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can deal practically with approximationmethods
for the graph isomorphism problem.
Additionally, improved sequence generation

models are possible with the ability to read and
write to memory (69). These approaches demon-
strate better ability for learning long- and short-
termpatterns.Morework is neededonRiemannian
optimization methods that exploit the geometry
of latent space. Structured architectures such as
multilevel VAE (85) offer newways of organizing
latent space and are promising research direc-
tions. New approaches also lie in inverse RL,
geared toward learning a reward or loss function
(86). Research in this direction will allow for the
discovery of reward functions associated with
different materials discovery tasks.

Outlook

Inverse design is an important component of the
complex framework required to designmatter at
an accelerated pace. The tools for inverse design,
especially those stemming from the field of ma-
chine learning, have shown rapid progress in
the last several years and have allowed chemical
space to be framed into probabilistic data-driven
models. Generativemodels produce large numbers
of candidate molecules, and the physical realiza-
tions of these candidates will require automated
high-throughput efforts to validate the genera-
tive approach. The community has yet has to
show more than a few examples of successful

closed-loop approaches for the design of matter
(87). The blurring of the barriers between theory
and experiment will lead to AI-enabled auto-
mated laboratories (88, 89).
The combination of inverse design tools with

active learning approaches such as Bayesian
optimization (90, 91) can enable a model that
adapts as it explores chemical space, which
allows for expanding a model in regions of
high uncertainty and enabling the discovery
of regions of molecular space with desirable
properties as a function of composition. Active
learning in the space of objective functions could
lead to a better understanding of the best rewards
to seek while carrying out machine learning.
As seen, central to machine learning meth-

odologies is the representation of molecules;
representations that encode the relevant physics
will tend to generalize better. Despite consider-
able progress, much work remains. Graph and
hierarchical representations of molecules are an
area requiring further study.
The integration of machine learning as a new

pillar of knowledge in the curricula of chemical,
biochemical, medicinal, and materials sciences
will allow for a more rapid adoption of themeth-
odologies summarized in this work.
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Fig. 4. Schematic representation of several architectures found in
generative models. RNNs are used for sequence generation. The VAE
shows the semi-supervised variant, jointly trained by molecules (x) and
properties (y). Latent space is denoted with Z, and latent vectors with z.
In the GAN setting, the noise eventually acquires structure via the

adversarial training. Reinforcement learning (RL) shows a policy
gradient with MTCS in the task of SMILES completion with
arbitrary rewards. Shown in the lower right are hybrid architectures
such as AAE (adversarial autoencoders) and ORGAN, which represents
GAN and RL.
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Lattice field theoryMolecular simulation

Although no reference for this free-energy dif-
ference in the given simulationmodel is known,
the temperature profile admits basic consistency
checks: The x-ray structure is identified as the
most stable structure at temperatures below
330 K. The internal energy and entropy terms of
the free-energy difference (Eq. 1) are both positive
across all temperatures. Therefore, the free-energy
decreases at high temperatures as the entropic

stabilization becomes stronger. A higher configu-
rational entropy of the “O” state is consistent with
its more open loop structure (compare Fig. 5, G
and H) and the higher degree of fluctuations in
the “O” state observed by the analysis in (30).

Discussion and conclusion

Boltzmann generators can overcome rare event-
sampling problems in many-body systems by

generating independent samples from different
metastable states in one shot. We have demon-
strated this for dense and unstructured many-
body systems with up to 892 atoms (over 2600
dimensions) that are placed simultaneously, with
most samples having globally and locally valid
structures and potential energies in the range of
the equilibrium distribution. In contrast to other
generative neural networks, Boltzmann generators

Noé et al., Science 365, eaaw1147 (2019) 6 September 2019 7 of 11

Fig. 5. One-shot sampling of all-atom structures in different
conformations of the BPTI protein. (A) Boltzmann generator for
macromolecules: Backbone atoms are whitened using PCA; side-chain
atoms are described in normalized internal coordinates (crds). (B) BPTI
x-ray crystal structure (PDB: 5PTI). Cysteine disulfide bridges and
aromatic residues are shown for orientation. (C) One-shot Boltzmann
generator sample of all 892 atoms (2670 dimensions) of the BPTI
protein similar to the x-ray structure. (D) Potential energy distribution
from MD simulation (gray) and Boltzmann generator one-shot samples

(blue). (E) Distribution of bonds and angles compared between
MD simulation (black) and Boltzmann generator (blue).
(F) Representative snapshots of four clusters of structures
generated with the Boltzmann generator. Backbone root mean
square deviation from the x-ray structure is given below the
structure (in angstroms). Marked are the x-ray–like structure
“X” and the open structure “O.” (G and H) Magnification of the
most variable parts of the Boltzmann-generated samples from the
“X” and “O” states. Side chains are shown in atomistic resolution.
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Generative AI for statistical physics 

These are principled computation: quantitatively accurate, 
interpretable, reliable, and generalizable even without data 
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Probabilistic Generative Modeling

How to express, learn, and sample from a 
high-dimensional probability distribution ? 
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“… the images encountered in 
AI applications occupy a 
negligible proportion of

the volume of image space.”
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Probabilistic Generative Modeling

How to express, learn, and sample from a 
high-dimensional probability distribution ? 

https://blog.openai.com/generative-models/
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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Rev. Mod. Phys., Vol. 68, No. 1, January 1996

U
 

Goodfellow,  
NIPS tutorial, 1701.00160

Generative models and their physics genes Generative models and their physics genes

+Diffusion models

Deep Unsupervised Learning using Nonequilibrium Thermodynamics
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�
x(0···T )

�

p
�
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�
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�
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�
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Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q
⇣
x(0···T )

⌘
. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p
⇣
x(0···T )

⌘
. An identity-covariance

Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, fµ

⇣
x(t), t

⌘
� x(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which
uses a Markov chain which slowly converts one distribu-
tion into another to compute a ratio of normalizing con-
stants. In (Burda et al., 2014) it is shown that AIS can also
be performed using the reverse rather than forward trajec-
tory. Langevin dynamics (Langevin, 1908), which are the
stochastic realization of the Fokker-Planck equation, show
how to define a Gaussian diffusion process which has any
target distribution as its equilibrium. In (Suykens & Vande-
walle, 1995) the Fokker-Planck equation is used to perform
stochastic optimization. Finally, the Kolmogorov forward
and backward equations (Feller, 1949) show that for many
forward diffusion processes, the reverse diffusion processes
can be described using the same functional form.

2. Algorithm
Our goal is to define a forward (or inference) diffusion pro-
cess which converts any complex data distribution into a
simple, tractable, distribution, and then learn a finite-time
reversal of this diffusion process which defines our gener-
ative model distribution (See Figure 1). We first describe
the forward, inference diffusion process. We then show

how the reverse, generative diffusion process can be trained
and used to evaluate probabilities. We also derive entropy
bounds for the reverse process, and show how the learned
distributions can be multiplied by any second distribution
(e.g. as would be done to compute a posterior when in-
painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
�
x(0)

�
. The data distribu-

tion is gradually converted into a well behaved (analyti-
cally tractable) distribution ⇡ (y) by repeated application
of a Markov diffusion kernel T⇡ (y|y0;�) for ⇡ (y), where
� is the diffusion rate,

⇡ (y) =

Z
dy0

T⇡ (y|y0;�)⇡ (y0) (1)

q

⇣
x(t)|x(t�1)

⌘
= T⇡

⇣
x(t)|x(t�1);�t

⌘
. (2)



A hint from the deep learning book
“Part III is the most important for a researcher
—someone who wants to understand the 
breadth of perspectives that have been 
brought to the field of deep learning, and 
push the field forward towards true artificial 
intelligence.” 
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p(x) ≥ 0x

Normalization ? Sampling ?

∫ dx p(x) = 1 𝔼
x∼p(x)

So, why do we need “generative models” ?

So, what is the fuss ?

Sampling problems in ML&MD

Lecture 2: free energy calculation (no rare event)
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Sampling problems in ML&MD
Lecture 1: sampling distributions in vanilla MD
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Perfect versus imperfect sampling
Children randomly throwing pebbles into a square, as in Fig. 1.1, illus-
trate a very simple direct-sampling Monte Carlo algorithm that can be
adapted to a wide range of problems in science and engineering, most
of them quite difficult, some of them discussed in this book. The basic
principles of Monte Carlo computing are nowhere clearer than where it
all started: on the beach, computing .

Fig. 1.1 Children computing the number on the Monte Carlo beach.

4 Monte Carlo methods

dom numbers differed, i.e. the pebbles landed at different locations in
each run.

We shall return later to this table when computing the statistical er-
rors to be expected from Monte Carlo calculations. In the meantime, we
intend to show that the Monte Carlo method is a powerful approach for
the calculation of integrals (in mathematics, physics, and other fields).
But let us not get carried away: none of the results in Table 1.1 has
fallen within the tight error bounds already known since Archimedes
from comparing a circle with regular n-gons:

3.141 ! 3
10
71

< < 3
1
7
! 3.143. (1.1)

The children’s value for is very approximate, but improves and finally
becomes exact in the limit of an infinite number of trials. This is Jacob
Bernoulli’s weak law of large numbers (see Subsection 1.3.2). The chil-
dren also adopt a very sensible rule: they decide on the total number of
throws before starting the game. The other day, in a game of “N=4000”,
they had at some point 355 hits for 452 trials—this gives a very nice ap-

355
452

=
355

4 × 113
= 1

4 × 3.14159292 . . .

/4 = 1
4 × 3.14159265 . . .

proximation to the book value of . Without hesitation, they went on
until the 4000th pebble was cast. They understand that one must not
stop a stochastic calculation simply because the result is just right, nor
should one continue to play because the result is not close enough to
what we think the answer should be.

1.1.2 Markov-chain sampling

In Monte Carlo, it is not only children who play at pebble games. We
can imagine that adults, too, may play their own version at the local
heliport, in the late evenings. After stowing away all their helicopters,
they wander around the square-shaped landing pad (Fig. 1.2), which
looks just like the area in the children’s game, only bigger.

Fig. 1.2 Adults computing the number at the Monte Carlo heliport.
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Generative modeling Statistical physics

Negative log-likelihood Energy function

Score function Force

Latent variables 
Collective variables/coarse 

graining/renormalization group

Partition function Free energy calculation

Sample diversity Enhanced sampling



F = 𝔼
x∼p(x)

[kBT ln p(x) + H(x)]

Known: samples 
Unknown: generating distribution

Known: energy function 
Unknown: partition function, samples

Statistical physicsGenerative modeling

Maximum likelihood estimation

ℒ = − 𝔼x∼dataset [ln p(x)]
“learn from data”

Variational free energy

“learn from Hamiltonian”

Two sides of the same coin



energy 

F[p] = ∫ dx p(x)[H(x) + kBT ln p(x)]

Nature minimizes free energy

Difficulties in Applying the Variational 
Principle to Quantum Field Theories1 

Richard P. Feynman 

California Institute of Technology 
Pasadena, California 91125, U.S.A. 

Introduction 
I'd like to talk on some work I did on the variational principle in field theory. At one 
time I thought that the brute force method of doing arithmetic on the machines will 
never get anywhere and we will probably end with something more old-fashioned, 
i.e. some analysis plus the machines to help us with the analytic equations, and 
so I tried to do something along these lines with quantum chromodynamics. So 
I'm talking on the subject of the application of the variational principle to field 
theoretic problems, but in particular to quantum chromodynamics. 

I'm going to give away what I want to say, which is that I didn't get anywhere! 
I got very discouraged and I think I can see why the variational principle is not 
very useful. So I want to take, for the sake of argument, a very strong view -
which is stronger than I really believe - and argue that it is no damn good at all! 

Let us review why the variational principle has gotten a good reputation. Let's 
say you apply it to something like atoms or to simple problems with a small number 
of variables, using the usual analytic methods to get a quantity called the total 
energy, a quantity which is of direct physical significance. The energy levels of 
atoms are very interesting, measurable quantities and they can be calculated with 
accuracy. It was noted that if one had a wave function which had some measure 
of error, say 10 percent, then the error in the energy would be of order 1 percent. 
The error in the energy is quadratic in the error in the wave function. So, by not 
having a perfect wave function, you can still get very good values for the energy 
and that's why the variational method has gotten a good reputation. But it has 
never been a powerful way of getting, with accuracy, the wave function itself. 

Now I want to turn to the other side, the application of the variational principle 
to quantum field theory in a more or less straightforward way. So you write down 
a Hamiltonian in some kind of scheme and then you try to find a wave functional 

1 Transcript of Professor Feynman's talk, taken by the Editors and corrected by the author 
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Generative  
models!

The variational free energy principle

variational density 😱entropy 

≥ F



energy 

Use deep generative models as the variational density 

F[p] = 𝔼
x∼p(x)

[H(x) + kBT ln p(x)]

A deep variational free energy approach

Direct samplingTractable entropy 

Turning a sampling problem to an optimization problem 
better leverages the deep learning engine:

Deep variational free energy approach

😁entropy 

Li and LW, PRL ‘18
Wu, LW, Zhang, PRL ‘19

with normalizing flow & 
autoregressive models



Deep variational free-energy in the context

Objective Model Data Task

MD potential  
energy surface

3N-dim 
function

DFT energy/ 
force

Generalization
DFT xc energy 

functional
3-dim 

functional
QMC/

CCSD/… 

Variational 
free-energy

3N-dim 
functional

No Optimization

E, Han,Zhang, Physics Today 2020
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MACHINE-LEARNING-ASSISTED MODELING

 correlation effects.  Systematically developing efficient and accu-
rate  exchange- correlation functionals is still a challenging task.
Other difficult problems include implementing  coarse- grained
molecular dynamics (MD) for macromolecules, developing hy-
drodynamic models for  non- Newtonian fluids, modeling mo-
ment closure for rarified gases, and accurately representing the
potential energy surface (PES) that describes the interaction be-
tween the nuclei in the system of an MD model.

The list continues. Fluids can be modeled with the  Navier–
 Stokes equations, but what is the analogue for solids? Besides
linear elasticity models, researchers hardly agree on a set of
continuum models for solids, and plasticity in solids is even
more problematic to simulate. Another example is turbulence
models, which have faced challenges ever since the work of Os-
borne Reynolds in the 19th century. Physical scientists still lack
the tools to systematically and robustly simulate turbulent and
convective motions.

In all the identified problems, the most essential obstacle is
the curse of dimensionality. Without systematic approaches,
one has to resort to ad hoc procedures, which are neither effi-
cient nor reliable. Turbulence modeling is an excellent example
of the kind of pain one has to endure in order to address prac-
tical problems.

However, the problems that are made difficult by the curse
of dimensionality may be more tractable because of recent ad-
vances in machine learning, which offers an unprecedented ca-
pability for approximating functions of many variables.4,5 (See
the article by Sankar Das Sarma,  Dong- Ling Deng, and  Lu-
 Ming Duan, PHYSICS TODAY, March 2019, page 48.) As spectac-
ularly successful as machine learning is, it carries a label that
is particularly harmful to applications in the physical sciences:

It’s o#en described as functioning either as
black magic or in a black box. Researchers
have made substantial progress in under-
standing the magic behind machine learning.
This article focuses on how practitioners can
use machine learning to find new inter-
pretable and truly reliable physical models.
See the box on page 40 to learn more about the
process that underpins  neural- network- based
machine learning.

Accomplishing such a task entails meeting
a few requirements. First, the model should
satisfy the properties listed above for ideal
simplified models, although a model with only
a few externally supplied parameters isn’t nec-
essary. Second, the data set used to construct
the model should represent all the practical sit-
uations the model is intended for. Fi$ing some
data is relatively straightforward, but it is con-
siderably more difficult to construct reliable,
generalizable physical models that are accu-
rate for all practical situations. And third, to re-
duce the amount of ad hoc,  error- prone human
intervention, the construction of the model
should be automated end to end.

Concurrent machine learning
In standard approaches to supervised machine
learning, researchers first provide a labeled data

set to an algorithm. Then the  machine- learning model interprets
individual items of an unlabeled data set to, for example, recog-
nize pedestrians in an image of a busy city street. But when ma-
chine learning is used in connection with physical models, data
generation and training o#en become an interactive process in
which data are analyzed and labeled on the fly as the model train-
ing proceeds. Analogous to multiscale modeling,3 the standard
approach can be called sequential machine learning; and the in-
teractive process, concurrent machine learning.

For physical models derived from machine learning to be
reliable, they need to be fed reliable data. The data set should
ideally represent all the situations a model is intended for. For
example, a reliable model for a molecule’s PES should be accu-
rate for all the configurations that the molecule can have. But
generating training data typically involves solving the under-
lying microscale model, which is quite o#en computationally
expensive. Therefore, researchers usually aim to have the
smallest possible data set.

To generate such data adaptively and efficiently requires a
strategy such as the  exploration- examination- labeling- training
(EELT) algorithm. Illustrated in figure 2, it requires a macroscale
explorer, a criterion to decide whether a given state or configu-
ration should be labeled, a microscale model for labeling, and a
 machine- learning model for the quantities of interest.6 The
model is a slight modification of the exploration-labeling-train-
ing algorithm formulated in reference 6, though similar ideas
can be traced back further. Starting without data and only a mi-
croscale model, the EELT algorithm proceeds iteratively with the
following steps: (1) exploring the state or configuration space;
(2) examining which configurations need to be labeled; (3) com-
puting the microscale solutions for the states or configurations

Schrödinger equation
Many-electron
wavefunction

Density functional theory
Hartree‒Fock method

Density or orbital
functional approximation

Classical molecular
dynamics

Potential energy surface, 
nuclear quantum dynamics

Coarse-grained
molecular dynamics

Free-energy surface,
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FIGURE 1. REPRESENTATIVE MODELS for various systems (black text) span a range of
temporal and spatial scales. By combining their most important theoretical ingredients
(gray text) with  machine- learning algorithms, researchers are beginning to develop
more efficient, reliable, and interpretable physical models. (Image by Weinan E, Jiequn
Han, Linfeng Zhang, and Freddie Pagani.)
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Figure 1: The Gaussian q which minimizes ↵-divergence to p (a mixture of two Gaussians), for varying ↵. ↵ ! �1
prefers matching one mode, while ↵!1 prefers covering the entire distribution.
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Figure 2: The mass, mean, and standard deviation of the Gaussian q which minimizes ↵-divergence to p, for varying ↵. In
each case, the true value is matched at ↵ = 1.

the convention of Zhu & Rohwer (1995), with ↵ instead of
�, the formula is:

D↵(p || q) =
R

x ↵p(x) + (1� ↵)q(x)� p(x)↵q(x)1�↵dx

↵(1� ↵)
(2)

As in (1), p and q do not need to be normalized. Both
KL-divergence and ↵-divergence are zero if p = q and
positive otherwise, so they satisfy the basic property of
an error measure. This property follows from the fact
that ↵-divergences are convex with respect to p and q (ap-
pendix A). Some special cases:
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D↵(p || q) = KL(p || q) (6)

D2(p || q) =
1
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x

(p(x)� q(x))2

q(x)
dx (7)

The case ↵ = 0.5 is known as Hellinger distance (whose
square root is a valid distance metric), and ↵ = 2 is the �2

distance. Changing ↵ to 1� ↵ swaps the position of p and
q.

To illustrate the effect of changing the divergence measure,
consider a simple example, illustrated in figures 1 and 2.
The original distribution p(x) is a mixture of two Gaus-
sians, one tall and narrow, the other short and wide. The
approximation q(x) is required to be a single (scaled) Gaus-
sian, with arbitrary mean, variance, and scale factor. For

different values of ↵, figure 1 plots the global minimum of
D↵(p || q) over q. The solutions vary smoothly with ↵, the
most dramatic changes happening around ↵ = 0.5. When
↵ is a large negative number, the best approximation rep-
resents only one mode, the one with largest mass (not the
mode which is highest). When ↵ is a large positive num-
ber, the approximation tries to cover the entire distribution,
eventually forming an upper bound when ↵ ! 1. Fig-
ure 2 shows that the mass of the approximation continually
increases as we increase ↵.

The properties observed in this example are general, and
can be derived from the formula for ↵-divergence. Start
with the mode-seeking property for ↵ ⌧ 0. It happens be-
cause the valleys of p force the approximation downward.
Looking at (3,4) for example, we see that ↵  0 empha-
sizes q to be small whenever p is small. These divergences
are zero-forcing because p(x) = 0 forces q(x) = 0. In
other words, they avoid “false positives,” to an increasing
degree as ↵ gets more negative. This causes some parts of
p to be excluded. The cost of excluding an x, i.e. setting
q(x) = 0, is p(x)/(1 � ↵). Therefore q will keep the ar-
eas of largest total mass, and exclude areas with small total
mass.

Zero-forcing emphasizes modeling the tails, rather than the
bulk of the distribution, which tends to underestimate the
variance of p. For example, when p is a mixture of Gaus-
sians, the tails reflect the component which is widest. The
optimal Gaussian q will have variance on similar to the
variance of the widest component, even if there are many
overlapping components. For example, if p has 100 identi-
cal Gaussians in a row, forming a plateau, the optimal q is
only as wide as one of them.
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distance. Changing ↵ to 1� ↵ swaps the position of p and
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To illustrate the effect of changing the divergence measure,
consider a simple example, illustrated in figures 1 and 2.
The original distribution p(x) is a mixture of two Gaus-
sians, one tall and narrow, the other short and wide. The
approximation q(x) is required to be a single (scaled) Gaus-
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resents only one mode, the one with largest mass (not the
mode which is highest). When ↵ is a large positive num-
ber, the approximation tries to cover the entire distribution,
eventually forming an upper bound when ↵ ! 1. Fig-
ure 2 shows that the mass of the approximation continually
increases as we increase ↵.

The properties observed in this example are general, and
can be derived from the formula for ↵-divergence. Start
with the mode-seeking property for ↵ ⌧ 0. It happens be-
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Looking at (3,4) for example, we see that ↵  0 empha-
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other words, they avoid “false positives,” to an increasing
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eas of largest total mass, and exclude areas with small total
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bulk of the distribution, which tends to underestimate the
variance of p. For example, when p is a mixture of Gaus-
sians, the tails reflect the component which is widest. The
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ABSTRACT

We revisit the challenging problem of training Gaussian-Bernoulli restricted
Boltzmann machines (GRBMs), introducing two innovations. We propose a novel
Gibbs-Langevin sampling algorithm that outperforms existing methods like Gibbs
sampling. We propose a modified contrastive divergence (CD) algorithm so that
one can generate images with GRBMs starting from noise. This enables direct
comparison of GRBMs with deep generative models, improving evaluation pro-
tocols in the RBM literature. Moreover, we show that modified CD and gradient
clipping are enough to robustly train GRBMs with large learning rates, thus re-
moving the necessity of various tricks in the literature. Experiments on Gaussian
Mixtures, MNIST, FashionMNIST, and CelebA show GRBMs can generate good
samples, despite their single-hidden-layer architecture. Our code is released at:
https://github.com/lrjconan/GRBM

1 INTRODUCTION

Restricted Boltzmann machines (RBMs) (Smolensky, 1986; Freund & Haussler, 1991; Hinton,
2002) are energy-based generative models with stochastic binary units. A variant of Boltzmann
machines (Ackley et al., 1985), they have a bipartite graphical structure that enables efficient proba-
bilistic inference, and they can be stacked to form deep belief networks (DBNs) (Hinton & Salakhut-
dinov, 2006; Bengio et al., 2006; Hinton et al., 2006). Gaussian-Bernoulli RBMs (GRBMs) (Welling
et al., 2004; Hinton & Salakhutdinov, 2006) extend RBMs to model continuous data by replacing
the binary visible units of the RBM with Gaussian random variables.

GRBMs remain challenging to learn, however, despite many proposed modifications to the model
or training algorithm. For instance, Lee et al. (2007) add a regularization term to encourage sparsely
activated binary hidden units. Krizhevsky et al. (2009) attribute the difficulties in learning to high-
frequency noise present in natural images. Factorized high-order terms were introduced in (Ranzato
& Hinton, 2010; Ranzato et al., 2010) to allow GRBMs to explicitly learn the covariance structure
among pixels. Nair & Hinton (2010) suggest that binary hidden units are problematic, and proposed
model variants with real-valued hidden units. Cho et al. (2011a; 2013) advocate the use of parallel
tempering sampling (Earl & Deem, 2005), adaptive learning rate, and enhanced gradient (Cho et al.,
2011b) to improve GRBM learning. Melchior et al. (2017) conclude that difficulties in GRBM
training are due to training algorithms rather than the model itself; they advocate the use of gradient
clipping, specialized weight initialization, and contrastive divergence (CD) (Hinton, 2002) rather
than persistent CD (Tieleman, 2008). Upadhya & Sastry (2021) propose a stochastic difference of
convex functions programming (S-DCP) algorithm to replace CD in training GRBMs.

An important motivation for seeking to improve GRBM learning is so that a GRBM can be used to
convert real-valued data to stochastic binary data. This would make it easy for researchers to explore
novel ways of implementing stochastic binary Boltzmann machines to model real-valued data. To
that end, we propose improved GRBM learning methods for image data. Specifically,

• We propose a hybrid Gibbs-Langevin sampling algorithm that outperforms predominant
use of Gibbs sampling. To the best of our knowledge this is the first use of Langevin
sampling for GRBM training (with or without Metropolis adjustment).
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p(x) = p(x1)p(x2 |x1)p(x3 |x1, x2)⋯

“… quick brown fox jumps …”
p( jumps | . . . )

Image: PixelCNN 1601.06759

Language: GPT 2005.14165

Autoregressive model

Speech: WaveNet 1609.03499

Autoregressive models

P
ix

e
l

R
e
c
u

r
r
e
n

t
N

e
u

r
a
l

N
e
tw

o
r
k

s

PixelC
N

N
Row

 LSTM
Diagonal BiLSTM

Figure
4.V

isualization
of

the
input-to-state

and
state-to-state

m
appings

forthe
three

proposed
architectures.

3
.2

.
D

ia
g
o
n

a
l

B
iL

S
T

M

The
D

iagonalB
iLSTM

is
designed

to
both

parallelize
the

com
putation

and
to

capture
the

entire
available

contextfor
any

im
age

size.
Each

of
the

tw
o

directions
of

the
layer

scans
the

im
age

in
a

diagonalfashion
starting

from
a

cor-
ner

atthe
top

and
reaching

the
opposite

corner
atthe

bot-
tom

.
Each

step
in

the
com

putation
com

putes
atonce

the
LSTM

state
along

a
diagonalin

the
im

age.Figure
4

(right)
illustratesthe

com
putation

and
the

resulting
receptive

field.

The
diagonal

com
putation

proceeds
as

follow
s.

W
e

first
skew

the
inputm

ap
into

a
space

thatm
akes

iteasy
to

ap-
ply

convolutions
along

diagonals.
The

skew
ing

operation
offsets

each
row

ofthe
inputm

ap
by

one
position

w
ith

re-
spect

to
the

previous
row

,
as

illustrated
in

Figure
3;

this
results

in
a

m
ap

ofsize
n
⇥

(2n
�

1).A
tthis

pointw
e

can
com

pute
the

input-to-state
and

state-to-state
com

ponentsof
the

D
iagonalB

iLSTM
.Foreach

ofthe
tw

o
directions,the

input-to-state
com

ponentissim
ply

a
1⇥

1
convolution

K
is

thatcontributesto
the

fourgatesin
the

LSTM
core;the

op-
eration

generates
a

4h
⇥

n
⇥

n
tensor.

The
state-to-state

recurrentcom
ponentis

then
com

puted
w

ith
a

colum
n-w

ise
convolution

K
s
s

thathas
a

kernelof
size

2
⇥

1.
The

step
takesthe

previoushidden
and

cellstates,com
binesthe

con-
tribution

ofthe
input-to-state

com
ponentand

produces
the

nexthidden
and

cellstates,as
defined

in
Equation

3.
The

outputfeature
m

ap
is

then
skew

ed
back

into
an

n
⇥

n
m

ap
by

rem
oving

the
offsetpositions.

This
com

putation
is

re-
peated

for
each

of
the

tw
o

directions.
G

iven
the

tw
o

out-
put

m
aps,

to
prevent

the
layer

from
seeing

future
pixels,

the
rightoutputm

ap
is

then
shifted

dow
n

by
one

row
and

added
to

the
leftoutputm

ap.

B
esides

reaching
the

full
dependency

field,
the

D
iagonal

B
iLSTM

has
the

additional
advantage

that
it

uses
a

con-
volutional

kernel
of

size
2
⇥

1
that

processes
a

m
inim

al
am

ountofinform
ation

ateach
step

yielding
a

highly
non-

linearcom
putation.

K
ernelsizes

largerthan
2
⇥

1
are

not
particularly

usefulasthey
do

notbroaden
the

already
global

receptive
field

ofthe
D

iagonalB
iLSTM

.

3
.3

.
R

e
s
id

u
a
l

C
o
n

n
e
c
tio

n
s

W
e

train
PixelR

N
N

s
of

up
to

tw
elve

layers
of

depth.
A

s
a

m
eans

to
both

increase
convergence

speed
and

propagate
signalsm

ore
directly

through
the

netw
ork,w

e
deploy

resid-
ualconnections

(H
e

etal.,2015)from
one

LSTM
layerto

the
next.

Figure
5

show
s

a
diagram

ofthe
residualblocks.

The
inputm

ap
to

the
PixelR

N
N

LSTM
layer

has
2h

fea-
tures.The

input-to-state
com

ponentreduces
the

num
berof

features
by

producing
h

features
per

gate.
A

fter
applying

the
recurrentlayer,the

outputm
ap

isupsam
pled

back
to

2h
features

perposition
via

a
1
⇥

1
convolution

and
the

input
m

ap
is

added
to

the
outputm

ap.
This

m
ethod

is
related

to
previous

approaches
thatuse

gating
along

the
depth

ofthe
recurrentnetw

ork
(K

alchbrenneretal.,2015;Zhang
etal.,

2016),
but

has
the

advantage
of

not
requiring

additional
gates.

A
partfrom

residualconnections,one
can

also
use

learnable
skip

connections
from

each
layer

to
the

output.
In

the
experim

entsw
e

evaluate
the

relative
effectivenessof

residualand
layer-to-outputskip

connections.

ReLU
 - 1x1 C

onv

+

ReLU
 - 3x3 C

onv

h
2h

ReLU
 - 1x1 C

onv

h
2h

LSTM

+

2h

1x1 C
onv

h

2h

Figure
5.R

esidualblocks
fora

PixelC
N

N
(left)and

PixelR
N

N
s.

3
.4

.
M

a
s
k

e
d

C
o
n

v
o
lu

tio
n

The
h

features
foreach

inputposition
atevery

layerin
the

netw
ork

are
split

into
three

parts,
each

corresponding
to

one
of

the
R

G
B

channels.
W

hen
predicting

the
R

chan-
nelfor

the
currentpixel

x
i ,only

the
generated

pixels
left

and
above

of
x

i
can

be
used

as
context.

W
hen

predicting
the

G
channel,the

value
ofthe

R
channelcan

also
be

used
as

context
in

addition
to

the
previously

generated
pixels.

Likew
ise,for

the
B

channel,the
values

of
both

the
R

and
G

channels
can

be
used.To

restrictconnections
in

the
net-

w
ork

to
these

dependencies,w
e

apply
a

m
ask

to
the

input-
to-state

convolutionsand
to

otherpurely
convolutionallay-

ers
in

a
PixelR

N
N

.

W
e

use
tw

o
types

of
m

asks
thatw

e
indicate

w
ith

m
ask

A
and

m
ask

B,as
show

n
in

Figure
2

(R
ight).

M
ask

A
is

ap-
plied

only
to

the
first

convolutional
layer

in
a

PixelR
N

N
and

restricts
the

connections
to

those
neighboring

pixels
and

to
those

colors
in

the
currentpixels

thathave
already

been
predicted.

O
n

the
other

hand,m
ask

B
is

applied
to

all
the

subsequent
input-to-state

convolutional
transitions

and
relaxes

the
restrictions

ofm
ask

A
by

also
allow

ing
the

connection
from

a
color

to
itself.

The
m

asks
can

be
eas-

ily
im

plem
ented

by
zeroing

outthe
corresponding

w
eights

in
the

input-to-state
convolutions

aftereach
update.

Sim
i-

Molecular graph: 1810.11347

get possible new atom
positions      from grid:

calculate probabilities of
positions using the output:

low

high

sample �nal position of new atom
using the calculated probabilities:

atoms:   type 1       type 2       type 3

distance
matrix

network

inputnew unplaced atom: output

di
st

ri
bu

tio
ns

 o
ve

r 
di

st
an

ce
s

(d
is

cr
et

iz
ed

)

atom types

(a)

(b)

Figure 1: Detailed depiction of a single step of the generation process using two-dimensional toy
data (a). It shows the input and output of our architecture (top row) and steps taken when sampling
the absolute position of a new unplaced fourth atom (bottom row). Starting from the point where two
carbon atoms have been placed, the whole remaining placement process of a real-world C7O2H10

isomer generated by our architecture is documented in (b).

of probabilities of distances d(i+1)j between the new atom position and the positions of all preceding
atoms. Our architecture learns these distributions over distances instead of working with absolute
positions directly. It adheres to the invariance of molecules to rotation and translation by design as the
modeled distributions only depend on nuclear charges Z1, ..., Zi+1 and distances Di of preceding
atoms. This approach improves the scalability of our model as we are able to discretize distances
in one dimension independent from the dimensionality of the underlying positions. Using Eq. 2,
we are able to calculate the probability of absolute atom positions. While the generation process is
sequential, the model can be trained efficiently in parallel, where the distances between atoms in the
training data can be used directly as targets.

3 Adapted SchNet architecture

The feature extraction of our autoregressive architecture is shown in Figure 2. It is similar to
SchNet [24, 25] for the prediction of molecular properties. The embedding characterizing the atom
types is split into feature vector x0

i+1 of the new atom i + 1 and feature vectors (x0
1, ...,x

0
i ) of all

preceding atoms. Here lays the main difference to the predictive SchNet architecture which always
has access to the complete molecule. In contrast, our architecture works with partial molecular
data, namely the positions r1, ..., ri of already placed atoms, their nuclear charges Z1, ..., Z1, and
the nuclear charge Zi+1 of an unplaced, new atom whose position ri+1 shall be sampled using
the output of our network. The information about already placed atoms is processed just as in
the predictive SchNet model, using interaction blocks to update feature vectors depending on the

3
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Figure 1: Detailed depiction of a single step of the generation process using two-dimensional toy
data (a). It shows the input and output of our architecture (top row) and steps taken when sampling
the absolute position of a new unplaced fourth atom (bottom row). Starting from the point where two
carbon atoms have been placed, the whole remaining placement process of a real-world C7O2H10

isomer generated by our architecture is documented in (b).

of probabilities of distances d(i+1)j between the new atom position and the positions of all preceding
atoms. Our architecture learns these distributions over distances instead of working with absolute
positions directly. It adheres to the invariance of molecules to rotation and translation by design as the
modeled distributions only depend on nuclear charges Z1, ..., Zi+1 and distances Di of preceding
atoms. This approach improves the scalability of our model as we are able to discretize distances
in one dimension independent from the dimensionality of the underlying positions. Using Eq. 2,
we are able to calculate the probability of absolute atom positions. While the generation process is
sequential, the model can be trained efficiently in parallel, where the distances between atoms in the
training data can be used directly as targets.

3 Adapted SchNet architecture

The feature extraction of our autoregressive architecture is shown in Figure 2. It is similar to
SchNet [24, 25] for the prediction of molecular properties. The embedding characterizing the atom
types is split into feature vector x0

i+1 of the new atom i + 1 and feature vectors (x0
1, ...,x

0
i ) of all

preceding atoms. Here lays the main difference to the predictive SchNet architecture which always
has access to the complete molecule. In contrast, our architecture works with partial molecular
data, namely the positions r1, ..., ri of already placed atoms, their nuclear charges Z1, ..., Z1, and
the nuclear charge Zi+1 of an unplaced, new atom whose position ri+1 shall be sampled using
the output of our network. The information about already placed atoms is processed just as in
the predictive SchNet model, using interaction blocks to update feature vectors depending on the

3



been challenging to conventional MCMC and mean-field
approaches.
Next, to demonstrate the ability of capturing multiple

states at low temperature, we consider the Hopfield
model [32], where N spins are connected to each other.
The couplings composed of P random patterns,
Jij ¼ ð1=NÞ

PP
μ¼1 ξ

μ
i ξ

μ
j , with fξμg ∈ f$1gN denoting a

random pattern. At a low temperature with P small, the
system has a retrieval phase where all P patterns are
remembered by the system; hence there are P pure states
in the system [33,34]. The experiments are carried out on a
Hopfield network with N ¼ 100 spins and P ¼ 2 orthogo-
nal random patterns. At low temperature the energy
(probability) landscape contains four modes, corresponding
to two stored patterns and their mirrors (due to Z2

symmetry). As opposed to models defined on lattices,
there is no topology structure to apply convolution, so we
use a simplest VAN with only one layer and NðN − 1Þ=2
parameters. We start training our network at β ¼ 0.3 and
slowly anneal the temperature to β ¼ 1.5. At each temper-
ature, we sample configurations from the trained VAN, and
show their log probability in Fig. 3.
The figure shows that at high temperature with β ¼ 0.3,

samplings are not correlated with the two stored patterns,
and the system is in the paramagnetic state. The log
probability landscape is quite flat, as the Gibbs measure
is dominated by entropy. When β is increased to 1.5, four
peaks of probability emerge and dominate over other
configurations. These four peaks touch coordinates [1, 0],
[0, 1], ½−1; 0&, and ½0;−1& in the X-Y plane, which
correspond exactly to the two patterns and their mirrors.
This is an evidence that our approach avoids collapsing into
a single mode, and gives samplings capturing the features
of the whole landscape, despite that those modes are
separated by high barriers.
Compared with the landscape of Hopfield model in the

retrieval phase which exhibits several local minima in the
energy and probability landscape, models in the spin glass

phase are considerably more complex [35], because they
have an infinite number of pure states, in the picture of
replica symmetry breaking [36]. Here we apply our method
to the classic Sherrington-Kirkpatrick (SK) model [37],
where N spins are connected to each other by couplings Jij
drawn from Gaussian distribution with variance 1=N. So
far the tensor network approaches do not apply to this
model because of long range interactions and the disorder,
which causes negative Z issue [38]. On the thermodynamic
limit with N → ∞ where the free energy concentrates to its
mean value averaged over disorder, using for example
replica method and cavity method, and replica symmetry
breaking, i.e., the Parisi formula [36]. On a single instance
of SK model, the algorithm version of the cavity method,
belief propagation, or Thouless-Anderson-Paler [6] equa-
tions apply as message passing algorithms. On large
systems in the replica symmetry phase, the message
passing algorithms converge and the obtained Bethe free
energy is a good approximation, but in the replica sym-
metry breaking phase they fail to converge. Also notice that
even in the replica symmetry phase, Bethe free energy is
not an upper bound to the true free energy.
As a proof of concept, we use a small system size

N ¼ 20, so we can enumerate all 2N configurations,
compute the exact value of free energy, then evaluate the
performance of our approach. Again, we use a simple VAN
with only one layer.
In Fig. 4(a) we show the free energy obtained from VAN,

compared with NMF and Bethe approximations. The free
energy from VAN is much better than NMF and Bethe, and
even indistinguishable to the exact value. This is quite
remarkable considering that VAN adopts only NðN − 1Þ=2
parameters, which is even smaller than that used in the
belief propagation, NðN − 1Þ. We also checked that our
approach not only gives a good estimate on free energy, it
also obtains accurate energy, entropy, magnetizations, and
correlations.
The ability of solving ordinary statistical mechanics

problems also gives us the ability to solve inverse statistical
mechanics problems. A prototype problem is the inverse

FIG. 3. Log probability of sampled configurations from VAN
trained for a Hopfield model with N ¼ 100 spins, and P ¼ 2
orthogonal patterns. The sampled configurations are projected
onto the two-dimensional space spanned by the two patterns. X
axis (O1) and Y axis (O2) are the overlap (inner product,
normalized to ½−1; 1&) between each sampled configuration
and the two patterns, respectively. (a) β ¼ 0.3, and the system
is in the paramagnetic phase. (b) β ¼ 1.5, and the system is in the
retrieval phase. Note the different scales in the color bars.
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FIG. 4. (a) Free energy of SK model with N ¼ 20 spins. The
inset shows relative errors to exact values in a larger β regime.
Bethe converges only when β ≤ 1.5. (b) The reconstruction error
in the inverse Ising problem. The underlying model is an SK
model with N ¼ 20 spins. VAN uses a network with two layers (a
hidden layer and an output layer).
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Solving Quantum Statistical Mechanics with
Variational Autoregressive Networks and Quantum Circuits

Jin-Guo Liu,1 Liang Mao,2 Pan Zhang,3 and Lei Wang1, 4

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Department of Physics, Tsinghua University, Beijing 100084, China

3Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
4Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

We extend the ability of unitary quantum circuits by interfacing it with classical autoregressive neural net-
works. The combined model parametrizes a variational density matrix as a classical mixture of quantum pure
states, where the autoregressive network generates bitstring samples as input states to the quantum circuit. We
devise an e�cient variational algorithm to jointly optimize the classical neural network and the quantum circuit
for quantum statistical mechanics problems. One can obtain thermal observables such as the variational free
energy, entropy, and specific heat. As a by product, the algorithm also gives access to low energy excitation
states. We demonstrate applications to thermal properties and excitation spectra of the quantum Ising model
with resources that are feasible on near-term quantum computers.

Introduction– Quantum statistical mechanics poses two
sets of challenges to classical computational approaches. First
of all, classical algorithms generally encounter the di�culties
of diagonalzing exponentially large Hamiltonians or the sign
problem originates from the quantum nature of the problem.
Moreover, even on the eigenbasis one still faces intractable
partition function which involves summation of exponentially
large number of terms.

A straightforward way to address these di�culties is to di-
rectly realize the physical Hamiltonian on analog quantum de-
vices and study the system at thermal equilibrium, for exam-
ple, see Refs. [1, 2]. On the other hand, a potentially more
general approach would be to study thermal properties with a
universal gate model quantum computer. However, it calls for
algorithmic innovations to prepare thermal quantum states on
quantum circuits given their unitary nature. There have been
quantum algorithms to prepare thermal Gibbs states on quan-
tum computers [3–7]. Unfortunately, these approaches may
not be feasible on near-term noisy quantum computers with
limited circuit depth. While variational quantum algorithm
for preparing thermofield double states [8, 9] requires addi-
tional quantum resources such as ancilla qubits, as well as
measuring and extrapolating Renyi entropies. The quantum
imaginary-time evolution [10] relies on exponentially di�cult
tomography on a growing number of qubits and synthesize of
general multi-qubit unitaries.

Recently, Refs. [11, 12] proposed practical approaches to
prepare the thermal density matrix as a classical mixture of
quantum pure states in the eigenbasis. In these proposals,
the classical probabilistic model is either assumed to be fac-
torized or expressed as an energy-based model [13]. How-
ever, the factorized distribution is generally a crude approx-
imation for the Gibbs distribution in the eigenbasis. While
the energy-based model still faces the problem of intractable
partition function, which inhibits e�cient and unbiased sam-
pling, learning, or even evaluating the model likelihood.

Modern probabilistic generative models o↵er solutions to
the intractable partition function problem [15] since the goals
of generative modeling are exactly to represent, learn and

U�

(a)

p�

(b)

�x1
�x2
�x3

x1
x2
x3

Figure 1. (a) The autoregressive network shown in blue is a classi-
cal probabilistic model that parametrizes a joint distribution in the
form of Eq. (2). The model generates bit string as easy to prepare
input product states to the quantum circuit. The neural network and
the circuit produce a parametrized density matrix Eq. (1). (b) An
implementation of the autoregressive model p� using the masked au-
toencoder [14]. The neural network maps bit strings to real-valued
outputs which parametrizes the conditional probabilities in Eq. (2).

sample from complex high-dimensional probability distribu-
tions e�ciently. Popular generative models include autore-
gressive models [14, 16, 17], variational autoencoders [18],
generative adversarial networks [19], and flow-based mod-
els [20]. For the purpose of this study, the autoregressive mod-
els stand out since they support unbiased gradient estimator
for discrete variables, direct sampling, and tractable likelihood
at the same time. The autoregressive models have reached
state-of-the-art performance in modeling realistic data and
found real-world applications in synthesizing natural speech
and images [16, 17]. Variational optimization of the autore-
gressive network has been used for classical statistical physics
problems [21, 22]. Quantum generalization of the network
was also employed for ground state of quantum many-body
systems [23].

In this paper, we combine quantum circuits with autore-
gressive probabilistic models to solve problems in quantum
statistical mechanics. The resulting model allows one to per-
form variational free energy over density matrices e�ciently.
We demonstrate applications of the approach to thermal prop-
erties and excitations of quantum lattice model.
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p(x2 |x1) = Bern( ̂x2)p(x1) = Bern( ̂x1)

Other examples:

p(x3 |x1, x2) = Bern( ̂x3)

Other ways to implement autoregressive models: recurrent networks
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Intuition

If the mapping f is 1-to-1, then the total area (or volume) should

not change after the transformation from x to z .

Figure 1: Mapping from one probability density to another. Source:

Lecture 19 notes
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Normalizing flow in a nutshell
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Neural network renormalization group

Neural Network Renormalization Group

Shuo-Hui Li1, 2 and Lei Wang1, ⇤
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We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det

 
@x
@z

!������ , (1)

where q(x) is the normalized probability density of the phys-

Physical variables

Collective variables
Li, LW, PRL ’18 li012589/NeuralRG



Accelerated sampling w/ 
learned collective variables

Exact free energy lower bound 
Onsager 1944

Neural network renormalization group

Neural Network Renormalization Group

Shuo-Hui Li1, 2 and Lei Wang1, ⇤

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China

We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
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tance, practical RG calculations have played important roles
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physics [4, 5]. A notable recent development is to perform
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ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
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of such intriguing similarities, References [18–21] drew con-
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employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det

 
@x
@z

!������ , (1)

where q(x) is the normalized probability density of the phys-

Physical variables

Collective variables

Probability Transformation

ln p(x) = ln 𝒩(z) − ln det ( ∂x
∂z )
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Continuous normalizing flows

x = z + εv

dx
dt

= v d ln p(x, t)
dt

= − ∇ ⋅ v

ln p(x) − ln 𝒩(z) = − ln det (1 + ε
∂v
∂z )

ln p(x) = ln 𝒩(z) − ln det ( ∂x
∂z )

Consider infinitesimal change-of-variables

ε → 0
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Fluid physics behind flows

∂p(x, t)
∂t

+ ∇ ⋅ [p(x, t)v] = 0

Zhang, E, LW 1809.10188 

Simple density Complex density
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derivative”d ln p(x, t)
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Neural Ordinary Differential Equations
Residual network ODE integration

xt+1 = xt + v(xt) dx/dt = v(x)
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Density estimation Variational free energy

Figure 2: Schematic illustration of two applications (a) unsupervised density estimation and (b)
variational free energy calculation for a statistical mechanics problem. In both cases, we integrate
equations 2 and 3 under a parametrized potential function '(x), and optimize '(x) such that the
density at the other end matches to the desired one.
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Figure 3: (a) The NLL of the training (blue) and the test (orange) MNIST dataset. The horizontal
lines indicate results obtained with previous flow-based models reported in Papamakarios et al.
(2017). (b) From top to bottom, Monge-Ampère flow of test MNIST images to the base Gaussian
distribution.

base distribution at time t = 0 to be a simple Gaussian p(x, 0) = N (x). See Appendix C for a
summary of the hyperparameters used in the experiments.

4.1 DENSITY ESTIMATION ON THE MNIST DATASET

First we perform the maximum likelihood estimation, which reduces the dissimilarity between the
empirical density distribution ⇡(x) of a given dataset and the model density p(x) measured by
the KL-divergence DKL (⇡(x)kp(x, T )). It is equivalent to minimize the negative log-likelihood
(NLL):

NLL = �Ex⇠⇡(x)[ln p(x, T )]. (6)
To compute the model likelihood we start from MNIST samples and integrate backwards from time
T to 0. By accumulating the change in the log-likelihood

R 0
T d ln p(x(t), t) we obtain an estimate of

the objective function in equation 6.

To model the MNIST data we need to first transform the images into continuous variables. Fol-
lowing Papamakarios et al. (2017), we first apply the jittering and dequantizing procedure to map
the original grayscale MNIST data to a continuous space. Next, we apply the logit transformation

5

The two use cases

F = 𝔼
x∼p(x)

[kBT ln p(x) + H(x)]ℒ = − 𝔼x∼dataset [ln p(x)]
“learn from data” “learn from Hamiltonian”
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Example: Classical Coulomb gas in a harmonic trap
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Pathwise estimator (Reparametrization trick)

Score function estimator (REINFORCE)

Reinforcement learning 
Variational inference 
Variational Monte Carlo 
Variational quantum algorithms 
…

∇θ𝔼x∼pθ [f(x)] = 𝔼x∼pθ [f(x)∇θln pθ(x)]

∇θ𝔼x∼pθ [f(x)]

x = gθ(z)

∇θ𝔼x∼pθ [f(x)] = 𝔼z∼𝒩(z) [∇θ f(gθ(z))]
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Training: Monte Carlo Gradient Estimators



Monte Carlo Gradient Estimation in Machine Learning

classes, gradients-of-measure or gradients-of-paths. We derived the score-function estimator and the
measure-valued gradient estimator as instances of gradients of measure, both of which exploit the
measure in the stochastic objective to derive the gradient. And we derived the pathwise estimator
that uses knowledge of the sampling path to obtain the gradient. All these methods benefit from
variance reduction techniques and we reviewed four approaches for variance reduction we might
consider in practice. We further explored the use of these estimators through a set of case studies,
and explored some of the other tools for gradient estimation that exist beyond the three principal
estimators.

10.1 Guidance in Choosing Gradient Estimators

With so many competing approaches, we o↵er our rules of thumb in choosing an estimator, which
follow the intuition we developed throughout the paper:

• If our estimation problem involves continuous functions and measures that are continuous
in the domain, then using the pathwise estimator is a good default. It is relatively easy to
implement and a default implementation, one without other variance reduction, will typically
have variance that is low enough so as not to interfere with the optimisation.

• If the cost function is not di↵erentiable or a black-box function then the score-function or the
measure-valued gradients are available. If the number of parameters is low, then the measure-
valued gradient will typically have lower variance and would be preferred. But if we have a
high-dimensional parameter set, then the score function estimator should be used.

• If we have no control over the number of times we can evaluate a black-box cost function,
e↵ectively only allowing a single evaluation of it, then the score function is the only estimator
of the three we reviewed that is applicable.

• The score function estimator should, by default, always be implemented with at least a basic
variance reduction. The simplest option is to use a baseline control variate estimated with a
running average of the cost value.

• When using the score-function estimator, some attention should be paid to the dynamic range
of the cost function and its variance, and to find ways to keep its value bounded within a
reasonable range, e.g., transforming the cost so that it is zero mean, or using a baseline.

• For all estimators, track the variance of the gradients if possible and address high variance by
using a larger number of samples from the measure, decreasing the learning rate, or clipping
the gradient values. It may also be useful to restrict the range of some parameters to avoid
extreme values, e.g., by clipping them to a desired interval.

• The measure-valued gradient should be used with some coupling method for variance reduc-
tion. Coupling strategies that exploit relationships between the positive and negative compo-
nents of the density decomposition, and which have shared sampling paths, are known for the
commonly-used distributions.

• If we have several unbiased gradient estimators, a convex combination of them might have
lower variance than any of the individual estimators.

• If the measure is discrete on its domain then the score-function or measure-valued gradient
are available. The choice will again depend on the dimensionality of the parameter space.

• In all cases, we strongly recommend having a broad set of tests to verify the unbiasedness of
the gradient estimator when implemented.
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exp

cos

Figure 3: Variance of the stochastic estimates of r✓EN (x|µ,�2) [f(x; k)] for µ = � = 1 as a function
of k. Top: f(x; k) = exp(�kx

2), bottom: f(x; k) = cos kx. Left: ✓ = µ; right: ✓ = �.
The graphs in the bottom row show the function (solid) and its gradient (dashed): for
k 2 {0.1, 1, 10} for the exponential function, and k 2 {0.5, 1.58, 5.} for the cosine function.

Figures 2 and 3 also demonstrate the importance of variance reduction. The score function estimator
is commonly used with a control variate, a way to reduce the variance of the gradient that we explore
further in Section 7. We see a large decrease in variance by employing this technique. The variance
of the measure-valued derivative estimator in these plots is also shown with a form of variance
reduction (known as coupling), and for these simple cost functions, there are regimes of the function
that allow corrections that drive the variance to zero; we can see this where the kink in the plot for
the variance of the mean-gradient for the cosine cost function.

From this initial exploration, we find that there are several criteria to be judged when choosing
an unbiased gradient estimator: computational cost, implications on the use of di↵erentiable and
non-di↵erentiable cost functions, the change in behaviour as the cost itself changes (e.g., during
learning), and the availability of e↵ective variance reduction techniques to achieve low variance. We
will revisit these figures again in subsequent sections as we develop the precise description of these
methods. We will assess each estimator based on these criteria, working towards building a deeper
understanding of them and their implications for theory and practice.
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where the indicator 1y<ybest is one if the condition is met, and zero otherwise. There are
many such objectives, in areas such as Bayesian optimisation, active learning and bandits
(Shahriari et al., 2016; Wilson et al., 2018), all of which involve computing the gradient of an
expectation of a loss function, with wide use in computer graphics, model architecture search,
automatic machine learning, and treatment design; again highlighting the central role that
general-purpose gradient estimators play in modern applications.

While these five areas are entire fields of their own, they are also important problems for which
there is ongoing e↵ort throughout machine learning. There are also many other problems where
the need for computing stochastic gradients appears, including systems modelling using stochastic
di↵erential equations, parameter learning of generative models in algorithms such as variational
autoencoders, generative adversarial networks and generative stochastic networks (Rezende et al.
(2014); Kingma and Welling (2014b); Goodfellow et al. (2014); Bengio et al. (2014)), in bandits
and online learning (Hu et al., 2016), in econometrics and simulation-based estimation (Gouriéroux
and Monfort, 1996), and in instrumental-variables estimation and counter-factual reasoning (Hart-
ford et al., 2016). An ability to compute complicated gradients gives us the confidence to tackle
increasingly more complicated and interesting problems.

3. Intuitive Analysis of Gradient Estimators

The structure of the sensitivity analysis problem r✓Ep(x;✓) [f(x)] (2) directly suggests that gradients
can be computed in two ways:

Derivatives of Measure. The gradient can be computed by di↵erentiation of the measure p(x;✓).
Gradient estimators in this class include the score function estimator (Section 4) and the
measure-valued gradient (Section 6).

Derivatives of Paths. The gradient can be computed by di↵erentiation of the cost f(x), which
encodes the pathway from parameters ✓, through the random variable x, to the cost value.
In this class of estimators, we will find the pathwise gradient (Section 5), harmonic gradient
estimators and finite di↵erences (Section 9.5), and Malliavin-weighted estimators (Section 9.7).

We focus our attention on three classes of gradient estimators: the score function, pathwise and
measure-valued gradient estimators. All three estimators satisfy two desirable properties that we
identified previously, they are consistent and unbiased ; but they di↵er in their variance behaviour
and in their computational cost. Before expanding on the mathematical descriptions of these three
gradient estimators, we compare their performance in simplified problems to develop an intuitive
view of the di↵erences between these methods with regards to performance, computational cost,
di↵erentiability, and variability of the cost function.

Consider the stochastic gradient problem (2) that uses Gaussian measures for three simple families
of cost functions, quadratics, exponentials and cosines:

⌘ = r✓

Z
N (x|µ, �

2)f(x; k)dx; ✓ 2 {µ, �}; f 2 {(x � k)2, exp(�kx
2), cos(kx)}. (10)

We are interested in estimates of the gradient (10) with respect to the mean µ and the standard
deviation � of the Gaussian distribution. The cost functions vary with a parameter k, which allows
us to explore how changes in the cost a↵ect the gradient. In the graphs that follow, we use numerical
integration to compute the variance of these gradients. To reproduce these graphs, see the note on
code in the introduction.
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Case study: Normalizing flow for atomic solids

Normalizing flows for atomic solids 5

A B

C D

Figure 2. Energy histograms (A–B) and radial distribution functions (C–D) of the
base distribution, the fully trained model and MD simulation data, for the 500-particle
LJ system (left) and the 512-particle cubic ice system (right).

A key feature of our model architecture is that we can target specific crystal

structures by encoding them into the base distribution. For example, if we are interested

in modelling the hexagonal phase of a crystal, we can choose the lattice of the base

distribution to be hexagonal. Empirically, we find that, after training, the flow model

becomes a sampler for the (metastable) crystal state that we encode in the base

distribution, and does not sample configurations from other states. Thus, by choosing

the base lattice accordingly, we can guide the model towards the state of interest, without

changing the energy function or using ground-truth samples for guidance.

3. Results

We train the models on two di↵erent systems. The first is a truncated and shifted

Lennard-Jones (LJ) crystal in the FCC phase at reduced temperature and density values

of 2 and 1.28, respectively, employing a reduced cuto↵ of 2.7 as in Ref. [30]. The second is

ice I modelled as monatomic Water (mW) [26] in the diamond cubic (Ic) and hexagonal

https://github.com/deepmind/flows_for_atomic_solidsWirnsberger et al, 2111.08696

ln Z = ln 𝔼x∼p(x) [e−βE(x)−ln p(x)]
free energy perturbation (Zwanzig 1954)

Variational free energy with a really deep (and a bit awkward) 
permutation equivariant flow
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Table 1. Helmholtz free energy estimates, �F̂ /N , obtained with 2M, 2 ⇥ 1M and
100⇥10k samples for LFEP, LBAR and MBAR for LJ, and 2M, 2⇥1M and 200⇥10k
samples for ice. Parentheses show the uncertainties in the last digits (two standard
errors); error bars for LFEP and LBAR were computed using 10 independently trained
models, so they quantify uncertainty both due to randomness in training and due
to finite sample size in estimation; error bars for MBAR were computed across 10
independent estimates. The literature value for LJ is 3.11(4) for 256 particles [30]; the
literature value for mW is unknown. See Supplementary Material for further details.

System N LFEP LBAR MBAR

LJ 256 3.10800(28) 3.10797(1) 3.10798(9)
LJ 500 3.12300(41) 3.12264(2) 3.12262(10)

Ice Ic 64 -25.16311(3) -25.16312(1) -25.16306(20)
Ice Ic 216 -25.08234(7) -25.08238(1) -25.08234(5)
Ice Ic 512 -25.06163(35) -25.06161(1) -25.06156(3)

Ice Ih 64 -25.18671(3) -25.18672(2) -25.18687(26)
Ice Ih 216 -25.08980(3) -25.08979(1) -25.08975(14)
Ice Ih 512 -25.06478(9) -25.06479(1) -25.06480(4)

10�5kBT per particle. We find it remarkable, however, that LFEP can yield comparable

accuracy in most cases without access to MD samples for training or estimation, and

without the need for defining intermediate states. Finally, we compute the Helmholtz

free energy di↵erence between cubic and hexagonal ice for 216 particles by subtracting

the two LFEP estimates in Tab. 1. This yields a value of 12.4(2) J/mol which is in good

agreement with the reported Gibbs free energy di↵erence of 11.2(2) J/mol obtained with

LSMC simulations at atmospheric pressure [31].

4. Discussion

In summary, we have proposed a normalizing-flow model for solids consisting of identical

particles and have demonstrated that it can be optimized to approximate Boltzmann

distributions accurately for system sizes of up to 512 particles, without requiring samples

from the target for training. We have shown that flow-based estimates of radial

distribution functions, bond-order parameters and energy histograms agree well with

MD results, without the need for an unbiasing step. A detailed comparison of free

energy estimates further verifies that our flow-based estimates are correct and accurate.

Our work therefore clearly demonstrates that flow models can approximate single states

of interest with high accuracy without training data, providing a solid foundation for

follow-up work.

A current limitation of our proposed method is the computational cost of training.

Although generating samples from the model and obtaining their probability density is

e�cient as it is trivially parallelizable, training the model with gradient-based methods

is inherently sequential. While training took only a day on the smallest system (64-

ln ZB − ln ZA = ln 𝔼A [e−β(EB−EA)]
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Will the score-function gradient estimator do better?
Heavy lifting is mostly due to preserving permutation. But, does it really matter?
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F. Hardware details and computational cost

For our flow experiments, we used 16 A100 GPUs to train each model on the bigger

systems (512-particle mW and 500-particle LJ). It took approximately 3 weeks of

training to reach convergence of the free-energy estimates. Obtaining 2M samples for

evaluation took approximately 12 hours on 8 V100 GPUs for each of these models.

Training on the medium-size systems (216-particle mW and 256-particle LJ) until

convergence took about 4 days on 8 V100 GPUs, obtaining 2M samples took about

4 hours on 4 V100 GPUs. The 64-particle mW systems trained in one day on 4 V100

GPUs and 2M samples took 2 hours to generate on the same 4 V100 GPUs.

For each baseline MBAR estimate, we performed 100 separate simulations for LJ

and 200 for mW, corresponding to the number of stages employed. These simulations

were performed with LAMMPS [8] and each of them ran on multiple CPU cores

communicating via MPI. We used 4 cores for the 64-particle and 216-particle mW

experiments and 8 cores for all other systems. The MD simulations completed after

approximately 11 and 14 hours for LJ (256 and 500 particles), and 7, 20 and 48 hours

for mW (64, 216 and 512 particles). To evaluate the energy matrix for a single MBAR

estimate, we decomposed the problem into the number of stages separate jobs (100

for LJ and 200 for mW), so that each worker evaluated all energies for the samples

corresponding to a single stage on a V100 GPU. Each of these jobs took less than

10 minutes for LJ (both system sizes) and approximately 0.5, 1 and 4 hours for mW

with 64, 216 and 512 particles. Running pymbar [9] until convergence on a CPU took

between 20 minutes and two hours for a single estimate.

G. Supplementary experimental results

A B

Supplementary Figure 2. Energy histograms (A) and radial distribution functions

(B) of the base distribution, the fully trained model and MD simulation data, for the

512-particle hexagonal ice system.
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Denoising score matching Vincent 2011distribution q�(x̃ | x) and then employs score matching to estimate the score of the perturbed data
distribution q�(x̃) ,

R
q�(x̃ | x)pdata(x)dx. The objective was proved equivalent to the following:

1

2
Eq�(x̃|x)pdata(x)[ks✓(x̃)�rx̃ log q�(x̃ | x)k22]. (2)

As shown in [61], the optimal score network (denoted as s✓⇤(x)) that minimizes Eq. (2) satisfies
s✓⇤(x) = rx log q�(x) almost surely. However, s✓⇤(x) = rx log q�(x) ⇡ rx log pdata(x) is true
only when the noise is small enough such that q�(x) ⇡ pdata(x).

Sliced score matching Sliced score matching [53] uses random projections to approximate
tr(rxs✓(x)) in score matching. The objective is

EpvEpdata


v|rxs✓(x)v +

1

2
ks✓(x)k22

�
, (3)

where pv is a simple distribution of random vectors, e.g., the multivariate standard normal. As shown
in [53], the term v|rxs✓(x)v can be efficiently computed by forward mode auto-differentiation.
Unlike denoising score matching which estimates the scores of perturbed data, sliced score matching
provides score estimation for the original unperturbed data distribution, but requires around four
times more computations due to the forward mode auto-differentiation.

2.2 Sampling with Langevin dynamics

Langevin dynamics can produce samples from a probability density p(x) using only the score function
rx log p(x). Given a fixed step size ✏ > 0, and an initial value x̃0 ⇠ ⇡(x) with ⇡ being a prior
distribution, the Langevin method recursively computes the following

x̃t = x̃t�1 +
✏

2
rx log p(x̃t�1) +

p
✏ zt, (4)

where zt ⇠ N (0, I). The distribution of x̃T equals p(x) when ✏ ! 0 and T ! 1, in which case x̃T

becomes an exact sample from p(x) under some regularity conditions [62]. When ✏ > 0 and T < 1,
a Metropolis-Hastings update is needed to correct the error of Eq. (4), but it can often be ignored in
practice [9, 12, 39]. In this work, we assume this error is negligible when ✏ is small and T is large.

Note that sampling from Eq. (4) only requires the score function rx log p(x). Therefore, in order to
obtain samples from pdata(x), we can first train our score network such that s✓(x) ⇡ rx log pdata(x)
and then approximately obtain samples with Langevin dynamics using s✓(x). This is the key idea of
our framework of score-based generative modeling.

3 Challenges of score-based generative modeling

In this section, we analyze more closely the idea of score-based generative modeling. We argue that
there are two major obstacles that prevent a naïve application of this idea.

3.1 The manifold hypothesis

Figure 1: Left: Sliced score matching (SSM) loss
w.r.t. iterations. No noise is added to data. Right:
Same but data are perturbed with N (0, 0.0001).

The manifold hypothesis states that data in the
real world tend to concentrate on low dimen-
sional manifolds embedded in a high dimen-
sional space (a.k.a., the ambient space). This
hypothesis empirically holds for many datasets,
and has become the foundation of manifold
learning [3, 47]. Under the manifold hypothesis,
score-based generative models will face two key
difficulties. First, since the score rx log pdata(x)
is a gradient taken in the ambient space, it is un-
defined when x is confined to a low dimensional
manifold. Second, the score matching objective Eq. (1) provides a consistent score estimator only
when the support of the data distribution is the whole space (cf ., Theorem 2 in [24]), and will be
inconsistent when the data reside on a low-dimensional manifold.
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)

2



A tale of three equations

Fokker-Planck equation (PDE)

dx
dt

= f − T ∇ln p(x, t)

xt+dt − xt = fdt + 2Tdt𝒩(0,1)

Langevin equation (SDE)

∂p(x, t)
∂t

+ ∇ ⋅ [p(x, t)f] − T ∇2p(x, t) = 0

“Particle method” (ODE)

Maoutsa et al, 2006.00702 
Song et al, 2011.13456

q(xt+dt |xt) = 𝒩(xt + fdt,2TdtI) or

(Another way to reverse the diffusion is 
via the reverse-time SDE Anderson 1982)



from Langevin  
to Fokker-Planck

9.1 Brownian motion of a particle 191
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By subdividing the time interval t into infinitesimal segments of size ",
repeated application of the above evolution operator yields
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The integral is over all paths connecting the initial and final points; each path’s
weight is related to its deviation from the classical trajectory, "̇x = "v#"x$. The
recursion relation in Eq. (9.13) can now be written as

!#"x& t$ =
∫

d3"x ′
(

1
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exp

[

−
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!#"x ′& t − "$& (9.18)

and simplified by the change of variables,

"y = "x ′ + ""v#"x ′$− "x =⇒
d3"y = d3"x ′ (1+ "( · "v#"x′$

)
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Keeping only terms at order of ", we obtain
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(9.20)

Equating terms at order of " leads to the Fokker–Planck equation,
)!

)t
+( · "J = 0& with "J = "v! −D(!% (9.21)

The Fokker–Planck equation is simply the statement of conservation of prob-
ability. The probability current has a deterministic component "v! , and a
stochastic part −D(! . A stationary distribution, )!/)t = 0, is obtained if
the net current vanishes. It is now easy to check that the Boltzmann weight,
!eq%#"x$ ∝ exp*−% #"x$/kBT+, with (!eq% = "v!eq%/#,kBT $, leads to a stationary
state as long as the fluctuation–dissipation condition in Eq. (9.12) is satisfied.



Lessons from diffusion models

https://cvpr2022-tutorial-diffusion-models.github.io/
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Denoising Score Matching

• Instead, diffuse individual data points     . Diffused               is tractable!

Forward diffusion process (fixed)
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neural 
network

score of diffused 
data sample
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Song et al. ICLR, 2021
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• Denoising Score Matching:
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dxt = �1

2
�(t)xt dt+

p
�(t) d!t

“Variance Preserving” SDE:

<latexit sha1_base64="pHOJjjRZ/AF3g89zy5Wdxt+YFhE=">AAAB+nicbVDLSsNAFL2pr1pfqS7dBItQNyWRoi6LblxWsA9oQ5hMJ+3QySTOTNQS+yluXCji1i9x5984abPQ1gMDh3Pu5Z45fsyoVLb9bRRWVtfWN4qbpa3tnd09s7zfllEiMGnhiEWi6yNJGOWkpahipBsLgkKfkY4/vsr8zj0Rkkb8Vk1i4oZoyGlAMVJa8szyXbUfIjXyg/Rx6tknpZJnVuyaPYO1TJycVCBH0zO/+oMIJyHhCjMkZc+xY+WmSCiKGZmW+okkMcJjNCQ9TTkKiXTTWfSpdayVgRVEQj+urJn6eyNFoZST0NeTWUy56GXif14vUcGFm1IeJ4pwPD8UJMxSkZX1YA2oIFixiSYIC6qzWniEBMJKt5WV4Cx+eZm0T2vOWa1+U680LvM6inAIR1AFB86hAdfQhBZgeIBneIU348l4Md6Nj/lowch3DuAPjM8fuVSTAQ==</latexit>

q(x0)
<latexit sha1_base64="Frtl7jj79vvBpy7yUIC/bT97H/4=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSLUTUmkqMuiG5cV+oI2hMl00g6dTOLMRC2xn+LGhSJu/RJ3/o1Jm4W2Hhg4nHMv98zxIs6UtqxvY2V1bX1js7BV3N7Z3ds3SwdtFcaS0BYJeSi7HlaUM0FbmmlOu5GkOPA47Xjj68zv3FOpWCiaehJRJ8BDwXxGsE4l1yzdVfoB1iPPTx6nbvO0WHTNslW1ZkDLxM5JGXI0XPOrPwhJHFChCcdK9Wwr0k6CpWaE02mxHysaYTLGQ9pLqcABVU4yiz5FJ6kyQH4o0yc0mqm/NxIcKDUJvHQyi6kWvUz8z+vF2r90EiaiWFNB5of8mCMdoqwHNGCSEs0nKcFEsjQrIiMsMdFpW1kJ9uKXl0n7rGqfV2u3tXL9Kq+jAEdwDBWw4QLqcAMNaAGBB3iGV3gznowX4934mI+uGPnOIfyB8fkD8FCTJQ==</latexit>

q(xT )

Continuous normalizing flow still has great potential!

Going beyond maximum likelihood estimation training (even if we can)

Break the loss into small pieces, sample them (kind of layer-wise training) https://blog.alexalemi.com/
diffusion.html

The conditional trick (originated from denoising score matching Vincent 2011)



Lessons from diffusion models
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Score Matching

• Naïve idea, learn model for the score function by direct regression?

Forward diffusion process (fixed)

<latexit sha1_base64="1FJ2Efhg5qcTrvU55qAcEPfzByE=">AAAB+XicbVDLSsNAFL2pr1pfUZduBqvgqiRSqsuCG5cV7APaECbTSTt0Mgkzk2IJ/RM3LhRx65+482+ctFlo64GBwzn3cs+cIOFMacf5tkobm1vbO+Xdyt7+weGRfXzSUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024wucv97pRKxWLxqGcJ9SI8EixkBGsj+bY9iLAeB2H2NPedioFvV52aswBaJ25BqlCg5dtfg2FM0ogKTThWqu86ifYyLDUjnM4rg1TRBJMJHtG+oQJHVHnZIvkcXRpliMJYmic0Wqi/NzIcKTWLAjOZ51SrXi7+5/VTHd56GRNJqqkgy0NhypGOUV4DGjJJieYzQzCRzGRFZIwlJtqUlZfgrn55nXSua26jVn+oV5sXRR1lOINzuAIXbqAJ99CCNhCYwjO8wpuVWS/Wu/WxHC1Zxc4p/IH1+QN+q5Ir</latexit>x0
<latexit sha1_base64="GS205AhwIbESFdeXgSRcbzQfuPg=">AAAB+XicbVDLSsNAFL2pr1pfUZduBqvgqiRS1GXBjcsKfUEbwmQ6aYdOJmFmUiyhf+LGhSJu/RN3/o2TNgttPTBwOOde7pkTJJwp7TjfVmljc2t7p7xb2ds/ODyyj086Kk4loW0S81j2AqwoZ4K2NdOc9hJJcRRw2g0m97nfnVKpWCxaepZQL8IjwUJGsDaSb9uDCOtxEGZPc79VMfDtqlNzFkDrxC1IFQo0fftrMIxJGlGhCcdK9V0n0V6GpWaE03llkCqaYDLBI9o3VOCIKi9bJJ+jS6MMURhL84RGC/X3RoYjpWZRYCbznGrVy8X/vH6qwzsvYyJJNRVkeShMOdIxymtAQyYp0XxmCCaSmayIjLHERJuy8hLc1S+vk851zb2p1R/r1cZFUUcZzuAcrsCFW2jAAzShDQSm8Ayv8GZl1ov1bn0sR0tWsXMKf2B9/gC1y5JP</latexit>xT

<latexit sha1_base64="AqTsPoJ8QRhCLsOZsLF1Tq44dYA=">AAAB+XicbVBNS8NAFHypX7V+RT16CVbBU0mkqMeCF48VbC20oWy2m3bpZhN2X4ol9J948aCIV/+JN/+NmzYHbR1YGGbe481OkAiu0XW/rdLa+sbmVnm7srO7t39gHx61dZwqylo0FrHqBEQzwSVrIUfBOoliJAoEewzGt7n/OGFK81g+4DRhfkSGkoecEjRS37Z7EcFREGZPsz5WDPp21a25czirxCtIFQo0+/ZXbxDTNGISqSBadz03QT8jCjkVbFbppZolhI7JkHUNlSRi2s/myWfOuVEGThgr8yQ6c/X3RkYiradRYCbznHrZy8X/vG6K4Y2fcZmkyCRdHApT4WDs5DU4A64YRTE1hFDFTVaHjogiFE1ZeQne8pdXSfuy5l3V6vf1auOsqKMMJ3AKF+DBNTTgDprQAgoTeIZXeLMy68V6tz4WoyWr2DmGP7A+fwDmy5Jv</latexit>xt… …

diffusion 
time

<latexit sha1_base64="cJsxGNpqK+W2GHDdEsl0q4vaP2c=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KokU9Vjw4rGCaQttKJvtpl262YTdiVBKf4MXD4p49Qd589+4aXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4LvfbT1wbkahHnKQ8iOlQiUgwilbysWzRr1TdmjsHWSVeQapQoNmvfPUGCctirpBJakzXc1MMplSjYJLPyr3M8JSyMR3yrqWKxtwE0/mxM3JhlQGJEm1LIZmrvyemNDZmEoe2M6Y4MsteLv7ndTOMboOpUGmGXLHFoiiTBBOSf04GQnOGcmIJZVrYWwkbUU0Z2nzyELzll1dJ66rmXdfqD/Vq47yIowSncAaX4MENNOAemuADAwHP8ApvjnJenHfnY9G65hQzJ/AHzucPrGiNMw==</latexit>

t
diffused 

data <latexit sha1_base64="AqTsPoJ8QRhCLsOZsLF1Tq44dYA=">AAAB+XicbVBNS8NAFHypX7V+RT16CVbBU0mkqMeCF48VbC20oWy2m3bpZhN2X4ol9J948aCIV/+JN/+NmzYHbR1YGGbe481OkAiu0XW/rdLa+sbmVnm7srO7t39gHx61dZwqylo0FrHqBEQzwSVrIUfBOoliJAoEewzGt7n/OGFK81g+4DRhfkSGkoecEjRS37Z7EcFREGZPsz5WDPp21a25czirxCtIFQo0+/ZXbxDTNGISqSBadz03QT8jCjkVbFbppZolhI7JkHUNlSRi2s/myWfOuVEGThgr8yQ6c/X3RkYiradRYCbznHrZy8X/vG6K4Y2fcZmkyCRdHApT4WDs5DU4A64YRTE1hFDFTVaHjogiFE1ZeQne8pdXSfuy5l3V6vf1auOsqKMMJ3AKF+DBNTTgDprQAgoTeIZXeLMy68V6tz4WoyWr2DmGP7A+fwDmy5Jv</latexit>xt

neural 
network

score of 
diffused data 

(marginal)

<latexit sha1_base64="kKt1I9wmEayvuU79NVuOarHMCuE="></latexit>

min
✓

Et⇠U(0,T )Ext⇠qt(xt)||s✓(xt, t)�rxt log qt(xt)||22

But                        (score of the marginal diffused density           ) is not tractable!
<latexit sha1_base64="lasQkhSRqZJ3UMvYLrPV64XoiMI=">AAACFnicbVBNS8NAEN34WetX1aOXxSrUgyWRoh4LXjxWsB/QhLDZbtqlm03cnYgl5Fd48a948aCIV/HmvzFpe6itDwYe780wM8+LBNdgmj/G0vLK6tp6YaO4ubW9s1va22/pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9obXud9+YErzUN7BKGJOQPqS+5wSyCS3dGZL4gniJnZAYOD5yWPqQoptEfbxvQuVWfm06JbKZtUcAy8Sa0rKaIqGW/q2eyGNAyaBCqJ11zIjcBKigFPB0qIdaxYROiR91s2oJAHTTjJ+K8UnmdLDfqiykoDH6uxEQgKtR4GXdeZX6nkvF//zujH4V07CZRQDk3SyyI8FhhDnGeEeV4yCGGWEUMWzWzEdEEUoZEnmIVjzLy+S1nnVuqjWbmvl+vE0jgI6REeogix0ieroBjVQE1H0hF7QG3o3no1X48P4nLQuGdOZA/QHxtcvzEKfqA==</latexit>

rxt log qt(xt)

Vincent, “A Connection Between Score Matching and Denoising Autoencoders”, Neural Computation, 2011
Song and Ermon, “Generative Modeling by Estimating Gradients of the Data Distribution”, NeurIPS, 2019

<latexit sha1_base64="Ax9Lie9GJPh2vqJKM4XRKATCvsU=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBXqpiRS1GXBjcsK9gFtCJPppB06eThzI4ZQf8WNC0Xc+iHu/BsnbRbaemDgcM693DPHiwVXYFnfxsrq2vrGZmmrvL2zu7dvHhx2VJRIyto0EpHseUQxwUPWBg6C9WLJSOAJ1vUm17nffWBS8Si8gzRmTkBGIfc5JaAl16zcu1AbBATGnp89Tl04K5dds2rVrRnwMrELUkUFWq75NRhGNAlYCFQQpfq2FYOTEQmcCjYtDxLFYkInZMT6moYkYMrJZuGn+FQrQ+xHUr8Q8Ez9vZGRQKk08PRkHlMtern4n9dPwL9yMh7GCbCQzg/5icAQ4bwJPOSSURCpJoRKrrNiOiaSUNB95SXYi19eJp3zun1Rb9w2qs2Too4SOkLHqIZsdIma6Aa1UBtRlKJn9IrejCfjxXg3PuajK0axU0F/YHz+ALDNlA4=</latexit>

qt(xt)

<latexit sha1_base64="pHOJjjRZ/AF3g89zy5Wdxt+YFhE=">AAAB+nicbVDLSsNAFL2pr1pfqS7dBItQNyWRoi6LblxWsA9oQ5hMJ+3QySTOTNQS+yluXCji1i9x5984abPQ1gMDh3Pu5Z45fsyoVLb9bRRWVtfWN4qbpa3tnd09s7zfllEiMGnhiEWi6yNJGOWkpahipBsLgkKfkY4/vsr8zj0Rkkb8Vk1i4oZoyGlAMVJa8szyXbUfIjXyg/Rx6tknpZJnVuyaPYO1TJycVCBH0zO/+oMIJyHhCjMkZc+xY+WmSCiKGZmW+okkMcJjNCQ9TTkKiXTTWfSpdayVgRVEQj+urJn6eyNFoZST0NeTWUy56GXif14vUcGFm1IeJ4pwPD8UJMxSkZX1YA2oIFixiSYIC6qzWniEBMJKt5WV4Cx+eZm0T2vOWa1+U680LvM6inAIR1AFB86hAdfQhBZgeIBneIU348l4Md6Nj/lowch3DuAPjM8fuVSTAQ==</latexit>

q(x0)
<latexit sha1_base64="Frtl7jj79vvBpy7yUIC/bT97H/4=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSLUTUmkqMuiG5cV+oI2hMl00g6dTOLMRC2xn+LGhSJu/RJ3/o1Jm4W2Hhg4nHMv98zxIs6UtqxvY2V1bX1js7BV3N7Z3ds3SwdtFcaS0BYJeSi7HlaUM0FbmmlOu5GkOPA47Xjj68zv3FOpWCiaehJRJ8BDwXxGsE4l1yzdVfoB1iPPTx6nbvO0WHTNslW1ZkDLxM5JGXI0XPOrPwhJHFChCcdK9Wwr0k6CpWaE02mxHysaYTLGQ9pLqcABVU4yiz5FJ6kyQH4o0yc0mqm/NxIcKDUJvHQyi6kWvUz8z+vF2r90EiaiWFNB5of8mCMdoqwHNGCSEs0nKcFEsjQrIiMsMdFpW1kJ9uKXl0n7rGqfV2u3tXL9Kq+jAEdwDBWw4QLqcAMNaAGBB3iGV3gznowX4934mI+uGPnOIfyB8fkD8FCTJQ==</latexit>

q(xT )

https://cvpr2022-tutorial-diffusion-models.github.io/

Continuous normalizing flow still has great potential!

Going beyond maximum likelihood estimation training (even if we can)

Break the loss into small pieces, sample them (kind of layer-wise training) https://blog.alexalemi.com/
diffusion.html

The conditional trick (originated from denoising score matching Vincent 2011)



𝔼x∼q(x) |sθ(x) − ∇xln q(x) |2 = 𝔼x0∼q0(x0)𝔼x∼q(x|x0) |sθ(x) − ∇xln q(x |x0) |2 + const .

q(x) = ∫ q(x |x0)q0(x0)dx0
Independent  

of θ

Claim:

Proof:

𝔼x0∼q0(x0)𝔼x∼q(x|x0) |s |2 = ∫ dx0 ∫ dxq0(x0)q(x |x0) |s |2 = ∫ dxq(x) |s |2 = 𝔼x∼q(x) |s2 |

𝔼x0∼q0(x0)𝔼x∼q(x|x0)[s ⋅ ∇ln q(x |x0)] = ∫ dx0 ∫ dxq0(x0)q(x |x0)
s ⋅ ∇q(x |x0)

q(x |x0)

= ∫ dx0 ∫ dxq0(x0)s ⋅ ∇q(x |x0)

= ∫ dxs ⋅ ∇q(x) = 𝔼x∼q(x)[s ⋅ ∇ln q(x)]

https://spaces.ac.cn/archives/9209



Flow matching

Albergo et al, 2209.15571, Lipman et al, 2210.02747

data distribution
p(x,0) = 𝒩(0,I) p(x,1) = q(x)

∂p(x, t)
∂t

+ ∇ ⋅ [p(x, t)u(x, t)] = 0

ground truth 
velocity field

ℒFM = 𝔼t∼𝒰(0,1)𝔼x∼p(x,t) vθ(x, t) − u(x, t)
2

base distribution



an example:
u(x |x1, t) = dx/dt = x1 − x0

p(x, t)u(x, t) = ∫ p(x |x1, t)u(x |x1, t) q(x1)dx1p(x, t) = ∫ p(x |x1, t) q(x1)dx1

Conditional flow matching
∂p(x |x1, t)

∂t
+ ∇ ⋅ [p(x |x1, t)u(x |x1, t)] = 0

x0 ∼ 𝒩(0,I)
x = (1 − t)x0 + tx1

∇θℒFM = ∇θℒCFM

ℒCFM = 𝔼t∼𝒰(0,1)𝔼x1∼q(x1)𝔼x∼p(x|x1,t) vθ(x, t) − u(x |x1, t)
2

p(x |x1, t) = 𝒩 (tx1, (1 − t)2)



Claim:

Proof:

p(x, t)u(x, t) = ∫ p(x |x1, t)u(x |x1, t) q(x1)dx1p(x, t) = ∫ p(x |x1, t) q(x1)dx1

∇θℒFM = ∇θℒCFM

ℒCFM = 𝔼t∼𝒰(0,1)𝔼x1∼q(x1)𝔼x∼p(x|x1,t) vθ(x, t) − u(x |x1, t)
2

ℒFM = 𝔼t∼𝒰(0,1)𝔼x∼p(x,t) vθ(x, t) − u(x, t)
2

𝔼x1∼q(x1)𝔼x∼p(x|x1,t) vθ
2

= ∫ dx1 ∫ dxq(x1)p(x |x1, t) |vθ |2 = ∫ dxp(x, t) |vθ |2 = 𝔼x∼p(x,t) vθ
2

𝔼x1∼q(x1)𝔼x∼p(x|x1,t) [vθ ⋅ u(x |x1, t)] = ∫ dx1 ∫ dxq(x1)p(x |x1, t)[vθ ⋅ u(x |x1, t)]

= ∫ dxp(x, t)vθ ⋅ u(x, t) = 𝔼x∼p(x,t) [vθ ⋅ u(x, t)]

where



Flow matching is all you need!

Fun to try: flow matching for computing free energy difference 

400x speedup compared to continuous normalizing flow (Albergo et al, 2209.15571)

This framework contains various diffusion models as special cases

Greater freedom (and optimal transport theory) in the interpolation path

Surpasses diffusion model on Imagenet in likelihood and sample quality 

(Lipman et al, 2210.02747)

Fun to try: Train Riemannian flows with this
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GAN
Likelihood free simulator

Prone to mode collapse

More tricky to train than others

I found it is less useful to scientific applications

Performance have been surpassed by diffusion models



VAE
Close connection to variational calculus we have just learned  

p(x) =
e−E(x)

Z
p(z |x) =

p(x |z)p(z)
p(x)

Approximate sampling and estimation of partition
functions using neural networks

George T. Cantwell
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501

gcant@umich.edu

Abstract

We consider the closely related problems of sampling from a distribution known
up to a normalizing constant, and estimating said normalizing constant. We show
how variational autoencoders (VAEs) can be applied to this task. In their standard
applications, VAEs are trained to fit data drawn from an unknown and intractable
distribution. We invert the logic and train the VAE to fit a simple and tractable
distribution, on the assumption of a complex and intractable latent distribution,
specified up to normalization. This procedure constructs approximations without
the use of training data or Markov chain Monte Carlo sampling. We illustrate our
method on three examples: the Ising model, graph clustering, and ranking.

1 Background

Many problems that arise in statistics, combinatorics, and physics can be understood through the lens
of an appropriate probability distribution, together with its normalizing constant. To study objects x,
we consider the distribution P (x) = f(x)/Z , where Z =

P
x f(x).

For example, when considering a combinatorial problem we can set f(x) = 1 if a set of constraints
is satisfied and f(x) = 0 otherwise. Then, Z simply counts the total number of solutions to the
constraints. In a physics setting, we could have f(x) = e

��H(x), where H(x) is an energy function
and � the inverse temperature. The resulting distribution is known as the canonical distribution,
and arises when a system is in thermal equilibrium with its surroundings. The quantity Z is
called the partition function, and encodes the thermodynamic properties of the system [1]. In a
statistical inference problem we can set f(x) = P (x,D), where D is the observed data. The
resulting distribution f(x)/Z is the posterior distribution for x. The quantity Z = P (D) is known
as the model evidence or marginal likelihood and is important for rigorous model selection [2].
Understanding such distributions, and gaining a handle on Z , is a perennial problem across computer
science, statistics, and physics.

Computing Z exactly is generally difficult – even for many of the simplest examples the problem is
#P-hard [3]. The naive approach is to enumerate all exponentially many x, and directly sum over this
set; #P-hardness means there is unlikely to be any substantially faster method than this. But while we
usually cannot compute Z exactly, it may still be possible to make useful approximations.

A standard approach for approximating Z =
P

x f(x) is to use Markov chain Monte Carlo (MCMC)
[4, 5, 6]. This requires constructing a Markov chain that has P (x) = f(x)/Z as its equilibrium dis-
tribution, and then simulating the process. While finding such a Markov chain can be straightforward,
it often turns out that the process takes exponential time to approach its equilibrium distribution. If
the chain takes exponential time to get close to the equilibrium distribution, it is ultimately little
improvement over the naive but exact method. Even when Markov chains do mix in polynomial time,
they may still scale with a large power of the problem size, and thus large problems are out of reach
in practice.
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Abstract

We consider the closely related problems of sampling from a distribution known
up to a normalizing constant, and estimating said normalizing constant. We show
how variational autoencoders (VAEs) can be applied to this task. In their standard
applications, VAEs are trained to fit data drawn from an unknown and intractable
distribution. We invert the logic and train the VAE to fit a simple and tractable
distribution, on the assumption of a complex and intractable latent distribution,
specified up to normalization. This procedure constructs approximations without
the use of training data or Markov chain Monte Carlo sampling. We illustrate our
method on three examples: the Ising model, graph clustering, and ranking.

1 Background

Many problems that arise in statistics, combinatorics, and physics can be understood through the lens
of an appropriate probability distribution, together with its normalizing constant. To study objects x,
we consider the distribution P (x) = f(x)/Z , where Z =

P
x f(x).

For example, when considering a combinatorial problem we can set f(x) = 1 if a set of constraints
is satisfied and f(x) = 0 otherwise. Then, Z simply counts the total number of solutions to the
constraints. In a physics setting, we could have f(x) = e

��H(x), where H(x) is an energy function
and � the inverse temperature. The resulting distribution is known as the canonical distribution,
and arises when a system is in thermal equilibrium with its surroundings. The quantity Z is
called the partition function, and encodes the thermodynamic properties of the system [1]. In a
statistical inference problem we can set f(x) = P (x,D), where D is the observed data. The
resulting distribution f(x)/Z is the posterior distribution for x. The quantity Z = P (D) is known
as the model evidence or marginal likelihood and is important for rigorous model selection [2].
Understanding such distributions, and gaining a handle on Z , is a perennial problem across computer
science, statistics, and physics.

Computing Z exactly is generally difficult – even for many of the simplest examples the problem is
#P-hard [3]. The naive approach is to enumerate all exponentially many x, and directly sum over this
set; #P-hardness means there is unlikely to be any substantially faster method than this. But while we
usually cannot compute Z exactly, it may still be possible to make useful approximations.

A standard approach for approximating Z =
P

x f(x) is to use Markov chain Monte Carlo (MCMC)
[4, 5, 6]. This requires constructing a Markov chain that has P (x) = f(x)/Z as its equilibrium dis-
tribution, and then simulating the process. While finding such a Markov chain can be straightforward,
it often turns out that the process takes exponential time to approach its equilibrium distribution. If
the chain takes exponential time to get close to the equilibrium distribution, it is ultimately little
improvement over the naive but exact method. Even when Markov chains do mix in polynomial time,
they may still scale with a large power of the problem size, and thus large problems are out of reach
in practice.
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The dense hydrogen problem

Nobel Lecture7 are updated versions). In 1935, Eugene Wigner (one of
the founders of modern solid-state physics) and his colleague Hillard
Huntington first tried to predict what would happened to hydrogen if it
were compressed to very high densities.8 Based on a nearly free-electron
picture, they predicted that above 250 000 atm (25 GPa)—an un-
imaginable pressure at the time—hydrogen would enter ametallic state.
Because they did not know the compressibility of hydrogen, they were
quite far off in their estimate of the pressure required. Experimental
high-pressure physics has developedandmaturedover the eight decades
since, succeeding in subjecting hydrogen to pressures of the order of 400
GPa,9 an almost 16-fold increase compared with the original prediction
of Wigner and Huntington. A plethora of exciting and interesting
phenomenahavebeenobserved indensehydrogen, but themetallic state
remains elusive. Owing to the accumulated experience, knowledge, and
significantly improved experimental and theoretical methods, we now
understand the problems much better and can make an educated guess
as to the P–T conditions needed to turn the molecular gas into the
lightest metal. While the experimentalists are tantalizingly close to the
pressures needed to metallize hydrogen, theory has already moved
beyondcurrent static pressure limits andhas predicted that ground-state
(T ! 0 K) hydrogen, owing to strong quantum effects, would be an
entirely new state of matter, which could be superfluid or super-
conducting, depending on the magnetic field applied.16 This fascinating
prospect is so unusual that it is quite difficult to imagine it being possible.
Consequently, metallizing hydrogen and reaching such a novel state of
matter is arguably the most exciting and interesting discovery that
condensed matter physics could produce today.

II. PHYSICS OF DENSE HYDROGEN AND DEUTERIUM
AT HIGH DENSITIES (COMPRESSION)

The behavior of hydrogen is strongly influenced by quantum
mechanical effects. Nuclear quantum effects are larger for hydrogen

than any other atom, which explains its unique behavior. Solid hy-
drogen has a massive quantum zero-point energy (ZPE), far greater
than its latent heat of melting, and has a Debye temperature well above
melting. These factors determine the behavior of hydrogen in the dense
state. Currently, five solid phases of hydrogen are known (see Fig. 1),
and it is unique among the stable elements in that full structural in-
formation (e.g., the locations of the atomic centers and the shapes of the
molecules) is absent for all of them, which prevents modeling and/or
predictions of hydrogen behavior at higher pressures.

Under ambient conditions, i.e., atmospheric pressure and
300 K, hydrogen is a molecular gas [see Fig. 2(a)]. The exchange
interaction, a purely quantum mechanical effect, forms one of the
strongest bonds in chemistry, the H–H bond. Owing to this bond,
hydrogen exists in molecular form, with atoms separated by ap-
proximately 0.74 Å and a bond dissociation energy of approximately
4.52 eV under ambient conditions.17,18 In its solid state at 2 K, the
hydrogen bandgap is very large, at about 14 eV.19 Conversely, in-
termolecular bonding is very weak, requiring extreme conditions to
bring the molecules together and bind them into the solid state. Low-
temperature solidification of hydrogen was first achieved in 1899 by
Dewar, at a slightly higher temperature (19 K) than that required to
liquefy helium. An alternative solidification route is through com-
pression, whereby hydrogen can be solidified at 300 K by bringing the
molecules close to each other and increasing the density. The gaseous,
diffusive, and corrosive nature of hydrogen, combinedwith the lack of
high-pressure technology, delayed room temperature solidification
for almost a century after Dewar’s experiments. Only the invention
and refinement of the diamond anvil cell allowed Mao and Bell20 to
solidify hydrogen at 300 K using a pressure of 5.5 GPa (55 000 atm).
The solid state under these conditions is now known as phase I
(Fig. 1). This phase is characterized by quantum spherically disor-
deredmolecules arranged in a hexagonal close packed (hcp) structure
[Fig. 2(b)]. At room temperature and above 5.5 GPa, hydrogen is a
very good (molecular) insulator with a bandgap of 9.5 eV (H.-K.Mao,
unpublished work). Phase I occupies a very prominent part of the
phase diagram, reaching up to 190 GPa at 300 K. It displays re-
markable pressure stability and to our knowledge extends over the
second largest pressure range for any molecular system, being second
only to molecular chlorine, whose phase I exists over a pressure
interval of 230 GPa.21 Phase II, known as the “broken symmetry”
phase,23 is formed by compressing phase I of hydrogen or deuterium
above 60 GPa or 25 GPa, respectively,13 and at temperatures below
∼100 K. Governed by quantum effects, phase II is thought to have
ordered (or at least partially ordered) molecules, but the nature of
their arrangement and their shape are unknown.24 There is a strong
isotope dependence in the transition from phase I to II, with the
deuterium transition occurring at substantially lower pressures than
that in hydrogen, implying a critical role of nuclear quantum effects.
Phase III is obtained by compressing phase II above ∼155 GPa below
100 K25 or at around 190 GPa at 300 K10,11 (see Fig. 1). Nothing so far
is known about its structure (atomic positions), but it has been shown
to also have an hcp lattice,26,27 with unusually intense infrared ac-
tivity.28 It has very recently been shown that phase III extends over a
pressure interval of more than 200 GPa at low temperatures.22 The
phase diagrams of hydrogen and deuterium were studied in great
detail in the 1990s, leading to many interesting discoveries: for ex-
ample, both isotopes have a triple point, i.e., a P–T point at which the

FIG. 1. Proposed (artistic) P–T phase diagram of H2. Solid phase lines are a
combination of static compression studies of solid hydrogen9–13 and dynamic
compression studies of fluid deuterium.14,15 Dashed lines represent extrapolations
of these combined results. The dark brown color of phases III and V at higher
pressures suggests closing of the bandgap.
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Dense hydrogen in the sky and in the lab

before full metallization of H is reached171. The mag-
nitude of electrical conductivity, along with the planet’s 
magnetic field strength and luminosity, can be used to 
estimate the internal ohmic dissipation and provide 
constraints for structure and dynamical models172–177.

Jupiter’s magnetic field is the strongest in the Solar 
System (excluding that of the Sun), and its surface field 
strength is 4–20 G (REFS178,179). Recently, the Juno space-
craft revealed that Jupiter’s magnetic field has an intense 
isolated magnetic spot near the equator with a negative 
magnetic anomaly. In addition, an intense and relatively 
narrow band of positive flux near 45 degrees latitude in 
the northern hemisphere has been found, together with 
a rather smooth magnetic field in the southern hem-
isphere. Furthermore, the north–south asymmetry in 
Jupiter’s magnetic field structure could be explained by 
the existence of a diluted core179.

Saturn’s magnetic field, which has a surface field 
strength of 0.2–0.5 G (REFS180–182), is nearly perfectly 
symmetrical with respect to the spin- axis183. The char-
acter of Saturn’s magnetic field could be a result of He 
rain, which could create a stable (against convection) 
layer below/above the dynamo. A stable deep interior 
could also be a result of composition gradients and 
non- adiabatic interiors.

Understanding the processes that lead to magnetic- 
field generation and their outcomes requires good 
knowledge of the associated thermodynamics and 
the feedback on the magnetic field and vice versa. 
Present- day understanding of the dynamo process is 

still limited, and as a result, the magnetic fields can only 
be used to set some bounds on the material properties 
and heat transport inside the planets. This, however, may 
change in the future.

Challenges and outlook
Although the giant planets and the behaviour of ele-
ments at planetary conditions are not yet completely 
understood, we expect progress in the near future. 
Upcoming experiments and theoretical models are 
expected to provide a deeper understanding of phase 
transitions, mixtures and immiscibilities. We also fore-
see improvements in numerical calculations, given the 
increasing computation power and the development of 
new numerical techniques. In particular, we expect that 
future experiments will resolve the disagreement on 
the metallization conditions of H and obtain consistent 
results from the various methods. In addition, it would 
be desirable to make experiments on H–He mixtures, 
to investigate the demixing of He in H. Another topic 
that is expected to blossom in the future is supercon-
ductivity. Although superconductivity has yet to be 
found in pure H, the hypothesis of superconductive H 
has directed the search for superconductivity in H- rich 
materials184,185.

In this Review, we have focused on Jupiter and 
Saturn and have not discussed the ice giants Uranus  
and Neptune. The ice planets are key to understand-
ing planet formation and for the characterization of 
intermediate planets around other stars. Because these 
planets are thought to consist of volatiles such as water, 
methane and ammonia, experimental data focusing on 
these materials would be valuable. In addition, the influ-
ence of H–He on the mixtures of these materials and the 
role of carbon is yet to be determined.

We also expect progress in understanding the inter-
nal structures of Jupiter and Saturn, given the ongoing 
efforts in processing and interpretation of recent data 
from the Juno and Cassini missions, and the devel-
opment of more comprehensive structure models. In 
addition, upcoming and future space missions will play 
a key role in better constraining the interiors of the gas 
giants. The planned ESA JUICE mission will reveal 
further information on Jupiter, and a potential Saturn 
probe mission will provide constraints on Saturn’s 
atmospheric composition and the immiscibility of He 
in H and the process of phase separation. Nevertheless, 
it is now realized that the interiors of giant planets are 
far more complex than previously thought. To under-
stand them better, improvements in the H and H–He 
EOS are required but insufficient. We suggest that 
future studies should concentrate on phase transitions 
of pure elements and mixtures as well as their physi-
cal properties such as thermal diffusivity, electrical 
conductivity and opacity. These properties can then 
be used to further constrain models for giant planet 
formation, evolution and structure. The link between 
planetary interiors and high- pressure physics is clear, 
and we believe that the future holds great promise in 
this direction.
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surrounded by colder and denser DT fuel.

fuel13. In these implosions, self-heating from fusion α-particles has
been estimated to enhance the plasma thermal energy, leading to
a doubling of the fusion yield16–18. Ignition-scale implosions on the
NIF use the indirect-drive approach3, where the laser irradiates the
inner walls of a high-Z metal enclosure (hohlraum) to produce
X-rays. The spherical capsule, approximately 1mm in radius, is
positioned inside the hohlraum and consists of an outer plastic
(or other low-Z material) shell (the ablator) enclosing an inner
layer of cryogenic solid DT (Fig. 1). The X-rays incident on
the capsule outer surface cause mass ablation off that surface,
leading to an inward momentum input (rocket effect) driving the
implosion. In the best-performing indirect-drive implosions on
the NIF (the so-called ‘High-Foot’ targets13,16), the DT mass has
been accelerated with 1.9MJ of ultraviolet light to about 360–
380 km s−1, reaching a fuel kinetic energy of about 12 kJ and
producing about 26 kJ of fusion energy. At present, low-mode
(in spherical harmonics Ym

!
(θ , φ), modes ! and m! 4 are ‘low’)

asymmetries in the X-ray drive are believed to be the leading,
but not the only, cause of performance degradation in indirect
drive. Improvements in implosion symmetry, X-ray conversion
and capsule hydrodynamic stability are thought to be within
reach and sufficient for a significant step forward in implosion
performance. The experimental campaign to achieve ignition on
the NIF is a collaborative effort between the institutional partners
Lawrence Livermore National Laboratory, University of Rochester,
Los Alamos National Laboratory and Sandia National Laboratories,
as well as other collaborators such as General Atomics, whichmakes
the fusion targets, and the Massachusetts Institute of Technology,
which develops nuclear diagnostics. A laser facility with capabilities
similar to the NIF, the Laser MegaJoule19, is being built at present
near Bordeaux (France) by the French Atomic Energy Agency
(Commissariat à l’Energie Atomique, CEA).

In addition to the indirect-drive effort at the NIF, the US laser-
fusion programme also relies on the direct-drive approach, mostly
developed on the OMEGA laser20 at the Laboratory for Laser
Energetics (LLE) of the University of Rochester and the Nike laser21
at the Naval Research Laboratory (NRL). Outside the US, important
research work in direct drive is conducted at Osaka University in
Japan, the Research Center for Laser Fusion in China, the University
of Bordeaux in France, the University of Rome in Italy, and smaller
efforts throughout Europe (including Russia) and Asia. In direct
drive, the spherical shell is directly irradiated by the laser incident
on the capsule outer surface. With respect to indirect drive, direct
drive exhibits higher conversion efficiency from laser energy to
shell kinetic energy, thereby allowing an implosion of greater DT
fuel mass. A disadvantage of direct drive is the reduced uniformity
of the illumination. Whereas the bath of X-rays in the hohlraum
is free of small-scale nonuniformities, laser beams exhibit speckle
patterns with large variations in laser intensity. In direct drive, this
leads to imprinting of small-scale laser-intensity patterns on the
target surface22–24. During the implosion, hydrodynamic instabilities
drive the rapid growth of such nonuniformities, leading to reduced
final compression and, in some cases, breakup of the shell while
in flight. Similarly to indirect drive, the implosion performance
of directly driven targets can also be degraded by low-mode
asymmetries. In direct drive, low-mode asymmetries are seeded
mostly by the finite number of overlapping incident laser beams and
the power imbalance between beams (so, in the direct-drive context,
‘low modes’ are ! and m ! 10). Another source of degradation
comes from the laser–plasma instabilities25 occurring when the
laser light interacts with the ablated plasma. These instabilities
can limit the absorption of the laser energy and accelerate plasma
electrons that can reach the DT fuel. Energetic (hot) electrons can
heat up the DT fuel layer while in flight (preheating26), thereby
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Issues

Coarse graining to slow/collective variables

Symmetry in generative models

Generative models on a manifold

Accelerated sampling in/with generative models  



ML accelerated sampling
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01’ A recommender engine for MC updates when the 
surrogate is a generative model: Huang, LW, 1610.02746, Liu, 
Qi, Meng, Fu, 1610.03137 

2. Reinforcement learning the transition kernel: Song et al, 
1706.07561, Levy et al 1711.09268, Cusumano-Towner et al 1801.03612, 
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