流模型：计算物理视角

王磊 中科院物理研究所
wanglei＠iphy．ac．cn
https：／／wangleiphy．github．io

Physicists' gifts to Machine Learning

Mean Field Theory

Monte Carlo Methods

Tensor Networks

Quantum Computing

Deep learning is more than fitting functions

Discriminative learning

$$
\begin{gathered}
y=f(\boldsymbol{x}) \\
\text { or } p(y \mid \boldsymbol{x})
\end{gathered}
$$

Generative learning

$$
p(\boldsymbol{x}, y)
$$

Deep learning is more than fitting functions

What 9 comnot oleate Ido not understand.	Whincont x seit .po
	Bath
now how to solve lvesy dollan that has been. sol	Kandor 2.0 Hall accut. 7 cm t Non linear divinal Hysio

"What I can not create, I do not understand"

Generated Arts

> \$432,500 25 October 2018 Christie's New York

Generated Arts

\$432,500 25 October 2018 Christie's New York

Generating molecules

Math behind:
Probability Transformation

Probabilistic Generative Modeling

$p(\boldsymbol{x})$

How to express, learn, and sample from a high-dimensional probability distribution?

"random" images

"natural" images

Probabilistic Generative Modeling

$p(\boldsymbol{x})$

How to express, learn, and sample from a high-dimensional probability distribution?

Physics genes of generative models

Physics genes of generative models

Generative modeling

Physics

Known: samples
Unknown: generating distribution

Known: energy function
Unknown: samples, partition function

$$
\begin{aligned}
& \text { Modern generative models for physics } \\
& \text { Physics of and for generative modeling }
\end{aligned}
$$

Physics genes of generative models

Physics genes of generative models

Lecture Note http://wangleiphy.github.io/lectures/PILtutorial.pdf

Generative Models for Physicists

Lei Wang*
Institute of Physics, Chinese Academy of Sciences
Beijing 100190, China

October 28, 2018

Abstract

Generative models generate unseen samples according to a learned joint probability distribution in the high dimensional space. They find wide applications in density estimation, variational inference, representation learning and more. Deep generative models and associated tech niques (such as differentiable programing and representa tion learning) are cutting-edge technologies physicists can learn from deep learning.
This note introduces the concept and principles of generative modeling, together with applications of modern generative models (autoregressive models, normalizing flows, variational autoencoders etc) as well as the old ones (Boltzmann machines) to physics problems. As a bonus, this note puts some emphasize on physics-inspired gen erative models which take insights from statistical, quantum, and fluid mechanics

[^0]
CONTENTS

1 GENERATIVE MODELING 2
1.1 Probabilistic Generative Modeling 2
1.2 Generative Model Zoo 4
1.2.1 Boltzmann Machines 5
1.2.2 Autoregressive Models 8
1.2.3 Normalizing Flow 9
1.2.4 Variational Autoencoders 13
1.2.5 Tensor Networks 15
1.2.6 Generative Adversarial Networks 17
1.2.7 Generative Moment Matching Networks 18
1.3 Summary 20
2 PHYSICS APPLICATIONS 21
2.1 Variational Ansatz 21
2.2 Renormalization Group 22
2.3 Monte Carlo Update Proposals 22
2.4 Chemical and Material Design 23
2.5 Quantum Information Science and Beyond 24
3 RESOURCES 25
BIBLIOGRAPHY 26

Generative modeling with normalizing flows

(9) Wavenet 1609.034991711 .10433
https://deepmind.com/blog/wavenet-generative-model-raw-audio/ https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/
(Я) Glow 1807.03039
https://blog.openai.com/glow/

Generative modeling with normalizing flows

(9) Wavenet 1609.034991711 .10433
https://deepmind.com/blog/wavenet-generative-model-raw-audio/ https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/
(Я) Glow 1807.03039
https://blog.openai.com/glow/

Normalizing flow in a nutshell

Normalizing Flows
Change of variables $x \leftrightarrow z$ with deep neural nets

$$
p(\boldsymbol{x})=\mathscr{N}(\boldsymbol{z})\left|\operatorname{det}\left(\frac{\partial \boldsymbol{z}}{\partial \boldsymbol{x}}\right)\right|
$$

Review article 1912.02762
Tutorial hitps:/ilicr.colvirtual 2020/speaker $4 . \mathrm{htm}$
composable, differentiable, and invertible mapping between manifolds

Learn probability transformations with normalizing flows

Training approaches

Density estimation

"learn from data"
$\mathscr{L}=-\mathbb{E}_{\boldsymbol{x} \sim \text { dataset }}[\ln p(\boldsymbol{x})]$

Sample from dataset in the physical space

Variational calculation
"learn from Hamiltonian"

$$
\mathscr{L}=\int d \boldsymbol{x} p(\boldsymbol{x})[\ln p(\boldsymbol{x})+\beta H(\boldsymbol{x})]
$$

Sample in the latent space

Training approaches

Density estimation

"learn from data"
$\mathscr{L}=-\mathbb{E}_{\boldsymbol{x} \sim \text { dataset }}[\ln p(\boldsymbol{x})]$

$$
\mathbb{K} \mathbb{L}(\pi|\mid p)=\sum_{x} \pi \ln \pi \underbrace{-\sum_{x} \pi \ln p}_{\mathscr{L}}
$$

Sample from dataset in the physical space

Variational calculation

"learn from Hamiltonian"
$\mathscr{L}=\int d \boldsymbol{x} p(\boldsymbol{x})[\ln p(\boldsymbol{x})+\beta H(\boldsymbol{x})]$
$\mathscr{L}+\ln Z=\mathbb{K} \mathbb{L}\left(p \| \frac{e^{-\beta H}}{Z}\right) \geq 0$

Sample in the latent space

Forward KL or Reverse KL?

Maximum Likelihood Estimation

Variational Free Energy
$q^{*}=\operatorname{argmin}_{q} D_{\mathrm{KL}}(q \| p)$
x
Fig. 3.6, Goodfellow, Bengio, Courville, http://www. deeplearningbook.org/

Monte Carlo Gradient Estimators

Review: 1906.10652

$$
\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{\theta}}}[f(\boldsymbol{x})]
$$

Score function estimator (REINFORCE)

$$
\nabla_{\theta} \mathbb{E}_{\boldsymbol{x} \sim p_{\theta}}[f(\boldsymbol{x})]=\mathbb{E}_{\boldsymbol{x} \sim p_{\theta}}\left[f(\boldsymbol{x}) \nabla_{\theta} \ln p_{\theta}(\boldsymbol{x})\right]
$$

Pathwise estimator (Reparametrization trick) $\boldsymbol{x}=g_{\theta}(\boldsymbol{z})$

$$
\nabla_{\theta} \mathbb{E}_{\boldsymbol{x} \sim p_{\theta}}[f(\boldsymbol{x})]=\mathbb{E}_{\boldsymbol{z} \sim \mathcal{N}(z)}\left[\nabla_{\theta} f\left(g_{\theta}(\boldsymbol{z})\right)\right]
$$

Choose the one with the lowest variance

Design principles

Composability

$$
\begin{gathered}
z=\mathscr{T}(\boldsymbol{x}) \\
\mathscr{T}=\mathscr{T}_{1} \circ \mathscr{T}_{2} \circ \mathscr{T}_{3} \circ \cdots
\end{gathered}
$$

Balanced
efficiency \& inductive bias

$$
\left|\operatorname{det}\left(\frac{\partial z}{\partial x}\right)\right|
$$

Autoregressive

Neural RG

$$
\frac{\partial \rho(\boldsymbol{x}, t)}{\partial t}+\nabla \cdot[\rho(\boldsymbol{x}, t) \boldsymbol{v}]=0
$$

Continuous flow

Example of a building block

$$
\begin{aligned}
& \text { Forward } \quad \begin{array}{l}
\text { arbitrary } \\
\text { neural nets }
\end{array} \\
& \left\{\begin{array}{l}
\boldsymbol{x}_{<}=\boldsymbol{z}_{<} \\
\boldsymbol{x}_{>}=\boldsymbol{z}_{>} \odot e^{s\left(\boldsymbol{z}_{<}\right)}+t\left(\boldsymbol{z}_{<}\right)
\end{array}\right.
\end{aligned}
$$

Inverse

$$
\left\{\begin{array}{l}
\boldsymbol{z}_{<}=\boldsymbol{x}_{<} \\
\boldsymbol{z}_{>}=\left(\boldsymbol{x}_{>}-t\left(\boldsymbol{x}_{<}\right)\right) \odot e^{-s\left(\boldsymbol{x}_{<}\right)}
\end{array}\right.
$$

Log-Abs-Jacobian-Det

$$
\ln \left|\operatorname{det}\left(\frac{\partial x}{\partial z}\right)\right|=\sum_{i}\left[s\left(z_{<}\right)\right]_{i}
$$

Real NVP, Dinh et al, 1605.08803

How it can be useful in physics?

Coupled harmonic oscillator

How it can be useful in physics?

$\pi_{\text {Renemamazatoronguap }}$

Effective theory emerges upon transformation of the variables

Monte Carlo update

Physics happens on a manifold Learn neural nets to unfold that manifold

Neural Network Renormalization Group

Neural Network Renormalization Group

Neural Network Renormalization Group

Neural Network Renormalization Group
$z=g^{-1}(\boldsymbol{x})$

Correlated classical variables

Neural Network Renormalization Group
$z=g^{-1}(\boldsymbol{x})$

(Li, LW, PRL'
i012589/NeuralRG

Correlated classical variables

Variational Loss

Training $=$ Variational free energy calculation

Sampling in the latent space

Latent space energy function
$E_{\text {eff }}(z)=E(g(z))+\ln p(g(z))-\ln \mathscr{N}(z)$

Physical energy function $E(\boldsymbol{x})$
HMC thermalizes faster in the latent space
Other ways to de-bias: neural importance sampling, Metropolis rejection of flow proposal

Quantum origin of the architecture

Connection to wavelets

Nonlinear \& adaptive generalizations of wavelets
Guy, Wavelets \& RG1999+ White, Evenbly, Qi, Wavelets, MERA, and holographic mapping 2013+

Continuous normalizing flows

$$
\ln p(\boldsymbol{x})=\ln \mathcal{N}(\boldsymbol{z})-\ln \left|\operatorname{det}\left(\frac{\partial \boldsymbol{x}}{\partial \boldsymbol{z}}\right)\right|
$$

Consider infinitesimal change-of-variables Chen et al 1806.07366

$$
x=z+\varepsilon v \quad \ln p(x)-\ln \mathscr{N}(z)=-\ln \left|\operatorname{det}\left(1+\varepsilon \frac{\partial v}{\partial z}\right)\right|
$$

$$
\frac{d x}{d t}=\boldsymbol{v}
$$

$$
\frac{d \ln \rho(\boldsymbol{x}, t)}{d t}=-\nabla \cdot \boldsymbol{v}
$$

Neural Ordinary Differential Equations

Residual network

$$
\boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}+f\left(\boldsymbol{x}_{t}\right)
$$

ODE integration

Harbor el al 1705.03341
Lu et al 1710.10121,
E Commun. Math. Stat 17'

Neural Ordinary Differential Equations

Residual network

$$
\boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}+f\left(\boldsymbol{x}_{t}\right)
$$

ODE integration

$$
d \boldsymbol{x} / d t=f(\boldsymbol{x})
$$

Harbor el al 1705.03341
Lu et al 1710.10121,
E Commun. Math. Stat 17'

Neural Ordinary Differential Equations

 Chen et al, 1806.07366, Grathwohl et al 1810.01367

Samples

Continuous normalizing flow have no structural constraints on the transformation Jacobian

Neural Ordinary Differential Equations

 Chen et al, 1806.07366, Grathwohl et al 1810.01367

Samples

Continuous normalizing flow have no structural constraints on the transformation Jacobian

Fluid physics behind flows

$$
\frac{d x}{d t}=\boldsymbol{v}
$$Zhang, E, LW 1809.10188

wangleiphy/MongeAmpereFlow

Simple density
Complex density

Optimal Transport Theory

Monge problem (1781): How to transport earth with optimal cost ?

Optimal Transport Theory

Monge problem (1781): How to transport earth with optimal cost ?

Monge

Nobel Prize in Economics '75

Otto

McCann

Villani

Figalli

Optimal Transport Theory

Monge problem (1781): How to transport earth with optimal cost ?

Brenier theorem (1991)

Under certain conditions the optimal map is

$$
z \mapsto \boldsymbol{x}=\nabla u(z)
$$

Optimal Transport Theory

Monge problem (1781): How to transport earth with optimal cost ?

Brenier theorem (1991)
Under certain conditions the optimal map is

$$
\boldsymbol{z} \mapsto \boldsymbol{x}=\nabla u(\boldsymbol{z})
$$

Monge-Ampère Equation $\frac{\mathcal{N}(\boldsymbol{z})}{p(\nabla u(z))}=\operatorname{det}\left(\frac{\partial^{2} u}{\partial z_{i} \partial z_{j}}\right)$

Monge-Ampère Flow

(S) wangleiphy/MongeAmpereFlow

$$
\frac{\partial \rho(\boldsymbol{x}, t)}{\partial t}+\nabla \cdot[\rho(\boldsymbol{x}, t) \nabla \varphi]=0
$$

(1) Drive the flow with an "irrotational" velocity field
(2) Impose symmetry to the scalar valued potential for symmetric generative model

$$
\varphi(g \boldsymbol{x})=\varphi(\boldsymbol{x}) \Longrightarrow \rho(g \boldsymbol{x})=\rho(\boldsymbol{x})
$$

Hamiltonian dynamics: phase space flow

Hamiltonian equations

$$
\left\{\begin{array}{l}
\dot{p}=-\frac{\partial H}{\partial q} \\
\dot{q}=+\frac{\partial H}{\partial p}
\end{array}\right.
$$

Hamiltonian dynamics: phase space flow

Hamiltonian equations

$$
\left\{\begin{array}{l}
\dot{p}=-\frac{\partial H}{\partial q} \\
\dot{q}=+\frac{\partial H}{\partial p}
\end{array}\right.
$$

Phase space variables

$$
\boldsymbol{x}=(p, q)
$$

Symplectic metric

$$
J=\binom{I}{-I}
$$

Hamiltonian dynamics: phase space flow

Hamiltonian equations
Phase space variables

$$
\boldsymbol{x}=(p, q)
$$

Symplectic metric

$$
J=\binom{I}{-I}
$$

$$
\left\{\begin{array}{l}
\dot{p}=-\frac{\partial H}{\partial q} \\
\dot{q}=+\frac{\partial H}{\partial p}
\end{array}\right.
$$

Symplectic gradient flow

$$
\dot{\boldsymbol{x}}=\nabla_{\boldsymbol{x}} H(\boldsymbol{x}) J
$$

Hamiltonian dynamics: phase space flow

Symplectic Integrators

Canonical Transformations

$$
x=(p, q) \stackrel{\text { Change of variables }}{\longleftrightarrow} z=(P, Q)
$$

which satisfies $\left(\nabla_{x} z\right) J\left(\nabla_{x} z\right)^{T}=J$ symplectic condition

Canonical Transformations

$$
\begin{aligned}
& \boldsymbol{x}=(p, q) \stackrel{\text { Change of variables }}{\longleftrightarrow} \quad \boldsymbol{z}=(P, Q) \\
& \text { which satisfies } \underbrace{}_{\left(\nabla_{x} z\right) J\left(\nabla_{x} z\right)^{T}=J} \text { symplectic condition } \\
& \text { one has } \quad \dot{\boldsymbol{z}}=\nabla_{z} K(\boldsymbol{z}) J \quad \text { where } \quad K(\boldsymbol{z})=H \circ \boldsymbol{x}(\boldsymbol{z})
\end{aligned}
$$

Preserves Hamiltonian dynamics in the "latent phase space"

Canonical transformation for Moon-Earth-Sun 3-body problem

640

De ces valeurs de L, G, H, on déduit

$\frac{d r}{d 6}=-\frac{1}{a^{2} n e}\left\{-\frac{1}{2} r-\frac{1}{8} r-\frac{1}{16} r\right.$

$\frac{d e}{d I I}=\frac{1}{a^{\prime} n c} \cdot \frac{151}{8}+\frac{n^{2}}{n^{\prime}}$
$\frac{d \pi}{d t}=\frac{1}{d^{n}+1} \frac{183}{32} r^{n} \frac{n^{n}}{n}$,

Charles Delaunay

Neural Canonical Transformations

Li, Dong, Zhang, LW, PRX'20 (i012589/neuralCT

Learn the network parameter and the latent harmonic frequency

Alanine dipeptide slow modes

Neural canonical transformation identifies nonlinear slow modes!

Alanine dipeptide slow modes

Neural canonical transformation identifies nonlinear slow modes!

slow motion of the two torsion angles

Dimensional reduction to slow collective variables useful for control, prediction, enhanced sampling...

Symplectic primitives

- Linear transformation: Symplectic Lie algebra
- Continuous-time flow: Symplectic generating functions

Symplectic integrator of neural ODE, Chen et al 1806.07366

- Neural point transformation

second edition

"A Hamiltonian Extravaganza"

—Danilo J. Rezende@DeepMind

Sep 25 ICLR 2020 paper submission deadline

Sep 26 Symplectic ODE-Net, 1909.12077 SIEMENS
Sep 27 Hamiltonian Graph Networks with ODE Integrators, 1909.12790 NYU
Sep 29 Symplectic RNN, 1909.13334 © (f) f
Sep 30 Equivariant Hamiltonian Flows, 1909.13739
Hamiltonian Generative Network, 1909.13789
Neural Canonical Transformation with Symplectic Flows, 1910.00024 See also Bondesan \& Lamacraft, Learning Symmetries of Classical Integrable Systems,1906.04645

Killer application in science?

Renormalization group

Li and LW, PRL'18
Hu et al, PRResearch '20

Lattice field theory

Albergo et al, PRD ‘19 Kanwar et al, PRL '20

Molecular simulation

Noe et al, Science '19 Wirnsberger et al, JCP '20

Symmetries

$$
\begin{gathered}
\text { Invariance } \\
\rho(g \boldsymbol{x})=\rho(\boldsymbol{x})
\end{gathered}
$$

> Equivariance
> $\mathscr{T}(g \boldsymbol{z})=g \mathscr{T}(\boldsymbol{z})$

Spatial symmetries, permutation symmetries, gauge symmetries...

Flow on manifolds

Periodic variables, gauge fields, ...
Gemici et al 1611.02304, Rezende et al, 2002.02428, Boyda et al, 2008.05456

Obstructions

Mix with other approaches

Kingma et al, 1606.04934,...

Levy et al, 1711.09268, Wu et al 2002.06707, ...

Discrete flows

$$
p(\boldsymbol{x})=p(\boldsymbol{y}=\mathscr{T}(\boldsymbol{x}))
$$

Tran et al, 1905.10347, Hoogeboom et al, 1905.07376, van den Berg 2006.12459

Representation learning: what and how?

What is a good representation?

Towards a Definition of Disentangled Representations

Irina Higgins*, David Amos*, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo Rezende, Alexander Lerchner DeepMind

Generative Pre-Training appears to be a

Thank You！

Explore more in the interface of machine learning \＆physics

量子纠缠：从量子物质态到深度学习

```
程嵩 }\mp@subsup{}{}{1,2}\mathrm{ 陈靖 1,2 王磊
```

（1 中国科学院物理研究所 北京 100190）
（2 中国科学院大学 北京 100049）
《物理》2017年7月

微分万物：深度学习的启示＊

王磊 ${ }^{1,2,{ }^{\dagger}}$ 刘金国 ${ }^{3}$
（1 中国科学院物理研究所 北京 100190）
（2 松山湖材料实验室 东莞 523808）
（3 哈佛大学物理系 剑桥 02138）
《物理》2021年2月

王䃌深度学习：从理论到实践介绍深度学习技术，并讲解它们在统计物理和量子多体计算中的应用实例

张潘

从机器学习角度理解张量网络
从表述，优化，学习与泛化这四个角度介绍张量网络及其在应用数学和机器学习中的应用

罗秀哲
面向物理学家的Julia编程实践
以量子物理的工程实践为重点介绍 Julia语言，量子计算的基础概念，Julia语言中的CUDA编程和量子物理工具链

量子编程实践
介绍量子机器学习，量子优化算法和量子化学中的研究前沿，基于Julia量子计算库 Yao．jl实现这些算法，介绍自动微分与GPU编程在量子编程中的应用

报名方式： \qquad 2CE5J．

教学资料：

https：／／github．com

授课形式：
中文授课＋程序演示＋Hackathon（有奖品）

时间：2019年5月6－10日
地点：广东东莞松山湖材料实验室粤港澳交叉科学中心

Quantum Hackathon：

学员将通过组队的形式，完成一个量子物理相关的编程挑战。我们将评出表现突出的团队，给予奖励。

[^0]: The latest version of the note is at http://wangleiphy.github.io/. Please send comments suggestions and corrections to the email address in below

