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So far, GDML has only been used for relatively small
molecules.
In this Letter, we introduce a neural network (NN) based

scheme for MD simulations, called deep potential molecu-
lar dynamics (DPMD), which overcomes the limitations
associated with auxiliary quantities like the symmetry
functions or the Coulomb matrix (All the examples
presented in this work are tested using the DeePMD-kit
package [21], which is available at [22]). In our scheme, a
local reference frame and a local environment is assigned to
each atom. Each environment contains a finite number of
atoms, whose local coordinates are arranged in a symmetry
preserving way following the prescription of the deep
potential method [23], an approach that was devised to
train a NN with the potential energy only. With typical
AIMD data sets, this is insufficient to reproduce the
trajectories. DPMD overcomes this limitation. In addition,
the learning process in DPMD improves significantly over
the deep potential method thanks to the introduction of a
flexible family of loss functions. The NN potential con-
structed in this way reproduces accurately the AIMD
trajectories, both classical and quantum (path integral),
in extended and finite systems, at a cost that scales linearly
with system size and is always several orders of magnitude
lower than that of equivalent AIMD simulations.
In DPMD, the potential energy of each atomic configu-

ration is a sum of “atomic energies” E ¼
P

iEi, where Ei is
determined by the local environment of atom i within a
cutoff radius Rc and can be seen as a realization of the
embedded atom concept. The environmental dependence
of Ei, which embodies the many-body character of the
interactions, is complex and nonlinear. The NN is able to
capture the analytical dependence of Ei on the coordinates
of the atoms in the environment in terms of the composition
of the sequence of mappings associated with the individual
hidden layers. The additive form of E naturally preserves
the extensive character of the potential energy. Because
of the analyticity of the atomic energies, DPMD is, in
principle, a conservative model.
Ei is constructed in two steps. First, a local coordinate

frame is set up for every atom and its neighbors inside Rc
[24]. This allows us to preserve the translational, rotational,
and permutational symmetries of the environment, as
shown in Fig. 1, which illustrates the format adopted for
the local coordinate information fDijg. The 1=Rij factor
present in Dij reduces the weight of the particles that are
more distant from atom i.
Next, fDijg serves as input of a deep neural network

(DNN) [25], which returns Ei in output (Fig. 2). The DNN is
a feed forward network, in which data flow from the input
layer to the output layer (Ei), through multiple hidden layers
consisting of several nodes that input the data dinl from the
previous layer and output the data doutk to the next layer. A
linear transformation is applied to the input data, i.e., d̃k ¼P

lwkldinl þ bk, followed by action of a nonlinear function

φ on d̃k, i.e., doutk ¼ φðd̃kÞ. In the final step from the last
hidden layer to Ei, only the linear transformation is applied.
The composition of the linear and nonlinear transformations
introduced above provides the analytical representation of
Ei in terms of the local coordinates. The technical details of
this construction are discussed in the Supplemental Material
[26]. In our applications, we adopt the hyperbolic tangent for
φ and use five hidden layers with decreasing number of
nodes per layer, i.e., 240, 120, 60, 30, and 10 nodes,
respectively, from the innermost to the outermost layer. It
is known empirically that the hidden layers greatly enhance
the capability of neural networks to fit complex and highly
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FIG. 1. Schematic plot of the neural network input for the
environment of atom i, taking water as an example. Atom j is a
generic neighbor of atom i, ðex; ey; ezÞ is the local frame of atom
i, ex is along the O─H bond, ez is perpendicular to the plane of
the water molecule, ey is the cross product of ez and ex, and
ðxij; yij; zijÞ are the Cartesian components of the vector Rij in this
local frame. Rij is the length of Rij. The neural network input Dij
may either contain the full radial and angular information of atom
j, i.e., Dij ¼ f1=Rij; xij=R2

ij; yij=R
2
ij; zij=R

2
ijg or only the radial

information, i.e., Dij ¼ f1=Rijg. We first sort the neighbors of
atom i according to their chemical species, e.g., oxygens first then
hydrogens. Within each species, we sort the atoms according to
their inverse distances to atom i, i.e., 1=Rij. We use fDijg to
denote the sorted input data for atom i.

FIG. 2. Schematic plot of the DPMD model. The frame in the
box is an enlargement of a DNN. The relative positions of all
neighbors with respect to atom i, i.e., fRijg, is first converted to
fDijg, then passed to the hidden layers to compute Ei.
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Figure 1. a. Mappings used in this paper. The bottom arrow represents E[v], a conventional electronic structure calculation,
i.e., KS-DFT. The ground state energy is found by solving KS equations given the external potential, v. E[n] is the total
energy density functional. The red arrow is the HK map n[v] from external potential to its ground state density. b top. How
the energy error depends on M for ML-OF and ML-HK with di↵erent basis sets for the 1-D problem. b bottom. Errors of
the PBE energies (relative to exact values) and the ML maps (relative to PBE) as a function of interatomic spacing, R, for H2

with M = 7. c. How our Machine Learning Hohenberg-Kohn (ML-HK) map makes predictions. The molecular geometry is
represented by Gaussians; many independent Kernel Ridge Regression models predict each basis coe�cient of the density. We
analyze the performance of data-driven (ML) and common physical basis representations for the electron density.

In most DFT calculations, �E is dominated by �EF .
The standard DFT approximations can, in some specific
cases, produce abnormally large density errors that dom-
inate the total error. In such situations, using a more
accurate density can greatly improve the result [29–31].
We will use these definitions to measure the accuracy of
the ML-HK map.

1-D potentials

The following results demonstrate how much more ac-
curate ML is when applied directly to the HK map.
The box problem originally introduced in Snyder et al.
[20] is used to illustrate the principle. Random poten-

tials consisting of three Gaussian dips were generated
inside a hard-wall box of length 1 (atomic units), and
the Schrödinger equation for one electron was solved ex-
tremely precisely. Up to 200 cases were used to train an
ML model TML

s [n] for the non-interacting kinetic energy
functional Ts[n] via Kernel Ridge Regression (for details,
see supplement).
To measure the accuracy of an approximate HK map,

the analysis of the previous section is applied to the KS
DFT problem. Here F is just Ts, the non-interacting
kinetic energy, and

�EF = T̃s[n]� Ts[n], (5)

i.e., the error made in an approximate functional on the

Molecular simulationMaterials informatics



So far, GDML has only been used for relatively small
molecules.
In this Letter, we introduce a neural network (NN) based

scheme for MD simulations, called deep potential molecu-
lar dynamics (DPMD), which overcomes the limitations
associated with auxiliary quantities like the symmetry
functions or the Coulomb matrix (All the examples
presented in this work are tested using the DeePMD-kit
package [21], which is available at [22]). In our scheme, a
local reference frame and a local environment is assigned to
each atom. Each environment contains a finite number of
atoms, whose local coordinates are arranged in a symmetry
preserving way following the prescription of the deep
potential method [23], an approach that was devised to
train a NN with the potential energy only. With typical
AIMD data sets, this is insufficient to reproduce the
trajectories. DPMD overcomes this limitation. In addition,
the learning process in DPMD improves significantly over
the deep potential method thanks to the introduction of a
flexible family of loss functions. The NN potential con-
structed in this way reproduces accurately the AIMD
trajectories, both classical and quantum (path integral),
in extended and finite systems, at a cost that scales linearly
with system size and is always several orders of magnitude
lower than that of equivalent AIMD simulations.
In DPMD, the potential energy of each atomic configu-

ration is a sum of “atomic energies” E ¼
P

iEi, where Ei is
determined by the local environment of atom i within a
cutoff radius Rc and can be seen as a realization of the
embedded atom concept. The environmental dependence
of Ei, which embodies the many-body character of the
interactions, is complex and nonlinear. The NN is able to
capture the analytical dependence of Ei on the coordinates
of the atoms in the environment in terms of the composition
of the sequence of mappings associated with the individual
hidden layers. The additive form of E naturally preserves
the extensive character of the potential energy. Because
of the analyticity of the atomic energies, DPMD is, in
principle, a conservative model.
Ei is constructed in two steps. First, a local coordinate

frame is set up for every atom and its neighbors inside Rc
[24]. This allows us to preserve the translational, rotational,
and permutational symmetries of the environment, as
shown in Fig. 1, which illustrates the format adopted for
the local coordinate information fDijg. The 1=Rij factor
present in Dij reduces the weight of the particles that are
more distant from atom i.
Next, fDijg serves as input of a deep neural network

(DNN) [25], which returns Ei in output (Fig. 2). The DNN is
a feed forward network, in which data flow from the input
layer to the output layer (Ei), through multiple hidden layers
consisting of several nodes that input the data dinl from the
previous layer and output the data doutk to the next layer. A
linear transformation is applied to the input data, i.e., d̃k ¼P

lwkldinl þ bk, followed by action of a nonlinear function

φ on d̃k, i.e., doutk ¼ φðd̃kÞ. In the final step from the last
hidden layer to Ei, only the linear transformation is applied.
The composition of the linear and nonlinear transformations
introduced above provides the analytical representation of
Ei in terms of the local coordinates. The technical details of
this construction are discussed in the Supplemental Material
[26]. In our applications, we adopt the hyperbolic tangent for
φ and use five hidden layers with decreasing number of
nodes per layer, i.e., 240, 120, 60, 30, and 10 nodes,
respectively, from the innermost to the outermost layer. It
is known empirically that the hidden layers greatly enhance
the capability of neural networks to fit complex and highly
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FIG. 1. Schematic plot of the neural network input for the
environment of atom i, taking water as an example. Atom j is a
generic neighbor of atom i, ðex; ey; ezÞ is the local frame of atom
i, ex is along the O─H bond, ez is perpendicular to the plane of
the water molecule, ey is the cross product of ez and ex, and
ðxij; yij; zijÞ are the Cartesian components of the vector Rij in this
local frame. Rij is the length of Rij. The neural network input Dij
may either contain the full radial and angular information of atom
j, i.e., Dij ¼ f1=Rij; xij=R2

ij; yij=R
2
ij; zij=R

2
ijg or only the radial

information, i.e., Dij ¼ f1=Rijg. We first sort the neighbors of
atom i according to their chemical species, e.g., oxygens first then
hydrogens. Within each species, we sort the atoms according to
their inverse distances to atom i, i.e., 1=Rij. We use fDijg to
denote the sorted input data for atom i.

FIG. 2. Schematic plot of the DPMD model. The frame in the
box is an enlargement of a DNN. The relative positions of all
neighbors with respect to atom i, i.e., fRijg, is first converted to
fDijg, then passed to the hidden layers to compute Ei.
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ab initio MD trajectories, we swapped atomistic configurations between different temperatures or
randomly displaced the atomic positions after 1 ps. Furthermore, to enhance the sampling of the
configuration space, we used a relatively large time step of 10 fs, although this increased the number
of steps to achieve self-consistency for solving the Kohn-Sham equations [1] at each step.

For clarification, we use the term system to denote a set of data on which a unified DeepPot-SE
model is fitted, and use the term sub-system to denote data with different composition of atoms or
different phases within a system. For all systems, we also test the DeePMD model for comparison.
We used the DeePMD-kit package [26] for all training and testing tasks. The network structure and
the training scheme (learning rate, decay step, etc.) are summarized in the Supplementary Materials.
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Figure 2: Comparison of the DFT energies and the DeepPot-SE predicted energies on the testing
snapshots. The range of DFT energies of different systems is large. Therefore, for illustrative purpose,
for each sub-system, we calculate the average µE and standard deviation �E of DFT energies, and
standardize both the DFT energies and the DeepPot-SE predicted energies by subtracting µE from
them and then dividing them by �E . Then we plot the standardized energies within ±4.5�E . (a)
The unified DeepPot-SE model for the small molecular system. These molecules contain up to 4
types of atoms, namely C, H, O, and N. Therefore, essentially 4 atomic sub-networks are learned and
the corresponding parameters are shared by different molecules. (b) The DeepPot-SE model for the
MoS2 and Pt system. To make it robust for a real problem of structural optimization for Pt clusters
on MoS2 slabs, this model learn different sub-systems, in particular Pt clusters of various sizes on
MoS2 slabs. 6 representative sub-systems are selected in this figure. (c) The DeepPot-SE model for
the CoCrFeMnNi HEA system. The sub-systems are different in random occupations of the elements
on the lattice sites. 2 out of 48 sub-systems are selected in this figure. (d) The DeepPot-SE model for
the TiO2 system, which contains 3 different polymorphs. (e) The DeepPot-SE model for the pyridine
(C5H5N) system, which contains 2 different polymorphs. (f) Other systems: Al2O3, Cu, Ge, and Si.

4.1 Small organic molecules

The small molecular system consists of seven different sub-systems, namely aspirin, ethanol, mal-
onaldehyde, naphthalene, sallcylic acid, toluene, and uracil. The dataset has been benchmarked by
GDML, SchNet, and DeePMD [11, 12, 17]. Unlike previous models, our emphasis here is to train one
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environment of atom i, taking water as an example. Atom j is a
generic neighbor of atom i, ðex; ey; ezÞ is the local frame of atom
i, ex is along the O─H bond, ez is perpendicular to the plane of
the water molecule, ey is the cross product of ez and ex, and
ðxij; yij; zijÞ are the Cartesian components of the vector Rij in this
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information, i.e., Dij ¼ f1=Rijg. We first sort the neighbors of
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hydrogens. Within each species, we sort the atoms according to
their inverse distances to atom i, i.e., 1=Rij. We use fDijg to
denote the sorted input data for atom i.
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box is an enlargement of a DNN. The relative positions of all
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ab initio MD trajectories, we swapped atomistic configurations between different temperatures or
randomly displaced the atomic positions after 1 ps. Furthermore, to enhance the sampling of the
configuration space, we used a relatively large time step of 10 fs, although this increased the number
of steps to achieve self-consistency for solving the Kohn-Sham equations [1] at each step.

For clarification, we use the term system to denote a set of data on which a unified DeepPot-SE
model is fitted, and use the term sub-system to denote data with different composition of atoms or
different phases within a system. For all systems, we also test the DeePMD model for comparison.
We used the DeePMD-kit package [26] for all training and testing tasks. The network structure and
the training scheme (learning rate, decay step, etc.) are summarized in the Supplementary Materials.
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can deal practically with approximationmethods
for the graph isomorphism problem.
Additionally, improved sequence generation

models are possible with the ability to read and
write to memory (69). These approaches demon-
strate better ability for learning long- and short-
termpatterns.Morework is neededonRiemannian
optimization methods that exploit the geometry
of latent space. Structured architectures such as
multilevel VAE (85) offer newways of organizing
latent space and are promising research direc-
tions. New approaches also lie in inverse RL,
geared toward learning a reward or loss function
(86). Research in this direction will allow for the
discovery of reward functions associated with
different materials discovery tasks.

Outlook

Inverse design is an important component of the
complex framework required to designmatter at
an accelerated pace. The tools for inverse design,
especially those stemming from the field of ma-
chine learning, have shown rapid progress in
the last several years and have allowed chemical
space to be framed into probabilistic data-driven
models. Generativemodels produce large numbers
of candidate molecules, and the physical realiza-
tions of these candidates will require automated
high-throughput efforts to validate the genera-
tive approach. The community has yet has to
show more than a few examples of successful

closed-loop approaches for the design of matter
(87). The blurring of the barriers between theory
and experiment will lead to AI-enabled auto-
mated laboratories (88, 89).
The combination of inverse design tools with

active learning approaches such as Bayesian
optimization (90, 91) can enable a model that
adapts as it explores chemical space, which
allows for expanding a model in regions of
high uncertainty and enabling the discovery
of regions of molecular space with desirable
properties as a function of composition. Active
learning in the space of objective functions could
lead to a better understanding of the best rewards
to seek while carrying out machine learning.
As seen, central to machine learning meth-

odologies is the representation of molecules;
representations that encode the relevant physics
will tend to generalize better. Despite consider-
able progress, much work remains. Graph and
hierarchical representations of molecules are an
area requiring further study.
The integration of machine learning as a new

pillar of knowledge in the curricula of chemical,
biochemical, medicinal, and materials sciences
will allow for a more rapid adoption of themeth-
odologies summarized in this work.
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Fig. 4. Schematic representation of several architectures found in
generative models. RNNs are used for sequence generation. The VAE
shows the semi-supervised variant, jointly trained by molecules (x) and
properties (y). Latent space is denoted with Z, and latent vectors with z.
In the GAN setting, the noise eventually acquires structure via the

adversarial training. Reinforcement learning (RL) shows a policy
gradient with MTCS in the task of SMILES completion with
arbitrary rewards. Shown in the lower right are hybrid architectures
such as AAE (adversarial autoencoders) and ORGAN, which represents
GAN and RL.
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can deal practically with approximationmethods
for the graph isomorphism problem.
Additionally, improved sequence generation

models are possible with the ability to read and
write to memory (69). These approaches demon-
strate better ability for learning long- and short-
termpatterns.Morework is neededonRiemannian
optimization methods that exploit the geometry
of latent space. Structured architectures such as
multilevel VAE (85) offer newways of organizing
latent space and are promising research direc-
tions. New approaches also lie in inverse RL,
geared toward learning a reward or loss function
(86). Research in this direction will allow for the
discovery of reward functions associated with
different materials discovery tasks.

Outlook

Inverse design is an important component of the
complex framework required to designmatter at
an accelerated pace. The tools for inverse design,
especially those stemming from the field of ma-
chine learning, have shown rapid progress in
the last several years and have allowed chemical
space to be framed into probabilistic data-driven
models. Generativemodels produce large numbers
of candidate molecules, and the physical realiza-
tions of these candidates will require automated
high-throughput efforts to validate the genera-
tive approach. The community has yet has to
show more than a few examples of successful

closed-loop approaches for the design of matter
(87). The blurring of the barriers between theory
and experiment will lead to AI-enabled auto-
mated laboratories (88, 89).
The combination of inverse design tools with

active learning approaches such as Bayesian
optimization (90, 91) can enable a model that
adapts as it explores chemical space, which
allows for expanding a model in regions of
high uncertainty and enabling the discovery
of regions of molecular space with desirable
properties as a function of composition. Active
learning in the space of objective functions could
lead to a better understanding of the best rewards
to seek while carrying out machine learning.
As seen, central to machine learning meth-

odologies is the representation of molecules;
representations that encode the relevant physics
will tend to generalize better. Despite consider-
able progress, much work remains. Graph and
hierarchical representations of molecules are an
area requiring further study.
The integration of machine learning as a new

pillar of knowledge in the curricula of chemical,
biochemical, medicinal, and materials sciences
will allow for a more rapid adoption of themeth-
odologies summarized in this work.
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Fig. 4. Schematic representation of several architectures found in
generative models. RNNs are used for sequence generation. The VAE
shows the semi-supervised variant, jointly trained by molecules (x) and
properties (y). Latent space is denoted with Z, and latent vectors with z.
In the GAN setting, the noise eventually acquires structure via the

adversarial training. Reinforcement learning (RL) shows a policy
gradient with MTCS in the task of SMILES completion with
arbitrary rewards. Shown in the lower right are hybrid architectures
such as AAE (adversarial autoencoders) and ORGAN, which represents
GAN and RL.

IM
A
G
E
:A

D
A
P
T
E
D

B
Y
K
.
H
O
LO

S
K
I

FRONTIERS IN COMPUTATION 

on N
ovem

ber 18, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

Latent 
Variables

Sanchez-Lengeling & Aspuru-Guzik, Science 2018

Simple  
Distributions

Complex  
Distribution

Generate

Inference



p(x)
<latexit sha1_base64="l+MU6Wop3O4gDLGg4JnxmuonPhM=">AAACEHicbVDNSsNAGNzUv1r/oj16WSxCvZREBPVW9OKxgrGFNpTNZtMu3WzC7kYaQp7CB/Cqj+BJvPoGPoGv4abNwbYOLDvMfB/fMF7MqFSW9W1U1tY3Nreq27Wd3b39A/Pw6FFGicDEwRGLRM9DkjDKiaOoYqQXC4JCj5GuN7kt/O4TEZJG/EGlMXFDNOI0oBgpLQ3NOoybAy9ivkxD/WXT/AwOzYbVsmaAq8QuSQOU6AzNn4Ef4SQkXGGGpOzbVqzcDAlFMSN5bZBIEiM8QSPS15SjkEg3m4XP4alWfBhEQj+u4Ez9u5GhUBbh9GSI1Fgue4X4n9dPVHDlZpTHiSIczw8FCYMqgkUT0KeCYMVSTRAWVGeFeIwEwkr3tXBFTYtoMq/pZuzlHlaJc966bln3F432TVlRFRyDE9AENrgEbXAHOsABGKTgBbyCN+PZeDc+jM/5aMUod+pgAcbXL/rwnUs=</latexit><latexit sha1_base64="l+MU6Wop3O4gDLGg4JnxmuonPhM=">AAACEHicbVDNSsNAGNzUv1r/oj16WSxCvZREBPVW9OKxgrGFNpTNZtMu3WzC7kYaQp7CB/Cqj+BJvPoGPoGv4abNwbYOLDvMfB/fMF7MqFSW9W1U1tY3Nreq27Wd3b39A/Pw6FFGicDEwRGLRM9DkjDKiaOoYqQXC4JCj5GuN7kt/O4TEZJG/EGlMXFDNOI0oBgpLQ3NOoybAy9ivkxD/WXT/AwOzYbVsmaAq8QuSQOU6AzNn4Ef4SQkXGGGpOzbVqzcDAlFMSN5bZBIEiM8QSPS15SjkEg3m4XP4alWfBhEQj+u4Ez9u5GhUBbh9GSI1Fgue4X4n9dPVHDlZpTHiSIczw8FCYMqgkUT0KeCYMVSTRAWVGeFeIwEwkr3tXBFTYtoMq/pZuzlHlaJc966bln3F432TVlRFRyDE9AENrgEbXAHOsABGKTgBbyCN+PZeDc+jM/5aMUod+pgAcbXL/rwnUs=</latexit><latexit sha1_base64="l+MU6Wop3O4gDLGg4JnxmuonPhM=">AAACEHicbVDNSsNAGNzUv1r/oj16WSxCvZREBPVW9OKxgrGFNpTNZtMu3WzC7kYaQp7CB/Cqj+BJvPoGPoGv4abNwbYOLDvMfB/fMF7MqFSW9W1U1tY3Nreq27Wd3b39A/Pw6FFGicDEwRGLRM9DkjDKiaOoYqQXC4JCj5GuN7kt/O4TEZJG/EGlMXFDNOI0oBgpLQ3NOoybAy9ivkxD/WXT/AwOzYbVsmaAq8QuSQOU6AzNn4Ef4SQkXGGGpOzbVqzcDAlFMSN5bZBIEiM8QSPS15SjkEg3m4XP4alWfBhEQj+u4Ez9u5GhUBbh9GSI1Fgue4X4n9dPVHDlZpTHiSIczw8FCYMqgkUT0KeCYMVSTRAWVGeFeIwEwkr3tXBFTYtoMq/pZuzlHlaJc966bln3F432TVlRFRyDE9AENrgEbXAHOsABGKTgBbyCN+PZeDc+jM/5aMUod+pgAcbXL/rwnUs=</latexit>

Probabilistic Generative Modeling

How to express, learn, and sample from a 
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“… the images encountered in 
AI applications occupy a 
negligible proportion of

the volume of image space.”
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Figure 2.D.1: Example application of a VAE in [Gómez-Bombarelli et al.,
2016]: design of new molecules with desired chemical properties. (a) A latent
continuous representation z of molecules is learned on a large dataset of
molecules. (b) This continuous representation enables gradient-based search
of new molecules that maximizes some chosen desired chemical property
given by objective function f (z).
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Figure 2.D.1: Example application of a VAE in [Gómez-Bombarelli et al.,
2016]: design of new molecules with desired chemical properties. (a) A latent
continuous representation z of molecules is learned on a large dataset of
molecules. (b) This continuous representation enables gradient-based search
of new molecules that maximizes some chosen desired chemical property
given by objective function f (z).
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51
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For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det

 
@x
@z

!������ , (1)

where q(x) is the normalized probability density of the phys-
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✏sign(rxJ(✓,x, y))
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Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.
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in deep learning, in which deep neural networks can even
reach billions of parameters [33]. In the history of machine
learning, gradient-free algorithms were employed to optimize
small-scale neural networks [34]. However, they failed to
scale up to a larger number of parameters. It is the back-
propagation algorithm [35] which can e�ciently compute the
gradient of the neural network output with respect to the
network parameters enables scalable training of deep neural
nets. It is thus highly demanded to have scalable quantum al-
gorithms for estimating gradients on actual quantum circuits.

Recently, gradient-based learning of quantum circuits has
been devised for quantum control [36] and discriminative
tasks [37, 38]. Although they are still less e�cient compared
to the back-propagation algorithm for neural networks, these
unbiased gradient algorithms can already greatly accelerate
the quantum circuit learning. Unfortunately, direct application
of these gradient algorithms [36–38] to QCBM training is still
non-trivial since the output of the generative model is gen-
uinely bit strings which follow high-dimensional probability
distributions. In fact, it is even an ongoing research topic
in deep learning to perform di↵erentiable learning of implicit
generative model with discrete outputs [24, 39].

In this paper, we develop an e�cient gradient-based learn-
ing algorithm to train the QCBM. In what follows, we first
present a practical quantum-classical hybrid algorithm to train
the quantum circuit as a generative model in Sec. II, thus
realize a Born machine. Then we apply the algorithm on
3 ⇥ 3 Bars-and-Stripes and double Gaussian peaks datasets
in Sec. III. We show that the training is robust to moderate
sampling noise, and is scalable in circuit depth. Increasing
the circuit depth significantly improves the representational
power for generative tasks. Finally, we conclude and discuss
caveats and future research directions about the QCBM in
Sec. IV.

II. MODEL AND LEARNING ALGORITHM

Given a dataset D = {x} containing independent and iden-
tically distributed (i.i.d.) samples from a target distribution
⇡(x), we set up a QCBM to generate samples close to the
unknown target distribution. As shown in Fig. 1, the QCBM
takes the product state |0i as an input and evolves it to a
final state | ✓i by a sequence of unitary gates. Then we can
measure this output state on computation basis to obtain a
sample of bits x ⇠ p✓(x) = |hx| ✓i|2. The goal of the training
is to let the model probability distribution p✓ approach to ⇡.

We employ a classical-quantum hybrid feedback loop as
the training strategy. The setup is similar to the Quantum
Approximate Optimization Algorithm (QAOA) [40–42] and
the Variational Quantum Eigensolver (VQE) [43–45]. By
constructing the circuits and performing measurements re-
peatedly we collect a batch of samples from the QCBM.
Then we introduce two-sample test as a measure of distance
between generated samples and training set, which is used
as our di↵erentiable loss. Using a classical optimizer which
takes the gradient information of the loss function, we can
push the generated sample distribution towards the target

Figure 1. Illustration of the di↵erentiable QCBM training scheme.
Top left is the quantum circuit which produce bit string samples. The
dashed box on the right denotes two-sample test on the generated
samples and training samples, with the loss function (Eq. (1)) and
corresponding gradients (Eq. (2)) as outputs. �✓ is the amount of
updated to be applied to the circuit parameters, which are computed
by a classical optimizer. The outcome of the training is to produce
a quantum circuit which generates samples according to the learned
probability distribution on the computational basis.

distribution.

A. Quantum Circuit Architecture Design

The overall circuit layout is similar to the IBM variational
quantum eigensolver [45], where one interweaves single qubit
rotation layers and entangler layers shown in Fig. 1. The
rotation layers are parameterized by rotation angles ✓ = {✓↵

l
},

where the layer index l runs from 0 to d, with d the maximum
depth of the circuit. ↵ is a combination of qubit index j and
arbitrary rotation gate index, where the arbitrary rotation gate
has the form U(✓ j

l
) = Rz(✓

j,1
l

)Rx(✓ j,2
l

)Rz(✓
j,3
l

) with Rm(✓) ⌘
exp
⇣�i✓�m

2

⌘
. The total number of parameters in this QCBM

is (3d + 1)n, with n the number of qubits [46].
We employ CNOT gates with no learnable parameters for

the entangle layers to induce correlations between qubits. In
light of experimental constraints on the connectivity of the
circuits, we make the connection of the entangle layers to be
sparse by requiring its topology as a tree (i.e. the simplest
connected graph). From the classical probabilistic graph-
ical model’s perspective [13], the tree graph that captures
information content of the dataset most e�ciently is Chow-
Liu tree [47]. Since controlled unitary gates have a close
relation with classical probability graphical models [48], we
employ the same Chow-Liu tree as the topology of CNOT
gates. To construct the Chow-Liu tree we first compute mutual
information between all pairs of the bits for samples in the
training set as weights, and then construct the maximum
spanning tree using, for example, the Kruskal’s algorithm.
The assignment of the control bit and the target bit on a bond
is random, since the Chow-Liu algorithm treated directed
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learning, gradient-free algorithms were employed to optimize
small-scale neural networks [34]. However, they failed to
scale up to a larger number of parameters. It is the back-
propagation algorithm [35] which can e�ciently compute the
gradient of the neural network output with respect to the
network parameters enables scalable training of deep neural
nets. It is thus highly demanded to have scalable quantum al-
gorithms for estimating gradients on actual quantum circuits.

Recently, gradient-based learning of quantum circuits has
been devised for quantum control [36] and discriminative
tasks [37, 38]. Although they are still less e�cient compared
to the back-propagation algorithm for neural networks, these
unbiased gradient algorithms can already greatly accelerate
the quantum circuit learning. Unfortunately, direct application
of these gradient algorithms [36–38] to QCBM training is still
non-trivial since the output of the generative model is gen-
uinely bit strings which follow high-dimensional probability
distributions. In fact, it is even an ongoing research topic
in deep learning to perform di↵erentiable learning of implicit
generative model with discrete outputs [24, 39].

In this paper, we develop an e�cient gradient-based learn-
ing algorithm to train the QCBM. In what follows, we first
present a practical quantum-classical hybrid algorithm to train
the quantum circuit as a generative model in Sec. II, thus
realize a Born machine. Then we apply the algorithm on
3 ⇥ 3 Bars-and-Stripes and double Gaussian peaks datasets
in Sec. III. We show that the training is robust to moderate
sampling noise, and is scalable in circuit depth. Increasing
the circuit depth significantly improves the representational
power for generative tasks. Finally, we conclude and discuss
caveats and future research directions about the QCBM in
Sec. IV.

II. MODEL AND LEARNING ALGORITHM

Given a dataset D = {x} containing independent and iden-
tically distributed (i.i.d.) samples from a target distribution
⇡(x), we set up a QCBM to generate samples close to the
unknown target distribution. As shown in Fig. 1, the QCBM
takes the product state |0i as an input and evolves it to a
final state | ✓i by a sequence of unitary gates. Then we can
measure this output state on computation basis to obtain a
sample of bits x ⇠ p✓(x) = |hx| ✓i|2. The goal of the training
is to let the model probability distribution p✓ approach to ⇡.

We employ a classical-quantum hybrid feedback loop as
the training strategy. The setup is similar to the Quantum
Approximate Optimization Algorithm (QAOA) [40–42] and
the Variational Quantum Eigensolver (VQE) [43–45]. By
constructing the circuits and performing measurements re-
peatedly we collect a batch of samples from the QCBM.
Then we introduce two-sample test as a measure of distance
between generated samples and training set, which is used
as our di↵erentiable loss. Using a classical optimizer which
takes the gradient information of the loss function, we can
push the generated sample distribution towards the target

Figure 1. Illustration of the di↵erentiable QCBM training scheme.
Top left is the quantum circuit which produce bit string samples. The
dashed box on the right denotes two-sample test on the generated
samples and training samples, with the loss function (Eq. (1)) and
corresponding gradients (Eq. (2)) as outputs. �✓ is the amount of
updated to be applied to the circuit parameters, which are computed
by a classical optimizer. The outcome of the training is to produce
a quantum circuit which generates samples according to the learned
probability distribution on the computational basis.

distribution.

A. Quantum Circuit Architecture Design

The overall circuit layout is similar to the IBM variational
quantum eigensolver [45], where one interweaves single qubit
rotation layers and entangler layers shown in Fig. 1. The
rotation layers are parameterized by rotation angles ✓ = {✓↵

l
},

where the layer index l runs from 0 to d, with d the maximum
depth of the circuit. ↵ is a combination of qubit index j and
arbitrary rotation gate index, where the arbitrary rotation gate
has the form U(✓ j

l
) = Rz(✓

j,1
l

)Rx(✓ j,2
l

)Rz(✓
j,3
l

) with Rm(✓) ⌘
exp
⇣�i✓�m

2

⌘
. The total number of parameters in this QCBM

is (3d + 1)n, with n the number of qubits [46].
We employ CNOT gates with no learnable parameters for

the entangle layers to induce correlations between qubits. In
light of experimental constraints on the connectivity of the
circuits, we make the connection of the entangle layers to be
sparse by requiring its topology as a tree (i.e. the simplest
connected graph). From the classical probabilistic graph-
ical model’s perspective [13], the tree graph that captures
information content of the dataset most e�ciently is Chow-
Liu tree [47]. Since controlled unitary gates have a close
relation with classical probability graphical models [48], we
employ the same Chow-Liu tree as the topology of CNOT
gates. To construct the Chow-Liu tree we first compute mutual
information between all pairs of the bits for samples in the
training set as weights, and then construct the maximum
spanning tree using, for example, the Kruskal’s algorithm.
The assignment of the control bit and the target bit on a bond
is random, since the Chow-Liu algorithm treated directed
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