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Fig. 18.2. Schematic representation of the Hamiltonian matrix of the Hubbard model with
L = 4, N↑ = 3, N↓ = 2, and periodic boundary conditions

constructed using the projector

Pk =
1
L

L−1∑

j=0

e2πijk/LT j . (18.14)

Clearly, for a given (unsymmetrized) state |n⟩, the state Pk|n⟩ is an eigenstate of T ,

TPk|n⟩ =
1
L

L−1∑

j=0

e2πijk/LT j+1 |n⟩ = e−2πik/LPk|n⟩ , (18.15)

where the corresponding eigenvalue is exp(− 2πik/L) and 2πk/L is the discrete
lattice momentum. Here we made use of the fact that T L = 1 (on a ring with L
sites, L translations by one site let you return to the origin). This property also
implies exp(− 2πik) = 1, hence k has to be an integer. Due to the periodicity of the
exponential, we can restrict ourselves to k = 0 , 1, . . . , (L − 1).

The normalization of the state Pk|n⟩ requires some care. We find

P †
k =

1
L

L−1∑

j=0

e−2πijk/LT−j =
1
L

L−1∑

j′=0

e2πij′k/LT j′ = Pk

P 2
k =

1
L2

L−1∑

i,j=0

e2πi(i−j)k/LT i−j =
1
L

L−1∑

j′=0

e2πij′k/LT j′ = Pk , (18.16)

as we expect for a projector. Hence, ⟨n|P †
kPk|n⟩ = ⟨n|P 2

k |n⟩ = ⟨n|Pk|n⟩. For
most |n⟩ the states T j|n⟩ with j = 0 , 1, . . . , (L − 1) will differ from each other,
therefore ⟨n|Pk|n⟩ = 1/L. However, some states are mapped onto themselves by a
translation T νn with νn < L, i.e., T νn |n⟩ = eiφn |n⟩ with a phase φn (usually 0 or
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Quantum Information & Computation

Next, a single-qubit measurement is made on the
ancillary qubit alone (the other qubits are simply ignored),
projecting it onto the state

jϕi ¼ ðjujj0i − jvjj1iÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj2þ jvj2

q
: ð2Þ

The success probability p of this projective measurement
can be estimated by repeated measurements. Remarkably,
the inner product between jui and jvi can be directly
calculated from the p:

hujvi ¼ ð0.5− pÞðjuj2þ jvj2Þ=jujjvj; ð3Þ

and the distance between ~u and ~v can then be obtained:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðjuj2þ jvj2Þ

q
: ð4Þ

It is important to note that such an estimation can achieve a
desired statistical accuracy simply by a sufficient number of
repeated measurements, but is independent of the size (N)
of the vectors, which gives a quantum speed-up.
This algorithm can be understood intuitively; the more

difference between the pure states jui and jvi, the more
entangled the Eq. (1) is. For examples, if jui and jvi are
identical, then the ancillary qubit is in the state ðj0iþ j1iÞ=ffiffiffi
2

p
, separable from the vector qubits, and p ¼ 0, D ¼ 0.

If jui and jvi are orthogonal, then the Eq. (1) is maximally
entangled, and p ¼ 0.5, D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj2þ jvj2

p
.

In our experiment, we use single photons as qubits,
where j0i and j1i are encoded with the photon’s horizontal
(H) and vertical (V) polarization, respectively. A schematic
drawing of the experimental setup is illustrated in Fig. 1.
Polarization-entangled photon pairs are generated by spon-
taneous parametric down-conversion [17] and prepared in
the state

ðj0iancj0ivec þ j1iancj1ivecÞ=
ffiffiffi
2

p
: ð5Þ

One photon (anc) is used as the ancillary qubit, and the other
one (vec) will be used to encode the reference and incoming
vectors using Sagnac-like interferometers (see Fig. 1).
To generate three- and four-photon entanglement

resource states, we create two entangled photon pairs.
Two single photons, one from each pair, are temporally and
spatially superposed on a polarizing beam splitter (PBS).
We select the events where one and only one single photon
emits from each output. It can be concluded that the four
photons are either all H polarized or V polarized, two cases
that are quantum mechanically indistinguishable when all
the other degrees of freedom of the photons are erased
(see the caption of Fig. 1), thus projecting the four photons
into the Greenberger-Horne-Zeilinger entangled state [18]:

anc123

DT

DRD1D2D3

BBO BBO

HWP

PBS

PBS
NBS

PBS
NBS

PBS
NBS

Prism

PBS
HWPHWP

HWPHWPHWP

HWP

BBO HWP
BBO

HWP
BBO

HWP

BBO

PrismPrism

FIG. 1 (color). Experimental setup for quantum machine learning with photonic qubits. Ultraviolet laser pulses with a central
wavelength of 394 nm, pulse duration of 120 fs, and a repetition rate of 76 MHz pass through two type-II β-barium borate (BBO)
crystals with a thickness of 2 mm to produce two entangled photon pairs. The photons pass through pairs of birefringent compensators
consisting of a 1-mm BBO crystal and a HWP to compensate the walk-off between horizontal and vertical polarization, and are prepared
in the quantum state: ðjHijViþ jVijHiÞ=

ffiffiffi
2

p
. Two extra HWPs placed in arm 3 and anc are used to transform the state into

ðjHijHiþ jVijViÞ=
ffiffiffi
2

p
. Two single photons, one from each pair, are temporally and spatially superposed on a PBS to generate a four-

photon entangled state: ðjHijHijHijHiþ jVijVijVijViÞ=
ffiffiffi
2

p
. The photons 1, 2, and 3 are sent to Sagnac-like interferometers, where

each single photon splits into two spatial modes by the PBS with regard to its polarization, and recombines on a nonpolarizing beam
splitter (NBS). Various vectors are independently encoded into the two spatial modes using HWPs. The specially designed beam splitter
cube is half-PBS coated and half-NBS coated. High-precision small-angle prisms are inserted for fine adjustments of the relative delay
of the two different paths. The photons are detected by five single-photon detectors (quantum efficiency > 60%), and the two four-
photon coincidence events, D3D2D1DT and D3D2D1DR, are simultaneously registered by a homemade FPGA-based coincidence unit.

PRL 114, 110504 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

20 MARCH 2015
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Cai et al, PRL 114, 110504 (2015) 

4

FIG. 2. (Color online) The schematic diagram of the quantum SVM. An ancillary qubit is added here to readout the classification
result. The auxiliary registers for matrix inversion are not shown here.
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  0
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(c)

FIG. 3. (Color online)(a) Properties of the 13C-iodotrifluroethylene. The chemical shifts ⌫i and scalar coupling constants (Jjk)
are on the lower diagonal in the table, respectively. The chemical shifts are given with respect to reference frequencies of 100.62
MHz (Carbon) and 376.48 MHz (Fluorines). (b) The quantum circuit for building the kernel matrix K. After discarding the
training-data register (the second qubit), the desired kernel matrix K is obtained as the quantum density matrix of the first
qubit. (c) The quantum circuit for classification. Here H and S are the Hadamard and phase gate, respectively.

realized [15, 16], with an exponentially speedup. Using the same method, the hyperplane parameters are determined

by
�
b, ~↵T

�T
= F̃�1

�
0, ~yT

�T
, where the vectors here represent quantum states.

The classification results in Eq. (2) could be reproduced by the overlap of two quantum states : y(~x) = sign(hx̃0 |ũ i),
with the training-data state |ũi = 1p

Nũ
(b|0i|0i +

PM
k=1 abs(~xk)↵k|ki|~xki) and the query-state |x̃0i = 1p

Nx̃0

(|0i|0i +
PM

k=1 abs(~x0)|ki| ~x0i). Here the training-data state |ũi could be easily obtained by calling the training-data oracle

on
�
b, ~↵T

�T
. By applying a inverse operation Ux0 = |00i hx̃0|, the expansion coe�cients h00|Ux0 |ũi = hx̃0| |ũi will

produce the classification result y(~x) [17]. A schematic diagram of this part is shown in Fig. 2. Note that the
unitary operations are conditional operations here, controlled by an ancillary qubit. Hence the final state will be
| i = |�i |1iA + |00i |0iA, where |�i = Ux0 |ũi and the subscript ”A” indicates the state of ancillary qubit. By
measuring the expectation value of coherent term O ⌘ |00i h00| ⌦ (|0i h1|)A, the classification result will be revealed

Li et al, PRL 114, 140504 (2015) 

Review “Quantum machine learning”, Biamonte,Wittek et al, Nature 2017

Perdomo-Ortiz et al, 1708.09757

undirected graph G = (V,E) with a set of vertices V and
a set of edges E between those vertices. The weight wij of
an edge between vertices i and j is a positive real number,
with wij = 0 if there is no edge between them. A cut

�(S) ⇢ E is a set of edges that separates the vertices V
into two disjoint sets S and S̄ = V \ S. The cost w(�(S))
of a cut is defined as the sum of all weights of edges
connecting vertices in S with vertices in S̄

w(�(S)) =
X

i2S,j2S̄

wij . (1)

The problem Maxcut(G,w) is now easily formulated as
an optimization objective

Maxcut(G,w) = max
S⇢V

w(�(S)). (2)

The Maxcut problem is an example of the class
of NP-complete problems [24], which are notoriously
hard to solve. Many other combinatorial problems can
be reduced to Maxcut—e.g., machine scheduling [25],
computer-aided design [26], tra�c message management
problems [27], image recognition [28], quadratic uncon-
strained optimization problems (QUBO) [15] and many
more. One approach to solving Maxcut is to construct a
physical system—typically a set of interacting spin- 1

2
par-

ticles [14]—whose lowest energy state encodes the solution
to the problem, so that solving the problem is equivalent
to finding the ground state of the system [29]. This is the
approach we take here.

QUANTUM APPROXIMATE OPTIMIZATION
ALGORITHM

It is possible to find the ground state of interacting
spin systems using an algorithm known as the quantum

approximate optimization algorithm (QAOA) [11]. QAOA
can be thought of as a heuristic to prepare a superpo-
sition of bit strings with probability amplitudes heavily
concentrated around the solution. The encoding of the
problem itself is given by a cost Hamiltonian (cf. S1)

ĤC = �
1

2

X

i,j

Cij(1� �̂
z
i �̂

z
j ), (3)

and QAOA approximates the ground state by initially
preparing the equal superposition of all bit strings, then
iteratively applying a pair of unitary operations before
measuring (see Fig. 1). For the ith iteration, we evolve
the system with cost unitary Ûi = exp(�i�iĤC) for some
angle �i, followed by the driver unitary V̂i = exp(�i�iĤD)
for some angle �i, where the driver Hamiltonian is

ĤD =
X

i

�̂
x
i . (4)

Bayesian
optimizer

cluster

assignments 

(bit strings)

M
e
a
su

re

D
ri

v
e
r 

u
n
it

a
ry

Cost unitary

FIG. 1. Circuit diagram for the clustering experiment de-
scribed in the main text a, which corresponds to a single
iteration of QAOA to solve a Maxcut problem. The algo-
rithm proceeds by (a) initializing all qubits in the 0 state, and
then applying Hadamard gates to each of the qubits. (b) Next,
due to parallelism constraints, it applies three independent
rounds of interactions of the form exp(�i�wij �̂

z
i �̂

z
j ) (actual

gate sequence not shown for brevity). The overall scaling �

for the interactions is chosen and varied by the optimization
routine. (c) Single qubit �̂X rotations are applied to each
qubit, again with an overall rotation angle � chosen by the
optimization routine. (d) Finally, all qubits are measured and
fed into the classical optimization routine. Many shots are
collected, and the best Maxcut cost, along with the history
of previous angles, is used to inform the next choice for (�, �).
a Computer icon is used under a Creative Commons license [30].

In other words, QAOA prepares the state

|���,���i = V̂pÛp · · · V̂1Û1| i, (5)

where p is the number of iterations, | i is the uniform
superposition of all bit strings (with the same phase), and
measures this state in the computational basis.
For the optimal choice of angles, the probability of

sampling the bit string corresponding to the lowest energy
state of ĤC increases monotonically with the number
of iterations applied [11]. As the number of iterations
approaches infinity, the probability of success approaches
unity. However, QAOA does not specify how the optimal
set of angles are found, although in some cases they can
be derived analytically for a small number of iterations
and for uniformly weighted graphs [11, 31].

BAYESIAN OPTIMIZATION

Our strategy to find the (approximately) optimal bit-
string for a weighted Maxcut instance, corresponding
to the solution of the clustering problem, uses Bayesian
optimization over the QAOA angles (���,���) [32, 33]. This
framework constructs a prior distribution over functions,
sequentially evaluates a black box objective—the Max-
cut instance in this case—and updates the prior accord-

c� Copyright 2017 Rigetti & Co, Inc. 2

Rigetti Computing, 1712.05771

https://arxiv.org/abs/1708.09757
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Lin, Tegmark, Rolnick ,1608.08225

Depth appears to be important!

Levine et al, 1704.01552 …Mehta, Schwab, 1410.3831

A: Law of  physics: symmetry, locality, compositionality, 
renormalization group, and quantum entanglement.
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29.1: The problems to be solved 359

To give ourselves a simpler problem, we could discretize the variable x and
ask for samples from the discrete probability distribution over a finite set of
uniformly spaced points {xi} (figure 29.1b). How could we solve this problem?
If we evaluate p∗i = P ∗(xi) at each point xi, we can compute

Z =
∑

i

p∗i (29.11)

and
pi = p∗i /Z (29.12)

and we can then sample from the probability distribution {pi} using various
methods based on a source of random bits (see section 6.3). But what is the
cost of this procedure, and how does it scale with the dimensionality of the
space, N? Let us concentrate on the initial cost of evaluating Z (29.11). To
compute Z we have to visit every point in the space. In figure 29.1b there are
50 uniformly spaced points in one dimension. If our system had N dimensions,
N = 1000 say, then the corresponding number of points would be 501000, an
unimaginable number of evaluations of P ∗. Even if each component xn took
only two discrete values, the number of evaluations of P ∗ would be 21000, a
number that is still horribly huge. If every electron in the universe (there are
about 2266 of them) were a 1000 gigahertz computer that could evaluate P ∗

for a trillion (240) states every second, and if we ran those 2266 computers for
a time equal to the age of the universe (258 seconds), they would still only
visit 2364 states. We’d have to wait for more than 2636 ≃ 10190 universe ages
to elapse before all 21000 states had been visited.

Systems with 21000 states are two a penny.⋆ One example is a collection ⋆ Translation for American
readers: ‘such systems are a dime
a dozen’; incidentally, this
equivalence (10c = 6p) shows that
the correct exchange rate between
our currencies is £1.00 = $1.67.

of 1000 spins such as a 30 × 30 fragment of an Ising model whose probability
distribution is proportional to

P ∗(x) = exp[−βE(x)] (29.13)

where xn ∈ {±1} and

E(x) = −
[

1
2

∑

m,n

Jmnxmxn +
∑

n

Hnxn

]

. (29.14)

The energy function E(x) is readily evaluated for any x. But if we wish to
evaluate this function at all states x, the computer time required would be
21000 function evaluations.

The Ising model is a simple model which has been around for a long time,
but the task of generating samples from the distribution P (x) = P ∗(x)/Z is
still an active research area; the first ‘exact’ samples from this distribution
were created in the pioneering work of Propp and Wilson (1996), as we’ll
describe in Chapter 32.

A useful analogy

P ∗(x)

Figure 29.2. A lake whose depth
at x = (x, y) is P ∗(x).

Imagine the tasks of drawing random water samples from a lake and finding
the average plankton concentration (figure 29.2). The depth of the lake at
x = (x, y) is P ∗(x), and we assert (in order to make the analogy work) that
the plankton concentration is a function of x, φ(x). The required average
concentration is an integral like (29.3), namely

Φ = ⟨φ(x)⟩ ≡ 1
Z

∫
dNx P ∗(x)φ(x), (29.15)
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360 29 — Monte Carlo Methods

where Z =
∫
dxdy P ∗(x) is the volume of the lake. You are provided with a

boat, a satellite navigation system, and a plumbline. Using the navigator, you
can take your boat to any desired location x on the map; using the plumbline
you can measure P ∗(x) at that point. You can also measure the plankton
concentration there.

Problem 1 is to draw 1 cm3 water samples at random from the lake, in
such a way that each sample is equally likely to come from any point within
the lake. Problem 2 is to find the average plankton concentration.

These are difficult problems to solve because at the outset we know nothing
about the depth P ∗(x). Perhaps much of the volume of the lake is contained

Figure 29.3. A slice through a lake
that includes some canyons.

in narrow, deep underwater canyons (figure 29.3), in which case, to correctly
sample from the lake and correctly estimate Φ our method must implicitly
discover the canyons and find their volume relative to the rest of the lake.
Difficult problems, yes; nevertheless, we’ll see that clever Monte Carlo methods
can solve them.

Uniform sampling

Having accepted that we cannot exhaustively visit every location x in the
state space, we might consider trying to solve the second problem (estimating
the expectation of a function φ(x)) by drawing random samples {x(r)}R

r=1

uniformly from the state space and evaluating P ∗(x) at those points. Then
we could introduce a normalizing constant ZR, defined by

ZR =
R∑

r=1

P ∗(x(r)), (29.16)

and estimate Φ =
∫

dNx φ(x)P (x) by

Φ̂ =
R∑

r=1

φ(x(r))
P ∗(x(r))

ZR
. (29.17)

Is anything wrong with this strategy? Well, it depends on the functions φ(x)
and P ∗(x). Let us assume that φ(x) is a benign, smoothly varying function
and concentrate on the nature of P ∗(x). As we learnt in Chapter 4, a high-
dimensional distribution is often concentrated in a small region of the state
space known as its typical set T , whose volume is given by |T | ≃ 2H(X), where
H(X) is the entropy of the probability distribution P (x). If almost all the
probability mass is located in the typical set and φ(x) is a benign function,
the value of Φ =

∫
dNx φ(x)P (x) will be principally determined by the values

that φ(x) takes on in the typical set. So uniform sampling will only stand
a chance of giving a good estimate of Φ if we make the number of samples
R sufficiently large that we are likely to hit the typical set at least once or
twice. So, how many samples are required? Let us take the case of the Ising
model again. (Strictly, the Ising model may not be a good example, since it
doesn’t necessarily have a typical set, as defined in Chapter 4; the definition
of a typical set was that all states had log probability close to the entropy,
which for an Ising model would mean that the energy is very close to the
mean energy; but in the vicinity of phase transitions, the variance of energy,
also known as the heat capacity, may diverge, which means that the energy
of a random state is not necessarily expected to be very close to the mean
energy.) The total size of the state space is 2N states, and the typical set has
size 2H . So each sample has a chance of 2H/2N of falling in the typical set.
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Figure 2.D.3: VAEs can be used for image re-synthesis. In this example by
White [2016], an original image (left) is modified in a latent space in the
direction of a smile vector, producing a range of versions of the original, from
smiling to sadness. Notice how changing the image along a single vector in
latent space, modifies the image in many subtle and less-subtle ways in pixel
space.

of images in latent space along a "smile vector" in order to make them more
happy, or more sad looking. See figure 2.D.3 for an example.

Latent space interpolation

White, 1609.04468

arithmetics of the “smile vector”



Probabilistic Generative Modeling

How to express, learn, and sample from a 
high dimensional probability distribution ? 
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“… the images encountered in 
AI applications occupy a 
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.

21A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

 



Why machine learning  
for many-body physics ? 

• Conceptual connections: a novel and natural way 
to think about (quantum) many-body systems 

• Data driven approach: making scientific discovery 
based on big data  

• Techniques: neural networks, kernel methods, 
pattern recognition, feature extraction, 
dimensional reduction, clustering analysis, 
probabilistic modeling, recommender systems, 
expectation maximization, variational inference, 
hardware acceleration, software frameworks…



Four Pillars of Machine Learning

Switch to blackboard

Data Model

Cost function Optimization



Deep Learning and  
Quantum Many-Body Computation

Lei Wangҁሴᏽ҂ 
Institute of Physics, CAS 
https://wangleiphy.github.io

Winter School on Numerical Methods for Strongly Correlated 
Quantum Systems, February 19-23 2018, Marburg

https://wangleiphy.github.io


Goodfellow, 1701.00160
Taxonomy of Generative Models

p(x)



+Tensor Network States

Goodfellow, 1701.00160
Taxonomy of Generative Models

p(x)



+Tensor Network States

+Quantum 
Circuits

Goodfellow, 1701.00160
Taxonomy of Generative Models

p(x)



Lecture note http://wangleiphy.github.io/lectures/DL.pdf
3.2

gen
era

tive
m

o
d

el
zo

o
31

Table 2: A summary of generative models and their salient features. Question marks mean generalizations are possible, but nontrivial.

Name Training
Cost

Data Space Latent
Space

Architecture Sampling Likelihood Expressibility Difficulty
(Learn/Sample)

RBM Log-
likelihood

Arbitrary Arbitrary Bipartite MCMC Intractable
partition
function

F /

DBM ELBO Arbitrary Arbitrary Bipartite MCMC Intractable
partition

function &
posterior

FFF /

Autoregressive
Model

Log-
likelihood

Arbitrary None Ordering Sequential Tractable FF /

Normalizing
Flow

Log-
likelihood

Continuous Continuous,
Same

dimension
as data

Bijector Parallel Tractable FF /

VAE ELBO Arbitrary Continuous Arbitrary? Parallel Intractable
posterior

FFF /

MPS/TTN Log-
likelihood

Arbitrary? None or
tree tensor

No loop Sequential Tractable FFF /

GAN Adversarial Continuous Arbitrary? Arbitrary Parallel Implicit FFFF /

http://wangleiphy.github.io/lectures/DL.pdf
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models that, after being trained on real examples, are able to produce realistic synthetic
samples. Such models usually also produce low-dimensional continuous representations of the
data being modeled, allowing interpolation or analogical reasoning for natural images [24],
text [25], speech, and music [26]. We apply such generative models to chemical design.

In this work, we propose the use of continuous optimization to produce novel compounds
by building a learned vector-valued representation of molecules. We transform between
discrete and continuous representations using a pair of neural networks trained together as
an autoencoder. We apply this technique in the space of drug-like molecules and organic
light-emitting diodes (OLED).

Figure 1: a). A diagram of the proposed autoencoder for molecular design. Starting from a discrete
molecular representation, such as a SMILES string, the encoder network converts each molecule
into a vector in the latent space, which is e↵ectively a continuous molecular representation. Given
a point in the latent space, the decoder network produces a corresponding SMILES string. b)

Gradient-based optimization in continuous latent space. After training a surrogate model f(z) to
predict the properties of molecules based on their latent representation z, we can optimize f(z) with
respect to z to find new latent representations expected to have high values of desired properties.
These new latent representations can then be decoded into SMILES strings, at which point their
properties can be tested empirically.

3

Gomez-Bombarelli et al,1610.02415
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Figure 3: a). Random sampling. Molecules decoded from randomly-sampled points in the latent
space of a variational autoencoder, near to a given molecule (aspirin [2-(acetyloxy)benzoic acid],
highlighted in blue). b). Interpolation. Two-dimensional interpolation between four random points
in in drug-like VAE. Decodings of interpolating linearly between the latent representations of the
four molecules in the corners.

interpolations in chemical space. Starting points in the latent space were selected; we then
performed a linear grid interpolation over two dimensions. We decoded each point in latent
space multiple times and report the molecule whose latent representation, once re-encoded,
is closest to the sampled point (Figures 3b and 11-10)

In a related experiment, and starting from a random FDA-approved drug molecule, two
random unitary vectors in latent space were followed and decoded into molecules. Figures
13-15) show the starting molecule in the center, and the most probable decodings of the
extrapolated molecules on the horizontal and vertical direction. Most points along the path
through latent space decode to valid molecules.

Bayesian optimization of logP Having shown the ability of a VAE to generate a
continuous, reversible encoding of molecular structures, we proceeded to test its potential to
discover new molecules with desired properties.

We first attempted to maximize the water-octanol partition coe�cient (logP), an impor-
tant measure in drug design that characterizes the drug-likeness of a molecule. To ensure
that the resulting molecules would be easy to synthesize in practice, we also incorporated
the synthetic accessibility [34] (SA) score into our objective. RDkit was used to calculate
logP and SA score. [35]

Our initial experiments optimizing the logP and SA scores produced novel molecules,
but ones having unrealistically large rings of carbon atoms. To avoid this problem, we added
a penalty for having carbon rings of size larger than 6 to our objective.

Thus our preferred objective for a given molecule m is given by:

J logP(m) = logP(m)� SA(m)� ring-penalty(m) , (1)

where the scores logP(m), SA(m), and ring-penalty(m) are normalized to have zero mean
and unit standard deviation across the training data.

7
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Finding the density-functional

Top four most-cited PR papers are all DFT-foundational papers!rate. Third, papers can be highly cited for many reasons—
some substantive and some dubious. Thus the number of
citations is merely an approximate proxy for scientific
quality.

Citation distribution and attachment rate
The PR citation data cover 353 268 papers and 3 110 839
citations from July 1893 through June 2003. The 329 847
papers with at least 1 citation may be broken down as 
follows:

11 publications with more than 1000 citations
79 publications with more than 500 citations

237 publications with more than 300 citations
2 340 publications with more than 100 citations
8 073 publications with more than 50 citations

245 459 publications with fewer than 10 citations
178 019 publications with fewer than 5 citations
84 144 publications with 1 citation.

A somewhat depressing observation is that nearly 70% of
all PR articles have been cited fewer than 10 times. (The
average number of citations is 8.8.) Also evident is the
small number of highly cited publications; table 1 lists the
11 publications with more than 1000 citations. 

Citations have grown rapidly with time, a feature that
mirrors the growth of the PR family of journals. From 1893
until World War II, the number of annual citations from
PR publications doubled approximately every 5.5 years.
The number of PR articles published in a given year also
doubled every 5.5 years. Following the publication crash
of the war years, the number of articles published annu-
ally doubled approximately every 15 years.

The citation data naturally raise the question, What
is the distribution of citations? That is, what is the proba-
bility P(k ) that a paper gets cited k times? This question
was investigated by Price, who posited the power law
P(k ) } k⊗n, with n positive. A power-law form is exciting for
statistical physicists because it implies the absence of a
characteristic scale for citations—the influence of a publi-
cation may range from useless to earth-shattering. The ab-
sence of a characteristic scale in turn implies that citation
statistics should exhibit many of the intriguing features
associated with phase transitions, which display critical
phenomena on all length scales.

Somewhat surprisingly, the probability distribution
derived from the more than 3 million PR citations still has
significant statistical fluctuations. It proves more useful to
study the cumulative distribution C(k ) ⊂ ∫k

F P(k !) dk !, the
probability that a paper is cited at least k times, to reduce
these fluctuations.

On a double logarithmic scale, C(k ) has a modest neg-
ative curvature everywhere. That behavior, illustrated in
figure 2, suggests that the distribution decays faster than
a power law and is at variance with results of previous,
smaller-scale studies that suggested either a power law2,11

or a stretched exponential form,12 C(k ) } exp(⊗k b), with b
less than 1. It is intriguing that a good fit over much of the
range of the distribution is the log-normal form
C(k ) ⊂ A exp{⊗bln k ⊗ c(ln k )2}. Log-normal forms typi-
cally underlie random multiplicative processes. They de-
scribe, for example, the distribution of fragment sizes that
remain after a rock has been hammered many times.

The development of citations may be characterized by
the attachment rate Ak, which gives the likelihood that a
paper with k citations will be cited by a new article. To
measure the attachment rate, first count the number of
times each paper is cited during a specified time range;
this gives k . Then, to get Ak, count the number of times
each paper with a given k in this time window was cited
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Figure 2. The cumulative citation distribution C(k) versus
the number of citations k for all papers published from July
1893 through June 2003 in the Physical Review journals.
Circles indicate the data. The curve is the log-normal fit
C(k) ⊂ A exp[⊗bln k ⊗ c(ln k)2], with A ⊂ 0.15, b ⊂ 0.40,
and c ⊂ 0.16.
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Finding the density-functional
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Top four most-cited PR papers are all DFT-foundational papers!rate. Third, papers can be highly cited for many reasons—
some substantive and some dubious. Thus the number of
citations is merely an approximate proxy for scientific
quality.

Citation distribution and attachment rate
The PR citation data cover 353 268 papers and 3 110 839
citations from July 1893 through June 2003. The 329 847
papers with at least 1 citation may be broken down as 
follows:

11 publications with more than 1000 citations
79 publications with more than 500 citations

237 publications with more than 300 citations
2 340 publications with more than 100 citations
8 073 publications with more than 50 citations

245 459 publications with fewer than 10 citations
178 019 publications with fewer than 5 citations
84 144 publications with 1 citation.

A somewhat depressing observation is that nearly 70% of
all PR articles have been cited fewer than 10 times. (The
average number of citations is 8.8.) Also evident is the
small number of highly cited publications; table 1 lists the
11 publications with more than 1000 citations. 

Citations have grown rapidly with time, a feature that
mirrors the growth of the PR family of journals. From 1893
until World War II, the number of annual citations from
PR publications doubled approximately every 5.5 years.
The number of PR articles published in a given year also
doubled every 5.5 years. Following the publication crash
of the war years, the number of articles published annu-
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The citation data naturally raise the question, What
is the distribution of citations? That is, what is the proba-
bility P(k ) that a paper gets cited k times? This question
was investigated by Price, who posited the power law
P(k ) } k⊗n, with n positive. A power-law form is exciting for
statistical physicists because it implies the absence of a
characteristic scale for citations—the influence of a publi-
cation may range from useless to earth-shattering. The ab-
sence of a characteristic scale in turn implies that citation
statistics should exhibit many of the intriguing features
associated with phase transitions, which display critical
phenomena on all length scales.

Somewhat surprisingly, the probability distribution
derived from the more than 3 million PR citations still has
significant statistical fluctuations. It proves more useful to
study the cumulative distribution C(k ) ⊂ ∫k

F P(k !) dk !, the
probability that a paper is cited at least k times, to reduce
these fluctuations.

On a double logarithmic scale, C(k ) has a modest neg-
ative curvature everywhere. That behavior, illustrated in
figure 2, suggests that the distribution decays faster than
a power law and is at variance with results of previous,
smaller-scale studies that suggested either a power law2,11

or a stretched exponential form,12 C(k ) } exp(⊗k b), with b
less than 1. It is intriguing that a good fit over much of the
range of the distribution is the log-normal form
C(k ) ⊂ A exp{⊗bln k ⊗ c(ln k )2}. Log-normal forms typi-
cally underlie random multiplicative processes. They de-
scribe, for example, the distribution of fragment sizes that
remain after a rock has been hammered many times.

The development of citations may be characterized by
the attachment rate Ak, which gives the likelihood that a
paper with k citations will be cited by a new article. To
measure the attachment rate, first count the number of
times each paper is cited during a specified time range;
this gives k . Then, to get Ak, count the number of times
each paper with a given k in this time window was cited
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Figure 2. The cumulative citation distribution C(k) versus
the number of citations k for all papers published from July
1893 through June 2003 in the Physical Review journals.
Circles indicate the data. The curve is the log-normal fit
C(k) ⊂ A exp[⊗bln k ⊗ c(ln k)2], with A ⊂ 0.15, b ⊂ 0.40,
and c ⊂ 0.16.

Table 1. Physical Review Articles with more than 1000 Citations Through June 2003
Publication # cites Av. age Title Author(s)
PR 140, A1133 (1965) 3227 26.7 Self-Consistent Equations Including Exchange and Correlation Effects W. Kohn, L. J. Sham

PR 136 , B864 (1964) 2460 28.7 Inhomogeneous Electron Gas P. Hohenberg, W. Kohn

PRB 23, 5048 (1981) 2079 14.4 Self-Interaction Correction to Density-Functional Approximations for 
Many-Electron Systems J. P. Perdew, A. Zunger

PRL 45, 566 (1980) 1781 15.4 Ground State of the Electron Gas by a Stochastic Method D. M. Ceperley, B. J. Alder

PR 108 , 1175 (1957) 1364 20.2 Theory of Superconductivity J. Bardeen, L. N. Cooper, J. R. Schrieffer

PRL 19 , 1264 (1967) 1306 15.5 A Model of Leptons S. Weinberg

PRB 12, 3060 (1975) 1259 18.4 Linear Methods in Band Theory O. K. Anderson

PR 124, 1866 (1961) 1178 28.0 Effects of Configuration Interaction of Intensities and Phase Shifts U. Fano

RMP 57 , 287 (1985) 1055 9.2 Disordered Electronic Systems P. A. Lee, T. V. Ramakrishnan
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PR, Physical Review; PRB, Physical Review B; PRL, Physical Review Letters; RMP, Reviews of Modern Physics.

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  104.236.132.13 On: Mon, 29 Aug 2016 03:37:04

machine learned one dimensional kinetic-energy functional 
with O(103) parameters

2

j αj a1 b1 c1 a2 b2 c2 a3 b3 c3

1 14.34267159730358 1.180270056381577 0.07195101071267996 0.5299345325943254 9.01320520984288 0.092675711955144 0.5396431787675333 7.21030205171728 0.0740833092851918 0.4120341150720884
2 5.175360849250056 6.168993733519782 0.082993252991643 0.5167227315230085 8.30495143619142 0.0890145060213322 0.4169122081529295 8.80487613349391 0.0965994509648079 0.5711057094413816
3 0.835534193378979 9.08090433047071 0.07685302774688097 0.5622686436063149 3.911674577648888 0.07551832009012722 0.5086649497775319 1.809709070880952 0.095976684502697 0.4024220371493795
4 −5.373806223157635 8.69723148795899 0.06384871663070496 0.5859464293596277 8.67330877015531 0.0876928787020957 0.4850650257010839 4.189229162595343 0.04518368077127609 0.5819244871260409
5 −0.3190730633815225 1.880199805158718 0.03425540298495952 0.4874044587130534 3.541514636747403 0.0983660639956121 0.4515151404198366 9.82668062409708 0.03264617089733192 0.4352642564533179
6 0.4351315890942081 3.522977833467916 0.07218055206599771 0.4489170887611125 3.332712157375289 0.07852548530734836 0.5852941028010116 8.14461268619626 0.04848929881736392 0.5484789894348707
7 −5.783654943336363 5.286896436167961 0.04973324501652048 0.4653609943491444 7.135152688153955 0.0956349249199585 0.4408949440211174 2.243825016881491 0.05865588304821763 0.5687481170088626
8 5.857253335721763 1.896112874949486 0.03260897886438952 0.4501033283280557 5.885541925485173 0.06240932269593134 0.5618611754744713 6.486450948532671 0.07293633775145438 0.5695359084287562
9 0.3627795973240678 7.516612508143043 0.0993184090181399 0.5699793290550055 5.262683987610352 0.0972169632428748 0.4726711603381638 8.89032075863951 0.05632091198742537 0.4056148051043074
10 29.95678925033907 8.49309248159469 0.0647507853307116 0.4481376527388373 3.62263291813646 0.04018659271978259 0.5253173968297499 1.155756643175955 0.0910615024672208 0.5870317055827734
11 −8.10086522849575 7.105439309279282 0.0843184446680493 0.4223871323591302 4.606936643431428 0.06326693058647106 0.5381643193286885 2.832289239384128 0.07970384658584057 0.4171275695759011
12 −1.631527652578485 8.53955034289036 0.07284904722467074 0.5839058233689045 1.340024891088614 0.0781592051575039 0.5383353695983426 7.396341414064901 0.05945110164542845 0.4924043842188951
13 11.0617514474351 7.853417776611835 0.07070077317679758 0.5080787363762617 4.408481706562826 0.06298528328388489 0.4611686076617371 7.90542867326401 0.03887933278705098 0.5872227397532248
14 4.44089329011033 6.39698431139937 0.05730660668578378 0.5964415398755241 5.472334579600375 0.06570186368826426 0.5473728709183074 4.715521015256764 0.0803629674069167 0.5354179520994888
15 2.731504789238804 4.228544205571447 0.06071899009977901 0.4135235776817701 2.550224851908171 0.06424771468342688 0.5203395167113864 4.842862964307187 0.06333995603635176 0.5244121975227667
16 −12.35513145514341 2.579686666551495 0.0664318905447018 0.4888525450630048 3.764107410086705 0.06576720199559433 0.5481686020053234 1.399253719979948 0.07540490302513119 0.4655456988965731
17 11.55095248921101 1.107700596345898 0.05955381913217193 0.5359207521608914 2.706093393731662 0.06561841006617781 0.4269114966922994 1.501048590877154 0.06352034496843162 0.4331821043592771
18 0.1703484854064119 8.26435624701031 0.04624196264776803 0.4236237608297072 7.025290029097274 0.07980750197266955 0.4683927184025036 2.822503099972245 0.05222522416667061 0.4810998521431096
19 −0.13017855474333 8.74124547878586 0.0628793144768381 0.4736196423196364 8.59166251408243 0.084738261964188 0.4564662508099403 8.22877749776242 0.03727774324972055 0.4697350798193826
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21 −2.371179702223466 1.015154584908506 0.07726595708511765 0.4008988537732911 6.688534202733123 0.0869544063742346 0.403293222827825 6.297133313147086 0.03345369328197418 0.5433070470097552
22 13.69383242214402 3.283098134816701 0.06841617803957927 0.4304195496937475 5.887062834756559 0.05152399439496422 0.4321995606997443 3.207122477750064 0.07371808389404321 0.4967284534354185
23 −2.216419772035322 2.056773486230531 0.0825699915945694 0.479224783903814 6.945590707033352 0.07408636456892297 0.4957750456547108 5.846222671659907 0.0836452454472081 0.4094720200825416
24 −6.00076435563604 2.03703352205463 0.07605517542793995 0.4501291515683585 1.45256356478288 0.07433692379389613 0.4233969076404344 8.95059302019488 0.05703615620837187 0.4679023659842935
25 8.16409108667899 6.400475835681034 0.03425589949139343 0.5544095818848655 6.086484474478635 0.07282844956128038 0.4272596897186396 5.36207646433345 0.05780634160661002 0.5503173198658324
26 −22.3897314906413 3.751807395744921 0.0852624107335768 0.4453450848668749 7.559337237177321 0.05840909867970421 0.4990223467101435 4.729884445483556 0.0929218712306724 0.5590503374710945
27 5.595799173773367 4.522456026868127 0.03620201946841309 0.5050210060676815 1.885091277540955 0.06521780385848891 0.4961601035955842 9.47421945496329 0.0556740133396159 0.4834045749740091
28 1.94645582566549 2.751346713386582 0.0948195528516815 0.4901204212506473 7.863592227266858 0.0951797983951825 0.5196620049802691 9.51608680035275 0.07785377315463609 0.5806015592262945
29 −1.105559822533069 5.725277193011525 0.03097303116261406 0.5511177785567803 7.988513342309234 0.0928323179868588 0.5146415116367569 1.101098863639624 0.0882939028519791 0.5265108634130272
30 −3.886381532577754 4.95871172966177 0.06823254438777603 0.5645951313008806 9.08135225317634 0.04472856905840844 0.4299117124064201 8.24973637849809 0.08854431361856 0.5416193648861009
31 −1.341930696378109 6.451869235304859 0.05482804889270922 0.5694170176403242 4.416924333519995 0.04212208612720639 0.5897125000677342 8.86521100790565 0.0866581794842557 0.5311744230227635
32 −10.16467121571373 6.705508349541454 0.0934749698077619 0.4420693171728495 2.858371131410651 0.03722557506068529 0.4216580500297413 6.670274811535954 0.0977332470946321 0.538756085129185
33 −1.107633246744663 7.390220519784453 0.07970661674181083 0.5081940602224835 3.815123656821275 0.04965529863397879 0.497023655525965 9.69945245311718 0.07039341131023045 0.4990744291774679
34 10.39451871866851 1.478170300165134 0.03602109509210016 0.5799113381048154 2.105782960173057 0.0861928382367878 0.4812528298377607 7.010226383015251 0.03535327789989237 0.4969989664577149
35 −0.139925361351959 4.045190240200832 0.03579955552582782 0.5678362348598895 9.32386837735074 0.0858648976559044 0.5698752996855582 9.81895903799508 0.04704020956533079 0.5708692337579542
36 3.656124569605117 4.944179742822627 0.0931916525333049 0.4834640277977335 9.3847979419491 0.0840810063497973 0.4090254720704045 3.673880603434117 0.07158934023489803 0.5598196803643543
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64 −1.743105697039855 3.145607697855832 0.0415292992761004 0.5859414343226601 5.945295724435049 0.07414379406386953 0.4548629476738681 1.062923665624632 0.07636214080338054 0.4330291254331895
65 −1.631255302904965 3.121291975208031 0.03133561741752311 0.524510056949801 8.03118879837252 0.0987376029412809 0.5128559599511593 7.572783963151993 0.0936192481138518 0.4523240987335903
66 −9.50982692642515 7.367027947839741 0.07398108515426552 0.4753257600466925 1.589160147317211 0.07398588942349949 0.4644105814910987 1.719981611302808 0.04986976063479617 0.5394709698394433
67 −4.496736421068983 8.56498650586069 0.0870950155799119 0.4807004710871501 8.85815411069566 0.0936690521145114 0.4120764594786555 2.422694718173737 0.05651923264880363 0.4832351547748815
68 −1.002977917543076 9.43121814362608 0.03689894383172801 0.4801850915018365 6.762463110315146 0.0977990134875495 0.5880377299069773 8.48288777357423 0.05983735955021298 0.4837560035001434
69 −9.23106545170694 8.47929696159459 0.05472141225455761 0.4949989702352598 4.776138672418544 0.03835162624659654 0.5785166211495689 4.459069855546714 0.06892772167363432 0.5908529311844791
70 14.99926304831282 4.708917711658332 0.0907364284065382 0.4550033334959929 5.373320800648651 0.03739924536269347 0.4468132406615605 1.831662246071428 0.05825558914206748 0.566434199642786
71 4.189181104505013 7.583635162152007 0.0936829708421792 0.4110679099121856 6.09002215219153 0.05895044789139901 0.5451253692040614 6.851478307492325 0.04763840334231468 0.5010633160850224
72 8.32837188138842 3.414315967033806 0.05054048464274665 0.5043307410524706 3.070996567281799 0.06968276328974509 0.5702669702356848 5.360783854112533 0.0388888383066967 0.5784155467566237
73 −21.84200888491582 1.625552430388586 0.04546236831654488 0.5426078576324179 4.091176923293506 0.03836885039652842 0.504879512949007 4.527748284314512 0.05975894102927981 0.4670598506496871
74 6.604738977945651 3.42187897931262 0.0894449950697187 0.4941485628974172 4.96749741331263 0.06031151123783582 0.4119028637456998 4.581927607849956 0.0871948963692279 0.4176805754532423
75 15.27988423246628 6.229538426957454 0.0821521091215863 0.4118748449252315 2.377028497509498 0.0963110933106458 0.4746736556808109 5.398545541594487 0.0822574656780643 0.5258947233190487
76 1.377130763885458 9.15176346333775 0.04818682488618507 0.574408949666749 2.366656226877287 0.05059199769749539 0.4731074949729489 4.34290365370739 0.07492904049493838 0.4038656375892337
77 −0.7756959351484244 8.1525112801581 0.0812975344211981 0.5112853751964107 4.530310672134927 0.06652912486134806 0.5946245231853162 1.568860626254933 0.04256882025605258 0.5491027801043556
78 −9.50432792804336 4.670517118870347 0.04398267799553492 0.4519472673718893 2.155276187476066 0.0489411436180854 0.5694756278652033 1.947130206816878 0.06321309041201674 0.4122312147733568
79 3.754137123031758 6.801389212739803 0.07003309342623426 0.5129214842481318 9.92433910143913 0.0931392820982872 0.4104016495146404 5.23036608102518 0.0919529182014262 0.4465294974738288
80 −4.499804654067136 4.406584351091798 0.0970211159011626 0.4772975938521527 2.270764431848441 0.0853562757122116 0.4669596920988839 4.42557413334857 0.0517800509473799 0.5645191809121128
81 −13.9999061688152 8.30408622139241 0.0903948738093222 0.5053209583744364 2.454354187669313 0.0857681690400504 0.576877467653029 7.167289037979035 0.0831206320171505 0.4221339680792799
82 −4.878405649764898 7.975675712689654 0.0809649515974139 0.5831990158889571 1.696376490191135 0.06783046119270637 0.5788560723486603 5.118512758012828 0.06554617006512321 0.5571586558825978
83 −8.70611662690158 3.078380132262833 0.06327626752293522 0.4017988981679418 2.138629261588504 0.05374733302715019 0.5432443229891937 7.596013793576791 0.0999924467044729 0.5115245622576321
84 3.578654662113496 4.294915349281119 0.0664706641817281 0.5566289165852036 3.387516420897519 0.06654228293431248 0.4304935498494862 8.43232828156106 0.06121769693920587 0.5527076848906498
85 0.0423259541153967 9.56936665353494 0.06825963823641594 0.5532353068476618 7.233942984150266 0.07736032999103362 0.4274316541541941 8.96022693099 0.03996347733060968 0.5091073130786462
86 −6.387446031119123 5.052123646744015 0.05306973453715137 0.4657297418468141 1.261670338009784 0.05392235260994765 0.4355571344074666 9.81884128475822 0.0434164193614162 0.546118275633825
87 3.029693711282459 1.767169254935782 0.0386273054889003 0.4174202422881018 9.99189882836594 0.0347107535224807 0.5316587974869709 4.794411329362948 0.04866392717198935 0.5202815575942617
88 −0.791031105864576 8.38082427065573 0.0552127907704862 0.5821800194923659 3.864226559651998 0.05464216708052787 0.5051543239785165 4.445064096761643 0.03386907179361738 0.4659081177469465
89 2.97083681738158 9.22706363472046 0.06912140386549836 0.5630023378185795 2.929880196570098 0.07966659968684009 0.4992263633935188 6.920427033384797 0.03123407491202272 0.4077156601519876
90 −7.110772604917624 3.106633667560681 0.04873990025387701 0.5697049535893381 8.30700777463754 0.05249501630989304 0.5669783762910612 1.13457393933062 0.07200760153994357 0.444672072474744
91 −7.162305080703513 5.387619660361665 0.04581500385875453 0.5197835066282974 8.22551991773337 0.0831226693907787 0.4274987667560087 6.828948529150043 0.05943349593138421 0.5115861497137036
92 1.720368406482304 6.780548897314363 0.0870012111933092 0.5984908484842784 6.587571277412653 0.05694105237128053 0.5226697825342788 5.99005641944593 0.07837921322316456 0.4668236040752577
93 0.1494884045649762 8.09818524171748 0.0976595255928496 0.4848535596042637 2.153483785757176 0.04734211110674212 0.4077222220507315 7.143110762448606 0.04682210332386052 0.509084643832387
94 −0.962821097034532 7.260437643310942 0.05083396575279076 0.54745303715986 8.38162990306018 0.05791050943688269 0.5794395625497382 2.722302743095399 0.083744615781603 0.5395428417251624
95 0.935122045036145 2.31788301454997 0.05976249487823031 0.5809204376238206 8.19172407354263 0.06806778195768599 0.5479374417815378 9.93990336225375 0.04266977230181523 0.5959901705863791
96 0.4328277236540677 4.113414259206836 0.07988404513340022 0.5262079910925557 7.436994191324823 0.07641699196144898 0.4316282085515486 9.59671807016201 0.07198966517052108 0.4563024970288369
97 0.853043516035702 3.229317247568396 0.04664288308967379 0.4916641780174803 9.19533615142581 0.0944216012526871 0.5792638413577232 6.980966479991427 0.07647312161060935 0.5407763967437385
98 −3.516191871248886 9.20769534239692 0.07214599607965883 0.4111312070946356 7.568725646832963 0.0806902033322297 0.4952042950743076 8.94919747461644 0.04263443777290076 0.5735261960865083
99 19.67243760549639 2.270663590855083 0.0971170179967765 0.4613017967987272 8.22480560472966 0.0536024772561282 0.4745303011865644 3.970009703387312 0.0982032349257953 0.5029128207513967
100 1.544060514744405 4.017102041449901 0.04437090645089548 0.5073655615301741 3.724036679477685 0.07622772645899346 0.4368882837991222 5.350822342112657 0.07659119397629786 0.4056243763991382

TABLE III. All the necessary information to construct our
MLA, trained from 100 densities with N = 1 on a grid of
500 points, with λ = 12 × 1014 and σ = 43. For purposes
of saving space, we do not list these densities. They may be
reconstructed from these potentials via Numerov’s method.



Learning the xc-functional 
from DMRG calculation in 
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Figure 1. a. Mappings used in this paper. The bottom arrow represents E[v], a conventional electronic structure calculation,
i.e., KS-DFT. The ground state energy is found by solving KS equations given the external potential, v. E[n] is the total
energy density functional. The red arrow is the HK map n[v] from external potential to its ground state density. b top. How
the energy error depends on M for ML-OF and ML-HK with di↵erent basis sets for the 1-D problem. b bottom. Errors of
the PBE energies (relative to exact values) and the ML maps (relative to PBE) as a function of interatomic spacing, R, for H2

with M = 7. c. How our Machine Learning Hohenberg-Kohn (ML-HK) map makes predictions. The molecular geometry is
represented by Gaussians; many independent Kernel Ridge Regression models predict each basis coe�cient of the density. We
analyze the performance of data-driven (ML) and common physical basis representations for the electron density.

In most DFT calculations, �E is dominated by �EF .
The standard DFT approximations can, in some specific
cases, produce abnormally large density errors that dom-
inate the total error. In such situations, using a more
accurate density can greatly improve the result [29–31].
We will use these definitions to measure the accuracy of
the ML-HK map.

1-D potentials

The following results demonstrate how much more ac-
curate ML is when applied directly to the HK map.
The box problem originally introduced in Snyder et al.
[20] is used to illustrate the principle. Random poten-

tials consisting of three Gaussian dips were generated
inside a hard-wall box of length 1 (atomic units), and
the Schrödinger equation for one electron was solved ex-
tremely precisely. Up to 200 cases were used to train an
ML model TML

s [n] for the non-interacting kinetic energy
functional Ts[n] via Kernel Ridge Regression (for details,
see supplement).
To measure the accuracy of an approximate HK map,

the analysis of the previous section is applied to the KS
DFT problem. Here F is just Ts, the non-interacting
kinetic energy, and

�EF = T̃s[n]� Ts[n], (5)

i.e., the error made in an approximate functional on the

Li, Baker, White, Burke, 1609.03705
Beockherde, Vogt, Li, Tuckerman, 
Burke, Meuller 1609.02815

Pure density functional for strong correlations and the thermodynamic limit from
machine learning

Li Li (Nõ),1 Thomas E. Baker,1 Steven R. White,1 and Kieron Burke2, 1

1Department of Physics and Astronomy, University of California, Irvine, CA 92697
2Department of Chemistry, University of California, Irvine, CA 92697

(Dated: September 14, 2016)

We use density-matrix renormalization group, applied to a one-dimensional model of continuum
Hamiltonians, to accurately solve chains of hydrogen atoms of various separations and numbers
of atoms. We train and test a machine-learned approximation to F [n], the universal part of the
electronic density functional, to within quantum chemical accuracy. Our calculation (a) bypasses the
standard Kohn-Sham approach, avoiding the need to find orbitals, (b) includes the strong correlation
of highly-stretched bonds without any specific di�culty (unlike all standard DFT approximations)
and (c) is so accurate that it can be used to find the energy in the thermodynamic limit to quantum
chemical accuracy.

I. INTRODUCTION

Although widely used in solid-state physics, chem-
istry, and materials science [1], Kohn-Sham density func-
tional theory (KS-DFT) with standard approximations
fails for strong correlation [2, 3]. The prototype is the
H2 molecule. When stretched, the electrons localize on
each site while remaining in a singlet state, but this is
not captured by such calculations [4]. These kinds of dif-
ficulties have led to the popularity of many beyond-DFT
schemes, ranging from the simple addition [5] of a Hub-
bard U to the use of dynamical mean field theory [6] as
well as many others.

But even KS-DFT is too slow for many large calcu-
lations, such as those using classical MD or continuum
mechanics [7]. The original DFT, first suggested in the
Thomas-Fermi approximation [8, 9] and later justified by
the Hohenberg-Kohn theorem [10], uses only pure func-
tionals of the total density, n(r). This ‘orbital-free’ ver-
sion has the potential to be much faster than even the
most e�cient KS implementations, because the KS equa-
tions need not be solved [11]. Several recent attempts
have constructed machine learning (ML) kinetic energy
functionals specifically to bypass this step [12–15]. These
are designed to be used in conjunction with standard KS
approximations to speed up such calculations, but not to
improve their accuracy.

Meanwhile, beyond the world of DFT, density matrix
renormalization group (DMRG) has become a standard
tool for finding extremely accurate solutions to strongly
correlated lattice problems [16–19]. In recent years,
a one-dimensional analog of ab-initio Hamiltonians has
been developed, using typically about 20 grid points per
atom and interactions involving many grid points, with
the express purpose of rapidly exploring both concep-
tual and practical issues in DFT [3, 20–23]. A particu-
lar advantage is that, since 2000 grid points is routinely
accessible, this includes up to 100 atoms, and extrapola-
tions to the thermodynamic limit are much easier than in
three dimensions. Applications include a demonstration
of the behavior of the KS gap in a Mott-Hubbard insula-

tor [20] and a proof of convergence of the KS equations
with the exact functional, regardless of the starting point
or strength of correlation [21].

FIG. 1. (Color online) Electronic energy of infinite chain from
model learned from extrapolated chain densities and energies.
The accurate value was calculated with infinite DMRG (see
text).
In the present work, we combine all these methodolo-

gies to demonstrate several important features. We per-
form DMRG calculations on a variety of one-dimensional
hydrogen atom chains, with from 2 to 20 atoms, and
whose interatomic spacing R varies from 1 to 10 Bohr
radii, and use these to train a ML model of F [n], the
‘universal’ part of the density functional identified by
Hohenberg-Kohn. This simulanteously includes both
the non-interacting kinetic energy sought in orbital-free
DFT and the exchange-correlation energy that is approx-
imated in KS calculations. We demonstrate that, with
reasonable amounts of training, we can self-consistently
calculate densities and energies for these chains at new
values of R, outside the training set, with quantum chem-
ical accuracy. This includes highly stretched systems
which are strongly correlated, and where all popular
DFT approximations fail. We furthermore extrapolate
the DMRG densities from the center of finite chains to
the infinite chain limit, i.e., a 1d solid. We train a new
ML model and find we can solve self-consistently the solid
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“Phase” Recognition 



Supervised Approach

ferromagnetic
disordered

Carrasquilla and Melko, 1605.01735 
data label“Machine Learning Phase of Matter”

Ising configurations

+ many more on quantum spins, fermions, disordered 
systems, topological models …
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Unsupervised Approach

ferromagnetic disordered
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only data, no label

LW, 1606.00318 
Discovering phase transition 
with dimensional reduction  

and clustering analysis

Wetzel, 1703.02435
Hu, Singh, Scalettar, 1704.00080

Wetzel, Scherzer, 1705.05582
Wang and Zhai, 1706.07977

Nieuwenburg, Liu, Huber, 1610.02048
Liu, Nieuwenburg, 1706.08111 
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Variational Ansatz



RBM as a variational ansatz

• Exact construction for 1d SPT, 2d toric code state etc 

• Related to tensor network, string-bond, correlator product states 

• Killer app ? Long-range, volume law entanglement, chiral state, 
improved Jastrow  

2

…

…

Visible Layer

Hidden Layerh1 h2 h3 hM

�z
N�z

3�z
2�z

1

Figure 1. Artificial Neural network encoding a many-
body quantum state of N spins. Shown is a restricted
Boltzmann machine architecture which features a set of N
visible artificial neurons (yellow dots) and a set of M hid-
den neurons (grey dots). For each value of the many-body
spin configuration S = (�z

1 ,�
z
2 , . . .�

z
N ), the artificial neural

network computes the value of the wave function  (S).

tic framework for reinforcement learning of the param-
eters W allowing for the best possible representation of
both ground-state and time-dependent physical states of
a given quantum Hamiltonian H. The parameters of
the neural network are then optimized (trained, in the
language of neural networks) either by static variational
Monte Carlo (VMC) sampling [21], or in time-dependent
VMC [22, 23], when dynamical properties are of inter-
est. We validate the accuracy of this approach study-
ing the Ising and Heisenberg models in both one and
two-dimensions. The power of the neural-network quan-

tum states (NQS) is demonstrated obtaining state-of-the-
art accuracy in both ground-state and out-of-equilibrium
dynamics. In the latter case, our approach effectively
solves the phase-problem traditionally affecting stochas-
tic Quantum Monte Carlo approaches, since their intro-
duction.

Neural-Network Quantum States — Consider a quan-
tum system with N discrete-valued degrees of freedom
S = (S1, S2 . . . SN ), which may be spins, bosonic occu-
pation numbers, or similar. The many-body wave func-
tion is a mapping of the N�dimensional set S to (expo-
nentially many) complex numbers which fully specify the
amplitude and the phase of the quantum state. The point
of view we take here is to interpret the wave function as
a computational black box which, given an input many-
body configuration S, returns a phase and an amplitude
according to  (S). Our goal is to approximate this com-
putational black box with a neural network, trained to
best represent  (S). Different possible choices for the ar-
tificial neural-network architectures have been proposed
to solve specific tasks, and the best architecture to de-
scribe a many-body quantum system may vary from one
case to another. For the sake of concreteness, in the
following we specialize our discussion to restricted Boltz-

mann machines (RBM) architectures, and apply them to
describe spin 1/2 quantum systems. In this case, RBM
artificial networks are constituted by one visible layer of
N nodes, corresponding to the physical spin variables in a
chosen basis (say for example S = �z

1 , . . . �z
N ) , and a sin-

gle hidden layer of M auxiliary spin variables (h1 . . . hM )
(see Fig. 1). This description corresponds to a varia-
tional expression for the quantum states which reads:

 M (S; W) =
X

{hi}

e
P

j aj�z
j +

P
i bihi+

P
ij Wijhi�

z
j ,

where hi = {�1, 1} is a set of M hidden spin variables,
and the weights W = {ai, bj , Wij} fully specify the re-
sponse of the network to a given input state S. Since this
architecture features no intra-layer interactions, the hid-
den variables can be explicitly traced out, and the wave
function reads  (S; W) = e

P
i ai�

z
i ⇥ ⇧M

i=1Fi(S), where
Fi(S) = 2 cosh

h
bi +

P
j Wij�z

j

i
. The network weights

are, in general, to be taken complex-valued in order to
provide a complete description of both the amplitude and
the wave-function’s phase.

The mathematical foundations for the ability of NQS
to describe intricate many-body wave functions are the
numerously established representability theorems [24–
26], which guarantee the existence of network approxi-
mates of high-dimensional functions, provided a sufficient
level of smoothness and regularity is met in the function
to be approximated. Since in most physically relevant
situations the many-body wave function reasonably sat-
isfies these requirements, we can expect the NQS form
to be of broad applicability. One of the practical ad-
vantages of this representation is that its quality can, in
principle, be systematically improved upon increasing the
number of hidden variables. The number M (or equiva-
lently the density ↵ = M/N) then plays a role analogous
to the bond dimension for the MPS. Notice however that
the correlations induced by the hidden units are intrinsi-
cally non local in space and are therefore well suited to
describe quantum systems in arbitrary dimension. An-
other convenient point of the NQS representation is that
it can be formulated in a symmetry-conserving fashion.
For example, lattice translation symmetry can be used
to reduce the number of variational parameters of the
NQS ansatz, in the same spirit of shift-invariant RBM’s
[27, 28]. Specifically, for integer hidden variable density
↵ = 1, 2, . . . , the weight matrix takes the form of feature
filters W (f)

j , for f 2 [1, ↵]. These filters have a total of
↵N variational elements in lieu of the ↵N2 elements of
the asymmetric case (see Supp. Mat. for further details).

Given a general expression for the quantum many-
body state, we are now left with the task of solving the
many-body problem upon machine learning of the net-
work parameters W. In the most interesting applications
the exact many-body state is unknown, and it is typi-
cally found upon solution either of the static Schrödinger

Deng, Li, Gao, Chen, Cheng, Xiang, LW, Clark, Glasser, Carl Budich, Imada…

Carleo and Troyer, 1606.02318



Deep neural net as a variational ansatz

• Train the deep neural net ansatz using Backprop 

• Feature discovery and abstraction power of the deep 
hierarchical structure  

• Bottleneck appears to be the stochastic optimization (VMC)

  

qubits

Cai, JGL, 2017

https://arxiv.org/abs/1704.05148


Monte Carlo Update Proposals



A Video from 
Google DeepMind 

http://www.nature.com/nature/journal/v518/n7540/fig_tab/nature14236_SV2.html

http://www.nature.com/nature/journal/v518/n7540/fig_tab/nature14236_SV2.html


• Use Boltzmann Machines as recommender 
systems for Monte Carlo simulation of physical 
systems 

Learn preferences

Recommendations

Proposals from Boltzmann Machine 

Li Huang and LW, 1610.02746  
Liu, Qi, Meng, Fu, 1610.03137 
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• Use Boltzmann Machines as recommender 
systems for Monte Carlo simulation of physical 
systems 

Learn preferences

Recommendations

Proposals from Boltzmann Machine 

LW, 1702.08586 

• Moreover, BM parametrizes Monte Carlo policies 
and explores novel algorithms!

Li Huang and LW, 1610.02746  
Liu, Qi, Meng, Fu, 1610.03137 



Local vs Cluster algorithms



Local vs Cluster algorithms

is slower than



Local vs Cluster algorithms

Algorithmic innovation outperforms Moore’s law! 



Deep learning the MC proposal

• A-NICE-MC 1706.07561 

• Generalize hybrid MC using neural networks 1711.09268 

• Probabilistic programs as proposals 1801.03612

Policy Fixed by the  
Physics



Tensor Networks



Stoudenmire and Schwab, 1605.05775 

2

s1 s2 s3 s4 s5 s6

=
�s1 �s2 �s3 �s4 �s5 �s6

�

FIG. 2. Input data is mapped to a normalized order N tensor
with a trivial (rank 1) product structure.

II. ENCODING INPUT DATA

The most successful use of tensor networks in physics
so far has been in quantum mechanics, where combining
N independent systems corresponds to taking the tensor
product of their individual state vectors. With the goal
of applying similar tensor networks to machine learning,
we choose a feature map of the form

�s1s2···sN (x) = �s1(x1) ⌦ �s2(x2) ⌦ · · · �sN (xN ) . (2)

The tensor �s1s2···sN is the tensor product of the same
local feature map �sj (xj) applied to each input xj , where
the indices sj run from 1 to d; the value d is known as
the local dimension. Thus each xj is mapped to a d-
dimensional vector, which we require to have unit norm;
this implies each �(x) also has unit norm.

The full feature map �(x) can be viewed as a vector
in a dN -dimensional space or as an order-N tensor. The
tensor diagram for �(x) is shown in Fig. 2. This type of
tensor is said be rank-1 since it is manifestly the prod-
uct of N order-1 tensors. In physics terms, �(x) has the
same structure as a product state or unentangled wave-
function.

For a concrete example of this type of feature map,
consider inputs which are grayscale images with N pixels,
where each pixel value ranges from 0.0 for white to 1.0
for black. If the grayscale pixel value of the jth pixel
is xj 2 [0, 1], a simple choice for the local feature map
�sj (xj) is

�sj (xj) =
h
cos

⇣⇡

2
xj

⌘
, sin

⇣⇡

2
xj

⌘i
(3)

and is illustrated in Fig. 3. The full image is represented
as a tensor product of these local vectors. From a physics
perspective, �sj is the normalized wavefunction of a sin-
gle qubit where the “up” state corresponds to a white
pixel, the “down” state to a black pixel, and a superpo-
sition corresponds to a gray pixel.

While our choice of feature map �(x) was originally
motivated from a physics perspective, in machine learn-
ing terms, the feature map Eq. (2) defines a kernel which
is the product of N local kernels, one for each compo-
nent xj of the input data. Kernels of this type have been
discussed previously [35, p. 193] and have been argued
to be useful for data where no relationship is assumed
between di↵erent components of the input vector prior
to learning [36].

FIG. 3. For the case of a grayscale image and d = 2, each
pixel value is mapped to a normalized two-component vector.
The full image is mapped to the tensor product of all the local
pixel vectors as shown in Fig. 2.

`

=
`

W `

�(x)
f `(x)

FIG. 4. The overlap of the weight tensor W ` with a specific
input vector �(x) defines the decision function f `(x). The
label ` for which f `(x) has maximum magnitude is the pre-
dicted label for x.

III. MULTIPLE LABEL CLASSIFICATION

In what follows we are interested in multi-class learn-
ing, for which we choose a “one-versus-all” strategy,
which we take to mean generalizing the decision func-
tion Eq. (4) to a set of functions indexed by a label `

f `(x) = W ` · �(x) (4)

and classifying an input x by choosing the label ` for
which |f `(x)| is largest.

Since we apply the same feature map � to all input
data, the only quantity that depends on the label ` is
the weight vector W `. Though one can view W ` as a
collection of vectors labeled by `, we will prefer to view
W ` as an order N +1 tensor where ` is a tensor index and
f `(x) is a function mapping inputs to the space of labels.
The tensor diagram for evaluating f `(x) for a particular
input is depicted in Fig. 4.

IV. MPS APPROXIMATION

Because the weight tensor W `
s1s2···sN

has NL · dN com-
ponents, where NL is the number of labels, we need a
way to regularize and optimize this tensor e�ciently. The
strategy we will use is to represent this high-order tensor
as a tensor network, that is, as the contracted product of
lower-order tensors.

A tensor network approximates the exponentially large
set of components of a high-order tensor in terms of
a much smaller set of parameters whose number grows
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(a)

(b)

(c)

FIG. 10. Toy models learned from the overlapping data set
Fig. 9. The results shown are for local dimension (a) d = 2,
(b) d = 3, and (c) d = 6. Background colors show how every
spatial point would be classified. Misclassified data points are
colored white.

lobes of one color protruding into the other. These likely
indicate that the finite local dimension still somewhat
regularizes the model; otherwise it would be able to over-
fit even more drastically by just surrounding each point
with a small patch of its correct color.

B. Non-Linear Decision Boundary

To test the ability of our proposed class of models to
learn highly non-linear decision boundaries, consider the
spiral shaped boundary in Fig. 11(a). Here we take PA

(a) (b)

FIG. 11. Toy model reconstruction of interlocking spiral-
shaped distribution: (a) original distribution and (b) sampled
points and distribution learned by model with local dimension
d = 10.

and PB to be non-overlapping with PA uniform on the
red region and PB uniform on the blue region.

In Fig. 11(b) we show the result of training a model
with local dimension d = 10 on 500 sampled points, 250
for each region (crosses for region A, squares for region
B). The learned model is able to classify every training
point correctly, though with some overfitting apparent
near regions with too many or too few sampled points.

VIII. INTERPRETING TENSOR NETWORK
MODELS

A natural question is which set of functions of the
form f `(x) = W ` · �(x) can be realized when using a
tensor-product feature map �(x) of the form Eq. (2) and
a tensor-network decomposition of W `. As we will argue,
the possible set of functions is quite general, but taking
the tensor network structure into account provides ad-
ditional insights, such as determining which features the
model actually uses to perform classification.

A. Representational Power

To simplify the question of which decision functions
can be realized for a tensor-product feature map of the
form Eq. (2), let us fix ` to a single label and omit it
from the notation. We will also consider W to be a com-
pletely general order-N tensor with no tensor network
constraint. Then f(x) is a function of the form

f(x) =
X

{s}

Ws1s2···sN �s1(x1) ⌦ �s2(x2) ⌦ · · · �sN (xN ) .

(13)

If the functions {�s(x)}, s = 1, 2, . . . , d form a basis for a
Hilbert space of functions over x 2 [0, 1], then the tensor
product basis

�s1(x1) ⌦ �s2(x2) ⌦ · · · �sN (xN ) (14)

forms a basis for a Hilbert space of functions over
x 2 [0, 1]⇥N . Moreover, if the basis {�s(x)} is complete,

%99.03 accuracy on MNIST dataset*
* bond dimension 120 
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FIG. 11. In the mixed unsupervised/supervised algorithm for
determining the tree tensors making up U , the reduced co-
variance matrices are a weighted sum of the reduced training
data covariance matrix and reduced covariance matrix from
the provided supervised weights in MPS form. The figure
above shows the computation of the mixed reduced covari-
ance for the first two sites; the computation for other pairs
of sites is similar just with di↵erent choices for which indices
are traced or left open.

The key algorithmic di↵erence from the unsupervised
case is that after determining each layer, one must also
coarse grain the provided weights W along with the train-
ing data so one can compute the reduced covariance ma-
trices from ⇢µ at the next scale. Although the weights W
in MPS form have additional internal indices as shown
in Fig. 2(a), it is straightforward to coarse grain an MPS
with a tree tensor network layer: one simply contracts
each isometry with pairs of MPS tensors.

For the case of a multi-class supervised task there will
be multiple prior weight MPS W `, one for each label `
(or one can equivalently provide a single MPS with an
external or uncontracted label index). To generalize the
above algorithm to the multi-task setting, one defines
the covariance matrix ⇢W as the sum over the covariance
matrices of each of the prior supervised weights W `

(⇢W )ss0 =
X

`

W †s
` W `

s0 . (28)

To test whether the strategy of mixing in a prior es-
timate of the supervised task weights results in an im-
proved model, we experiment again on the MNIST hand-
written digits data set. Using a mixing parameter µ = 0.5
and a truncation error cuto↵ ✏ = 4⇥10�4 results in a tree
tensor network with top index sizes 279 and 393, where
after making the tree layers in a single pass, only the
top tensor is optimized further for the supervised task.
Despite the top index sizes being significantly smaller
than those for the best experiment in Sec. IV (where
the sizes were 328 and 444), the results are slightly bet-
ter: the cost function value is C = 0.0325, training set
accuracy is 99.798%, and test set accuracy is 98.110%.
This experiment strongly suggests that mixing weights
trained for the supervised task with the covariance ma-
trix based purely on the data leads to a representation of

the data more suited for the specific task, which can be
compressed further without diminishing performance.

VI. PARTIAL COARSE GRAINING: TREE
CURTAIN MODEL

While the approaches in the previous sections involved
computing tree tensor networks with the maximum num-
ber of layers, computing fewer layers can balance the ben-
efits of a compressed data representation against the loss
of expressiveness from accumulated truncations when
computing more layers.

One interesting aspect of computing fewer tree lay-
ers is that after coarse graining, the data are still repre-
sented as high-order tensors, similar to Fig. 9. Specifi-
cally, the order of the data tensors after R rescalings will
be Ntop = N/2R. Therefore to complete the model, the
top tensor must also be a tensor of order Ntop if the out-
put is to be a scalar, or order Ntop + 1 for vector-valued
output in the multi-task case. So to complete the model
one can use another type of tensor network to represent
the top tensor, such as a matrix product state.

Choosing a matrix product state (MPS) form of the
top tensor results in the architecture shown in Fig. 12.
After coarse graining the training data through the tree
layers, one can optimize the top MPS using previously
developed methods for supervised [5, 6] or unsupervised
[39] learning tasks. The resulting model resembles an
MPS with a tree “curtain” attached.

To test the e↵ectiveness of the partial coarse-grained
approach, and the resulting tree-curtain model, we study
the fashion MNIST dataset [60]. Similarly to MNIST,
the data set consists of 28⇥28 grayscale images with ten
labels, with 60,000 training and 10,000 test images. How-
ever, the supervised learning task is significantly more
challenging than MNIST because the images consist of
photographs of a variety of clothing (shirts, shoes, etc.).
Example images from the data set are shown in Fig. 13.

To compute a tree curtain model for fashion MNIST,
we first training a linear classifier resulting in only 83%
test accuracy. We then represent each of the linear clas-
sifier vectors V ` as MPS and used the mixed covariance
matrix approach (Sec. V) with mixing parameter µ = 0.9
to optimize four tree tensor layers. Using a truncation

`f `(x) =

�(x)

U

}

}
w`

FIG. 12. Computing only a few tree layers results in a model
with a high-order top tensor. In the model above the top
tensor w` is represented as a matrix product state with a
label index ` appropriate for the multi-task case.

9

FIG. 13. Examples from the fashion MNIST data set [60].

error cuto↵ ✏ = 2⇥ 10�9, the final coarse-grained feature
indices attached to the top MPS reach a maximum of
about 30. We then fix the internal bond dimension of
the top MPS to be 300 and minimize the quadratic cost
using thirty sweeps, or passes of alternating least squares
(single-site DMRG) optimization.

The optimized model reaches 95.38% accuracy on the
training set, and 88.97% accuracy on the testing set.
While ⇠ 89% test accuracy is significantly less than
achieved on the much easier MNIST handwriting dataset,
many of the available benchmarks using state-of-the-
art approaches for fashion MNIST without preprocessing
are in fact comparable to the results here, for example
XGBoost (89.8%), AlexNet (89.9%), and a two-layer con-
volutional neural network trained with Keras (87.6%).
Better results are attainable; the best we are aware of
is a GoogLeNet reaching 93.7% test accuracy. But the
fact that the architecture discussed here yields similar
performance to other powerful and standard approaches
for a challenging data set is an encouraging result. With
further hyperparameter optimization and more e�cient
training algorithms such as stochastic gradient descent,
we expect better results can be achieved.

VII. RELATED WORK

The feature space covariance matrix ⇢ss0 =
P

j �s
j�

†j
s0

is closely related to the kernel matrix Kj
j0 =

P
s �†j

s �s
j0 ,

which is a central quantity in the theory of kernel learn-
ing. That both ⇢ and K have the same spectrum can be
seen from the SVD of �s

j . Thus the idea of exploiting
low-rank approximations to the kernel matrix is closely
related to the present work [61–63], as well as the idea
of feature sampling or random features [64, 65]. But in
contrast, the the present work constructs a low-rank ap-
proximation for ⇢ directly in feature space, with an al-
gorithm nevertheless scaling linearly in both training set
size and input space dimension. The tensor network form
also imparts an interesting structure onto the resulting
model, allowing us to experiment with training the top
layer only. And we considered other choices besides ⇢,
namely a mixed covariance matrix ⇢µ, which produces
a more compressed representation of the data without
reducing performance on a supervised task.

The algorithm in Sec. III has many precedents in the
tensor network literature, such as discussions by Vidal
[23, 66] of computing tree networks layer-wise to opti-
mize fidelity of density matrices (pure and mixed states),
and multigrid DMRG [67]. Similar algorithms have also
been employed for quantum state tomography [68, 69].
Recent work by Nouy [70] develops a related algorithm
to reconstruct a function using a tree tensor network.

Another related line of work is the study of convolu-
tional arithmetic circuits or ConvACs [4, 10, 40], a type
of neural network constructed from a tree tensor net-
work [36]. The present work could be viewed as a pro-
posal for an unsupervised, adaptive algorithm for train-
ing ConvAC neural networks, along with variations such
as replacing the upper layers with an MPS.

VIII. DISCUSSION

The idea of coarse-graining in statistical physics mo-
tivates a similar approach to real-world data. The al-
gorithm presented here resembles kernel PCA, but com-
puted directly in feature space with the diagonalizing uni-
tary approximated as a layered tensor network. Despite,
or perhaps because of the approximations made, the re-
sulting coarse-grained representation of the data could
be used as a good starting point for other supervised or
unsupervised tasks. The idea suggests interesting exten-
sions such as exploring quantities besides the covariance
matrix ⇢ around which to base the algorithm. Using a
mixed covariance matrix ⇢µ (Sec. V) gave an improved
representation, but there could be other good choices. In-
stead of a tree tensor network, which has certain known
deficiencies as a coarse-graining scheme, it would be very
interesting to use a MERA tensor network [23, 31].

In an engineering sense, there is much room to improve
the above algorithms, such as using tree tensors with
two-dimensional groupings of indices [37]. Another idea
is feeding the optimized model back through the mixed
algorithm of Sec. V to further adapt the tree tensors.

That PCA is similar to coarse-graining, or the renor-
malization group, has been observed recently by Bradde
and Bialek [18]. It would be very interesting to use the
tools discussed here to analyze various data sets from a
renormalization group perspective. An especially wel-
come outcome would be if the analysis could identify
distinct classes of data, and determine which machine
learning architectures have an inductive bias [10] suited
to each class.
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The MPS representation has gauge degrees of freedom,
which means that the state is invariant after inserting
identity I = MM�1 on each bond (M can be di↵er-
ent on each bond). To remove this redundancy, one
can bring the MPS into its canonical form. For exam-
ple, the tensor A(k) is called left-canonical if it satisfiesP

vk2{0,1}
⇥
A(k)vk

⇤†
A(k)vk = I. In diagrammatic nota-

tion, the left-canonical condition reads

A(k)

A(k)
= (5)

The right-canonical condition is defined analogously.
Canonicalization of each tensor can be done locally and
only involves the single tensor at consideration [15, 16].

Each tensor in the MPS can be in a di↵erent canon-
ical form. For example, given a specific site k, one can
conduct gauge transformation to make all the tensors
on the left, {A(i)

|i = 1, 2, · · · , k � 1}, left-canonical and
tensors on the right, {A(i)

|i = k+1, k+2, · · · , N}, right-
canonical, while leaving A(k) neither left-canonical nor
right-canonical. This is called mixed-canonical form of
the MPS [15]. The normalization of the MPS is par-
ticularly easy to compute in the canonical from. In the
graphical notation, it reads

N =
· · · · · ·

· · · · · ·
=

A(k)

A(k)
. (6)

We note that even if the MPS is not in the canonical
form, its normalization factor Z can be still computed
e�ciently if one pays attention to the order of contrac-
tion [15, 16].

B. Learning MPS from data

A standard way of minimization of the cost function
(1) is done by performing gradient decent algorithm on
the MPS tensor elements. Crucially, our method allows
dynamical adjustment on the bond dimension during the
optimization, thus being able to allocate resources to
the spatial regions where correlations among the phys-
ical variables are stronger.

Initially, we set the MPS with random tensors with
small bond dimensions. For example, all the bond di-
mension are set to Dk = 2 except those on the bound-
aries [41]. We then carry out the canonicalization pro-
cedure so that all the tensors except the rightmost one
(A(N)) are left-canonical. Then, we sweep through the
matrices back and forth to tune the elements of the ten-
sors, i.e. the parameters of the MPS. The procedure
is similar to the DMRG algorithm with two-site update
where one optimizes two adjacent tensors at a time [28].
At each step, we firstly merge two adjacent tensors into

an order-4 tensor,

A(k) A(k+1)

vk vk+1

ik�1 ik+1

= A(k,k+1)
ik�1 ik+1

vk vk+1

, (7)

followed by adjusting its elements in order to decrease
the cost function L = lnZ �

1
|T |

P
v2T ln | (v)|2. It is

straight forward to check that its gradient with respect
to an element of the tensor (7) reads

@L

@A
(k,k+1)wkwk+1

ik�1ik+1

=
Z 0

Z
�

2

|T |

X

v2T


 0(v)

 (v)

�
, (8)

where  0(v) denotes the derivative of the MPS with re-
spect to the tensor (7), and Z 0 = 2

P
v2V  

0(v) (v). In
diagram language, they read

 0(v) =
v1

· · ·

vk�1 vk vk+1 vk+2

wk wk+1
· · ·

vN

ik�1 ik+1

(9)

Z 0

2
=

· · ·

· · · · · ·

· · ·ik�1 ik+1
wk wk+1

= A(k,k+1)

wk wk+1

ik�1 ik+1

(10)

The direct vertical connections of wk, vk and wk+1, vk+1

in (9) stand for Kronecker delta functions �wkvk and
�wk+1vk+1 respectively, meaning that only those input
data with pattern vkvk+1 contribute to the gradient with
respect to the tensor elements A(k,k+1)vkvk+1 . Note that
although Z and Z 0 involve summations over an exponen-
tially large number of terms, they are tractable in MPS
via e�cient contraction schemes [15]. In particular, if
the MPS is in the mixed canonical form, the computa-
tion only involves local manipulations illustrated in (10).
Next, we employ gradient descent approach to update

the parameters of the 2-site tensor

A
(k,k+1)wkwk+1

ik�1ik+1
= A

(k,k+1)wkwk+1

ik�1ik+1
� ⌘

@L

@A
(k,k+1)wkwk+1

ik�1ik+1

,

(11)
where ⌘ > 0 is the learning rate. In practice, we divide
the training data into nb mini-batches randomly selected
during the training, then use them to estimate the second
term in the gradient [Eq.(8)] stochastically.
After applying several steps of gradient descent

Eq. (11), the order-4 tensor (7) is decomposed, by first
reshaping the tensor to a matrix, then applying singu-
lar value decomposition (SVD), and finally reshaping ob-
tained two matrices back to two order-3 tensors.

A(k,k+1)
ik�1 ik+1

vk vk+1

= A(k,k+1)
ik�1

vk

ik+1

vk+1

vk vk+1

= U ⇤

truncate

V†
ik�1

vk

ik+1

vk+1

⇡
A(k) A(k+1)

vk vk+1

ik�1 ik+1

, (12)
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although Z and Z 0 involve summations over an exponen-
tially large number of terms, they are tractable in MPS
via e�cient contraction schemes [15]. In particular, if
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where ⌘ > 0 is the learning rate. In practice, we divide
the training data into nb mini-batches randomly selected
during the training, then use them to estimate the second
term in the gradient [Eq.(8)] stochastically.

After applying several steps of gradient descent
Eq. (11), the order-4 tensor (7) is decomposed, by first
reshaping the tensor to a matrix, then applying singu-
lar value decomposition (SVD), and finally reshaping ob-
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(a) (b) (c)

Figure 1. Illustration of the swap operation in Eq. (5) and Eq. (6)
using handwritten digits from the MNIST dataset. (a) Two original
images. (b) Swapped images for up/down bipartition. (c) Swapped
images for checkerboard bipartition of the pixels. The blue and red
colors indicate the regions of the bipartition X and Y respectively.

Finally, Section V summarizes our main points and outlook
for future directions.

II. COMPLEXITY OF DATASET: CLASSICAL MUTUAL
INFORMATION AND QUANTUM ENTANGLEMENT

ENTROPY

Modeling data probability using an energy based model
(1) calls for a classical information theoretical analysis. Mu-
tual information (MI) is a fundamental information theoretical
concept which quantifies the complexity of probability distri-
bution ⇡(v) associated with the dataset. Assuming x 2 X and
y 2 Y are two subset of the variables and v = x [ y, their
marginal probability distributions are ⇡(x) =

P
y2Y ⇡(x, y),

and ⇡(y) =
P

x2X ⇡(x, y) respectively. The MI reads

I(X : Y) =
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x2X,y2Y
⇡(x, y) ln
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⇡(x, y)
⇡(x)⇡(y)

#
. (3)

The MI measures the amount of information shared between
the two sets of variables. MI is zero only for independent
variables. In this sense, the MI is a stronger criterion than the
correlation of variables since having zero correlation does not
necessarily imply vanishing MI. The MI can be used as the
objective functions in machine learning applications [32–34].
Here we adopt a di↵erent point view, which treats MI as a
complexity measure of the dataset to be modeled.

On the other hand, if we view the target dataset as snapshots
of the same quantum state collapsed on a fixed basis (2), it
is natural to measure its complexity using the second Rényi
entanglement entropy

S R = � ln Tr(⇢2
X), (4)

where (⇢X)x,x0 =
P

y2Y  (x, y) (x0, y) is the reduced density
matrix, and  (v = x [ y) is the probability amplitude associ-

ated with the probability, such that p(v) in Eq. (2) approaches
to the data probability distribution ⇡(v). The second Rényi
entanglement entropy is a lower bound of the von Neumann
entanglement entropy S vN = �Tr[⇢X ln(⇢X)].

To reveal connection of the classical and quantum informa-
tion theoretical measures, we write the MI as

I(X : Y) = �
*
ln
*
⇡(x, y0)⇡(x0, y)
⇡(x0, y0)⇡(x, y)

+

x0,y0
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, (5)

and the second Rényi entropy as

S R = � ln
**
 (x, y0) (x0, y)
 (x0, y0) (x, y)

+

x0,y0

+

x,y
, (6)

where the expected value h· · · ix,y is with respect to the dataset
probability ⇡(x, y).

There are apparent similarities between Eqs. (5) and (6).
Both equations contain swap ratios of probability or probabil-
ity amplitude [35, 36]. To illustrated the e↵ect of the swap
ratio, Figure 1(a) shows two samples from the MNIST data
set [(x, y) and (x0, y0)] and Fig. 1(b,c) show the corresponding
swapped images [(x0, y) and (x, y0)] for up/down and checker-
board bipartitions. The ratio in Eq. (5) and Eq. (6) would be
smaller if the swapped images are less likely to appear in the
original dataset ⇡(v), therefore makes larger contribution to
the mutual information or the entanglement entropy. Refer-
ence [37] argues that the dominant correlations in the natural
datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
di�culty one may consider to compute alternative quantities
such as the Rényi mutual information [80].

?
Quantum Perspective on Deep Learning



2

(a) (b) (c)

Figure 1. Illustration of the swap operation in Eq. (5) and Eq. (6)
using handwritten digits from the MNIST dataset. (a) Two original
images. (b) Swapped images for up/down bipartition. (c) Swapped
images for checkerboard bipartition of the pixels. The blue and red
colors indicate the regions of the bipartition X and Y respectively.
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datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
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is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
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Eq. (5) is defined for the probability density other than the
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where the expected value h· · · ix,y is with respect to the dataset
probability ⇡(x, y).

There are apparent similarities between Eqs. (5) and (6).
Both equations contain swap ratios of probability or probabil-
ity amplitude [35, 36]. To illustrated the e↵ect of the swap
ratio, Figure 1(a) shows two samples from the MNIST data
set [(x, y) and (x0, y0)] and Fig. 1(b,c) show the corresponding
swapped images [(x0, y) and (x, y0)] for up/down and checker-
board bipartitions. The ratio in Eq. (5) and Eq. (6) would be
smaller if the swapped images are less likely to appear in the
original dataset ⇡(v), therefore makes larger contribution to
the mutual information or the entanglement entropy. Refer-
ence [37] argues that the dominant correlations in the natural
datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
di�culty one may consider to compute alternative quantities
such as the Rényi mutual information [80].
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tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
di�culty one may consider to compute alternative quantities
such as the Rényi mutual information [80].
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Figure 1. Illustration of the swap operation in Eq. (5) and Eq. (6)
using handwritten digits from the MNIST dataset. (a) Two original
images. (b) Swapped images for up/down bipartition. (c) Swapped
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colors indicate the regions of the bipartition X and Y respectively.
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Modeling data probability using an energy based model
(1) calls for a classical information theoretical analysis. Mu-
tual information (MI) is a fundamental information theoretical
concept which quantifies the complexity of probability distri-
bution ⇡(v) associated with the dataset. Assuming x 2 X and
y 2 Y are two subset of the variables and v = x [ y, their
marginal probability distributions are ⇡(x) =
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and ⇡(y) =
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The MI measures the amount of information shared between
the two sets of variables. MI is zero only for independent
variables. In this sense, the MI is a stronger criterion than the
correlation of variables since having zero correlation does not
necessarily imply vanishing MI. The MI can be used as the
objective functions in machine learning applications [32–34].
Here we adopt a di↵erent point view, which treats MI as a
complexity measure of the dataset to be modeled.

On the other hand, if we view the target dataset as snapshots
of the same quantum state collapsed on a fixed basis (2), it
is natural to measure its complexity using the second Rényi
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where (⇢X)x,x0 =
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y2Y  (x, y) (x0, y) is the reduced density
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ated with the probability, such that p(v) in Eq. (2) approaches
to the data probability distribution ⇡(v). The second Rényi
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probability ⇡(x, y).

There are apparent similarities between Eqs. (5) and (6).
Both equations contain swap ratios of probability or probabil-
ity amplitude [35, 36]. To illustrated the e↵ect of the swap
ratio, Figure 1(a) shows two samples from the MNIST data
set [(x, y) and (x0, y0)] and Fig. 1(b,c) show the corresponding
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board bipartitions. The ratio in Eq. (5) and Eq. (6) would be
smaller if the swapped images are less likely to appear in the
original dataset ⇡(v), therefore makes larger contribution to
the mutual information or the entanglement entropy. Refer-
ence [37] argues that the dominant correlations in the natural
datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
di�culty one may consider to compute alternative quantities
such as the Rényi mutual information [80].
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Abstract

Deep convolutional networks have witnessed unprecedented success in various machine learning
applications. Formal understanding on what makes these networks so successful is gradually un-
folding, but for the most part there are still significant mysteries to unravel. The inductive bias,
which reflects prior knowledge embedded in the network architecture, is one of them. In this work,
we establish a fundamental connection between the fields of quantum physics and deep learning.
We use this connection for asserting novel theoretical observations regarding the role that the num-
ber of channels in each layer of the convolutional network fulfills in the overall inductive bias.
Specifically, we show an equivalence between the function realized by a deep convolutional arith-
metic circuit (ConvAC) and a quantum many-body wave function, which relies on their common
underlying tensorial structure. This facilitates the use of quantum entanglement measures as well-
defined quantifiers of a deep network’s expressive ability to model intricate correlation structures
of its inputs. Most importantly, the construction of a deep convolutional arithmetic circuit in terms
of a Tensor Network is made available. This description enables us to carry a graph-theoretic
analysis of a convolutional network, tying its expressiveness to a min-cut in the graph which char-
acterizes it. Thus, we demonstrate a direct control over the inductive bias of the designed deep
convolutional network via its channel numbers, which we show to be related to the min-cut in the
underlying graph. This result is relevant to any practitioner designing a convolutional network for
a specific task. We theoretically analyze convolutional arithmetic circuits, and empirically validate
our findings on more common convolutional networks which involve ReLU activations and max
pooling. Beyond the results described above, the description of a deep convolutional network in
well-defined graph-theoretic tools and the formal structural connection to quantum entanglement,
are two interdisciplinary bridges that are brought forth by this work.

1. Introduction

A central factor in the application of machine learning to a given task is the restriction of the hy-
pothesis space of learned functions known as inductive bias. The restriction posed by the inductive
bias is necessary for practical learning, and reflects prior knowledge regarding the task at hand. In
deep convolutional networks, prior knowledge is embedded in architectural features such as num-
ber of layers, number of channels per layer, the pattern of pooling, various schemes of connectivity
and convolution kernel defined by size and stride (see LeCun et al. (2015) for an overview). For-
mal understanding of the inductive bias behind convolutional networks is limited – the assumptions
encoded into these models, which seem to form an excellent prior knowledge for imagery data
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bias is necessary for practical learning, and reflects prior knowledge regarding the task at hand. In
deep convolutional networks, prior knowledge is embedded in architectural features such as num-
ber of layers, number of channels per layer, the pattern of pooling, various schemes of connectivity
and convolution kernel defined by size and stride (see LeCun et al. (2015) for an overview). For-
mal understanding of the inductive bias behind convolutional networks is limited – the assumptions
encoded into these models, which seem to form an excellent prior knowledge for imagery data

c� Y. Levine, D. Yakira, N. Cohen & A. Shashua.
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Next, a single-qubit measurement is made on the
ancillary qubit alone (the other qubits are simply ignored),
projecting it onto the state

jϕi ¼ ðjujj0i − jvjj1iÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj2þ jvj2

q
: ð2Þ

The success probability p of this projective measurement
can be estimated by repeated measurements. Remarkably,
the inner product between jui and jvi can be directly
calculated from the p:

hujvi ¼ ð0.5− pÞðjuj2þ jvj2Þ=jujjvj; ð3Þ

and the distance between ~u and ~v can then be obtained:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðjuj2þ jvj2Þ

q
: ð4Þ

It is important to note that such an estimation can achieve a
desired statistical accuracy simply by a sufficient number of
repeated measurements, but is independent of the size (N)
of the vectors, which gives a quantum speed-up.
This algorithm can be understood intuitively; the more

difference between the pure states jui and jvi, the more
entangled the Eq. (1) is. For examples, if jui and jvi are
identical, then the ancillary qubit is in the state ðj0iþ j1iÞ=ffiffiffi
2

p
, separable from the vector qubits, and p ¼ 0, D ¼ 0.

If jui and jvi are orthogonal, then the Eq. (1) is maximally
entangled, and p ¼ 0.5, D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj2þ jvj2

p
.

In our experiment, we use single photons as qubits,
where j0i and j1i are encoded with the photon’s horizontal
(H) and vertical (V) polarization, respectively. A schematic
drawing of the experimental setup is illustrated in Fig. 1.
Polarization-entangled photon pairs are generated by spon-
taneous parametric down-conversion [17] and prepared in
the state

ðj0iancj0ivec þ j1iancj1ivecÞ=
ffiffiffi
2

p
: ð5Þ

One photon (anc) is used as the ancillary qubit, and the other
one (vec) will be used to encode the reference and incoming
vectors using Sagnac-like interferometers (see Fig. 1).
To generate three- and four-photon entanglement

resource states, we create two entangled photon pairs.
Two single photons, one from each pair, are temporally and
spatially superposed on a polarizing beam splitter (PBS).
We select the events where one and only one single photon
emits from each output. It can be concluded that the four
photons are either all H polarized or V polarized, two cases
that are quantum mechanically indistinguishable when all
the other degrees of freedom of the photons are erased
(see the caption of Fig. 1), thus projecting the four photons
into the Greenberger-Horne-Zeilinger entangled state [18]:

anc123
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DRD1D2D3

BBO BBO
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PBS

PBS
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PBS
HWPHWP

HWPHWPHWP
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HWP
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FIG. 1 (color). Experimental setup for quantum machine learning with photonic qubits. Ultraviolet laser pulses with a central
wavelength of 394 nm, pulse duration of 120 fs, and a repetition rate of 76 MHz pass through two type-II β-barium borate (BBO)
crystals with a thickness of 2 mm to produce two entangled photon pairs. The photons pass through pairs of birefringent compensators
consisting of a 1-mm BBO crystal and a HWP to compensate the walk-off between horizontal and vertical polarization, and are prepared
in the quantum state: ðjHijViþ jVijHiÞ=

ffiffiffi
2

p
. Two extra HWPs placed in arm 3 and anc are used to transform the state into

ðjHijHiþ jVijViÞ=
ffiffiffi
2

p
. Two single photons, one from each pair, are temporally and spatially superposed on a PBS to generate a four-

photon entangled state: ðjHijHijHijHiþ jVijVijVijViÞ=
ffiffiffi
2

p
. The photons 1, 2, and 3 are sent to Sagnac-like interferometers, where

each single photon splits into two spatial modes by the PBS with regard to its polarization, and recombines on a nonpolarizing beam
splitter (NBS). Various vectors are independently encoded into the two spatial modes using HWPs. The specially designed beam splitter
cube is half-PBS coated and half-NBS coated. High-precision small-angle prisms are inserted for fine adjustments of the relative delay
of the two different paths. The photons are detected by five single-photon detectors (quantum efficiency > 60%), and the two four-
photon coincidence events, D3D2D1DT and D3D2D1DR, are simultaneously registered by a homemade FPGA-based coincidence unit.
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FIG. 2. (Color online) The schematic diagram of the quantum SVM. An ancillary qubit is added here to readout the classification
result. The auxiliary registers for matrix inversion are not shown here.
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13𝐶 𝐹1 𝐹2 𝐹3

13𝐶 15479.9Hz
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𝐹2 -275.7Hz 64.6Hz -42681.4Hz
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𝑇2
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  0 S

(a)

(c)

FIG. 3. (Color online)(a) Properties of the 13C-iodotrifluroethylene. The chemical shifts ⌫i and scalar coupling constants (Jjk)
are on the lower diagonal in the table, respectively. The chemical shifts are given with respect to reference frequencies of 100.62
MHz (Carbon) and 376.48 MHz (Fluorines). (b) The quantum circuit for building the kernel matrix K. After discarding the
training-data register (the second qubit), the desired kernel matrix K is obtained as the quantum density matrix of the first
qubit. (c) The quantum circuit for classification. Here H and S are the Hadamard and phase gate, respectively.

realized [15, 16], with an exponentially speedup. Using the same method, the hyperplane parameters are determined

by
�
b, ~↵T

�T
= F̃�1

�
0, ~yT

�T
, where the vectors here represent quantum states.

The classification results in Eq. (2) could be reproduced by the overlap of two quantum states : y(~x) = sign(hx̃0 |ũ i),
with the training-data state |ũi = 1p

Nũ
(b|0i|0i +

PM
k=1 abs(~xk)↵k|ki|~xki) and the query-state |x̃0i = 1p

Nx̃0

(|0i|0i +
PM

k=1 abs(~x0)|ki| ~x0i). Here the training-data state |ũi could be easily obtained by calling the training-data oracle

on
�
b, ~↵T

�T
. By applying a inverse operation Ux0 = |00i hx̃0|, the expansion coe�cients h00|Ux0 |ũi = hx̃0| |ũi will

produce the classification result y(~x) [17]. A schematic diagram of this part is shown in Fig. 2. Note that the
unitary operations are conditional operations here, controlled by an ancillary qubit. Hence the final state will be
| i = |�i |1iA + |00i |0iA, where |�i = Ux0 |ũi and the subscript ”A” indicates the state of ancillary qubit. By
measuring the expectation value of coherent term O ⌘ |00i h00| ⌦ (|0i h1|)A, the classification result will be revealed

Li et al, PRL 114, 140504 (2015) 
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I. OVERVIEW

Here we provide additional details in support of the
main text. Section II shows details of the chimera graph
used in our study and the choice of graphs for our simula-
tions. Section III expands upon the algorithms employed
in our study. Section IV presents additional success prob-
ability histograms for different numbers of qubits and for
instances with magnetic fields, explains the origin of easy
and hard instances, and explains how the final state can
be improved via a simple error reduction scheme. Section
V presents further correlation plots and provide more
details on gauge averaging. Section VI gives details on
how we determined the scaling plots and how quantum
speedup can be detected on future devices. Finally, sec-
tion VII explains how the spectral gaps were calculated
by quantum Monte Carlo (QMC) simulations.

II. THE CHIMERA GRAPH OF THE D-WAVE
DEVICE.

The qubits and couplers in the D-Wave device can be
thought of as the vertices and edges, respectively, of a
bipartite graph, called the “chimera graph”, as shown in
figure 1. This graph is built from unit cells containing
eight qubits each. Within each unit cell the qubits and
couplers realise a complete bipartite graph K4,4 where
each of the four qubits on the left is coupled to all of the
four on the right and vice versa. Each qubit on the left
is furthermore coupled to the corresponding qubit in the
unit cell above and below, while each of the ones on the
right is horizontally coupled to the corresponding qubits
in the unit cells to the left and right (with appropriate
modifications for the boundary qubits). Of the 128 qubits
in the device, the 108 working qubits used in our tests of
the device are shown in green, and the couplers between
them are marked as black lines.
For our scaling analysis we follow the standard pro-

cedure for scaling of finite dimensional models by con-
sidering the chimera graph as an L × L square lattice
with an eight-site unit cell and open boundary condi-
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FIG. 1: Qubits and couplers in the D-Wave device.
The D-Wave One Rainer chip consists of 4 × 4 unit cells of
eight qubits, connected by programmable inductive couplers
as shown by lines.

tions. The sizes we typically used in our numerical sim-
ulations are L = 1, . . . , 8 corresponding to N = 8L2 =
8, 32, 72, 128, 200, 288, 392 or 512 spins. For the simu-
lated annealers and exact solvers on sizes of 128 and
above we used a perfect chimera graph. For sizes below
128 where we compare to the device we use the working
qubits within selections of L×L eight-site unit cells from
the graph shown in figure 1.

In references [1, 2] it was shown that an optimisation
problem on a complete graph with

√
N vertices can be

mapped to an equivalent problem on a chimera graph
with N vertices through minor-embedding. The tree
width of

√
N mentioned in the main text arises from this

mapping. See Section VIA for additional details about
the tree width and tree decomposition of a graph.
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FIG. 1: Qubits and couplers in the D-Wave device.
The D-Wave One Rainer chip consists of 4 × 4 unit cells of
eight qubits, connected by programmable inductive couplers
as shown by lines.

tions. The sizes we typically used in our numerical sim-
ulations are L = 1, . . . , 8 corresponding to N = 8L2 =
8, 32, 72, 128, 200, 288, 392 or 512 spins. For the simu-
lated annealers and exact solvers on sizes of 128 and
above we used a perfect chimera graph. For sizes below
128 where we compare to the device we use the working
qubits within selections of L×L eight-site unit cells from
the graph shown in figure 1.

In references [1, 2] it was shown that an optimisation
problem on a complete graph with

√
N vertices can be

mapped to an equivalent problem on a chimera graph
with N vertices through minor-embedding. The tree
width of

√
N mentioned in the main text arises from this

mapping. See Section VIA for additional details about
the tree width and tree decomposition of a graph.
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arxiv:1301.3124 
Figure 2: Example of Figure 1 represented as a Bayesian network (only two layers are represented).
The bottom nodes are observed. Note that the graph is truncated, as the nodes of �2 must be linked
to the next layer which is not represented, as well as to each other, in the same manner as the two
layers below it.

Figure 3: Stochastic maps involved in the last two steps of the computation of the marginal state
on 3 consecutive output sites. The lines ending abruptly indicates that the corresponding variable
is summed over. The “past” of any region of �0 of size L always involves just 3 sites before level
�[log2(L)].

3 Learning CORA

The causal properties inherent in the definition of MERA/CORA imply that a marginal over any
finite group of L sites can be computed (explicitly, i.e., without sampling) in a time of order
eL log(N). Indeed, due to the particular causal structure of the maps ⇡j , the past of any set of
sites of �j , namely those sites of �j+1 on which their values depend explicitly through ⇡j , always
ends up involving a constant number of sites independent of N (and generally manageably small).
This is illustrated in Figure 3.

In the quantum physical setting for which MERA was introduced, the state that we want to represent
is not defined by samples, but instead by a Hamiltonian, or energy function, that it minimizes,
i.e., the cost function itself. Most often, the Hamiltonians considered are local, which implies that
the evaluation of their expectation only requires the use of marginal states over small clusters of
neighboring sites. Therefore the cost function can be evaluated efficiently and exactly.

Such a procedure can be adapted to a situation where, instead of being handed the Hamiltonian, we
are given samples from the unknown distribution: the training data. In physics, this situation presents
itself when an experimentalists wants to reconstruct a state that he has access to only through exper-

5
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FIG. 2. RG and deep learning in the one-dimensional Ising Model. (A) A decimation based renormalization trans-
formation for the ferromagnetic 1-D Ising model. At each step, half the spins are decimated, doubling the effective lattice
spacing. After, n successive decimations, the spins can be described using a new 1-D Ising models with a coupling Jn between
spins. Couplings at a given layer are related to couplings at a previous layer through the square of the hyberbolic tangent
function. (B) Decimation-based renormalization transformations can also be realized using the deep architecture where the
weights between the n + 1 and n-th hidden layer are given by Jn. (C) Visualizing the renormalization group flow of the
couplings for 1-D Ferromagnetic Ising model. Under four successive decimations or equivalently as we move up four layers in
the deep architecture, the couplings (marked by red dots) get smaller. Eventually, the couplings are attracted to stable fixed
point J = 0.

the two approaches employ distinct variational approxi-
mation schemes for coarse graining. Finally, notice that
the correspondence does not rely on the explicit form of
the energy E({hj}, {vj}) and hence holds for any Boltz-
mann Machine.

IV. EXAMPLES

To gain intuition about the mapping between RG
and deep learning, it is helpful to consider some sim-
ple examples in detail. We begin by examining the one-
dimensional nearest-neighbor Ising model where the RG
transformation can be carried out exactly. We then nu-
merically explore the two-dimensional nearest-neighbor
Ising model using an RBM-based deep learning architec-
ture.

A. One dimensional Ising Model

The one-dimensional Ising model describes a collection
of binary spins {vi} organized along a one-dimensional
lattice with lattice spacing a. Such a system is described
by a Hamiltonian of the form

H = −J
∑

i

vivi+1, (23)

where J is a ferromagnetic coupling that energetically
favors configurations where neighboring spins align. To
perform a RG transformation, we decimate (marginalize
over) every other spin. This doubles the lattice spacing
a → 2a and results in a new effective interaction J (1) be-
tween spins (see Figure 2). If we denote the coupling af-
ter performing n successive RG transformations by J (n),

then a standard calculation shows that these coefficients
satisfy the RG equations

tanh [J (n+1)] = tanh2 [J (n)], (24)

where we have defined J (0) = J [14]. This recursion
relationship can be visualized as a one-dimensional flow
in the coupling space J from J = ∞ to J = 0. Thus,
after performing RG the interactions become weaker and
weaker and J → 0 as n → ∞.

This RG transformation also naturally gives rise to the
deep learning architecture shown in Figure 2. The spins
at a given layer of the DNN have a natural interpretation
as the decimated spins when performing the RG trans-
formation in the layer below. Notice that the coupled
spins in the bottom two layers of the DNNs in Fig. 2B
form an “effective” one-dimensional chain isomorphic to
the original spin chain. Thus, marginalizing over spins in
the bottom layer in the DNN is identical to decimating
every other spin in the original spin systems. This im-
plies that the “hidden” spins in the second layer of the
DNN are also described by the RG transformed Hamil-
tonian with a coupling J (1) between neighboring spins.
Repeating this argument for spins coupled between the
second and third layers and so on, one obtains the deep
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The advantage of the simple deep architecture pre-
sented here is that it is easy to interpret and requires no
calculations to construct. However, an important short-
coming is that it contains no information about half of
the visible spins, namely the spins that do not couple to
the hidden layer.

“Exact Mapping”

RG Transformation Boltzmann Machine
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MERA as a quantum circuit
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FIG. 1. (a) Basic construction of a k = 2 MERA (2 sites renormalized to 1). (b) The squares
represent disentanglers: unitary maps that, from the moving-upward perspective, remove entan-
glement between two adjacent sites. (c) The triangles represent isometries: linear maps that, again
from the moving-upward perspective, coarse-grain two sites into one. Moving downward, we may
think of isometries as unitary operators that, in the MERA, map a state in V ⌦ |0i into V ⌦ V .
The i and j labels in (b) and (c) represent the tensor indices of the disentangler and isometry.

attention to the case D = 1 + 1.

The MERA tensor network is shown in Fig. 1. The quantum system being modeled by

the MERA lives at the bottom of the diagram, henceforth “the boundary” in anticipation of

the AdS/MERA connection to be explored later. We can think of the tensor network as a

quantum circuit that either runs from the top down, starting with a simple input state and

constructing the boundary state, or from the bottom up, renormalizing a boundary state via

coarse-graining. One defining parameter of the MERA is the rescaling factor k, defining the

number of sites in a block to be coarse-grained; in Fig. 1 we have portrayed the case k = 2.

The squares and triangles are the tensors: multilinear maps between direct products of vector

spaces. Each line represents an index i of the corresponding tensor, ranging over values from

1 to the “bond dimension” �. The boundary Hilbert space Hboundary = V
⌦Nboundary is given

by a tensor product of Nboundary individual spaces V , each of dimension �. (In principle
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We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det

 
@x
@z
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where q(x) is the normalized probability density of the phys-
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tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.
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this scheme, the RG flow arises from iterative probability
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architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
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mann Machines [19, 21, 22] and Principal Component Anal-
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the renormalized collective variables at di↵erent scales. Each block
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jector neural network. The light gray and the dark gray blocks are
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tom to top, which corresponds inferencing the latent variables from
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Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
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Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]
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Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
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To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.
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is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].
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physics [4, 5]. A notable recent development is to perform
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desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
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advances in deep learning such as Normalizing Flows [29–36]
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tion ansatz (MERA) [6], the proposed NeuralRG approach
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where q(x) is the normalized probability density of the phys-
ical variables and p(z) = N(z; 0, 1) is the prior probability
density of the latent variables chosen to be a fixed normal dis-
tribution. The second term of Eq. (1) is the log-Jacobian de-
terminant of the bijector neural network, which can be easily
computed by collecting the contributions from each bijector.
Since the log-probability can be interpreted as a negative en-
ergy function, Eq. (1) shows that the renormalization of the ef-
fective coupling is provided by the log-Jacobian at each trans-
formation step.

Since di↵eomorphisms form a group, an arbitrary compo-
sition the building blocks is still a bijector. This motivates the
modular design of the network structure shown in Fig. 1(a).
The layers alternate between disentangler blocks and decima-
tor blocks. The disentangler blocks in light gray reduce the
mutual information between the inputs and pass less corre-
lated outputs to the next layer. While the decimator blocks in
dark gray pass only parts of outputs to the next layer and treat
the remaining ones as irrelevant latent variables. The RG flow
corresponds to the inference of the latent variables z = g�1(x)
based on observed physical variables, during which the kept
degrees of freedom emerge as renormalized collective vari-
ables at coarser scales. In the reversed direction, the la-
tent variables are injected into the neural network at di↵erent
depths. And they a↵ect physical variables at di↵erent length
scales.

The bijective property is crucial for learning the RG flow
in a controlled way. No matter how complex is the hierarchi-
cal transformations performed by the neural network, one can
e�ciently compute the normalized probability density q(x)
for any physical configuration x (either generated or given)
by keep tracking the Jacobian determinant at each block lo-
cally. One can share the weights among the blocks in the same
layer due to the translational invariances of the physical prob-
lem. Moreover, one can even share the weights in the depth
direction due to scale invariance emerged at criticality. The
scale-invariant reduces the number of parameters to be inde-
pendent of the system size. In this case, one can iterate the
training process for increasingly larger system size and reuse
the weights from the previous step as the initial value.

The proposed NeuralRG architecture shown in Fig. 1(a) is
largely inspired by the tensor networks [7, 11–16], and in par-
ticular, the multi-scale entanglement renormalization ansatz
(MERA) [6]. Moreover, stacking bijectors to transform the
probability densities is analogous to the philosophy of re-
versible computation using quantum circuits [42]. Exploiting
these analogies provide constructive guidelines to the neural
network architecture design. The neural network nevertheless
has the flexibility that the blocks can be arbitrarily large and
long-range connected. Given the modular design of Fig. 1(a),
arbitrarily complicated NeuralRG architecture can be learned
e�ciently using standard di↵erential approaches o↵ered in
modern deep learning frameworks [43, 44].

Compared to ordinary neural networks used in deep learn-
ing, the architecture shown in Fig 1(a) has strong physical and
information theoretical motivations. To see this, we consider a

Figure 2. (a) A reference neural network architecture with only dis-
entanglers. The physical variables in the two shaded regions are un-
correlated because their causal light cones do not overlap in the latent
variables. (b) Mutual information flow at the decimator block, see
Eq. (2). (c) The arrangement of the bijectors on a two-dimensional
lattice. (d) Each bijector acts on four variables. For the decimators,
only one of the outputs is carried on to the next layer and the others
are directly treated as latent variables.

simpler reference structure shown in Fig. 2(a) where one uses
disentangler blocks at each layer. The resulting structure re-
sembles the structure of a time-evolving block decimation net-
work [45]. Since each disentangler block connects only a few
neighboring variables, the causal light cone of the physical
variables at the bottom can only reach regions proportional to
the depth of the network. Therefore, the correlation length of
the physical variables is limited by the depth of the disentan-
gler layers. This structure is su�cient for physical problems
with finite correlation length, i.e. away from the criticality.

On the other hand, a network with decimators in each
layer is similar to the tree tensor network [46]. As shown in
Fig. 2(b), the mutual information (MI) between the variables
at each decimation step follows

I(A : B) = I(z1 [ a : b [ z4) = I(a : b). (2)

The first equality is due to that the mutual information is
invariant under invertible transformation of variables within
each group. While the second equality is due to the random
variables z1 and z4 are independent of all other variables. Ap-
plying Eq. (2) recursively at each decimation step, one con-
cludes that in a neural net with only decimators the MI be-
tween two sets of variables is limited by the top layer. Such
structure is su�cient to model one dimensional physical sys-
tems with short-range interactions due to that the mutual in-
formation is constant [47]. Although the upper bound of MI
of two continuous variables can be arbitrarily large, in gen-

2

where q(x) is the normalized probability density of the phys-
ical variables and p(z) = N(z; 0, 1) is the prior probability
density of the latent variables chosen to be a fixed normal dis-
tribution. The second term of Eq. (1) is the log-Jacobian de-
terminant of the bijector neural network, which can be easily
computed by collecting the contributions from each bijector.
Since the log-probability can be interpreted as a negative en-
ergy function, Eq. (1) shows that the renormalization of the ef-
fective coupling is provided by the log-Jacobian at each trans-
formation step.

Since di↵eomorphisms form a group, an arbitrary compo-
sition the building blocks is still a bijector. This motivates the
modular design of the network structure shown in Fig. 1(a).
The layers alternate between disentangler blocks and decima-
tor blocks. The disentangler blocks in light gray reduce the
mutual information between the inputs and pass less corre-
lated outputs to the next layer. While the decimator blocks in
dark gray pass only parts of outputs to the next layer and treat
the remaining ones as irrelevant latent variables. The RG flow
corresponds to the inference of the latent variables z = g�1(x)
based on observed physical variables, during which the kept
degrees of freedom emerge as renormalized collective vari-
ables at coarser scales. In the reversed direction, the la-
tent variables are injected into the neural network at di↵erent
depths. And they a↵ect physical variables at di↵erent length
scales.

The bijective property is crucial for learning the RG flow
in a controlled way. No matter how complex is the hierarchi-
cal transformations performed by the neural network, one can
e�ciently compute the normalized probability density q(x)
for any physical configuration x (either generated or given)
by keep tracking the Jacobian determinant at each block lo-
cally. One can share the weights among the blocks in the same
layer due to the translational invariances of the physical prob-
lem. Moreover, one can even share the weights in the depth
direction due to scale invariance emerged at criticality. The
scale-invariant reduces the number of parameters to be inde-
pendent of the system size. In this case, one can iterate the
training process for increasingly larger system size and reuse
the weights from the previous step as the initial value.

The proposed NeuralRG architecture shown in Fig. 1(a) is
largely inspired by the tensor networks [7, 11–16], and in par-
ticular, the multi-scale entanglement renormalization ansatz
(MERA) [6]. Moreover, stacking bijectors to transform the
probability densities is analogous to the philosophy of re-
versible computation using quantum circuits [42]. Exploiting
these analogies provide constructive guidelines to the neural
network architecture design. The neural network nevertheless
has the flexibility that the blocks can be arbitrarily large and
long-range connected. Given the modular design of Fig. 1(a),
arbitrarily complicated NeuralRG architecture can be learned
e�ciently using standard di↵erential approaches o↵ered in
modern deep learning frameworks [43, 44].

Compared to ordinary neural networks used in deep learn-
ing, the architecture shown in Fig 1(a) has strong physical and
information theoretical motivations. To see this, we consider a

Figure 2. (a) A reference neural network architecture with only dis-
entanglers. The physical variables in the two shaded regions are un-
correlated because their causal light cones do not overlap in the latent
variables. (b) Mutual information flow at the decimator block, see
Eq. (2). (c) The arrangement of the bijectors on a two-dimensional
lattice. (d) Each bijector acts on four variables. For the decimators,
only one of the outputs is carried on to the next layer and the others
are directly treated as latent variables.

simpler reference structure shown in Fig. 2(a) where one uses
disentangler blocks at each layer. The resulting structure re-
sembles the structure of a time-evolving block decimation net-
work [45]. Since each disentangler block connects only a few
neighboring variables, the causal light cone of the physical
variables at the bottom can only reach regions proportional to
the depth of the network. Therefore, the correlation length of
the physical variables is limited by the depth of the disentan-
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implemented by simply stacking 4 such networks on top of each other) did improve the quality. Note
that in the final parallel WaveNet architecture, the weights were not shared between the flows.

The first (bottom) network takes as input the white unconditional logistic noise: x0 = z. Thereafter
the output of each network i is passed as input to the next network i + 1 , which again transforms it.

xi = xi�1 · si + µi (3)

Because we use the same ordering in all the flows, the final distribution p(xt|z<t,✓) is logistic with
location µtot and scale stot:

µtot =
NX

i

µi

0

@
NY

j>i

sj

1

A (4)

stot =
NY

i

si (5)

where N is the number of flows and the dependencies on t and z are omitted for simplicity.

4 Probability Density Distillation

Training the parallel WaveNet model directly with maximum likelihood would be impractical, as the
inference procedure required to estimate the log-likelihoods is sequential and slow1. We therefore
introduce a novel form of neural network distillation [11] that uses an already trained WaveNet as a
‘teacher’ from which a parallel WaveNet ‘student’ can efficiently learn. To stress the fact that we are
dealing with normalised density models, we refer to this process as Probability Density Distillation

(in contrast to Probability Density Estimation). The basic idea is for the student to attempt to match
the probability of its own samples under the distribution learned by the teacher.

Given a parallel WaveNet student pS(x) and WaveNet teacher pT (x) which has been trained on a
dataset of audio, we define the Probability Density Distillation loss as follows:

DKL (PS ||PT ) = H(PS , PT ) � H(PS) (6)

where DKL is the Kullback–Leibler divergence, and H(PS , PT ) is the cross-entropy between the
student PS and teacher PT , and H(PS) is the entropy of the student distribution. When the KL
divergence becomes zero, the student distribution has fully recovered the teacher’s distribution. The
entropy term (which is not present in previous distillation objectives [11]) is vital in that it prevents
the student’s distribution from collapsing to the mode of the teacher (which, counter-intuitively,
does not yield a good sample—see Appendix section A.1). Crucially, all the operations required to
estimate derivatives for this loss (sampling from pS(x), evaluating pT (x), and evaluating H(PS))
can be performed efficiently, as we will see.

It is worth noting the parallels to Generative Adversarial Networks (GANs [7]), with the student
playing the role of generator, and the teacher playing the role of discriminator. As opposed to GANs,
however, the student is not attempting to fool the teacher in an adversarial manner; rather it co-
operates by attempting to match the teacher’s probabilities. Furthermore the teacher is held constant,
rather than being trained in tandem with the student, and both models yield tractable normalised
distributions.

Recently [9] has presented a related idea to train feed-forward networks for neural machine translation.
Their method is based on conditioning the feedforward decoder on fertility values, which require
supervision by an external alignment system. The training procedure also involves the creation of an
additional dataset as well as fine-tuning. During inference, their model relies on re-scoring by an
auto-regressive model.

1In this sense the two architectures are dual to one another: slow training and fast generation with parallel
WaveNet versus fast training and slow generation with WaveNet.

4

between them is a new form of neural network distillation [11], which we refer to as Probability

Density Distillation, where a trained WaveNet model is used as a teacher for a feedforward IAF
model.

The next section describes the original WaveNet model, while Sections 3 and 4 define in detail the new,
parallel version of WaveNet and the distillation process used to transfer knowledge between them.
Section 5 then presents experimental results showing no loss in perceived quality for parallel versus
original WaveNet, and continued superiority over previous benchmarks. We also present timings for
sample generation, demonstrating more than 1000⇥ speed-up relative to original WaveNet.

2 WaveNet

Autoregressive networks model the joint distribution of high-dimensional data as a product of
conditional distributions using the probabilistic chain-rule:

p(x) =
Y

t

p(xt|x<t,✓),

where xt is the t-th variable of x and ✓ are the parameters of the autoregressive model. The
conditional distributions are usually modelled with a neural network that receives x<t as input and
outputs a distribution over possible xt.

WaveNet [27] is a convolutional autoregressive model which produces all p(xt|x<t) in one forward
pass, by making use of causal—or masked—convolutions [19, 6]. Every causal convolutional layer
can process its input in parallel, making these architectures very fast to train compared to RNNs [28],
which can only be updated sequentially. At generation time, however, the waveform has to be
synthesised in a sequential fashion as xt must be sampled first in order to obtain x>t. Due to
this nature, real time (or faster) synthesis with a fully autoregressive system is challenging. While
sampling speed is not a significant issue for offline generation, it is essential for real-word applications.
A version of WaveNet that generates in real-time has been developed [20], but it required the use of a
much smaller network, resulting in severely degraded quality.

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 1: Visualisation of a WaveNet stack and its receptive field [27].

Raw audio data is typically very high-dimensional (e.g. 16,000 samples per second for 16kHz
audio), and contains complex, hierarchical structures spanning many thousands of time steps, such as
words in speech or melodies in music. Modelling such long-term dependencies with standard causal
convolution layers would require a very deep network to ensure a sufficiently broad receptive field.
WaveNet avoids this constraint by using dilated causal convolutions, which allow the receptive field
to grow exponentially with depth.

WaveNet uses gated activation functions, together with a simple mechanism introduced in [19] to
condition on extra information such as class labels or linguistic features:

hi = �
�
Wg,i ⇤ xi + V

T
g,ic

�
� tanh

�
Wf,i ⇤ xi + V

T
f,ic

�
, (1)

where ⇤ denotes a convolution operator, and � denotes an element-wise multiplication operator. �(·)
is a logistic sigmoid function. c represents extra conditioning data. i is the layer index. f and g
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“Gaussian-Bernoulli Boltzmann Machine”

⇡(s|x) =
Y

i

⇣
1 + e�2si xi

⌘�1

Zhang, Sutton, Storkey, Ghahramani, NIPS 2012

p(s)

s s

x x

Original MRF

[MS10; HKP91] Current Approach

s

x

General A A = ⇤�1/2
V

T A = I

Figure 1: Graphical depiction of the different versions of the Gaussian integral trick. In all of the
models here si 2 {0, 1} while xi 2 R. Notice that when A = I the x have the same dependence
structure as the s did in the original MRF.

3.1 Convexity of Log Density

Because probabilistic inference is NP-hard, it is too much to expect that the continuous transfor-
mation will always help. Sometimes difficult discrete distributions will be converted into difficult
continuous ones. Experimentally we have noticed that highly frustrated systems typically result in
multimodal p(x).

The modes of p(x) are particularly easy to understand if A = ⇤�1/2
V

T , because p(x|s) =
N (x; ⇤1/2

V s; I), that is, the covariance does not depend on W + D. Without loss of general-
ity assume that the diagonal of W is 0. Then write (W + D) = W + cD

0. Interpreting p(x) as a
mixture of Gaussians, one for each assignment s, as c ! 1 the Gaussians become farther apart and
we get 2n modes, one each at ⇤1/2

V s for each assignment to binary vector s. If we take a small
c, however, we can sometimes get fewer modes, and as shown next, we can sometimes even get
log p(x) convex. This is a motivation to make sure that the elements of D are not too large.

In the following proposition we characterize the conditions on p(s) under which the resultant p(x)
is log-concave. For any N ⇥ N matrix M , let �1(M) � . . . � �N (M) denote the eigenvalues of
M . Recall that we have already required that D be chosen so that W + D is positive definite, i.e.,
�N (W + D) > 0. Then
Proposition 1. p(x) is log-concave if and only if W +D has a narrow spectrum, by which we mean
�1(W + D) < 4.

Proof. The Hessian of log p(x) is easy to compute. It is

Hx := r2
x log p(x) = Cx � (W + D)�1 (13)

where Cx is a diagonal matrix with elements cii = �(�ai � xi + di
2 )(1 � �(�ai � xi + di

2 )). We
use the simple eigenvalue inequalities that �1(A) + �N (B)  �1(A + B)  �1(A) + �1(B). If
�1(W + D)  4, then

�1(Hx)  �1(Cx) � [�1(W + D)]�1  0.25 � [�1(W + D)]�1  0.

So p(x) is log-concave. Conversely suppose that p(x) is log-concave. Then

0.25 � [�1(W + D)]�1 = sup
x

�N (Cx) � [�1(W + D)]�1  sup
x

�1(Hx)  0.

So �1(W + D)  4.

3.2 MCMC in the Continuous Relaxation

Now we discuss how to perform inference in the augmented distribution resulting from the trick.
One simple choice is to focus on the joint density p(x, s). It is straightforward to generate samples
from the conditional distributions p(x|s) and p(s|x). Therefore one can sample the joint distribution
p(x, s) in a block Gibbs style that switches sampling between p(x|s) and p(s|x). In spite of the sim-
plicity of this method, it has the potential difficulty that it may generate highly correlated samples,
due to the coupling between discrete and continuous samples.

To overcome the drawbacks of block Gibbs sampling, we propose running MCMC directly on the
marginal p(x). We can efficiently evaluate the unnormalized density of p(x) from (11) up to a

4

continuous dual 
of the Ising model



Generated Samples

x’s are continuous fields dual to Ising spins



Variational Loss

Loss can be further improved by 
using more expressive networks



Exact lower bound -ln(Z) 
(thanks to Onsager)

Variational Loss

Loss can be further improved by 
using more expressive networks



Renormalized  
Collective Variables

Also know their effective couplings 
=> renormalized energy function

2x2 4x4 Physical  
Variables
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2.D applications 49

Figure 2.D.3: VAEs can be used for image re-synthesis. In this example by
White [2016], an original image (left) is modified in a latent space in the
direction of a smile vector, producing a range of versions of the original, from
smiling to sadness. Notice how changing the image along a single vector in
latent space, modifies the image in many subtle and less-subtle ways in pixel
space.

of images in latent space along a "smile vector" in order to make them more
happy, or more sad looking. See figure 2.D.3 for an example.

White,1609.04468 implemented using the variational 
autoencoder by Kingma and Welling,1312.6114

Arithmetics of the “smile vector”

Wander in the Latent Space



How is it useful ?

Monte Carlo update proposals 

Automatically derive effective field theory 
(free energy surface)

Automatically identify collective variables 
(metadynamics molecular simulation)



Sampling in the latent space 

Latent space is less correlated,  
therefore, easier to sample 

Physical  
Prob. Dist.

Latent variable  
Prob. Dist.

Change-of-variables in a learnable way



Metropolized Independent Sampler
Acceptance rate with detailed balance condition 

Propose  
Ratio

Physical 
Probability

• Unbiased physics even for 
imperfect proposals 

• Proposals are independent 

Li Huang and LW, 1610.02746  
Liu, Qi, Meng, Fu, 1610.03137 

Song, Zhao, Ermon, 1706.07561  
Levy, Hoffman, Sohl-Dickstein, 1711.09268

Surrogate energy function: Trainable transition kernel:



Remarks on TNS Connection

• Deep Learning machinery provides structural 
flexibility, modular abstraction, end-to-end training

• What we had is a classical downgrade of MERA
Probability Density~ Quantum Wavefuntion 
Classical Mutual Information ~ Entanglement Entropy 
“Decorrelator" ~ Disentangler 
Decimator~Isometry 
Bijector~Unitary

• We give back to DL understandings of what are 
they doing (and hopefully, how to do better)

(Bény 2013)



Remarks on DL

Pooling layer in ConvNets 
~ Decimation 

Hidden nodes in RBM/DBN 
~ Renormalized VariablesPublished as a conference paper at ICLR 2017

(a) In this alternating pattern, units which remain identical in one
transformation are modified in the next.

z1 z2

x1 x2 x3 x4

z3

z1 z2 z3 z4

(1) (1)

(2)

f(1)

f(2)

f(3)

h4

h4h3

(b) Factoring out variables.
At each step, half the vari-
ables are directly modeled as
Gaussians, while the other
half undergo further transfor-
mation.

Figure 4: Composition schemes for affine coupling layers.

3.6 Multi-scale architecture

We implement a multi-scale architecture using a squeezing operation: for each channel, it divides the
image into subsquares of shape 2⇥ 2⇥ c, then reshapes them into subsquares of shape 1⇥ 1⇥ 4c.
The squeezing operation transforms an s ⇥ s ⇥ c tensor into an s

2 ⇥ s
2 ⇥ 4c tensor (see Figure 3),

effectively trading spatial size for number of channels.

At each scale, we combine several operations into a sequence: we first apply three coupling layers
with alternating checkerboard masks, then perform a squeezing operation, and finally apply three
more coupling layers with alternating channel-wise masking. The channel-wise masking is chosen so
that the resulting partitioning is not redundant with the previous checkerboard masking (see Figure
3). For the final scale, we only apply four coupling layers with alternating checkerboard masks.

Propagating a D dimensional vector through all the coupling layers would be cumbersome, in terms
of computational and memory cost, and in terms of the number of parameters that would need to be
trained. For this reason we follow the design choice of [57] and factor out half of the dimensions at
regular intervals (see Equation 14). We can define this operation recursively (see Figure 4(b)),

h(0) = x (13)

(z(i+1), h(i+1)) = f (i+1)(h(i)) (14)

z(L) = f (L)(h(L�1)) (15)

z = (z(1), . . . , z(L)). (16)

In our experiments, we use this operation for i < L. The sequence of coupling-squeezing-coupling
operations described above is performed per layer when computing f (i) (Equation 14). At each
layer, as the spatial resolution is reduced, the number of hidden layer features in s and t is doubled.
All variables which have been factored out at different scales are concatenated to obtain the final
transformed output (Equation 16).

As a consequence, the model must Gaussianize units which are factored out at a finer scale (in an
earlier layer) before those which are factored out at a coarser scale (in a later layer). This results in the
definition of intermediary levels of representation [53, 49] corresponding to more local, fine-grained
features as shown in Appendix D.

Moreover, Gaussianizing and factoring out units in earlier layers has the practical benefit of distribut-
ing the loss function throughout the network, following the philosophy similar to guiding intermediate
layers using intermediate classifiers [40]. It also reduces significantly the amount of computation and
memory used by the model, allowing us to train larger models.

6

Neural Machine Translation in Linear Time

Nal Kalchbrenner Lasse Espeholt Karen Simonyan Aäron van den Oord Alex Graves Koray Kavukcuoglu

Google Deepmind, London UK
nalk@google.com

Abstract

We present a novel neural network for process-
ing sequences. The ByteNet is a one-dimensional
convolutional neural network that is composed of
two parts, one to encode the source sequence and
the other to decode the target sequence. The two
network parts are connected by stacking the de-
coder on top of the encoder and preserving the
temporal resolution of the sequences. To ad-
dress the differing lengths of the source and the
target, we introduce an efficient mechanism by
which the decoder is dynamically unfolded over
the representation of the encoder. The ByteNet
uses dilation in the convolutional layers to in-
crease its receptive field. The resulting network
has two core properties: it runs in time that
is linear in the length of the sequences and it
sidesteps the need for excessive memorization.
The ByteNet decoder attains state-of-the-art per-
formance on character-level language modelling
and outperforms the previous best results ob-
tained with recurrent networks. The ByteNet
also achieves state-of-the-art performance on
character-to-character machine translation on the
English-to-German WMT translation task, sur-
passing comparable neural translation models
that are based on recurrent networks with atten-
tional pooling and run in quadratic time. We
find that the latent alignment structure contained
in the representations reflects the expected align-
ment between the tokens.

1. Introduction

In neural language modelling, a neural network estimates
a distribution over sequences of words or characters that
belong to a given language (Bengio et al., 2003). In neu-
ral machine translation, the network estimates a distribu-
tion over sequences in the target language conditioned on
a given sequence in the source language. The network can
be thought of as composed of two parts: a source network
(the encoder) that encodes the source sequence into a rep-
resentation and a target network (the decoder) that uses the

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t11 t12 t13 t14 t15 t16t10

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

t11 t12 t13 t14 t15 t16 t17t10t9t8t7t6t5t4t3t2t1

Figure 1. The architecture of the ByteNet. The target decoder
(blue) is stacked on top of the source encoder (red). The decoder
generates the variable-length target sequence using dynamic un-
folding.

representation of the source encoder to generate the target
sequence (Kalchbrenner & Blunsom, 2013).

Recurrent neural networks (RNN) are powerful sequence
models (Hochreiter & Schmidhuber, 1997) and are widely
used in language modelling (Mikolov et al., 2010), yet they
have a potential drawback. RNNs have an inherently se-
rial structure that prevents them from being run in parallel
along the sequence length during training and evaluation.
Forward and backward signals in a RNN also need to tra-
verse the full distance of the serial path to reach from one
token in the sequence to another. The larger the distance,
the harder it is to learn the dependencies between the tokens
(Hochreiter et al., 2001).

A number of neural architectures have been proposed
for modelling translation, such as encoder-decoder net-
works (Kalchbrenner & Blunsom, 2013; Sutskever et al.,
2014; Cho et al., 2014; Kaiser & Bengio, 2016), networks
with attentional pooling (Bahdanau et al., 2014) and two-
dimensional networks (Kalchbrenner et al., 2016a). De-
spite the generally good performance, the proposed models
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Dialed convolution + Factor 
out layers = Decimation 

Kept latent variables = 
Renormalized Variables

Old Wisdoms New Insights 
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Here we are

Neural Network Renormalization Group

Shuo-Hui Li1, 2 and Lei Wang1, ⇤

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China

We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det

 
@x
@z

!������ , (1)

where q(x) is the normalized probability density of the phys-

Simplified, but not oversimplified model with 
balanced interpretability and expressibility



Remarks on RG
• Conventionally, RG is a semi-group, not a group 

• NeuralRG builds on bijectors, hence a group 
(coarse-graining due to the multiscale structure) 

• Probabilistic (Jona-Lasinio 75’) and Information Theory 
(Apenko 09’) views on RG (same is true for neural & 
tensor networks) 

• Diffeomorphism does not change topology of the 
manifolds, therefore, may be limited.  



The Universe as a Generative Model

Thank you!

RG = Infer the 
Effective Field Theory 


