Unlocking the power of the variational free-energy principle with deep generative models

Lei Wang (王磊)
Institute of Physics, CAS
https://wangleiphy.github.io

From the 2020 edition

generative model for sampling

experimental data analysis
of this school
high-throughput tomography
generative model for
sampling (and more) experimental
quantum state data analysis

MACHINE LEARNING
 IN CONDENS ED MAIIER PHYSICS

Lei Wang 1.5h x 3

1. Scientific machine learning with and without data (overview talk)
2. Generative models (mostly normalizing flows)
3. Differentiable programming (for tensor networks and quantum circuits)

Recordingshttps://www.crc183.uni-koeln.de/summer-school-machine-learning/

Al for science, 24 years ago

8 Doing Science With Neural Nets: Pride and Prejudice

When neural networks re-emerged on the scene in the mid-80s as a new and glamorous computational paradigm, the initial reaction in some sectors of the scientific community was perhaps too enthusiastic and not sufficiently critical. There was a tendency on the part of practitioners to oversell the powers of neural-network or "connectionist" solutions relative to conventional techniques - where conventional techniques can include both traditional theory-rich modeling and established statistical methods. The last five years have seen a correction phase, as some of the practical limitations of neural-network approaches have become apparent, and as scientists have become better acquainted with the wide array of advanced statistical tools that are currently available.

Why now, again?

What has changed?
What has not?

A hint from the Deep Learning Book

1. Introduction

"Part III is the most important for a researcher -someone who wants to understand the breadth of perspectives that have been brought to the field of deep learning, and push the field forward towards true artificial intelligence."

Deep learning is more than fitting! Discriminative learning

Generative learning

$$
\begin{gathered}
y=f(\boldsymbol{x}) \\
\text { or } p(y \mid \boldsymbol{x})
\end{gathered}
$$

$$
p(\boldsymbol{x}, y)
$$

Progress in Brain Research
Volume 165, 2007, Pages 535-547
Computational Neuroscience: Theoretical Insights into Brain Function

To recognize shapes, first learn to generate images
Geoffrey E. Hinton , -
Department of Computer Science, University of Toronto, 10 Kings College Road, Toronto, M5S 3G4 Canada

Generated arts

\$432,500 25 October 2018 Christie's New York

Generating molecules

Sanchez-Lengeling \& Aspuru-Guzik,
Inverse molecular design using machine learning:

So, what is the fuss?

Normalization ?

$$
\int d \boldsymbol{x} p(\boldsymbol{x})=1 \quad \underset{\boldsymbol{x} \sim p(\boldsymbol{x})}{\mathbb{E}}
$$

Sampling ?

Generative models and their physics genes

Lecture Note http://wangleiphy.github.io/lectures/PILtutorial.pdf

Generative Models for Physicists

Lei Wang*
Institute of Physics, Chinese Academy of Sciences Beijing 100190, China

October 28, 2018

Abstract

Generative models generate unseen samples according to a learned joint probability distribution in the highdimensional space. They find wide applications in density estimation, variational inference, representation learning and more. Deep generative models and associated techniques (such as differentiable programing and representation learning) are cutting-edge technologies physicists can learn from deep learning.
This note introduces the concept and principles of generative modeling, together with applications of modern generative models (autoregressive models, normalizing flows, variational autoencoders etc) as well as the old ones (Boltzmann machines) to physics problems. As a bonus, this note puts some emphasize on physics-inspired gen erative models which take insights from statistical, quantum, and fluid mechanics

[^0]
CONTENTS

1 GENERATIVE MODELING 2
1.1 Probabilistic Generative Modeling 2
1.2 Generative Model Zoo 4
1.2.1 Boltzmann Machines 5
1.2.2 Autoregressive Models 8
1.2.3 Normalizing Flow 9
1.2.4 Variational Autoencoders 13
1.2.5 Tensor Networks 15
1.2.6 Generative Adversarial Networks 17
1.2.7 Generative Moment Matching Networks 18
1.3 Summary 20
2 PHYSICS APPLICATIONS 21
2.1 Variational Ansatz 21
2.2 Renormalization Group 22
2.3 Monte Carlo Update Proposals 22
2.4 Chemical and Material Design 23
2.5 Quantum Information Science and Beyond 24
3 RESOURCES 25

$A b$-initio study of quantum matters at finite T

$$
H=-\sum_{i} \frac{\hbar^{2}}{2 m_{e}} \nabla_{i}^{2}-\sum_{I, i} \frac{Z_{I} e^{2}}{\left|R_{I}-r_{i}\right|}+\frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{\left|r_{i}-r_{j}\right|}-\sum_{I} \frac{\hbar^{2}}{2 m_{I}} \nabla_{I}^{2}+\frac{1}{2} \sum_{I \neq J} \frac{Z_{I} Z_{J} e^{2}}{\left|R_{I}-R_{J}\right|}
$$

$$
Z=\operatorname{Tr}\left(e^{-\beta H}\right)
$$

Application range
of the workhorse

Bonitz et al, Phys. Plasmas '2o

Dornheim et al, Phys. Plasmas ' 17

The classical variational free-energy approach

Gibbs-Bogolyubov-Feynman variational principle

Difficulties in Applying the Variational
Principle to Quantum Field Theories ${ }^{1}$

Richard P. Feynman

Generative modeling

Known: samples
Unknown: generating distribution

Maximum likelihood estimation

"learn from data"

$$
\mathscr{L}=-\mathbb{E}_{\boldsymbol{x} \sim \text { dataset }}[\ln p(\boldsymbol{x})]
$$

Statistical physics

Known: energy function
Unknown: samples, partition function

Variational free energy

"learn from Hamiltonian"

$$
F=\underset{\boldsymbol{x} \sim p(\boldsymbol{x})}{\mathbb{E}}\left[k_{B} T \ln p(\boldsymbol{x})+H(\boldsymbol{x})\right]
$$

Deep variational free-energy approach

Use deep generative models as the variational density

$$
F=\underset{\boldsymbol{x} \sim p(\boldsymbol{x})}{\mathbb{E}}\left[\begin{array}{cc}
\left.k_{B} T \ln p(\boldsymbol{x})+H(\boldsymbol{x})\right] \\
\downarrow & \downarrow \\
& \text { entropy } \\
\text { energy }
\end{array}\right.
$$

Tractable entropy

Direct sampling

Turning sampling problem to an optimization problem leverages the deep learning engine:

Variational free-energy in the context

E, Han,Zhang, Physics Today 2020

Application	Model	Data	Objective
MD potential energy surface	$3^{\text {3N-dim }}$ function	DFT energy/ force	Generalization
DFT xc functional	3-dim functional	QMC/ CCSD/...	
Variational free-energy	3N-dim functional	No	Optimization

more fundamental, more difficult, more limited

Generative models and their physics genes

Generative modeling with normalizing flows

(9) WaveNet 1609.03499 1711.10433
https://deepmind.com/blog/wavenet-generative-model-raw-audio/ https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/
(A) Glow 1807.03039
https://blog.openai.com/glow/

Normalizing flow in a nutshell

Normalizing Flows

Change of variables $x \leftrightarrow z$ with deep neural nets

$$
p(\boldsymbol{x})=\mathscr{N}(\boldsymbol{z})\left|\operatorname{det}\left(\frac{\partial \boldsymbol{z}}{\partial \boldsymbol{x}}\right)\right|
$$

Review article 1912.02762
Tutorial https://idrl.cc/virtual_2020/speaker_4.html
composable, differentiable, and invertible mapping between manifolds

Learn probability transformations with normalizing flows

Architecture design principle

$$
\begin{gathered}
z=\mathscr{T}(\boldsymbol{x}) \\
\mathscr{T}=\mathscr{T}_{1} \circ \mathscr{T}_{2} \circ \mathscr{T}_{3} \circ \cdots
\end{gathered}
$$

Balanced
efficiency \& inductive bias

$$
\left|\operatorname{det}\left(\frac{\partial z}{\partial x}\right)\right|
$$

Autoregressive

Neural RG

$$
\frac{\partial \rho(\boldsymbol{x}, t)}{\partial t}+\nabla \cdot[\rho(\boldsymbol{x}, t) \boldsymbol{v}]=0
$$

Continuous flow

Example of a building block

Forward

$$
\left\{\begin{array}{l}
\boldsymbol{x}_{<}=\boldsymbol{z}_{<} \quad \text { neural nets } \\
\boldsymbol{x}_{>}=\boldsymbol{z}_{>} \odot e^{s\left(\boldsymbol{z}_{<}\right)}+t\left(\boldsymbol{z}_{<}\right)
\end{array}\right.
$$

Inverse

$$
\left\{\begin{array}{l}
z_{<}=\boldsymbol{x}_{<} \\
\boldsymbol{z}_{>}=\left(\boldsymbol{x}_{>}-t\left(\boldsymbol{x}_{<}\right)\right) \odot e^{-s\left(\boldsymbol{x}_{<}\right)}
\end{array}\right.
$$

Log-Abs-Jacobian-Det

$$
\ln \left|\operatorname{det}\left(\frac{\partial x}{\partial z}\right)\right|=\sum_{i}\left[s\left(z_{<}\right)\right]_{i}
$$

Real NVP, Dinh et al,1605.08803

Normalizing flow in physics

Neural Network Renormalization Group
$z=g^{-1}(\boldsymbol{x})$

Li, LW, PRL'18
lio12589/NeuralRG
Collective
variables
Latent variables

Bijective neural nets

Correlated classical variables

Neural network renormalization group

Li, LW, PRL '18
github.com/lio12589/NeuralRG

Bijective
neural net

Quantum origin of the architecture

Connection to wavelets

Nonlinear \& adaptive generalizations of wavelets Guy, Wavelets \& RG1999+ White, Evenbly, Qi, Wavelets, MERA, and holographic mapping 2013+

Normalizing flow in physics

Molecular simulation

Noe et al, Science ' 19 Wirnsberger et al, JCP ' 20

Lattice field theory

Albergo et al, PRD '19
Kanwar et al, PRL'2o

Gravitational wave detection

Green et al, MLST ' ${ }^{21}$
Dex et al, PRL' 21

Continuous normalizing flows

$$
\ln p(x)=\ln \mathscr{N}(z)-\ln \left|\operatorname{det}\left(\frac{\partial x}{\partial z}\right)\right|
$$

Consider infinitesimal change-of-variables Chen et al 1806.07366

$$
\begin{array}{cc}
\boldsymbol{x}=z+\varepsilon \boldsymbol{v} & \ln p(\boldsymbol{x})-\ln \mathcal{N}(z)=-\ln \left|\operatorname{det}\left(1+\varepsilon \frac{\partial v}{\partial z}\right)\right| \\
\frac{d \boldsymbol{x}}{d t}=v & \frac{d=T}{} \quad \bigvee_{t=0}^{d t}=-\nabla \cdot v
\end{array}
$$

Fluid physics behind flows

$$
\frac{d x}{d t}=v
$$

(2) Zhang, E, LW 1809.10188
wangleiphy/MongeAmpereFlow

$$
\begin{gathered}
\frac{\partial \rho(\boldsymbol{x}, t)}{\partial t}+\nabla \cdot[\rho(\boldsymbol{x}, t) \boldsymbol{v}]=0 \\
\longleftrightarrow
\end{gathered}
$$

Simple density
Complex density

Neural Ordinary Differential Equations

Residual network

$$
x_{t+1}=x_{t}+v\left(x_{t}\right)
$$

ODE integration

$d x / d t=v(x)$
Harbor el al 1705.03341
Chen et al, 1806.07366

Lu et al 1710.10121,
E Commun. Math. Stat 17'...

Neural Ordinary Differential Equations

Residual network

$$
x_{t+1}=x_{t}+v\left(x_{t}\right)
$$

ODE integration

Chen et al, 1806.07366

$$
\begin{array}{ll}
d \boldsymbol{x} / d t=\boldsymbol{v}(\boldsymbol{x}) \quad & \text { Harbor el al 1705.03341 } \\
& \text { Lu et al 1710.10121, } \\
& \text { E Commun. Math. Stat } 17^{\prime} \ldots .
\end{array}
$$

Continuous normalizing flows implemented with NeuralODE

Chen et al, 1806.07366, Grathwohl et al 1810.01367

Samples

Continuous normalizing flow have no structural constraints on the transformation Jacobian

Tutorial: Classical Coulomb gas in a harmonic trap

$$
H=\sum_{i<j} \frac{1}{\left|x_{i}-x_{j}\right|}+\sum_{i}^{N} x_{i}^{2}
$$

Training: Monte Carlo Gradient Estimators

$$
\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{\theta}}}[f(\boldsymbol{x})]
$$

Score function estimator (REINFORCE)

Review: 1906.10652

$$
\nabla_{\theta} \mathbb{E}_{\boldsymbol{x} \sim p_{\theta}}[f(\boldsymbol{x})]=\mathbb{E}_{\boldsymbol{x} \sim p_{\theta}}\left[f(\boldsymbol{x}) \nabla_{\theta} \ln p_{\theta}(\boldsymbol{x})\right]
$$

Pathwise estimator (Reparametrization trick) $\boldsymbol{x}=g_{\theta}(\boldsymbol{z})$

$$
\nabla_{\theta} \mathbb{E}_{\boldsymbol{x} \sim p_{\theta}}[f(\boldsymbol{x})]=\mathbb{E}_{\boldsymbol{z} \sim \mathcal{N}(z)}\left[\nabla_{\theta} f\left(g_{\theta}(\boldsymbol{z})\right)\right]
$$

With so many competing approaches, we offer our rules of thumb in choosing an estimator, which follow the intuition we developed throughout the paper:

- If our estimation problem involves continuous functions and measures that are continuous in the domain, then using the pathwise estimator is a good default. It is relatively easy to implement and a default implementation, one without other variance reduction, will typically have variance that is low enough so as not to interfere with the optimisation.
- If the cost function is not differentiable or a black-box function then the score-function or the measure-valued gradients re available. If the number of parameters is low, then the measurevalued gradient will typically have lower variance and would be preferred. But if we have a high-dimensional parameter set, then the score function estimator should be used.
- If we have no control over the number of times we can evaluate a black-box cost function, effectively only allowing a single evaluation of it, then the score function is the only estimator of the three we reviewed that is applicable.
- The score function estimator should, by default, always be implemented with at least a basic variance reduction. The simplest option is to use a baseline control variate estimated with a running average of the cost value.
- When using the score-function estimator, some attention should be paid to the dynamic range of the cost function and its variance, and to find ways to keep its value bounded within a reasonable range, e.g., transforming the cost so that it is zero mean, or using a baseline.
- For all estimators, track the variance of the gradients if possible and address high variance by using a larger number of samples from the measure, decreasing the learning rate, or clipping the gradient values. It may also be useful to restrict the range of some parameters to avoid extreme values, e.g., by clipping them to a desired interval.
- The measure-valued gradient should be used with some coupling method for variance reduction. Coupling strategies that exploit relationships between the positive and negative components of the density decomposition, and which have shared sampling paths, are known for the commonly-used distributions.
- If we have several unbiased gradient estimators, a convex combination of them might have lower variance than any of the individual estimators.
- If the measure is discrete on its domain then the score-function or measure-valued gradient are available. The choice will again depend on the dimensionality of the parameter space.
- In all cases, we strongly recommend having a broad set of tests to verify the unbiasedness of the gradient estimator when implemented.

1906.10652

More discussions

Roeder et al, 1703.09194
Vaitl et al 2206.09016, 2207.08219

A few words about tooling

HIPS/autograd	theano	O)Zygote	[M] ${ }^{5}$
\bigcirc PyTorch	$\underset{\text { Tensorfoow }}{\uparrow}$	S scimL	خֹزִر
A	K Keras	O. NiLang	(2Taich

Differentiable programming frameworks

Autoregressive model

$$
p(\boldsymbol{x})=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \cdots
$$

Language: Casual transformer 1706.03762
Speech: WaveNet 1609.03499
"... quick brown fox jumps ..."
$p(j u m p s \mid \ldots)$

Image: PixelCNN 1601.06759

Exercise

Wait, Isn't WaveNet a normalizing flow?

Hint: read Papamakarios et al,1705.07057 and van den Oord et al,1711.10433

Variational autoregressive networks

Conventional approaches

$$
\begin{aligned}
\begin{array}{r}
\text { Naive mean-field } \\
\text { factorized probability }
\end{array} & p(\boldsymbol{x})=\prod_{i} p\left(x_{i}\right) \\
\begin{array}{r}
\text { Bethe approximation } \\
\text { pairwise interaction }
\end{array} & p(\boldsymbol{x})=\prod_{i} p\left(x_{i}\right) \prod_{(i, j) \in E} \frac{p\left(x_{i}, x_{j}\right)}{p\left(x_{i}\right) p\left(x_{j}\right)}
\end{aligned}
$$

Variational autoregressive network

$$
p(\boldsymbol{x})=\prod_{i} p\left(x_{i} \mid \boldsymbol{x}_{<i}\right)
$$

Wu, LW, Zhang, PRL '19
github.com/wdphy16/stat-mech-van

Implementation: autoregressive masks

Masked Autoencoder Germain et al, 1502.03509

$$
p\left(x_{1}\right)=\operatorname{Bern}\left(\hat{x}_{1}\right) \quad p\left(x_{2} \mid x_{1}\right)=\operatorname{Bern}\left(\hat{x}_{2}\right) \quad p\left(x_{3} \mid x_{1}, x_{2}\right)=\operatorname{Bern}\left(\hat{x}_{3}\right)
$$

Other examples: PixelCNN, van den Oord et al, 1601.06759 Casual transformer, 1706.03762 Other ways to implement autoregressive models: recurrent networks

How about quantum systems?

Quantum-to-classical mapping

d+1-dim
spacetime integral

$$
Z=\operatorname{Tr}\left(e^{-\beta H}\right)=\int d^{d+1} x \cdots
$$

However, the "weight" may not be positive definite. Sign problem!

The quantum variational free-energy approach

Gibbs-Bogolyubov-Feynman-Delbrück-Molière variational principle

$$
\begin{array}{ll}
\min & F[\rho]=k_{B} T \operatorname{Tr}(\rho \ln \rho)+\operatorname{Tr}(H \rho) \\
\text { s.t. } \operatorname{Tr} \rho=1 \quad \rho>0 \quad \rho^{\dagger}=\rho \quad\langle x| \rho\left|x^{\prime}\right\rangle=(-)^{\mathscr{P}}\langle\mathscr{P} x| \rho\left|x^{\prime}\right\rangle
\end{array}
$$

Exercise

Prove $F[\rho] \geq-k_{B} T \ln Z$
where $Z=\operatorname{Tr}\left(e^{-H / k_{B} T}\right)$

Exercise

Think about how to solve the quantum Coulomb gas problem using this principle.

Density matrix

Quantum states $\Psi_{n}(\boldsymbol{x})=\left\langle\boldsymbol{x} \mid \Psi_{n}\right\rangle$
Classical probability $0<\mu_{n}<1$

$\left\langle\Psi_{m} \mid \Psi_{n}\right\rangle=\delta_{m n}$

$$
\sum_{n} \mu_{n}=1
$$

How to represent them ??
Use two deep generative models !!

"Square root" of a normalizing flow

The flow implements a learnable many-body unitary transformation hence the name "neural canonical transformation" a classical generalization of Li, Dong, Zhang, LW, PRX ' 20

Feynman's backflow in the deep learning era

$$
z_{i}=x_{i}+\sum_{j \neq i} \eta\left(\left|x_{i}-x_{j}\right|\right)\left(x_{j}-x_{i}\right) \quad \begin{gathered}
\text { Feynman \& Cohen } 1956 \\
\text { wavefunction for liquid Helium }
\end{gathered}
$$

2) Backflow is an equivariant residual flow

Feynman's backflow in the deep learning era

Deep residual networks can be regarded as discretization of a continuous dynamics

Taddei et al, PRB '15 E Commun. Math. Stat 17', Harbor el al 1705.03341, Lu et al 1710.10121, Chen et al, 1806.07366

Fermi Flow

Xie, Zhang, LW, 2105.08644, JML'22
github.com/fermiflow

Continuous flow of electron density in a quantum dot

Exercise

Recall that $\rho=\sum_{n} \mu_{n}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right|$, prove

$$
\operatorname{Tr}(\rho \ln \rho)=\underset{n \sim \mu_{n}}{\mathbb{E}}\left[\ln \mu_{n}\right]
$$

Applications

1 to 1000: model architecture based on physics, pretraining, large scale optimization...

Triumph of condensed matter physics

Insulators

Metal

Semiconductors

Why metal is metal？

Uniform electron gas

物理学中的演生现象

$$
H=-\sum_{i=1}^{N} \frac{\hbar^{2} \nabla_{i}^{2}}{2 m}+\sum_{i<j} \frac{e^{2}}{\left|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right|}
$$

r_{s} of typical metals，Richard Martin，Electronic structure

$Z=1$	$Z=2$	$Z=1$	$Z=2$	$Z=3$	$Z=4$
Li 3.23	Be 1.88			B	C 1.31
Na 3.93	Mg 2.65			Al 2.07	Si 2.00
K 4.86	Ca 3.27	Cu 2.67	Zn 2.31	Ga 2.19	Ge 2.08
Rb 5.20	Sr 3.56	Ag 3.02	Cd 2.59	In 2.41	Sn 2.39
Cs 5.63	Ba 3.69	Au 3.01	Hg 2.15	Tl	Pb 2.30

Metal density $2<r_{s}<6$ ：Coulomb repulsion is nonperturbative compared to kinetic energy

$$
\text { 张广钴 }{ }^{1,+} \text { 于 渌 }{ }^{2,3}
$$

些非正常金属态可以被认为是费米液体的某些不稳定的，对称性破缺的基态。另一方面，费米液体理论也十分令人费解，因为普通金属中电子之间的库仑相互作用能和费米能是一个量级，同时比费米能量附近的能级间距要大很多．微扰理论对如此强的相互作用已不再适应，很难相信一个如此强大的相互作用的多电子系统能与一个无相互作用准粒子系统的行为相像．然而，自然界本身一遍又一遍地提醒我们：尽管有强大的库仑相互作用，金属的低能行为仍与一个自由准粒子系统类似，这又是重正化群思想再奏凯歌！直到 20 世纪 80 年代末，由于分数量子

Landau fermi liquid theory

Physics happens around the Fermi surface with strongly constrained phase-space

Have we known everything about a Fermi liquid?

Quasi-particles effective mass

Richard D. Mattuck A Guide to Feynman Diagrams in the Manybody Problem

A fundamental quantity appears in nearly all physical properties of a Fermi liquid
$N(0)$
Density of states

S

entropy
c_{V}
specific heat

magnetic susceptibility

Quasi-particles effective mass of 3 d electron gas

Two-dimensional electron gas experiments

Volume 91, NUMBER 4

Spin-Independent Origin of the Strongly Enhanced Effective Mass in a Dilute 2D Electron System

A. A. Shashkin, * Maryam Rahimi, S. Anissimova, and S.V. Kravchenko Physics Department, Northeastern University, Boston, Massachusetts 02115, USA
V.T. Dolgopolov

Institute of Solid State Physics, Chernogolovka, Moscow District 142432, Russia

T. M. Klapwijk

Department of Applied Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands (Received 13 January 2003; published 24 July 2003)

PRL 101, 026402 (2008)

Effective Mass Suppression in Dilute, Spin-Polarized Two-Dimensional Electron Systems

Medini Padmanabhan, T. Gokmen, N. C. Bishop, and M. Shayegan
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA (Received 19 September 2007; published 7 July 2008)

Layer thickness, valley, disorder, spin-orbit coupling...

m^{*} from low temperature entropy

Eich, Holzmann, Vignale, PRB '17

$m^{*} / m=r_{F} H^{\prime}\left(d^{\prime} \varepsilon^{\prime} d k\right)_{k_{F}}$

$$
s=\frac{\pi^{2} k_{B}}{3} \frac{m^{*}}{m} \frac{T}{T_{F}}
$$

$$
\Rightarrow \frac{m^{*}}{m}={\frac{s}{s_{0}}<\text { noninteracting electrons }}_{\text {interacting electrons }}^{\text {mand }}
$$

Not an easy task due to the lack of reliable methods for low-temperature electron gases with intermediate density
computing specific heat also works, but that often requires differentiating (noisy) energies

Deep generative models for the variational density matrix

$$
\begin{gathered}
\rho=\sum_{\boldsymbol{K}} p(\boldsymbol{K})\left|\Psi_{\boldsymbol{K}}\right\rangle\left\langle\Psi_{\boldsymbol{K}}\right| \\
\begin{array}{c}
\text { Normalized probability } \\
\text { distribution }
\end{array} \\
\begin{array}{cl}
\text { Orthonormal } \\
\text { (1) } \\
\text { many-lectron basis }
\end{array} \\
\sum_{K} p(\boldsymbol{K})=1
\end{gathered} \quad \text { (2) }\left\langle\Psi_{\boldsymbol{K}} \mid \Psi_{K^{\prime}}\right\rangle=\delta_{\boldsymbol{K}, \boldsymbol{K}^{\prime}} .
$$

(1) Autoregressive model for $p(\boldsymbol{K})$

Fermionic occupation in k-space

$$
\boldsymbol{K}=\left\{\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \ldots, \boldsymbol{k}_{N}\right\}
$$

$p(\boldsymbol{K})=p\left(\boldsymbol{k}_{1}\right) p\left(\boldsymbol{k}_{2} \mid \boldsymbol{k}_{1}\right) p\left(\boldsymbol{k}_{3} \mid \boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) \cdots$
Wu, LW, Zhang, PRL '19
"... quick brown fox jumps ..."
$p(j u m p s \mid \ldots)$

\# of particles	\# of words
Momentum cutoff	Vocabulary
Entropy	Negative log- likelihood

Twist: we are modeling a set of words with no repetitions and no order

(2) Normalizing flow for $\left|\Psi_{K}\right\rangle$

Electron coordinates

Quasi-particle
coordinates

$$
\Psi_{\boldsymbol{K}}(x)=\frac{\operatorname{det}\left(e^{i \boldsymbol{k}_{i} \cdot \zeta_{j}}\right)}{\sqrt{N!}} \cdot\left|\operatorname{det}\left(\frac{\partial \zeta}{\partial x}\right)\right|_{\substack{\text { Jracobian of the } \\ \text { transformation }}}^{\frac{1}{2}}
$$

Twist: the flow should be permutation equivariant for fermionic coordinates

The objective function

$$
\begin{gathered}
F=\underset{\boldsymbol{K} \sim p(\boldsymbol{K})}{\mathbb{E}}
\end{gathered}\left[\frac{1}{\beta} \ln p(\boldsymbol{K})+\underset{\boldsymbol{x} \sim\left|\left\langle\boldsymbol{x} \mid \Psi_{K}\right\rangle\right|^{2}}{\mathbb{E}}\left[\frac{\langle\boldsymbol{x}| H\left|\Psi_{\boldsymbol{K}}\right\rangle}{\left\langle\boldsymbol{x} \mid \Psi_{\boldsymbol{K}}\right\rangle}\right]\right]
$$

Jointly optimize $\left|\Psi_{\boldsymbol{K}}\right\rangle$ and $p(\boldsymbol{K})$ to minimize the variational free energy

Limiting case 1 : Interacting electrons at $\mathrm{T}=\mathrm{o}$

$p(\boldsymbol{K})=1$ only for the closed shell momentum configuration

$$
E=\underset{x \sim\left|\Psi_{K}(x)\right|^{2}}{\mathbb{E}}\left[\frac{\langle\boldsymbol{x}| H\left|\Psi_{K}\right\rangle}{\left\langle\boldsymbol{x} \mid \Psi_{K}\right\rangle}\right]
$$

ζ

Limiting case 2: Noninteracting electrons at $\mathrm{T}>0$

$$
R=\zeta
$$

$$
F=\underset{K \sim p(\boldsymbol{K})}{\mathbb{E}}\left[\frac{1}{\beta} \ln p(\boldsymbol{K})+\sum_{i=1}^{N} \frac{\hbar^{2} \boldsymbol{k}_{i}^{2}}{2 m}\right]
$$

A classical statistical mechanics problem: Noninteracting fermions in canonical ensemble
(Not as trivial as you might think) Borrmann \& Franke, J. Chem. Phys. 1993

Benchmarks on spin-polarized electron gases

3D electron gas $\mathrm{T} / \mathrm{T}_{\mathrm{F}}=0.0625$

2D electron gas $\mathrm{T}=\mathrm{o}$

epochs

37 spin-polarized electrons in 2D @ T/T $\mathrm{T}_{\mathrm{F}=0.15}$

Effective mass of spin-polarized 2DEG

Diffusion Monte Carlo extrapolated to $N=\infty$ Drummond, Needs, PRB '13

More pronounced suppression of m^{*} in the low-density strong-coupling region

Experiments on spin-polarized 2DEG

Drommond, Needs, PRB'13

Quantum oscillation experiments
Padmanabhan et al, PRL 'o8

Entropy measurement of 2DEG

ARTICLE

Received 16 May 2014 | Accepted 27 Apr 2015 | Published 23 Jun 2015
Strongly correlated two-dimensional plasma explored from entropy measurements

A.Y. Kuntsevich ${ }^{1,2}$, Y.V. Tupikov ${ }^{3}$, V.M. Pudalov ${ }^{1,2}$ \& I.S. Burmistrov ${ }^{2,4}$

Maxwell relation $\left(\frac{\partial S}{\partial n}\right)_{T}=-\left(\frac{\partial \mu}{\partial T}\right)_{n}$

Next, directly compare computed entropy with the experiment

Why now?

Variational free-energy is a fundamental principle for $\mathrm{T}>\mathrm{O}$ quantum systems

However, it was under-exploited for solving practical problems (mostly due to intractable entropy for nontrivial density matrices)

Now, it is has became possible by integrating recent advances in generative machine learning

FAQs

Where to get training data?

No training data. Data are self-generated from the generative model.

How do we know it is correct?

Variational principle: lower free-energy is better.

Do I understand the "black box" model ?

a) I don't care (as long as it is sufficiently accurate).
b) $\ln p(K)$ contains the Landau energy functional

$$
E\left[\delta n_{k}\right]=E_{0}+\sum_{k} \epsilon_{k} \delta n_{k}+\frac{1}{2} \sum_{k \cdot k^{\prime}} f_{k, k^{\prime}} \delta n_{k} \delta n_{k^{\prime}}
$$

Discussions

Can machines discover physical law？

Distilling Free－Form Natural Laws from Experimental Data

Machines Fall Short of Revolutionary Science

Schmidt，Lipson Science＇o9

C

Detected Invariance：
$\mathrm{L}_{1}^{2}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right) \boldsymbol{\omega}_{1}^{2}+\mathrm{m}_{2} \mathrm{~L}_{2}{ }^{2} \boldsymbol{\omega}_{2}{ }^{2}+$ $\mathrm{m}_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \boldsymbol{\omega}_{1} \boldsymbol{\omega}_{2} \cos \left(\boldsymbol{\theta}_{1}-\boldsymbol{\theta}_{2}\right)$ $19.6 \mathrm{~L}_{1}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right) \cos \boldsymbol{\theta}_{1}-$ $19.6 \mathrm{~m}_{2} \mathrm{~L}_{2} \cos \boldsymbol{\theta}$

References and Notes
1．P．W．Anderson，Science 177， 393 （1972）．
2．E．Noether，Nachr．d．König Gesellsch．d．Wiss．zu Göttingen，Math－Phys．Klasse 235 （1918）．

In the Report by Schmidt and Lipson，a machine deduces the equation behind a sample of chaotic motion．The discovery of determinis－ tic chaos is an example of true Kuhnian revolu－ tion；others were its application to unexpected fields like meteorology and population biology． In the constrained problem in the Report，the relevant physical law and variables are known in advance；it is hardly a template for the creative，exploratory nature of true science．

PHILIP W．ANDERSON ${ }^{1 *}$ AND ELIHU ABRAHAMS ${ }^{2}$

Discussions

Can machines discover mathematics?

Timothy Gowers

@wtgowers
An interesting paper by Adam Wagner appeared on arXiv a couple of days ago (thanks to Imre Leader for drawing my attention to it), which uses reinforcement learning to find non-trivial counterexamples to several conjectures in graph theory. 1/
arxiv.org/pdf/2104.14516.

$$
\text { Nature 600, } 70 \text { (2021) }
$$

Advancing mathematics by guiding human intuition with AI

Alex Davies \boxtimes, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad
Tomašev, Richard Tanburn, Peter Battaglia, Charles Blundell, András Juhász, Marc
Lackenby, Geordie Williamson, Demis Hassabis \& Pushmeet Kohli \boxtimes

Search counter-examples to reject conjectures

Guide human mathematician
to propose conjectures

2204.01467

On scientific understanding with artificial intelligence

Mario Krenn, ${ }^{1,2,3,4, *}$ Robert Pollice, ${ }^{2,3}$ Si Yue Guo, ${ }^{2}$ Matteo Aldeghi, ${ }^{2,3,4}$ Alba Cervera-Lierta, ${ }^{2,3}$ Pascal Friederich, ${ }^{2,3,5}$ Gabriel dos Passos Gomes, ${ }^{2,3}$ Florian Häse, ${ }^{2,3,4,6}$ Adrian Jinich, ${ }^{7}$ AkshatKumar Nigam, ${ }^{2,3}$ Zhenpeng Yao, ${ }^{2,8,9,10}$ and Alán Aspuru-Guzik ${ }^{2,3,4,11, \dagger}$

Three Dimensions of Computer-Assisted Scientific Understanding

Discussions

Do we understand what is the machine doing?

Discussions

Is this all fitting ?

True for supervised learning, which is hugely successful for real-world applications. But that is not the whole story, especially for scientific applications.

What makes for a suitable problem?

Thank you!

Deep generative model-based variational free-energy calculations

Shuo-Hui Li

Dian Wu

Pan Zhang

Hao Xie

Linfeng Zhang

1802.02840, PRL '18 1809.10606, PRL ' 19 2105.08644, JML '22 2201.03156

lio12589/NeuralRG
wdphy16/stat-mech-van
fermiflow/fermiflow
fermiflow/CoulombGas

[^0]: The latest version of the note is at http://wangleiphy.github.io/. Please send comments, suggestions and corrections to the email address in below.

