the local dimension. Thus each x

j

is mapped to a d-
dimensional vector, which we require to have unit norm;
this implies each �(x) also has unit norm.

The full feature map �(x) can be viewed as a vector
in a d

N -dimensional space or as an order-N tensor. The
tensor diagram for �(x) is shown in Fig. 2. This type of
tensor is said be rank-1 since it is manifestly the prod-
uct of N order-1 tensors. In physics terms, �(x) has the
same structure as a product state or unentangled wave-
function.

For a concrete example of this type of feature map,
consider inputs which are grayscale images with N pixels,
where each pixel value ranges from 0.0 for white to 1.0
for black. If the grayscale pixel value of the j

th pixel
is x

j

2 [0, 1], a simple choice for the local feature map
�

sj (x
j

) is

�

sj (x
j

) =
h
cos

⇣
⇡

2
x

j

⌘
, sin

⇣
⇡

2
x

j

⌘i
(3)

and is illustrated in Fig. 3. The full image is represented
as a tensor product of these local vectors. From a physics
perspective, �

sj is the normalized wavefunction of a sin-
gle qubit where the “up” state corresponds to a white
pixel, the “down” state to a black pixel, and a superpo-
sition corresponds to a gray pixel.

While our choice of feature map �(x) was originally
motivated from a physics perspective, in machine learn-
ing terms, the feature map Eq. (2) defines a kernel which
is the product of N local kernels, one for each compo-
nent x

j

of the input data. Kernels of this type have been
discussed previously [35, p. 193] and have been argued
to be useful for data where no relationship is assumed
between di↵erent components of the input vector prior
to learning [36].

FIG. 3. For the case of a grayscale image and d = 2, each
pixel value is mapped to a normalized two-component vector.
The full image is mapped to the tensor product of all the local
pixel vectors as shown in Fig. 2.

`

=
`

W

`

�(x)
f

`(x)

FIG. 4. The overlap of the weight tensor W

` with a specific
input vector �(x) defines the decision function f

`(x). The
label ` for which f

`(x) has maximum magnitude is the pre-
dicted label for x.

III. MULTIPLE LABEL CLASSIFICATION

In what follows we are interested in multi-class learn-
ing, for which we choose a “one-versus-all” strategy,
which we take to mean generalizing the decision func-
tion Eq. (4) to a set of functions indexed by a label `

f

`(x) = W

` · �(x) (4)

and classifying an input x by choosing the label ` for
which |f `(x)| is largest.

Since we apply the same feature map � to all input
data, the only quantity that depends on the label ` is
the weight vector W

`. Though one can view W

` as a
collection of vectors labeled by `, we will prefer to view
W

` as an order N +1 tensor where ` is a tensor index and
f

`(x) is a function mapping inputs to the space of labels.
The tensor diagram for evaluating f

`(x) for a particular
input is depicted in Fig. 4.

IV. MPS APPROXIMATION

Because the weight tensor W

`

s1s2···sN
has N

L

· dN com-
ponents, where N

L

is the number of labels, we need a
way to regularize and optimize this tensor e�ciently. The
strategy we will use is to represent this high-order tensor
as a tensor network, that is, as the contracted product of
lower-order tensors.

A tensor network approximates the exponentially large
set of components of a high-order tensor in terms of
a much smaller set of parameters whose number grows

6

(a)

(b)

(c)

FIG. 10. Toy models learned from the overlapping data set
Fig. 9. The results shown are for local dimension (a) d = 2,
(b) d = 3, and (c) d = 6. Background colors show how every
spatial point would be classified. Misclassified data points are
colored white.

lobes of one color protruding into the other. These likely
indicate that the finite local dimension still somewhat
regularizes the model; otherwise it would be able to over-
fit even more drastically by just surrounding each point
with a small patch of its correct color.

B. Non-Linear Decision Boundary

To test the ability of our proposed class of models to
learn highly non-linear decision boundaries, consider the
spiral shaped boundary in Fig. 11(a). Here we take P

A

(a) (b)

FIG. 11. Toy model reconstruction of interlocking spiral-
shaped distribution: (a) original distribution and (b) sampled
points and distribution learned by model with local dimension
d = 10.

and P

B

to be non-overlapping with P

A

uniform on the
red region and P

B

uniform on the blue region.
In Fig. 11(b) we show the result of training a model

with local dimension d = 10 on 500 sampled points, 250
for each region (crosses for region A, squares for region
B). The learned model is able to classify every training
point correctly, though with some overfitting apparent
near regions with too many or too few sampled points.

VIII. INTERPRETING TENSOR NETWORK
MODELS

A natural question is which set of functions of the
form f

`(x) = W

` · �(x) can be realized when using a
tensor-product feature map �(x) of the form Eq. (2) and
a tensor-network decomposition of W

`. As we will argue,
the possible set of functions is quite general, but taking
the tensor network structure into account provides ad-
ditional insights, such as determining which features the
model actually uses to perform classification.

A. Representational Power

To simplify the question of which decision functions
can be realized for a tensor-product feature map of the
form Eq. (2), let us fix ` to a single label and omit it
from the notation. We will also consider W to be a com-
pletely general order-N tensor with no tensor network
constraint. Then f(x) is a function of the form

f(x) =
X

{s}

W

s1s2···sN �

s1(x1) ⌦ �

s2(x2) ⌦ · · · �sN (x
N

) .

(13)

If the functions {�

s(x)}, s = 1, 2, . . . , d form a basis for a
Hilbert space of functions over x 2 [0, 1], then the tensor
product basis

�

s1(x1) ⌦ �

s2(x2) ⌦ · · · �sN (x
N

) (14)

forms a basis for a Hilbert space of functions over
x 2 [0, 1]⇥N . Moreover, if the basis {�

s(x)} is complete,

use MPS for pattern recognition

%99.03 accuracy on MNIST dataset*
* bond dimension 120 
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