https://github.com/wangleiphy/dl4csrc Slides & Codes

Create new file	Upload filesFind fileClone or downloadLatest commit 2920a5d 11 hours14 hours14 hours14 hours11 hours21 hours3 days3 days
ning for Comput	Latest commit 2920a5d 11 hours 14 hours 14 hours 11 hours 21 hours 3 days
ning for Comput	14 hours 14 hours 11 hours 21 hours 3 days
ning for Comput	14 hours 11 hours 21 hours 3 days 3 days
ning for Comput	11 hours 21 hours 3 days 3 days
ning for Comput	21 hours 3 days 3 days
ning for Comput	3 days 3 days
ning for Comput	3 days
ning for Comput	
ning for Comput	
	ational Scientists"

Deep Learning for Computational Scientists

Lei Wang (王磊) https://wangleiphy.github.io

Institute of Physics, Beijing Chinese Academy of Sciences

especially computational science

Game changing technology for scientific research

Lecture Notes in Physics

John W. Clark Thomas Lindenau Manfred L. Ristig (Eds.)

Scientific Applications of Neural Nets

> Proceedings, Bad Honnel, Germany 1998

8

Springer

Gem in between this and last hype cycles

Doing Science With Neural Nets: Pride and Prejudice

When neural networks re-emerged on the scene in the mid-80s as a new and glamorous computational paradigm, the initial reaction in some sectors of the scientific community was perhaps too enthusiastic and not sufficiently critical. There was a tendency on the part of practitioners to oversell the powers of neural-network or "connectionist" solutions relative to conventional techniques - where conventional techniques can include both traditional theory-rich modeling and established statistical methods. The last five years have seen a correction phase, as some of the practical limitations of neural-network approaches have become apparent, and as scientists have become better acquainted with the wide array of advanced statistical tools that are currently available.

> Why now, again ? What has changed? What has not?

Hitchhiker's guide to deep learning

Hands on time

Plan

Secrets behind deep learning

Key components

Data

Cost function

Model

Optimization

Switch to blackboard

Some applications

Materials informatics

Density functionals

Molecular simulation

"Phase" recognition

Machine learning energy potential

-4 -2 0 2 4

Atom species, position...

Zhang, Han, Wang, Car, E, PRL 2018 Zhang, Han, Wang, Saidi, Car, E, NIPS 2018

Machine learning energy potential

Atom species, position...

Zhang, Han, Wang, Car, E, PRL 2018 Zhang, Han, Wang, Saidi, Car, E, NIPS 2018

Phase classifications

Ising configurations

label

"Machine Learning Phase of Matter" Carrasquilla and Melko, 1605.01735

+ many more on quantum spins, fermions, disordered, topological systems ...

Deep learning is more than function fitting

Discriminative $y = f(\mathbf{x})$ or $p(y | \mathbf{x})$

Generative

 $p(\mathbf{x}, \mathbf{y})$

Deep learning is more than function fitting

I do not understand. Why const × Sort. PO TOLEARN Bethe Ansitz Prob. Know how to solve every problem that has been solved Non Linear Dessical Hugh

"What I can not create, I do not understand"

Generated Arts

https://www.christies.com/Features/A-collaboration-between-two-artists-one-human-one-a-machine-9332-1.aspx

\$432,500 **25 October 2018 Christie's New York**

Generated Arts

https://www.christies.com/Features/A-collaboration-between-two-artists-one-human-one-a-machine-9332-1.aspx

\$432,500 25 October 2018 **Christie's New York**

Generate Molecules

Latent Variables

Simple Distributions

Generate

Inference

Complex Distribution

Sanchez-Lengeling & Aspuru-Guzik, Science 2018

Probabilistic Generative Modeling

How to express, learn, and sample from a high-dimensional probability distribution ?

"random" images

З	4	7	8	9	0	1	2	3	4	5	6	7	8	6
5	5	4	7	8	9	2	9	3	9	3	8	2	0	5
6	5	3	5	3	8	0	0	3	4	1	5	3	0	8
1	Ĵ	8	1	1	1	З	8	9	1	6	7	4	1	6
9	8	0	6	9	4	9	9	3	7	1	9	2	2	5
4	5	6	7	8	9	D	1	2	3	4	5	6	7	0
6	7	8	9	8	1	0	5	5	1	Ŷ	0	4	7	9
8	5	0	6	5	5	3	3	3	9	8	7	4	0	6
7	7	3	2	8	8	7	8	4	6	0	2	0	3	6
9	3	R	4	9	٠4	6	5	3	Z	Ľ	5	9	4	/
З	4	5	6	7	ଞ	9	0	T	2	3	4	5	6	7
3	U	5	6	7	ଞ	9	6	4	2	6	4	7	5	6
Ŷ	3	۶	3	8	2	0	q	8	0	5	6	٥	f	0
5	4	3	4	l	5	3	0	૬	3	0	6	2	7	1
3	8	5	4	2	C	9	7	6	7	4	1	6	8	4
7	1	٩	જ	Ö	6	9	4	9	9	6	2	3	7	1
7	8	0	1	2	3	4	5	6	7	8	0	1	2	3
0	1	2	3	4	5	6	7	8	9	2	1	2	1	3
7	0	7	7	5	7	9	9	4	7	0	3	4	7	4
4	8	4	1	8	6	6	4	6	3	5	7	2	5	9

"natural" images

Proba

How high-

"... the images encountered in Al applications occupy a negligible proportion of the volume of image space."

"random

bdeling

DEEP LEARNING

Ian Goodfellow, Yoshua Bengio, and Aaron Courville

from a oution ?

Page 159

Probabilistic Generative Modeling $p(\mathbf{x})$

How to express, learn, and sample from a high-dimensional probability distribution ?

https://blog.openai.com/generative-models/

Timeline of Generative Models

Boltzmann Machines	Variational Autoendoer	Adversar Networ
1980s	2013	2014
	-((

Leverage the power of modern generative models for physics

Statistical, quantum, and fluid mechanics inspired generative models

Switch to blackboard

U

Variational ansatz

Renormalization group

Application of generative models

Quantum tomography

Monte Carlo update

Application of generative models

Automatic chemical design, Gomez-Bombarelli et al, 1610.02415

DL as a fluid control problem

$$\frac{p(z)}{q(\nabla u(z))} = \det\left(\frac{\partial^2 u}{\partial z_i \partial z_j}\right)$$

$$u(z) = |z|^2/2 + \epsilon \varphi(z)$$

$$\epsilon \to 0$$

Monge-Ampère equation in optimal transport theory

Simple density

Continuous-time limit

$$\frac{\partial p(\boldsymbol{x},t)}{\partial t} + \nabla \cdot \left[p(\boldsymbol{x},t) \nabla \varphi \right]$$

Continuity equation of compressible fluids

Complex density

Zhang, E, LW, 1809.10188 c.f. Neural ODE, 1806.07366

DL as a fluid control problem

$$\frac{p(z)}{q(\nabla u(z))} = \det\left(\frac{\partial^2 u}{\partial z_i \partial z_j}\right)$$

Continuous-time limit

 $u(z) = |z|^2/2 + \epsilon \varphi(z)$ $\epsilon \rightarrow 0$

Monge-Ampère equation in optimal transport theory

Simple density

$$\frac{\partial p(\boldsymbol{x},t)}{\partial t} + \nabla \cdot \left[p(\boldsymbol{x},t) \nabla \varphi \right]$$

Continuity equation of compressible fluids

Complex density

Zhang, E, LW, 1809.10188 c.f. Neural ODE, 1806.07366

Density estimation of hand-written digits

A standard benchmark for generative models, lower is better

Data space

Latent space

State-of-the-art performance in unstructured density estimation

Variational study of spin glasses

SK model, N = 10, beta = 1

Better variational energy than previous architectures

What is the secret behind deep learning?

Representation Leanring

Goodfellow, Bengio, Courville, <u>http://www.deeplearningbook.org/</u>

Page 6 Figure 1.2

Magic of learned representations

Neural style transfer

Gatys et al, 1508.06576

Latent space interpolation

Glow 1807.03039 https://blog.openai.com/glow/

Magic of learned representations

Neural style transfer

Gatys et al, 1508.06576

Latent space interpolation

Glow 1807.03039 https://blog.openai.com/glow/

Latent space Hybrid MC

Latent space energy function $E_{\text{eff}}(z) = E(g(z)) + \ln q(g(z)) - \ln p(z)$

Physical energy function E(x)

HMC thermalizes faster in the latent space

NeuralRG, Shuo-Hui Li and LW, 1802.02840

Latent space Hybrid MC

Latent space energy function $E_{\text{eff}}(z) = E(g(z)) + \ln q(g(z)) - \ln p(z)$

Physical energy function E(x)

HMC thermalizes faster in the latent space

NeuralRG, Shuo-Hui Li and LW, 1802.02840

Remarks on accelerated MC

- 1. Cheap surrogate function for MC weight Neal 96' Jun. S Liu 01' A recommender engine for MC updates when the surrogate is a generative model: Huang, LW, 1610.02746, Liu, Qi, Meng, Fu, 1610.03137
- 2. Reinforcement learning the transition kernel: Song et al, 1706.07561, Levy et al 1711.09268, Cusumano-Towner et al 1801.03612, Bojesen, 1808.09095
- 3. Performs MC in the variationally learned disentangled representation: Wavelet MC, Ismail 03', NeuralRG 18'

 $+.007 \times$

Panda Gibbon Confidence 58% Goodfellow et al, 2014 Confidence 99% Vulnerability of deep learning, Kenway, 1803.06111 & 1803.10995

Deep learning and RG

't Hooft, Gross, Wilczek, Kadanoff, Wilson, Fisher... Bény, Mehta, Schwab, Lin, Tegmark, You, Qi ...

Differentiable Programming

Andrej Karpathy

Director of AI at Tesla. Previously Research Scientist at OpenAI and PhD student at Stanford. I like to train deep neural nets on large datasets.

https://medium.com/@karpathy/software-2-0-a64152b37c35

Writing software 2.0 by searching in the program space

Differentiable Programming

Benefits compared to 1.0

- Computationally homogeneous
- Simple to bake into silicon
- Constant running time
- Constant memory usage
- Highly portable & agile
- Modules can meld into an optimal whole
- Better than humans

Writing software 2.0 by searching in the program space

Andrej Karpathy

Director of AI at Tesla. Previously Research Scientist at OpenAI and PhD student at Stanford. I like to train deep neural nets on large datasets.

https://medium.com/@karpathy/software-2-0-a64152b37c35

Differentiable Scientific Programming

- Most linear algebra libraries are <u>differentiable</u>
- Condition/Sort/Permutations are also differentiable
- ODE integrators are differentiable with O(1) memory
- Differentiable ray tracer and Differentiable fluid simulations
- Differentiable Monte Carlo/Tensor Network/Functional RG/ Dynamical Mean Field Theory/Density Functional Theory...

Differentiable Eigensolver

What happen if H = H + dH? **Forward mode:** Perturbation theory

Reverse mode: How should I change H given Inverse perturbation theory! $\partial \mathscr{L}/\partial \Psi$ and $\partial \mathscr{L}/\partial \Lambda$?

Hamiltonian engineering via differentiable programming

$H\Psi = \Psi \Lambda$

Differentiable Quantum Programming

×d

Short term:

What can we do with circuits of limited depth? [0]

Long term:

Are we really good at programing quantum compters?

Quantum code

With Liu, Zeng, Wu, Hu 1804.04168, 1808.03425

Differentiable Quantum Programming

×d

Short term:

What can we do with circuits of limited depth? [0]

Long term:

Are we really good at programing quantum compters?

Quantum code

With Liu, Zeng, Wu, Hu 1804.04168, 1808.03425

What is a deep neural network?

Tensor Net

3. Information Processing Device

Probabilistic Transformation

Hands on time!

Differentiable Ising solver

Fun with normalizing flows

https://github.com/wangleiphy/dl4csrc

Back propagation from scratch

Jin-Guo Liu	Xiu-Zhe Luo	Pan
Jinfeng Zeng	Yufeng Wu	Dia

Zhang an Wu

Song Cheng Shuo-Hui Li

Linfeng Zhang Weinan E

