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21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
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•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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can deal practically with approximationmethods
for the graph isomorphism problem.
Additionally, improved sequence generation

models are possible with the ability to read and
write to memory (69). These approaches demon-
strate better ability for learning long- and short-
termpatterns.Morework is neededonRiemannian
optimization methods that exploit the geometry
of latent space. Structured architectures such as
multilevel VAE (85) offer newways of organizing
latent space and are promising research direc-
tions. New approaches also lie in inverse RL,
geared toward learning a reward or loss function
(86). Research in this direction will allow for the
discovery of reward functions associated with
different materials discovery tasks.

Outlook

Inverse design is an important component of the
complex framework required to designmatter at
an accelerated pace. The tools for inverse design,
especially those stemming from the field of ma-
chine learning, have shown rapid progress in
the last several years and have allowed chemical
space to be framed into probabilistic data-driven
models. Generativemodels produce large numbers
of candidate molecules, and the physical realiza-
tions of these candidates will require automated
high-throughput efforts to validate the genera-
tive approach. The community has yet has to
show more than a few examples of successful

closed-loop approaches for the design of matter
(87). The blurring of the barriers between theory
and experiment will lead to AI-enabled auto-
mated laboratories (88, 89).
The combination of inverse design tools with

active learning approaches such as Bayesian
optimization (90, 91) can enable a model that
adapts as it explores chemical space, which
allows for expanding a model in regions of
high uncertainty and enabling the discovery
of regions of molecular space with desirable
properties as a function of composition. Active
learning in the space of objective functions could
lead to a better understanding of the best rewards
to seek while carrying out machine learning.
As seen, central to machine learning meth-

odologies is the representation of molecules;
representations that encode the relevant physics
will tend to generalize better. Despite consider-
able progress, much work remains. Graph and
hierarchical representations of molecules are an
area requiring further study.
The integration of machine learning as a new

pillar of knowledge in the curricula of chemical,
biochemical, medicinal, and materials sciences
will allow for a more rapid adoption of themeth-
odologies summarized in this work.
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Fig. 4. Schematic representation of several architectures found in
generative models. RNNs are used for sequence generation. The VAE
shows the semi-supervised variant, jointly trained by molecules (x) and
properties (y). Latent space is denoted with Z, and latent vectors with z.
In the GAN setting, the noise eventually acquires structure via the

adversarial training. Reinforcement learning (RL) shows a policy
gradient with MTCS in the task of SMILES completion with
arbitrary rewards. Shown in the lower right are hybrid architectures
such as AAE (adversarial autoencoders) and ORGAN, which represents
GAN and RL.

IM
A
G
E
:A

D
A
P
T
E
D

B
Y
K
.
H
O
LO

S
K
I

FRONTIERS IN COMPUTATION 

on N
ovem

ber 18, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

Gaussian  
Noise

Generative 
Network

$432,500
25 October 2018 

Christie’s New York



Generating molecules

Physical  
configurations

can deal practically with approximationmethods
for the graph isomorphism problem.
Additionally, improved sequence generation

models are possible with the ability to read and
write to memory (69). These approaches demon-
strate better ability for learning long- and short-
termpatterns.Morework is neededonRiemannian
optimization methods that exploit the geometry
of latent space. Structured architectures such as
multilevel VAE (85) offer newways of organizing
latent space and are promising research direc-
tions. New approaches also lie in inverse RL,
geared toward learning a reward or loss function
(86). Research in this direction will allow for the
discovery of reward functions associated with
different materials discovery tasks.

Outlook

Inverse design is an important component of the
complex framework required to designmatter at
an accelerated pace. The tools for inverse design,
especially those stemming from the field of ma-
chine learning, have shown rapid progress in
the last several years and have allowed chemical
space to be framed into probabilistic data-driven
models. Generativemodels produce large numbers
of candidate molecules, and the physical realiza-
tions of these candidates will require automated
high-throughput efforts to validate the genera-
tive approach. The community has yet has to
show more than a few examples of successful

closed-loop approaches for the design of matter
(87). The blurring of the barriers between theory
and experiment will lead to AI-enabled auto-
mated laboratories (88, 89).
The combination of inverse design tools with

active learning approaches such as Bayesian
optimization (90, 91) can enable a model that
adapts as it explores chemical space, which
allows for expanding a model in regions of
high uncertainty and enabling the discovery
of regions of molecular space with desirable
properties as a function of composition. Active
learning in the space of objective functions could
lead to a better understanding of the best rewards
to seek while carrying out machine learning.
As seen, central to machine learning meth-

odologies is the representation of molecules;
representations that encode the relevant physics
will tend to generalize better. Despite consider-
able progress, much work remains. Graph and
hierarchical representations of molecules are an
area requiring further study.
The integration of machine learning as a new

pillar of knowledge in the curricula of chemical,
biochemical, medicinal, and materials sciences
will allow for a more rapid adoption of themeth-
odologies summarized in this work.

REFERENCES AND NOTES

1. Royal Geographical Society, 21st Century Challenges (2015);
https://21stcenturychallenges.org/challenges/.

2. D. Segal, Materials for the 21st Century (Oxford Univ. Press,
2017).

3. M. C. Scharber et al., Adv. Mater. 18, 789–794 (2006).
4. E. O. Pyzer-Knapp, C. Suh, R. Gómez-Bombarelli,

J. Aguilera-Iparraguirre, A. Aspuru-Guzik, Annu. Rev. Mater.
Res. 45, 195–216 (2015).

5. D. J. Newman, G. M. Cragg, J. Nat. Prod. 79, 629–661
(2016).

6. P. Kirkpatrick, C. Ellis, Nature 432, 823–823 (2004).
7. A. Mullard, Nature 549, 445–447 (2017).
8. J.-L. Reymond, Acc. Chem. Res. 48, 722–730 (2015).
9. A. M. Virshup, J. Contreras-García, P. Wipf, W. Yang,

D. N. Beratan, J. Am. Chem. Soc. 135, 7296–7303 (2013).
10. C. Qian, T. Siler, G. A. Ozin, Small 11, 64–69 (2015).
11. M. I. Jordan, T. M. Mitchell, Science 349, 255–260 (2015).
12. A. Aspuru-Guzik, R. Lindh, M. Reiher, ACS Cent. Sci. 4, 144–152

(2018).
13. P. B. Jørgensen, M. N. Schmidt, O. Winther, Mol. Inform. 37,

1700133 (2018).
14. E. Maine, E. Garnsey, Res. Policy 35, 375–393 (2006).
15. A. Aspuru-Guzik, K. Persson, Materials Acceleration Platform:

Accelerating Advanced Energy Materials Discovery by
Integrating High-Throughput Methods and Artificial Intelligence.
Mission Innovation (2018): Innovation Challenge 6.

16. T. Weymuth, M. Reiher, Int. J. Quantum Chem. 114, 823–837
(2014).

17. A. Zunger, Nat. Rev. Chem. 2, 0121 (2018).
18. C. Kuhn, D. Beratan, J. Phys. Chem. 100, 10595–10599

(1996).
19. J. R. Broach, J. Thorner, Nature 384 (suppl.), 14–16 (1996).
20. S. Hoelder, P. A. Clarke, P. Workman, Mol. Oncol. 6, 155–176

(2012).
21. D. Xiao, L. A. Martini, R. C. Snoeberger 3rd, R. H. Crabtree,

V. S. Batista, J. Am. Chem. Soc. 133, 9014–9022 (2011).
22. S. A. Lopez, B. Sanchez-Lengeling, J. de Goes Soares,

A. Aspuru-Guzik, Joule 1, 857–870 (2017).
23. I. Y. Kanal, S. G. Owens, J. S. Bechtel, G. R. Hutchison,

J. Phys. Chem. Lett. 4, 1613–1623 (2013).
24. J. Hachmann et al., Energy Environ. Sci. 7, 698–704 (2014).

Sanchez-Lengeling et al., Science 361, 360–365 (2018) 27 July 2018 5 of 6

Fig. 4. Schematic representation of several architectures found in
generative models. RNNs are used for sequence generation. The VAE
shows the semi-supervised variant, jointly trained by molecules (x) and
properties (y). Latent space is denoted with Z, and latent vectors with z.
In the GAN setting, the noise eventually acquires structure via the

adversarial training. Reinforcement learning (RL) shows a policy
gradient with MTCS in the task of SMILES completion with
arbitrary rewards. Shown in the lower right are hybrid architectures
such as AAE (adversarial autoencoders) and ORGAN, which represents
GAN and RL.
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Probabilistic Generative Modeling

How to express, learn, and sample from a 
high-dimensional probability distribution ? 
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“… the images encountered in 
AI applications occupy a 
negligible proportion of

the volume of image space.”
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How to express, learn, and sample from a 
high-dimensional probability distribution ? 
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.

21A. Georges et al.: Dynamical mean-field theory of . . .
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`
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n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states
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can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:
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e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as
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For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
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Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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Intuition

If the mapping f is 1-to-1, then the total area (or volume) should

not change after the transformation from x to z .

Figure 1: Mapping from one probability density to another. Source:
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Normalizing Flows
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Training approaches
Density estimation

ℒ = − 𝔼x∼dataset [ln p(x)]

Sample from dataset in the physical space

“learn from data”

𝕂𝕃(π | |p) = ∑
x

π ln π −∑
x

π ln p

ℒ

Variational calculation

ℒ = ∫ dx p(x)[ln p(x) + βH(x)]

Sample in the latent space

“learn from Hamiltonian”

ℒ + ln Z = 𝕂𝕃 (p | |
e−βH

Z ) ≥ 0



Forward KL or Reverse KL ?
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FigKHe 3.6: The KL diLeHgence iI aIOmmeJHic. SKppoIe Me haLe a diIJHibKJion p(x) and
MiIh Jo appHoNimaJe iJ MiJh anoJheH diIJHibKJion q(x). We haLe Jhe choice of minimiPing
eiJheH DKL (p q� ) oH DKL (q p� ). We illKIJHaJe Jhe elecJ of JhiI choice KIing a miNJKHe of
JMo GaKIIianI foH p , and a Iingle GaKIIian foH q.�The choice of Mhich diHecJion of Jhe
KL diLeHgence Jo KIe iI pHoblem-dependenJ. Some applicaJionI HeqKiHe an appHoNimaJion
JhaJ KIKallO placeI high pHobabiliJO anOMheHe JhaJ Jhe JHKe diIJHibKJion placeI high
pHobabiliJO, Mhile oJheH applicaJionI HeqKiHe an appHoNimaJion JhaJ HaHelO placeI high
pHobabiliJO anOMheHe JhaJ Jhe JHKe diIJHibKJion placeI loM pHobabiliJO. The choice of Jhe
diHecJion of Jhe KL diLeHgence HenecJI Mhich of JheIe conIideHaJionI JakeI pHioHiJO foH each
applicaJion. (LefD)The elecJ of minimiPing DKL(p q� ). In JhiI caIe, Me IelecJ a q JhaJ haI
high pHobabiliJO MheHe p haI high pHobabiliJO. When p haI mKlJiple modeI, q chooIeI Jo
blKH Jhe modeI JogeJheH, in oHdeH Jo pKJ high pHobabiliJO maII on all of Jhem. (R9ghD)The
elecJ of minimiPing DKL(q p� ). In JhiI caIe, Me IelecJ a q JhaJ haI loM pHobabiliJO MheHe
p haI loM pHobabiliJO. When p haI mKlJiple modeI JhaJ aHe IKocienJlO MidelO IepaHaJed,
aI in JhiI mgKHe, Jhe KL diLeHgence iI minimiPed bO chooIing a Iingle mode, in oHdeH Jo
aLoid pKJJing pHobabiliJO maII in Jhe loM-pHobabiliJO aHeaI beJMeen modeI of p. HeHe, Me
illKIJHaJe Jhe oKJcome Mhen q iI choIen Jo emphaIiPe Jhe lefJ mode. We coKld alIo haLe
achieLed an eqKal LalKe of Jhe KL diLeHgence bO chooIing Jhe HighJ mode. If Jhe modeI
aHe noJ IepaHaJed bO a IKocienJlO IJHong loM pHobabiliJO Hegion, Jhen JhiI diHecJion of Jhe
KL diLeHgence can IJill chooIe Jo blKH Jhe modeI.

76

Maximum Likelihood Estimation Variational Free Energy

Fig. 3.6, Goodfellow, Bengio, Courville, http://www.deeplearningbook.org/

http://www.deeplearningbook.org/


Pathwise estimator (Reparametrization trick)
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Neural Network Renormalization Group

Shuo-Hui Li1, 2 and Lei Wang1, ⇤

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China

We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det

 
@x
@z

!������ , (1)

where q(x) is the normalized probability density of the phys-
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Neural Network Renormalization Group

Shuo-Hui Li1, 2 and Lei Wang1, ⇤

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China

We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det
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where q(x) is the normalized probability density of the phys-
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FIG. 1. (a) Basic construction of a k = 2 MERA (2 sites renormalized to 1). (b) The squares
represent disentanglers: unitary maps that, from the moving-upward perspective, remove entan-
glement between two adjacent sites. (c) The triangles represent isometries: linear maps that, again
from the moving-upward perspective, coarse-grain two sites into one. Moving downward, we may
think of isometries as unitary operators that, in the MERA, map a state in V ⌦ |0i into V ⌦ V .
The i and j labels in (b) and (c) represent the tensor indices of the disentangler and isometry.

attention to the case D = 1 + 1.

The MERA tensor network is shown in Fig. 1. The quantum system being modeled by

the MERA lives at the bottom of the diagram, henceforth “the boundary” in anticipation of

the AdS/MERA connection to be explored later. We can think of the tensor network as a

quantum circuit that either runs from the top down, starting with a simple input state and

constructing the boundary state, or from the bottom up, renormalizing a boundary state via

coarse-graining. One defining parameter of the MERA is the rescaling factor k, defining the

number of sites in a block to be coarse-grained; in Fig. 1 we have portrayed the case k = 2.

The squares and triangles are the tensors: multilinear maps between direct products of vector

spaces. Each line represents an index i of the corresponding tensor, ranging over values from

1 to the “bond dimension” �. The boundary Hilbert space Hboundary = V
⌦Nboundary is given

by a tensor product of Nboundary individual spaces V , each of dimension �. (In principle
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Continuous normalizing flows

x = z + εv

dx
dt

= v d ln ρ(x, t)
dt

= − ∇ ⋅ v

ln p(x) − ln 𝒩(z) = − ln det (1 + ε
∂v
∂z )

ln p(x) = ln 𝒩(z) − ln det ( ∂x
∂z )

Consider infinitesimal change-of-variables

ε → 0

Chen et al 1806.07366
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Fluid physics behind flows

∂ρ(x, t)
∂t

+ ∇ ⋅ [ρ(x, t)v] = 0

Zhang, E, LW 1809.10188 

Simple density Complex density

d
dt

=
∂
∂t

+ v ⋅ ∇ “material  
derivative”

d ln ρ(x, t)
dt

= − ∇ ⋅ v

(a)

(b)

(c)

dx
dt

= v wangleiphy/MongeAmpereFlow



Optimal Transport Theory
42 3 The founding fathers of optimal transport

minimize the total cost. Monge assumed that the transport cost of one
unit of mass along a certain distance was given by the product of the
mass by the distance.
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Fig. 3.1. Monge’s problem of déblais and remblais

Nowadays there is a Monge street in Paris, and therein one can find
an excellent bakery called Le Boulanger de Monge. To acknowledge this,
and to illustrate how Monge’s problem can be recast in an economic
perspective, I shall express the problem as follows. Consider a large
number of bakeries, producing loaves, that should be transported each
morning to cafés where consumers will eat them. The amount of bread
that can be produced at each bakery, and the amount that will be
consumed at each café are known in advance, and can be modeled as
probability measures (there is a “density of production” and a “density
of consumption”) on a certain space, which in our case would be Paris
(equipped with the natural metric such that the distance between two
points is the length of the shortest path joining them). The problem is
to find in practice where each unit of bread should go (see Figure 3.2),
in such a way as to minimize the total transport cost. So Monge’s
problem really is the search of an optimal coupling; and to be more
precise, he was looking for a deterministic optimal coupling.

Fig. 3.2. Economic illustration of Monge’s problem: squares stand for production
units, circles for consumption places.

Monge problem (1781): How to transport earth with optimal cost ?

Monge Kantorovich Dantzig Brenier McCann VillaniOttoKoopmans

Nobel Prize in Economics ’75 Fields Metal ’10 Fields Metal ’18
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Monge-Ampère Flow 

∂ρ(x, t)
∂t

+ ∇ ⋅ [ρ(x, t)∇φ] = 0

Zhang, E, LW 1809.10188 

Drive the flow with an “irrotational” velocity field 

Impose symmetry to the scalar valued potential for 
symmetric generative model

φ(g x) = φ(x) ρ(g x) = ρ(x)⟹

wangleiphy/MongeAmpereFlow



Hamiltonian dynamics: phase space flow
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Symplectic Integrators

from Hairer et al, Geometric Numerical Integration 

14 I. Examples and Numerical Experiments

Table 2.2. Data for the outer solar system

planet mass initial position initial velocity

−3.5023653 0.00565429
Jupiter m1 = 0.000954786104043 −3.8169847 −0.00412490

−1.5507963 −0.00190589

9.0755314 0.00168318
Saturn m2 = 0.000285583733151 −3.0458353 0.00483525

−1.6483708 0.00192462

8.3101420 0.00354178
Uranus m3 = 0.0000437273164546 −16.2901086 0.00137102

−7.2521278 0.00055029

11.4707666 0.00288930
Neptune m4 = 0.0000517759138449 −25.7294829 0.00114527

−10.8169456 0.00039677

−15.5387357 0.00276725
Pluto m5 = 1/(1.3 · 108) −25.2225594 −0.00170702

−3.1902382 −0.00136504
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Störmer–Verlet, h = 200

Fig. 2.4. Solutions of the outer solar system

To this system we apply the explicit and implicit Euler methods with step size
h = 10, the symplectic Euler and the Störmer–Verlet method with much larger
step sizes h = 100 and h = 200, repectively, all over a time period of 200 000
days. The numerical solution (see Fig. 2.4) behaves similarly to that for the Kepler
problem. With the explicit Euler method the planets have increasing energy, they
spiral outwards, Jupiter approaches Saturn which leaves the plane of the two-body
motion. With the implicit Euler method the planets (first Jupiter and then Saturn)
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Table 2.2. Data for the outer solar system

planet mass initial position initial velocity
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Canonical Transformations

x = (p, q) z = (P, Q)
Change of variables

(∇xz) J (∇xz)T = Jwhich satisfies symplectic condition



Canonical Transformations

x = (p, q) z = (P, Q)
Change of variables

(∇xz) J (∇xz)T = Jwhich satisfies

·z = ∇zK(z)Jone has where K(z) = H ∘ x(z)

symplectic condition

Preserves Hamiltonian dynamics in the “latent phase space”



Canonical transformation for 
Moon-Earth-Sun 3-body problem

Charles Delaunay

More than 1800 pages of  this, ~20 years of  efforts (1846-1867)
↑

Gutzwiller, RMP, ’98



Neural Canonical Transformations
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Alanine dipeptide slow modes



0 6 12 18 24 30
k

100

101

102

!
k

(a)

1 2 3 4 5 6
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

m
ut

ua
l
in

fo
rm

at
io

n

(b) I(Qk : ©)

I(Qk : ™)

Neural canonical transformation identifies nonlinear slow modes!

Alanine dipeptide slow modes



slow motion of the  
two torsion angles

Dimensional reduction to slow collective variables  
useful for control, prediction, enhanced sampling…

Φ Ψ

Ramachandran  
plot of stable  

conformations

check the paper 1910.00024, PRX ’20  for more examples & applications



• Linear transformation: Symplectic Lie algebra  

• Continuous-time flow: Symplectic generating functions 

Symplectic primitives

• Neural point transformation
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Q = f(q) invertible  

neural net

Symplectic integrator of neural ODE, Chen et al 1806.07366



“A Hamiltonian Extravaganza”

Equivariant Hamiltonian Flows, 1909.13739

Hamiltonian Generative Network, 1909.13789

Symplectic ODE-Net, 1909.12077

—Danilo J. Rezende@DeepMind 

Neural Canonical Transformation with Symplectic Flows, 1910.00024

Hamiltonian Graph Networks with ODE Integrators, 1909.12790

Symplectic RNN, 1909.13334

Sep 26

Sep 27

Sep 29

Sep 30

http://tiny.cc/hgn 

Sep 25 ICLR 2020 paper submission deadline 

See also Bondesan & Lamacraft, Learning Symmetries of Classical Integrable Systems,1906.04645



Albergo et al, PRD ‘19

Lattice field theory Molecular simulation

Although no reference for this free-energy dif-
ference in the given simulationmodel is known,
the temperature profile admits basic consistency
checks: The x-ray structure is identified as the
most stable structure at temperatures below
330 K. The internal energy and entropy terms of
the free-energy difference (Eq. 1) are both positive
across all temperatures. Therefore, the free-energy
decreases at high temperatures as the entropic

stabilization becomes stronger. A higher configu-
rational entropy of the “O” state is consistent with
its more open loop structure (compare Fig. 5, G
and H) and the higher degree of fluctuations in
the “O” state observed by the analysis in (30).

Discussion and conclusion

Boltzmann generators can overcome rare event-
sampling problems in many-body systems by

generating independent samples from different
metastable states in one shot. We have demon-
strated this for dense and unstructured many-
body systems with up to 892 atoms (over 2600
dimensions) that are placed simultaneously, with
most samples having globally and locally valid
structures and potential energies in the range of
the equilibrium distribution. In contrast to other
generative neural networks, Boltzmann generators

Noé et al., Science 365, eaaw1147 (2019) 6 September 2019 7 of 11

Fig. 5. One-shot sampling of all-atom structures in different
conformations of the BPTI protein. (A) Boltzmann generator for
macromolecules: Backbone atoms are whitened using PCA; side-chain
atoms are described in normalized internal coordinates (crds). (B) BPTI
x-ray crystal structure (PDB: 5PTI). Cysteine disulfide bridges and
aromatic residues are shown for orientation. (C) One-shot Boltzmann
generator sample of all 892 atoms (2670 dimensions) of the BPTI
protein similar to the x-ray structure. (D) Potential energy distribution
from MD simulation (gray) and Boltzmann generator one-shot samples

(blue). (E) Distribution of bonds and angles compared between
MD simulation (black) and Boltzmann generator (blue).
(F) Representative snapshots of four clusters of structures
generated with the Boltzmann generator. Backbone root mean
square deviation from the x-ray structure is given below the
structure (in angstroms). Marked are the x-ray–like structure
“X” and the open structure “O.” (G and H) Magnification of the
most variable parts of the Boltzmann-generated samples from the
“X” and “O” states. Side chains are shown in atomistic resolution.
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𝒯(g z) = g𝒯(z)

z Normalizing   
Flow

x = 𝒯(z)

Spatial symmetries, permutation symmetries, gauge symmetries…

Equivariance

Symmetries

ρ(g x) = ρ(x)
Invariance



Flow on manifolds

flow

Figure 4: Density on a 2-dimensional sphere formed by mapping the sphere to R
2, trans-

forming the density there, and mapping R
2 back to the sphere.

points x 2 R
M on the manifold using coordinates u 2 R

D. The map T induces a metric
G(u) on the tangent space of X at x = T (u), given by (Kobayashi and Nomizu, 1963):

G(u) = JT (u)
>JT (u). (103)

As a result, an infinitesimal volume on X is given by d⌫(x) =
p
detG(u) du. A formula

relating the density on X to that on the Euclidean space R
D can be derived from the

conservation of measure (eq. 87) by setting U = R
D, taking dµ(u) to be the Lebesgue

measure on R
D, and reparameterizing d⌫(x) =

p
detG(u) du, which yields:

Z

!
pu(u) du =

Z

!
px(T (u))

p
detG(u) du. (104)

Since the above must be true for any ! ✓ R
D, it follows that:

pu(u) = px(T (u))
p
detG(u), (105)

which gives the density on R
D as a function of the density on the manifold. If we restrict

the range of T to X , we can define the inverse mapping T�1 : X ! R
D and then use it to

obtain the density on the manifold:

px(x) = pu
�
T�1(x)

� ⇥
detG

�
T�1(x)

�⇤�1/2
. (106)

The usual density-transformation formula for flows on R
D is a particular case of eq. 106.

Taking X = R
D and M = D, the Jacobian JT (u) becomes D ⇥ D, and the infinitesimal

volume on X simplifies to:

d⌫(x) =
p
(det JT (u))2 du = |det JT (u)| du, (107)

which retrieves the standard flow on R
D.

Using the above approach, we can define flows for which both U and X are D-dimensional
Riemannian manifolds. We start from a base density defined on a manifold U , transform
it to R

D using the inverse embedding map for U , perform any number of standard flow
steps on R

D, and finally transform the resulting density on the target manifold X using

36

Periodic variables, gauge fields, …

Gemici et al 1611.02304, Rezende et al, 2002.02428, Boyda et al, 2008.05456
Neural ODE on manifolds, Falorsi et al, 2006.06663, Lou et al, 2006.10254, Mathieu et al, 2006.10605



Obstructions

Dupont et al 1904.01681, Cornish et al, 1909.13833, Zhang et al, 1907.12998, Zhong et al, 2006.00392… 

Regular Homotopy Classes of Surfaces

(Discrete theorem...?)



Mix with other approaches

Kingma et al, 1606.04934,…
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Figure 2: Like other normalizing flows, drawing samples from an approximate posterior with Inverse
Autoregressive Flow (IAF) consists of an initial sample z drawn from a simple distribution, such as a
Gaussian with diagonal covariance, followed by a chain of nonlinear invertible transformations of z,
each with a simple Jacobian determinants.

The flow consists of a chain of T of the following transformations:

zt = µt + �t � zt�1 (10)

where at the t-th step of the flow, we use a different autoregressive neural network with inputs zt�1

and h, and outputs µt and �t. The neural network is structured to be autoregressive w.r.t. zt�1, such
that for any choice of its parameters, the Jacobians dµt

dzt�1
and d�t

dzt�1
are triangular with zeros on the

diagonal. As a result, dzt
dzt�1

is triangular with �t on the diagonal, with determinant
QD

i=1 �t,i. (Note
that the Jacobian w.r.t. h does not have constraints.) Following eq. (5), the density under the final
iterate is:

log q(zT |x) = �
DX

i=1

 
1
2✏

2
i +

1
2 log(2⇡) +

TX

t=0

log �t,i

!
(11)

The flexibility of the distribution of the final iterate zT , and its ability to closely fit to the true posterior,
increases with the expressivity of the autoregressive models and the depth of the chain. See figure 2
for an illustration.

A numerically stable version, inspired by the LSTM-type update, is where we let the autoregressive
network output [mt, st], two unconstrained real-valued vectors:

[mt, st] AutoregressiveNN[t](zt,h;✓) (12)

and compute zt as:

�t = sigmoid(st) (13)
zt = �t � zt�1 + (1� �t)�mt (14)

This version is shown in algorithm 1. Note that this is just a particular version of the update of
eq. (10), so the simple computation of the final log-density of eq. (11) still applies.

We found it beneficial for results to parameterize or initialize the parameters of each
AutoregressiveNN[t] such that its outputs st are, before optimization, sufficiently positive, such as
close to +1 or +2. This leads to an initial behaviour that updates z only slightly with each step of IAF.
Such a parameterization is known as a ’forget gate bias’ in LSTMs, as investigated by Jozefowicz
et al. (2015).

Perhaps the simplest special version of IAF is one with a simple step, and a linear autoregressive
model. This transforms a Gaussian variable with diagonal covariance, to one with linear dependencies,
i.e. a Gaussian distribution with full covariance. See appendix A for an explanation.

Autoregressive neural networks form a rich family of nonlinear transformations for IAF. For non-
convolutional models, we use the family of masked autoregressive networks introduced in (Germain
et al., 2015) for the autoregressive neural networks. For CIFAR-10 experiments, which benefits more
from scaling to high dimensional latent space, we use the family of convolutional autoregressive
autoencoders introduced by (van den Oord et al., 2016b,c).

We found that results improved when reversing the ordering of the variables after each step in the IAF
chain. This is a volume-preserving transformation, so the simple form of eq. (11) remains unchanged.

5

Levy et al, 1711.09268, Wu et al 2002.06707, … 

a

b

c

Figure 1: Deterministic versus stochastic normalizing flow for the double well. Red arrows
indicate deterministic transformations, blue arrows indicate stochastic dynamics. a) 3 RealNVP
blocks (2 layers each). b) Same with 20 BD steps before or after RealNVP blocks. c) Unbiased
sample from true distribution.

� = 0

<latexit sha1_base64="0rj6+CDIKpNa6sYIyAD5axO+Nf8="></latexit>

� = 0.33

<latexit sha1_base64="od5Rfxc185lr7m4NrcFoA1MrsdI="></latexit>

� = 0.66

<latexit sha1_base64="vZzG1m/t4eaTdHCtOGGe/gqlhuk="></latexit>

� = 1

<latexit sha1_base64="FZ0Y3VHVeMB3P+S/q2Mf4y9rjwI="></latexit>

Energy u�(y)

<latexit sha1_base64="a0G1PxC1rzNGZsKht4zV4XX+Fto=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIdVMSKeiy6MZlBfuAJoTJdNIOnTyYmQghFPwVNy4Ucet3uPNvnLRZaOuBgcO553LPHD/hTCrL+jYqa+sbm1vV7drO7t7+gXl41JNxKgjtkpjHYuBjSTmLaFcxxekgERSHPqd9f3pbzPuPVEgWRw8qS6gb4nHEAkaw0pJnnqSew7V9hBtOiNXED/JsduGZdatpzYFWiV2SOpToeOaXM4pJGtJIEY6lHNpWotwcC8UIp7Oak0qaYDLFYzrUNMIhlW4+jz9D51oZoSAW+kUKzdXfGzkOpcxCXzuLiHJ5Voj/zYapCq7dnEVJqmhEFoeClCMVo6ILNGKCEsUzTTARTGdFZIIFJko3VtMl2MtfXiW9y6bdarbuW/X2TVlHFU7hDBpgwxW04Q460AUCOTzDK7wZT8aL8W58LKwVo9w5hj8wPn8AMr2VpQ==</latexit>

µ�(y) = e�u�(y)

<latexit sha1_base64="I4aQeQQqlHc+GJQL1LQa5aXp5B0=">AAACJXicbVDLSsNAFJ34rPUVdelmsAh1YUmkoAuFohuXFewDmlgm00k7dCYJMxMhhPyMG3/FjQuLCK78FSdpF9r2wMCZc+/h3nu8iFGpLOvbWFldW9/YLG2Vt3d29/bNg8O2DGOBSQuHLBRdD0nCaEBaiipGupEgiHuMdLzxXV7vPBMhaRg8qiQiLkfDgPoUI6Wlvnnt8LjvMG0YoKrDkRp5fppkZzew+AiekuwpPV/ak/XNilWzCsBFYs9IBczQ7JsTZxDimJNAYYak7NlWpNwUCUUxI1nZiSWJEB6jIelpGiBOpJsWV2bwVCsD6IdCv0DBQv3rSBGXMuGe7sx3lPO1XFxW68XKv3JTGkSxIgGeDvJjBlUI88jggAqCFUs0QVhQvSvEIyQQVjrYsg7Bnj95kbQvana9Vn+oVxq3szhK4BicgCqwwSVogHvQBC2AwQt4Ax9gYrwa78an8TVtXTFmniPwD8bPLwfmpjc=</latexit>

Fl
owPrior Target

Sa
m
pl
e

Fl
ow

Sa
m
pl
e

Fl
ow

Sa
m
pl
e

Fl
ow

Sa
m
pl
e

µZ(z)

<latexit sha1_base64="8G0omfpvFPXaq3cafCNdj1xts/w="></latexit>

µX(x)

<latexit sha1_base64="1E8Q2RYsre37jeUy9W1SPYvpbgA="></latexit>

Figure 2: Schematic for Stochastic Normalizing Flow (SNF). An SNF transforms a tractable prior
µZ(z) / exp(�u0(z)) to a complicated target distribution µX(x) / exp(�u1(x)) by a sequence of
deterministic invertible transformations (flows, grey boxes) and stochastic dynamics (sample, ochre)
that sample with respect to a guiding potential u�(x). SNFs can be trained and run in forward mode
(black) and reverse mode (blue).

Contributions. We show that NFs can be interwoven with stochastic sampling blocks into arbitrary
sequences, that together overcome topological constraints and improve expressivity over deterministic
flow architectures (Fig. 1a, b). Furthermore, NSFs have improved sampling efficiency over pure
stochastic sampling as the flow’s and sampler’s parameters can be optimized jointly.

Our main result is that NSFs can be trained in a similar fashion as NFs and exact importance weights
for each sample ending in x can be computed, facilitating asymptotically unbiased sampling from the
target density. The approach avoids explicitly computing pX(x) which would require solving the
intractable integral over all stochastic paths ending in x.

We apply the model to the recently introduced problem of asymptotically unbiased sampling of
molecular structures with flows [32] and show that it significantly improves sampling the multi-modal
torsion angle distributions which are the relevant degrees of freedom in the system. We further show
the advantage of the method over pure flow-based sampling / MCMC by quantitative comparison on
benchmark data sets and on sampling from a VAE’s posterior distribution.

Code is available at github.com/noegroup/stochastic_normalizing_flows

2 Stochastic normalizing flows

A SNF is a sequence of T stochastic and deterministic transformations. We sample z = y0 from the
prior µZ , and generate a forward path (y1, . . . ,yT ) resulting in a proposal yT (Fig. 2). Correspond-
ingly, latent space samples can be generated by starting from a sample x = yT and invoking the
backward path (yT�1, . . . ,y0). The conditional forward / backward path probabilities are

Pf (z=y0 ! yT =x) =
T�1Y

t=0

qt(yt ! yt+1), Pb(x=yT ! y0 =z) =
T�1Y

t=0

q̃t(yt+1 ! yt) (8)

3



Discrete flows

Tran et al, 1905.10347, Hoogeboom et al, 1905.07376, van den Berg 2006.12459

Figure 1: Left: 3D probability distribution tensor, only nonzero values are indicated with colored
cubes, all empty space is assumed to be filled with zero-valued cubes. Middle left: an example of
an additive transformation conditioned on x3: y1 = x1 + bt1(x3)e, y2 = x2 + bt2(x3)e, y3 = x3.
Middle right: an example of an additive transformation conditioned on x1 and x3: y1 = x1,
y2 = x2 + bt2(x1, x3)e, y3 = x3. Right: a distribution tensor that a single additive transformation of
the form of Eq. (4) cannot generate from the cube on the left.

operator is replaced by the identity function during back propagation. This leads to biased gradient
estimates for the parameters ✓, a topic that we will come back to in section 5.

Tran et al. [52] introduce flows for discrete values that are not required to be ordinal, but which do
have a finite number of possible values: x 2 X = {0, 1, ...,K � 1}d. They introduce a bijector
in the form of a coupling layer with a scale and translation and a modulo operation: [ya,yb] =
[xa, (s✓(xa) � xb + t✓(xa))modK], with � denoting element-wise multiplication. The elements
of the scale s and translation t are assumed to take on values in 1, 2...,K � 1 and 0, 1, ...,K � 1
respectively. The above equation is only invertible when s and K are co-prime, in which case the
modular multiplicative inverse s�1 can be obtained through the extended Euclidean algorithm. Tran
et al. [52] also introduce an autoregressive version, where yi = [si(y<i)xi + t(y<i)]modK.

In practice, each element xi, si and ti for i 2 {1, ..., d} is represented as a one-hot vector. In
order to apply gradient-based methods to optimize the neural network parameters ✓, another form
of a straight-through estimator is used. In the forward pass, the scale and translation are obtained
by taking the argmax over the outputs of a neural net: si = onehot(argmax(�i)), with �i the
first half of the output of a neural network: [�i, ⌧ i] = nn✓(x1). The one-hot translation ti is
obtained similarly from ⌧ i. In the backward pass the non-differential operators are replaced with
si = softmax(�i/T ), where T denotes a temperature parameter that determines how closely the
softmax operator approximates the combined effect of the one-hot and argmax operator.

In summary, the main differences between discrete flows [52] and integer discrete flows [19] are
respectively: i) a finite number of classes versus a countably infinite number of classes, ii) non-ordinal
classes versus ordinal classes, iii) different straight-through estimators that approximate the respective
quantization operators: one-hot quantization versus rounding. The consequence of i) and its influence
on the flexibility to model arbitrary probability distributions is discussed in Section 4. The influence
of quantization operators on optimization for integer discrete flows will be discussed in Section 5.

4 Flexibility of flows for discrete random variables

As discussed by Papamakarios et al. [38], it might seem that normalizing flows for discrete random
variables are not able to model complicated distributions due to their restriction of only being able to
permute the probabilities of the probability distribution tensor. This appears to be in contrast with
many continuous flows that are non-volume preserving such as affine transformations [11], neural
spline flows [14] and Flow++ [17]. In this section we aim to show that flows for discrete random
variables are more flexible than previously claimed. We will do this by starting with an educative
example as proposed by Papamakarios et al. [38].

Consider the case of a two-dimensional random variable x = (x1, x2), with x1, x2 2 {0, 1}, and a
data-distribution given by

px(x1, x2) :

x1\x2 0 1⇣ ⌘
0 0.1 0.3
1 0.2 0.4

. (5)

4

p(x) = p(y = 𝒯(x))



Generative Pre-Training appears to be a 
successful way in learning good representations
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Representation learning: what and how ?

What is a good representation ?

Towards a Definition of
Disentangled Representations

Irina Higgins
⇤
, David Amos

⇤
, David Pfau, Sebastien Racaniere,

Loic Matthey, Danilo Rezende, Alexander Lerchner

DeepMind

{irinah,davidamos,pfau,sracaniere,
lmatthey,danilor,lerchner}@google.com

December 7, 2018

How can intelligent agents solve a diverse set of tasks in a data-efficient
manner? The disentangled representation learning approach posits that such
an agent would benefit from separating out (disentangling) the underlying
structure of the world into disjoint parts of its representation. However, there
is no generally agreed-upon definition of disentangling, not least because it is
unclear how to formalise the notion of world structure beyond toy datasets
with a known ground truth generative process. Here we propose that a
principled solution to characterising disentangled representations can be found
by focusing on the transformation properties of the world. In particular,
we suggest that those transformations that change only some properties of
the underlying world state, while leaving all other properties invariant, are
what gives exploitable structure to any kind of data. Similar ideas have
already been successfully applied in physics, where the study of symmetry
transformations has revolutionised the understanding of the world structure.
By connecting symmetry transformations to vector representations using the
formalism of group and representation theory we arrive at the first formal
definition of disentangled representations. Our new definition is in agreement
with many of the current intuitions about disentangling, while also providing
principled resolutions to a number of previous points of contention. While
this work focuses on formally defining disentangling – as opposed to solving
the learning problem – we believe that the shift in perspective to studying
data transformations can stimulate the development of better representation
learning algorithms.
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Quantum entanglement: from quantum states of
matter to deep learning
CHENG Song1喑2 CHEN Jing1喑2 WANG Lei1喑†

(1 Institute of Physics喑Chinese Academy of Sciences喑Beijing 100190喑China)

(2 University of Chinese Academy of Sciences喑Beijing 100049喑China)

ቌ 要 量ጱ纠缠ሞ量ጱ࿿ዊༀ的ჺ究ዐ扮ᄇጣ日趋ዘᄲ的角色，໲可ᅜ标记传ཥ

范式难ᅜ区分的ႎ奇量ጱༀ和量ጱ၎变，并ኸ导设计高ၳ的数ኵ算法来精确地ჺ究量ጱ多༹

࿚༶。ፌ近，随ጣᅃၵ深度ბသ技术ሞ量ጱ࿿理࿚༶ዐ的ᆌᆩ，人们惊奇地发၄：从量ጱ纠

缠的视角审视深度ბသ，或Ⴙᆶዺᇀ反过来理解和解决ᅃၵ深度ბသዐ的࿚༶。量ጱ纠缠

定量化地刻画了၄实数据集的复ሗ度，并ኸ导၎ᆌ的人工神经ྪ络结构设计。ᄂጣኄ个思

路，࿿理ბ家们对ᇀ量ጱ多༹࿚༶໯ႚ成的ዖዖ洞察和理论可ᅜᅜᅃዖᅪၙ不到的方式ᆌ

ᆩሞ၄实世界ዐ。

关键词 量ጱ纠缠，ቧ量ྪ络，人工神经ྪ络，深度ბသ

Abstract Quantum entanglement is playing an increasingly significant role in the studies
of quantum states of matter. It identifies novel phases and phase transitions beyond the traditional
paradigms, and guides efficient simulation of quantum systems using classical computers. Recently,
along with the application of deep learning technology to quantum many-body systems, a new
perspective on deep learning emerges through the lens of quantum entanglement. Entanglement
quantifies the complexity of a real dataset in machine learning and can guide the architecture
design of artificial neural networks. Along this line, insights and theories originally developed for
quantum many-body systems may find unexpected applications in real-world problems.

Keywords Quantum entanglement, tensor network states, artificial neural networks, deep
learning

1 ᆅ言

经典࿿理ბ的ዷ角是࿿ዊ和能量。20世纪

初，爱ᅺ斯།ႀူ E =mc2 ，将ዊ量和能量ཥᅃ

ሞ了ᅃ起。而从那ኮ后，ᅃ个ႎ角色——႑တ

(Information)——ደ渐ጽၠ了࿿理ბ࿸໼的ዐᄕ。

႑တ是关ᇀ不确定程度的度量。Shannon创立႑

တ论的初ዔ是ྺ了定量化地描述႑တ的存储和传

输。Jaynes从႑တ论的角度ჺ究多粒ጱ༹ဣ，ዘ

ႎ阐释了ཥ计力ბ[1]。ᇱ来，࿿理ბ家໯熟ኪ的

热力ბ᫬ᇑ Shannonᆩ来衡量႑တ量的႑တ᫬

(Information Entropy)ဣ出ཞᇸ。Landauerኸ出擦
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