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•  Difficul8es	in	strongly	correlated	systems	

•  Solu8ons	and	limita8ons:	DMRG	and	QMC	
			
•  Ar8ficial	neural	network:	a	new	solu8on?		

•  Some	examples:	success	and	failure	

•  How	to	improve?	

Outline	



Difficul'es:		Exponen1al	explosion	of	
the	dimension	of	Hilbert	space	of	quantum	
many-body	systems	!	
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L=60,		N~1000000000	TB 

Strongly	correlated	systems:	

 Exact solutions in integrable 
 models: Bethe-ansatz  

 Bosonization 

 Slave boson/fermion 
 Schwinger boson …… 

 Exact diagonalization 
 Density matrix Renor- 
 malization Group  
 Quantum Monte Carlo 

 Dynamical mean-field  

No	
Universal	
solu'ons

! 
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Two	examples:	
• Completely	random	state	(excited	states)	

• 	AKLT	state:		

1 2[ ]Lc random numberσ σ σ⋅⋅⋅ =

1 2
1 2 1 2[ ] [ ]LL Lc Tr M M Mσ σ σσ σ σ⋅⋅⋅ = ⋅ ⋅ ⋅

Purpose:	Using	a	specific	form	of	func1on	f	to	approximate		 1 2[ ]Lc σ σ σ⋅⋅⋅
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1.	MPS	or	DMRG:			 1 2 2
1 2 1 2[ ] [ ], ~L

L Lf Tr W W W N LD dσ σ σσ σ σ⋅⋅⋅ = ⋅⋅⋅

2.	Varia1onal	QMC:					
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Ar1ficial	Neural	network:	a	powerful	func1on	
approxima1ng	machine	

Extract the rules that may be too 
complex to be captured by 
programming or designing 
explicit algorithms ! 

The gold is to express the ground states of many-body systems in terms of 
neural networks with of feasible size and merely a few hidden layers, and most 
importantly, within learning time polynomial scaled with the system size. 



Example	I	:	Ground	state	of	free	bosons/fermions	

The success of the expressibility relies on the specialty of the ground state 
compared to a generic eigenstate, where the the information encoded in its 
wave function is significantly reduced by the physical rules behind it, which 
on the other hand can be extracted by the neutral networks through big 
amount of training. 

1D free bosons:  

L=12, N=12:  P~10^{-4}  

1 | |Exact ANNP = − Ψ Ψ

1D free fermion:  

L=24, N=11:  P~10^{-4}  

2D free fermion:  L=24 (4*6), N=5:  P~10^{-3}  

L=24 (4*6), N=13:  P~0.06  



Larger	systems	sizes:	Monte	Carlo	sampling	

Difference between the exact and  
ANN values ~10^{-3}  

we first implement importance sampling to generate millions of 
“representative“  
configurations, and use them to train the ANN and approximate the 
characteristic 
function. 
 
After the training is finished, a new set of  “representative
“ configurations 
are generated according to their weight predicted by the ANN, and we 
calculate 
the value of the physical quantities 

1 2 1 2[ ,{ }] [ ]L Lf W cσ σ σ σ σ σ⋅⋅⋅ ≈ ⋅⋅⋅
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1D free fermion with L=64, N=31:  



AF	ferromagne1sm	v.s.	Frustra1on	
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[ ] | [ ] | { [ ]}f f sign fσ σ σ= ×
v v v

Absolute 
   value 

Sign 

Without frustration: Marshall sign 
rule: 
S[σ] = 1/0 if in  the total number of 
down spins in the odd sites is even/
odd. 

1 1 2 2i i i i
i i

H J S S J S S+ += ⋅ + ⋅∑ ∑
v v v v

With frustration: Sign rule ??? 

2 1 / 2, dimJ J er phase=



Prac1cal	applica1on:	ANN	as	a	varia1onal	ground	
state	wavefunc1on		
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