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Disclamer

o [t will be VERY subjective
e Not all iImportant papers are reviewed

e Some are shown for negative reasons

® [he purpose Is to trigger discussion
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no hands” of reality” neural nets”



L essons

e One can define the direction of a new field

e Overhype hurts the field in the long term

e Be practical: really solve problems

e BEANR, BERMCTILE
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The problem we'd like to solve

+D° 29°

° 0“ o s
oﬂo %’ = 0
: \Q; = o
000’ ‘:', . @ Cu
P % o c

361 217 # of atoms in
4 ~2.2x10 > the universe



The problem we'd like to solve
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“Theory of everything” for condensed matter,
chemistry and biology (including neuroscience)



Computational guantum many-body physics
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Computational guantum many-body physics

P

exact quantum tensor network dynamical mean
diagonalization Monte Carlo states field theories

Algorithmic improvement in
past 20 years outperformed
Moore’s law



Computational guantum many-body physics

R Z27 A

yYrrerr
toeee
exact quantum tensor network dynamical mean
diagonalization Monte Carlo states field theories
Modern Traditional
algorithm algorithm

V - v y




Computational guantum many-body physics
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Machine Learning 101

Supervised learning Unsupervised learning
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Classification Clustering
Spam detection Online advertising

Image recognition Recommender system



Machine Learning 102

neural network
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Machine Learning 102

neural network
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WARNING

The following content
may contain spoilers

They may spoil your fun
of imagination & creation

Proceed with caution!!!



Deep Learning and RG
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A Common Logic to Seeing Cats and Cosmos
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Olena Shmahalo / Quania Magazine

There may be a universal logic to how physicists, computers and brains tease out important features from
among other irrelevant bits of data.

“An exact mapping between the Variational Renormalization Group
and Deep Learning”, Mehta and Schwab, 1410.3831



Deep Learning and RG

Renormalization Group
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Restricted Boltzmann Machine

“An exact mapping between the Variational Renormalization Group
and Deep Learning”, Mehta and Schwab, 1410.3831
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Number of Decimations

Deep Learning and RG

Decimation Deep Architecture
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1D Ising model: Block spin RG vs deep neural nets

ct. "Deep learning and the renormalization group”, Bény, 1301.3124
“‘PCA meets RG", Braddea and Bialek, 1610.09733


https://arxiv.org/abs/1301.3124

Dictionary: RG vs deep learning

Property Variational RG Deep Belief

Networks

How input distribution Hamiltonian defining Data samples drawn
IS defined P(v) from P(v)
How interactions are T(v,h) E(v,h)
defined
Exact transformation KL divergence
Tr ™M =1 between P(v) and
variational distribution |
IS zero
Approximations Minimize or bound Minimize the KL
free energy divergence
differences
Method Analytic (mostly) Numerical
What happens under Relevant operators  New features emerge
coarse-graining grow/irrelevant shrink

From Schwab’s talk at Pl: hitp://pirsa.org/displayFlash.php?id=16080006



http://pirsa.org/displayFlash.php?id=16080006

Comment on the quantum magazine website

Noah says:
December 26, 2014 at 9:54 am

I just spend an hour reading Mehta-Schwab paper from the beginning to end. Let me say that “A
Common Logic to Seeing Cats and Cosmos” is a sensationalist article about a trivial paper, which
will have no impact whatsoever. The whole M-S paper is based on the fact that couplings of two
systems appear in more than one context and that distributions can sometimes appear as
marginal distributions on product spaces. There is no one-to-one mappings between
renormalization group (RG) scheme of Kadanoff and Restricted Boltzmann Machines (RBM) in
Deep Neural Networks (DNN) in their paper. What they show is that RBM can be represented as a
RG scheme with a very specific choice of coupling function T in equation (18). Conveniently, this
coupling function depends on the Hamiltonian of the spin system, which it normally should not.
Equivalence in equations (8) and (9) is also not correct. Condition (9) of course implies that the
scheme is exact, but not the other way around, unless the authors make some implicit
assumptions about coupling function T not mentioned in the paper. The paper contains no non-
trivial ideas, it does not “open up a door to something very exciting”, and I will not hold my breath
expecting new breakthroughs because of this connection.

https://www.quantamagazine.org/20141204-a-common-logic-to-seeing-cats-and-cosmos/



Deep learning and physics

MIT
Technology
Review

Computing

The Extraordinary Link Between
Deep Neural Networks and the
Nature of the Universe

Nobody understands why deep neural networks are so good at
solving complex problems. Now physicists say the secretis
buried in the laws of physics.

“Why does deep and cheap learning work so well?”
Lin and Tegmark,1608.08225



Why deep learning works

e |tis not only a math, but also a physics question

* [he class of functions of practical interests (natural
scenes, drawings etc) can be approximated through

‘deep and cheap learning” because they follow the
laws of physics

o Symmetry, locality, compositionality and polynomial
l0g-probability

“Why does deep and cheap learning work so well?”
Lin and Tegmark,1608.08225



random images

MNIST database
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from the “Deep Learning” book by Goodfellow, Bengio, Courville
https




Physics-ML dictionary

Physics Machine learning
Hamiltonian Surprisal —Inp
Simple H Cheap learning
Quadratic H Gaussian p
Locality Sparsity
Translationally symmetric H | Convnet
Computing p from H Softmaxing

Bit

Spin

Free energy difference
Effective theory
Irrelevant operator
Relevant operator

KL-divergence

Nearly lossless data distillation
Noise

Feature

“Why does deep and cheap learning work so well?”
Lin and Tegmark,1608.08225




Scott Aaronson’s comment

Several people wrote in to tell me about a recent paper by
Henry Lin and Max Tegmark, which tries to use physics
analogies and intuitions to explain why deep learning works
as well as it does. To my inexpert eyes, the paper seemed
to contain a lot of standard insights from computational
learning theory (for example, the need to exploit
symmetries and regularities in the world to get
polynomial-size representations), but expressed in a
different language. What confused me most was the
paper’s claim to prove “no-flattening theorems” showing
the necessity of large-depth neural networks—since in the
sense | would mean, such a theorem couldn’t possibly be
proved without a major breakthrough in computational

complexity (e.g., separating the levels of the class TC9).
Again, anyone who understands what’s going on is
welcome to share in the comments section.

http://www.scottaaronson.com/blog/?p=2918



http://www.scottaaronson.com/blog/?p=2918

More discussions

Comment on "Why does deep and cheap learning work
so well?" Schwab and Mehta, 1609.03541

Why Deep Neural Networks” Liang and Srikant,
1610.0416"

Why and When Can Deep -- but Not Shallow --
Networks Avoid the Curse of Dimensionality: a Review,
Poggio et al, 1611.00740

Understanding Deep Neural Networks with Rectitied
Linear Units, Arora et al, 1611.01491



Why machine learning
for many-body physics 7

» Conceptual connections: a new and natural way
to think about (quantum) many-body systems

 Data driven approach: making scientific
discovery based on big datasets

* [echniques: neural networks, kernel methods,
feature extraction, dimensional reduction,
clustering analysis, probabilistic modeling,
deep learning, hardware acceleration...
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|deas

Conceptual connections to RG

A general way to do fitting and interpolations

Solving inverse problems

Varia

tiona| wave functions

\

Quantum error correction

Classification/discovery Phases of Matter

Algorithmic development




Material Discovery

a2 ) 4 )
igh throughput | Database
computation

/k W,
2 )
Train a model to make
predictions
/ ‘
Crystal structures Material properties Growth conditions

electrical, thermal, topological

ct. Hongbin Ren’s talk tomorrow



Classity phases of matter

Ising configurations

\‘»‘,'/(:*"'r‘ ferromagnetic
s ‘\\V’—Q disordered

label

“Machine Learning Phase of Matter”
Carrasquilla and Melko, 1605.01735



Classity phases of matter
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“Machine Learning Phase of Matter”
Carrasquilla and Melko, 1605.01735



Classity phases of matter
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The net computes [total magnetization| for discrimination

v/ Train on square lattice, predict on triangle lattice
Y Train for ferromagnets, predict on anti-ferromagnets

¥ Also fails to learn the topology of Ising gauge fields*

"Machine Learning Phase of Matter”  "The convnetearns about

local constraints but not

Carrasquilla and MG”(O, 16005.01735  the topological invariance



Sign problem in the Hubbard model

—alls to detect the
phase transition In
the auxiliary fields

projection time
prediction

spatial

interaction U

“Machine learning quantum phases of matter beyond the
fermion sign problem”, Broecker, Carrasquilla, Melko, Trebst, 1608.07/848



Sign problem in the Hubbard model

projection time

spatial

Ue
T -alls to detect the
S 05 (e o 05 ohase transition in
s the auxiliary fields
| 4 interzction U ; ¢
Dirac CDW

g [ Seems to work with
g the Green'’s function

Sel i

0.O_I I I I I _.I_EZZI <C?jcj>a

interaction V

“Machine learning quantum phases of matter beyond the
fermion sign problem”, Broecker, Carrasquilla, Melko, Trebst, 1608.07/848



Problems with the paper

* The sign-ignoring model does not have to show phase
transition (at the right place) at all

e Hubbard-Stratonovich transformation in a wrong channel

Duchon, Loh, Trivedi, 1311.0543

Hirsch PRB, 28, 4059 (1983)

S G (Si(1)S;,(0))=(1—e~ Y "a(7)a;(0))

In W[s] = —-47.38 In W[s] = -24.49 In W[s] = 18.39
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(a) Fermi-liquid-like configuration (b) Ferromagnet ic (c) Antiferromagnet ic

e [sn’t it feature engineering to use the Green’s function 7

e Quantum problem isin 2+1 d spacetime: a 3d CNN is more appropriate



3D Hubbard model

Can recognize AF phase transition °* @ =~ & ;
from the auxiliary field configurations e, ! -
However, has to train both for U=5 and U=16 21: : e

= 43 U=5 & 16 training

005 o 8. U=5& 16 training |

U

“‘Machine Learning Phases of Strongly Correlated Fermions”
Ch'ng, Carrasquilla, Melko, Khatami, 1609.02552



3D Hubbard model

Can recognize AF phase transition == @ = * :
from the auxiliary field configurations ... ! e i
However, has to train both for U=5 and U=16 T * il
0.50-(a)  1.00F - 0 . gzgiiiigiiﬁii-
0.45_( | = 0.98- /iﬁ?ﬁ& - ‘13 10 u 15 %
0.40 py I S . .
N cow? Transfer learning: train for the
T N e half-filled Hubbard model, make
- predictions for the doped cases
0.20- | However, the predictions are ambiguous
Also, no theoretical justitications of why it should work

00 -05 -1.0 =15
L4

“‘Machine Learning Phases of Strongly Correlated Fermions”
Ch'ng, Carrasquilla, Melko, Khatami, 1609.02552



site |

Topological (Chern) insulators

Predict topological character from
menenthe variational Monte Carlo snapshot

/ ayer .
fimerZd B (requires hand-crafted feature)
/ /d=} X
// e / // ) | Output L . ;
/;/ %/;////,/.. d neuro; P]kpklpl] where ij = <Cjck>a
# /// // .///A‘< \
,/ﬂﬂ///// { o
N A .
;%-1 170 tvocrapty 't works because  Kitaev 2006
e 1 ,
O'my — h y N Z4W@ijPkZPZjSAjkl

“Triangular Quantum Loop Topography for Machine Learning”
/hang, Kim,1611.01518



Learn from experimental data
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S - “Quantum gas microscope
i thermometer”
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BREERE oL e LW, Zi Cai, Unpublished
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“Measuring quantum entanglement, machine learning and wave function
tomography: Bridging theory and experiment with the quantum gas
microscope”, Tubman,1609.08142



Reflections

e How useful is it in the end ?

* Needs labels for supervised learning
 Hand-crafted features are superfluous

* The way out: unsupervised feature learning



Reflections

e How useful is it in the end ?

* Needs labels for supervised learning
 Hand-crafted features are superfluous

* [The way out: unsupervised feature learning

“Discovering Phase Transitions with Unsupervised Learning”
LW, 1606.00318

—29 00 —50 0 50 100

Y1
cf Pan Zhang’s talk tomorrow about unsupervised learning and clustering




Variational wave functions
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Use neural net as a many-body wave function
Abstraction power from the deep hierarchical structure
Hardware (GPU) accelerations

Software library & framework built by the industry (Tensorflow etc)



RBM variational wave function

U (S W) = Z 023 @O+ bihit) L  Wijhioj
{hi}

= e2: %% x ITM . F;(S)

Where FZ(S) = 2cosh [bz + Zj WzJO"?Z}

The remaining is standard
variational Monte Carlo calculation

“Solving the Quantum Many-Body Problem with Artificial
Neural Networks”, Carleo and Troyer, 1606.02318



Accuracy of the RBM wrfs

1073 p—— —
< Jastrow |
10—43
107°
0 VST
1d TFIM 1d Helsenberg 2d Heisenberg
L=80, PBC L=80, PBC L=10, PBC

“Solving the Quantum Many-Body Problem with Artificial
Neural Networks”, Carleo and Troyer, 1606.02318

cf Xiaopeng Li and Zi Cai’s talk in the afternoon



RBM as a recommender
engine for QMC

Supervised learning of RBM
Inp (x) ~ In prem (X)

Generative sampling of RBM

X — X') = min prEM(X) P(X')
Alx = x) _1’2?RBM(X’) p(x) _

Huang and LW, 1610.02746
Liu, Qi, Meng, Fu,1610.03137 cf Ziyang Meng and Xiaoyan Xu's talks tomorrow
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Quantum Error Correction
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Approximate the probabillity

o(Sle) with an RBM

“A Neural Decoder for Topological Codes”

Torlal and Melko, 1610.04238



Quantum Machine Learning

* Use a quantum computer to speed up classical ML

subroutines

Optimization
Linear algebra
Sampling
Clustering

Support vector machine

Principle component analysis ¢

Li et al, PRL 114, 140504 (2015)

* Quantum data and guantum architecture

"Advances in guantum machine learning”, Adcock et al, 1512.02900

“Quantum machine learning”, Biamonte et al, 1611.09347



Quantum Boltzmann Machine

$15 million “quantum” Ising machine

“Quantum Boltzmann Maching”
Amin et al, 1601.02036



Physics -> ML

use MPS for pattern recognition

fx) = -
O OO0 O 0dx
P (x)

W, (1) @ 97 (22) @ -+ 7 (2) %
{s}
) = o). n ()

%99.03 accuracy on MNIST dataset®

* bond dimension 120
images scaled to 14*14

“Supervised Learning With Quantum-Inspired Tensor Networks”,
Stoudenmire and Schwab, 1605.05775 cf Novikov et al,1605.03795



