Generative models for physicists
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@ Generative models and their physics genes

@ Applications: electron gases and dense hydrogen
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Computational Neuroscience: Theoretical Insights into Brain Function

To recognize shapes, first learn to generate images

Geoffrey E. Hinton -

Department of Computer Science, University of Toronto, 10 Kings College Road, Toronto, M5S 3G4
Canada




ChatGPT: Optimizing Language Models for Dialogue
November 30, 2022 — Announcements, Research

DALL-E API Now Available in Public Beta
November 3, 2022 — Announcements, API

DALL-E Now Available Without Waitlist
September 28, 2022 — Announcements

Introducing Whisper
September 21, 2022 — Research

DALL-E: Introducing Outpainting
August 31, 2022 — Announcements

Our Approach to Alignment Research
August 24, 2022 — Research

New and Improved Content Moderation Tooling
August 10, 2022 — Announcements

DALL-E Now Available in Beta
July 20, 2022 — Announcements

OpenAI Technical Goals
June 20, 2016 — Announcements

Generative Models

June 16, 2016 — Research, Milestones

Team Update
May 25, 2016 — Announcements

OpenAI Gym Beta
April 27, 2016 — Research

Welcome, Pieter and Shivon!
April 26, 2016 — Announcements

Team++
March 31, 2016 — Announcements

Introducing OpenAl
December 11, 2015 — Announcements

https:/openai.com/blog/
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Probabilistic Probabilistic
Machine Learning Machine Learning

Advanced Topics

Kevin P. Murphy Kevin P. Murphy

2022 (855 pages) 2023 (1352 +332 pages)

https:/probml.github.io/pml-book/
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Boltzmann Variational Diffusion Born Flow
Machine Autoencoder Model Machine Matching
1035 2013 2015 2017 2022
Monte Carlo Variational Nonequilibrium  Tensor networks Fluid optimal
[sing model mean field thermodynamics Quantum circuits  transportation
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@ Leverage the power of modern generative models for physics

© Statistical, quantum, fluid, ... physics insights into generative models


https://arxiv.org/abs/1610.02415
https://arxiv.org/abs/1802.02840

https:/future.com/how-to-build-gpt-3-for-science/

H OW tO B U i I.d a G PT'3 for Generative P ccrained L ransformer

SCience (scientific literature and data) text ~ p(text|prompt)

Josh Nicholson You may ask (prompts):

Posted August 18, 2022

Galactica, ChemGPT, MaterBERT, - . ) y
ChemCrow, MatChat... Tell me why my treatment idea won't work

“Tell me why this hypothesis is wrong”

“Generate a new treatment idea”

“What evidence is there to support social policy X?”
“Who has published the most reliable research in this
field?”

“Write me a scientific paper based on my data”



Lan gu age — anyth]n g yOu can tokenl 76 Meta Al, Galactica: A Large Language Model for Science, 2211.09085

Modality Sequence
Text Abell 370 is a cluster...
TEX r_{s} = \frac{2GM}{c"2}
Code class Transformer (nn.Module)
] SMILES C(C(=0)0)N
“CN1C=NC2=CI1C(=O)N(C(=O)N20O)C”
AA Sequence MIRLGAPQTL. .
Simplified Molecular-Input Line-Entry System (SMILES)
DNA Sequence CGGTACCCTC. .

https:/whitead.github.io/svelte-chem-algebra

mol algebra

‘gpt—4

mutate‘ ‘add ‘sub‘

Comment | Published: 19 May 2023

STy — The future of chemistry is language

Andrew D. White

Nature Reviews Chemistry (2023) \ Cite this article




Generative Al for matter engineering

latent chemical

space space

Generation p(x | y)

—_——— — a
-— -

Prediction p(y | x)

Review: “Inverse molecular design using machine learning”, Sanchez-Lengeling & Aspuru-Guzik, Science 18
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DeepMind

CASP 15 invited talk by John Jumper

Mapping ML methods to Outline

protein problems

John Jumper . . .
" e Generative models and diffusion
e Protein language models and the scaling hypothesis

e Next problems

CASP15

CASP 14 (2020) : CASP 15 (2022)

Sum(Zscore>0.0)

Sum(Zscore>0.0)
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Generative Al for matter computation

Renormalization group  Molecular simulation  Lattice field theory

Li and LW, PRL ‘18 Noe et al, Science ‘19 Albergo et al, PRD ‘19
Li, Dong, Zhang, LW, PRX 20 Wirnsberger et al, JCP 20 Kanwar et al, PRL 20

These are principled calculations: quantitatively accurate,
interpretable, reliable, and generalizable even without data



Generative models and their physics genes

Tensor

Networks

Goodfellow,

NIPS tutorial, 1701.00160
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How to express

high-dimensional probability distribution ?
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“natural” images

“random” images
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Boltzmann Machines “Born” Machines

Cheng, Chen, LW, Entropy 18,

Ackley, Hinton, Sejnowski, Cognitive Science, 85 Han et al. PRX 18" Liu et al PRA 18
an et al, ,Liueta 1

e_E(x)

p) = — pix) =) [

statistical physics quantum physics



Born machine: a quantum (inspired) generative model
pl) = |P@)[°

Quantum c1rcu1t reahzatlons Tensor network Born machines

.< Matrix Product State / PEPS

Tensor Train

Rigetti to bu11d UK s first 664664
commercial quantum computer R

Siddharth Venkataramakrishnan in London SEPTEMBER 2 2020 Hierarchical Tucker MERA

Among the first tasks for the computer is creating a “Quantum
Circuit Born Machine”, said Alexei Kondratyev, managing director & ﬁ

lonQ and GE R Applications of Quantum
' < : . Cambridge Quantum
Potential of Qué g, i .1, earning ge O
Aggregation
June 23, 2022
Finance — Quantum-enhanced variational inference on
COLLEGE PARK, Md., hidden Markov models for time-series data
promising early results ' — Born Machines for foreign exchange spot o
the benefits of quantum return modeHing H ' | be rt Space
distributions in risk man — Sampling financial data for Monte Carlo
ricing using quantum GANs and Born i
Leveraging a Quantum aachi?,es 9 States W'th |0W
Circuit Born Machine- A/ entanqlement
based framework on Pharmaceuticals and — Meta-heuristics for faster biomarker -
standardized, historical ~ Healthcare discovery in drug development based on
indexes, lonQ and GE quantum circuit Born machines

— Medical diagnosis with quantum-enhanced
inference on Bayesian networks

Research, the central
innovation hub for the C



Generative models and their physics genes

Tensor

Networks

Goodfellow,

NIPS tutorial, 1701.00160
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So, why bother ?

Normalization ?

dep(x)

Sampling ?

xX~p(x)




So, why bother ?

Normalization Sampling

Mackay, Information Theory, Inference, and Learning Algorithms Krauth, Statistical Mechanics: Algorithms and Computations

We are going to see how modern generative models resolve these two issues



Generative models

Statistical physics

Negative log-likelihood

Energy function

Score function

Force

[L.atent variables

Collective variables/coarse
graining/renormalization group

Partition function

Free energy calculation

Sample diversity

Enhanced sampling




Two sides of the same coin

Generative modeling Statistical physics
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Known: samples Known: energy function
Unknown: generating distribution Unknown: samples, partition function
“learn from data” “learn from energy”
Z = — Egugm |In p(x)] F=E. E(x) + kgT In p(x)]
x~p(x

KlL(data || p) v§ KL(p || e %)



Kullback-Leibler divergence
KL(z || p) = JdXﬂ(X) [ln n(x) — In p(x)]
KL(z || p) 2 O

KL(z || p) =0 = a(x) = p(x)

KL(z || p) # KL(p || =)



.earn from data

7(X) Z 5(x — d)

dedata

m@in Kﬂ_(;T | p\g) — m@in {_[Exrvdata [ln pg(x)] }

target  model Maximum likelihood estimation

The lower bound is the entropy of the dataset: complete memorization



Learn from Energy

72'()6) X O —E/kp T

min KL(p, || z) < min { E [E(x) + kpT In pg(x)] }
0 /* \ 0 X~Py(X)

model  target Variational free energy

The lower bound is the true free energy: exact solution



Nature tries to minimize free energy

F=E-1S

energy entropy
"X X o : .‘
"X X o

"X X e

Fis a cost function of Nature
Almost the *same* cost function for training deep generative models



The variational free energy principle

Gibbs-Bogolyubov-Feynman

Flp] = de p(x)[E() + kT Inpx)| > F
x l |

variational density energy entropy

Difficulties in Applying the Variational

Principle to Quantum Field Theories: Generative

models!
Richard P. Feynman

—— —

itranscript of his talk in 1987




Deep variational free energy approach

Deep generative models unlock the power of
the Gibbs—Bogolyubov-Feynman-variational principle

Fpl= E_ E) + kgTInpQe)| o 1o Zhans vri 1o
x~p(x

i l with normalizing flow &
autoregressive models
energy entropy (&2
\/ Tractable entropy \/ Direct sampling

better leverages the deep learning engine: %




Forward KL or Reverse KL ?

Maximum likelihood estimation Variational free energy
m@in KL(data || pg) min KL(py || e~£*sT)
0
Mode covering Mode seeking
data
2 - = Po 2
< <
O L
A A
2 2
3 3
© ©
Q — Q
0 - 0
aw aw
- -~

Goodfellow et al, Deep Learning



GPT A human expert

“Jack of all trades, master of none” — 2302.10724

filling the gap vs pushing the boundary of human knowledge



_ 1 [ (g(z) —p(z))°
| Daplle) =5 [ L
Y -le@fg@Il(:@ Minka, Microsoft Research Technical Report 2005 lim Do (p || q) = KL(¢|| p)
Di(pllq) = 2/ (\/p(:v) - \/Q(I))le‘
[, ap(z) + (1 — a)q(z) — p(x)*q(z)'~*dz  lm Dalp|l9) =KL(p || )
Dalplla) = ol — a) L[ () — a(@)?
vlla) =5 [ P
np | "p | "p | ij\ /K
= —00 a =0 a = 0.5 a=1 o = o0
Fisher diwergence, defined as
F(g,p) = [ |I[Vlogq(#) — Vlogp(8)|*q(0) do,



Autoregressive models
p(x) = p(x))p(x, | x)p(x3 [ X1, X5) -

Language: GPT 2005.14165 Speech: WaveNet 1609.03499

Otpt @ @ © 0 0 0 000000 OO© O

Hidden .~ ~ ~ A ~A /& /& A /A & o o o o

“... quick brown fox jumps ...”

&\%(]umps‘ o ) Hdden 5 65 0 00000000000

LLLLL

||||| 00000000 O0CO0COO0COO0O

Image: PixelCNN 1601.06759 Molecular graph: 1810.11347
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Autoregressive models
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Demo: Generative model of Sycamore data

Quantum chip bitstrings ~ | Y(x) B Transformer
011110110100 .
100001111011 s
100110110111 (Ex=a
100110100010 ——
010100011000 }“iﬁiij;‘iiid} N
010001000000 N = | ==
010101101100 | s
100001111000 Eﬂ O 65322'3;3'
100101001001 T
001000001010 o o

Can we fake the measurement of the sycamore quantum circuit by training a transformer?

https://colab.research.google.com/drive/1tWarogULkudKT?2h2isJ6r EmA4wFKkoZ?usp=sharin




Implementation: autoregressive masks

Masked Autoencoder Germain et al, 1502.035009

A1

O— X,

Bit strings  X» Xn  Probabilities

x3 _’O X3
p(x;) = Bernoulli(x,) p(x,|x;) = Bernoulli(x,) p(x3]x1,x,) = Bernoulli(x;)

Other ways to implement autoregressive models: recurrent networks



Implementation: autoregressive masks

Masked convolutional Masked self-attention

Pixel CNN, van den Oord et al, 1601.06759 Causal transformer, 1706.03762

0 255

‘T

A/~

g v,
.

OO | = | = | K=

SIS | = | = |+

O 1 OO | = | =
O | |1 O | = | =
OO | |1 | = | =




input

The transformer block

self
attention 9

(standardizes
along the
embedding

dimension)

I

h

LP
H O

ttps:

C

output

LL

terbloem.nl/blog/transformer

S



Masked self-attention

raw attention weights mask X X2 X3 X4 X5  Xg



Learning to Generate Reviews and Discovering Sentiment

1704.01444

Alec Radford! Rafal Jozefowicz' Ilya Sutskever !

We explore the properties of byte-level recur-
rent language models. When given sufficient
amounts of capacity, training data, and compute
time, the representations learned by these models
include disentangled features corresponding to
high-level concepts. Specifically, we find a single
unit which performs sentiment analysis. These
representations, learned in an unsupervised man-
ner, achieve state of the art on the binary subset of
the Stanford Sentiment Treebank. They are also
very data efficient. When using only a handful
of labeled examples, our approach matches the
performance of strong baselines trained on full
datasets. We also demonstrate the sentiment unit
has a direct influence on the generative process
of the model. Simply fixing its value to be pos-
itive or negative generates samples with the cor-
responding positive or negative sentiment.

Number of Reviews

“Sentiment neuron”

1000+

800 -

600

400

2001

Negative reviews
Positive reviews

-3 —2 -1 0 1
Value of the Sentiment Neuron




Generative Pretraining from Pixels

Representation learned
by image GPT

Mark Chen! Alec Radford! Rewon Child! Jeff Wu! Heewoo Jun! Prafulla Dhariwal' David Luan'
Ilya Sutskever !

Inspired by progress in unsupervised representa-
tion learning for natural language, we examine

whether similar models can learn useful repre- +00

sentations for images. We train a sequence Trans- - B
former to auto-regressively predict pixels, without ©

incorporating knowledge of the 2D input structure. S 30.

Despite training on low-resolution ImageNet with- §

out labels, we find that a GPT-2 scale model learns S 70

strong 1mage representations as measured by lin- ®  CIFAR.10

ear probing, fine-tuning, and low-data classifica- = 60 CIEAR-100
tion. On CIFAR-10, we achieve 96.3% accuracy —— STL-10

with a linear probe, outperforming a supervised 505 10 50 30 20 =0
Wide ResNet, and 99.0% accuracy with full fine- layer

tuning, matching the top supervised pre-trained Figure 2. Representation quality depends on the layer from which
models. An even larger model trained on a mix- we extract features. In contrast with supervised models, the best
ture of ImageNet and web images 1s competitive representations for these generative models lie in the middle of the
with self-supervised benchmarks on ImageNet, network. We plot this unimodal dependence on depth by showing
achieving 72.0% top-1 accuracy on a linear probe linear probes for iGPT-L on CIFAR-10, CIFAR-100, and STL-10.

of our features.



Variational autoregressive network for statistical mechanics

Sherrington-Kirkpatrick spin glass

Naive mean-field
N|\/|F ' factorized probability P (X ) — Hp (xi)
O Bethe i
- -« VAN o x
=X - — Exact Bethe approximation p(X) — H p(xi) H P ( ¢ J)
GCD pairwise interaction i ek p(xi)p(xj)
W 124
S
LL 14| Variational autoregressive p(X) — H p(xi ‘ x<i)
network |
(a) i
-1.6

0.5 1 1.5 Wu, LW, Zhang, PRL "19

B github.com/wdphyi6/stat-mech-van




Probability

1073 -

—i
S
6))

1077 -

Variational autoregressive quantum states

w(o) = y(o))y(o, | o))y(os| 0y, 0,)

Direct sampling

6~ |y(o) |’
is good for this

0 100 200 300

Hilbert Space Index

B FCI

XXC RBM
A CISD

400

500

N2 molecule, Choo et al, Nat. Comm. 20

Objective function: ground state energy

McMillan 1965, Carleo & Troyer Science 2017

(wlHly) _
(w|w)

o~|y(0)|’

Hy (o)
w(o)

Sharir, Levine, Wies, Carleo, Shashua, PRL 20

Hibat-Allah, Ganahl, Hayward, Melko, Carrasquilla, PRResarch ‘20
Barrett et al, Nat. Mach. Intell. '22

Zhao et al, MLST. "23
Shang et al, 2307.00343



Scaling law

Kaplan et al, 2001.08361

/ 4.2
6 - — L=(D/5.4-1013)_0'095 50 - — L=(N/8.8-1013)_0'076
3.9
4.8
0 4.0
94
"g,'; 3.3 39
= 3.
3.0
2.4
L = (Cmin/2.3-108)70-050
109 107 107> 1073 107! 10! 108 109 105 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

“It would also be exciting to find a theoretical framework from which the scaling relations can
be derived: a ‘statistical mechanics’ underlying the ‘thermodynamics’ we have observed.”



Emergent abilities: more is different

Wei et al, 2206.07632
https:/www.jasonwei.net/

(A) Mod. arithmetic

—eo— LaMDA —=— GPT-3

——— Gopher

—#— Chinchilla

—&— PaLM

- = = Random

(B) IPA transliterate

(C) Word unscramble

(D) Persian QA

50 | 50 | 50 | 50 |
40 | 40 | X2 40 X2 40
BO /_O\ ~— ~—
30 > 30 S 30 S 30
S - = = o o - .
= 20 | = 20| = 20 = 20
o — +~ +~
S M z z
< 10| 10 | 5 10 o 5 10
0F- ---- 0F- ---- 0 | -e—omemn®S__ _. 0|

1018 1020 1022 1024

1018 1020 1022 1024

1018 1020 1022 1024

1018 1020 1022 1024

(E) TruthfulQA (F) Grounded mappings (G) Multi-task NLU (H) Word in context
70 | 70 | 70 | 70|
60 60 | 60 |
S 5 50 | 5 50 F - -
> 40 > 40 | > 40 |
5 5 5
= 30 = 30 - = 30 [
S 20 S 20| S 20|
< < <
10 10 | 10 |
O B \ \ \ O B \ \ \ O B \ \ \ O B \ \ \
1020 1022 1024 1020 1022 1024 1020 1022 1024 1020 1022 1024

Model scale (training FLOPs)

blog/emergence



Are Emergent Abilities of Large Language Models a
Mirage?

2304.15004

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo

Computer Science, Stanford University

L
Accuracy(N) = py (single token correct)™™ °H kS — oxp ( — (IN/ c)a>

"The researcher’s choice of metric can nonlinearly and/or
discontinuously transform the error rate in a manner that causes the
model performance to appear sharp and unpredictable.”



Generative models and their physics genes

Tensor

Networks

Goodfellow,

NIPS tutorial, 1701.00160
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Normalizing flows

b Parallel WaveNet 1711.10433 @ Glow 1807.03030
https:/deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/ https:/blog.openai.com/glow



https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/

Normalizing flows

b Parallel WaveNet 1711.10433 @ Glow 1807.03030
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Normalizing flow in a nutshell
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Physics intuition of normalizing flow

el center-of-mass
E motion
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High-dimensional, nonlinear, learnable, composable transformations



Flow architecture design

Composability

Balanced

inductive bias . ll.'l'

0 . . .
det <£> Autoregressive Blockwise Continuous flow




Example of a building block

Forward arbitrary Z< Z>
neural nets
RPN -~ N
Xs =250 e’%<) 4 1H(zZ<) @
Inverse C

®

Z> = (X¥s — Hx<)) O e~ S¥<) K /

{ ©

LLog-Abs-Jacobian-Det X X

In |det (?9_;) = Zi [S(Z<)]i Real NVP, Dinh et al,1605.08803

Turns out to have surprising connection Stormer—Verlet integration



Why is flow useful for physics?
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Effective theory emerges upon Physics happens on a manifold
transformation of the variables  Train neural nets to unfold that manifold



Neural network renormalization group

Collective variables

Physical variables

L per site

Li, LW, PRL "18 lio1258¢9/NeuralRG
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Neural network renormalization group

Li, LW, PRL "18 lio1258¢9/NeuralRG
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Quantum Version of the architecture

0) Multi-Scale
. . Entanglement

Renormalization

Ansatz

Entangled qubits



Connection to wavelets

Nonlinear & adaptive generalizations of wavelets
Guy, Wavelets & RG19g9g+ White, Evenbly, Qi, Wavelets, MERA, and holographic mapping 2013+



Neural network holographic RG

Physical variables on the boundary

RG flows along the radial direction

Information is preserved by the flow

Hu, Li, LW, You, PRR 20
See also Hashimoto et al 1809.10536, 2006.00712

/

Bijective
neural net

Mutual information reveals the emergent geometry in the bulk



Continuous normalizing flows
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Consider infinitesimal change-of-variables Chen et al1806.07366
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Continuous normalizing flows

det
()z

Consider infinitesimal change-of-variables Chen et al1806.07366

Inp(x) =InA(z) — In

0
X=2z+¢€v Inp(x) —InAN(z) = —1In det(1+ea—v)‘
<,
e — 0 \/
ax _ dinp(x,n) _

dt dt



Fluid physics behind flows

Zhang, E, LW 1800.10188

dx \ / wangleiphy/MongeAmpereFlow
=" >
[ P o d o Y.V “material
dInp(x,1) 7 \ ~ dt ot derivative”
=—V-.y
dt / Lagrangian v.s. Euler approach to fluid mechanics
op(x, 1)

——tV: pex, | =0
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Simple density Complex density



Infinitesimal Flows Another way to reduce the computational overhead of normalizing flows is
to use an ordinary differential equation to generate f [2]. In this case, the probability distribution
changes over a finite time from p(x;0) to p(z; T'), where z is the end point of a curve defined by the
ODE x(t) = v(x(t)), x(0) = x. For a small time step dt, we can approximate x(t + dt) to first
order as x(t + dt) = x(t) + dtv(x(t)) + O(dt?). Plugging this into Eq. 2 yields:

logp(x + dtv(x) + O(dt?);t + dt) = logp(x;t) — log |J s (x)| (3)
— logp(x;t) — log|I + dtJ (x) + O(dt?)] (4)

Taking a Taylor series gives:

logp(x;t + dt) + dtv(x)! Vlogp(x;t + dt) = logp(z;t) — dtTr(J,(x)) + O(dt?) (5)
which, in the limit as d¢t — 0, becomes:

Ologp(x;t)
ot

after some rearranging of terms. Here V- 1s the divergence of a vector field, which 1s just another
way of writing the trace of the Jacobian. The right-hand side of this equation 1s also the trace of
the Stein operator of the distribution p(x) applied to the function v(x), and plays a critical role in
Stein variational gradient descent (SVGD) [13]. Switching from the log density to the density (and

dropping the ¢ for clarity), we find this expression can be simplified considerably:

= —v(x)! Vlogp(x;t) — Tr(Jy(x)) = —v! Vlogp(x;t) — V - v (6)

L opx) _ VP o
o0 ot Y o) Y
D) — NTVpx) )V v
— -V (v(x)p(x)) 7)

This may also be familiar as the drift term of the Fokker-Planck equation [11, Eq. 6.48] or the
continuity equation for conservation of mass in fluid mechanics. We will denote the change to a

Pfau & Rezende
2012.02035



Neural Ordinary Differential Equations

Residual network ODE integration

LY. $-|
O O
O +H
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X, =X,+vx,) dx/dt = v(x)
Harbor el al 1705.03341
Lu et al 1710.10121,

Chen et al, 1806°O7366 E Commun. Math. Stat 17'...



Neural Ordinary Differential Equations

Residual network ODE integration

144 /

1 '
0= =570 5 0=—¢ 0 5
Input/Hidden/Output Input/Hidden/Output
X =X, T+ VX —
t+1 t ( t) dx/dt = v(x) Harbor el al 1705.03341

Lu et al 1710.10121,

Chen et al, 1806.07306 E Commun. Math. Stat 17'...



Backpropagate through an ODE

@
d
— = V(0.1 6 e

0L

Adjoint X(t) = e satisfies another ODE to be integrated back in time
X
dx (1) _ ov(x,0,1)
= —X(t)———
dt ox
Gradient w.r.t. parameter .
07 _ . ov(x,0,1) Exercise:
— = | dtx(t)————
00 0 00 Derive this!



Continuous normalizing flows
implemented with NeuralODE

Chen et al, 1806.07366, Grathwohl et al 1810.01367

Target Densit Samples Vector Fleld
f;\“
e 77 i)
~ A

Continuous normalizing flow have no structural

=

constraints on the transformation Jacobian



Continuous normalizing flows
implemented with NeuralODE
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The two use cases

Zhang, E, LW, 1800.10188

Maximum likelihood estimation Variational free energy

“learn from data” “learn from Energy”

& = — Egugag | In p(x)] F=E [E(x) + kgT In p(x)]




Demo: Classical Coulomb gas in a harmonic trap

1 2
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https:/colab.research.google.com/drive/1ylIPosCAjYrqWHeFEZrMIzZWNCoNJ6_YP#scrollTo=eQwLEIKmaowu




Case study: Normalizing flow for atomic solids

Variational free energy with a really deep permutation equivariant flow

_______ Bace System NV LFEP LBAR MBAR
5 Mode LJ 256  3.10800(28)  3.10797(1)  3.10798(9)
LJ 500 3.12300(41)  3.12264(2)  3.12262(10)
— In[E —pE(x)—In q(X)]
InZ=InkE,_,, [e
N free energy perturbation (Zwanzig 1954)

3 InZ;,—InZ,=Ink, [e‘ﬂ(EB_EA)]

Wirnsberger et al, 2111.08696  https:/github.com/deepmind/flows_for_atomic_solids

r/o |




Normalizing flow for atomic solids

F. Hardware details and computational cost

For our flow experiments, we used 16 A100 GPUs to train each model on the bigger
systems (H12-particle mW and 500-particle LJ). It took approximately 3 weeks of

training to reach convergence of the free-energy estimates. Obtaining 2M samples for
evaluation took approximately 12 hours on 8 V100 GPUs for each of these models.

For each baseline MBAR estimate, we performed 100 separate simulations for LJ
and 200 for mW, corresponding to the number of stages employed. These simulations
were performed with LAMMPS (8] and each of them ran on multiple CPU cores
communicating via MPI. We used 4 cores for the 64-particle and 216-particle mW

experiments and 8 cores for all other systems. The MD simulations completed after
approximately 11 and 14 hours for LJ (256 and 500 particles), and 7, 20 and 48 hours
for mW (64, 216 and 512 particles). To evaluate the energy matrix for a single MBAR

Heavy lifting is mostly due to back-and-forth simulation of deep equivariant flow



Training: Monte Carlo Gradient Estimators

Review: 1000.10052

V 0 |= X~pg [f(x )] Reinforcement learning

Variational inference
Variational Monte Carlo

Score function estimator (REINFORCE) Variational quantum algorithms

VoExp, f)| = Ex~py fx) Veln];@(x)]

Pathwise estimator (Reparametrization trick) X = gg(Z)

Vg-:x,vpe [f(x)] — -:ZN/V(Z) [Vef (89(1))]




10.1

Guidance in Choosing Gradient Estimators

With so many competing approaches, we offer our rules of thumb in choosing an estimator, which
follow the intuition we developed throughout the paper:

If our estimation problem involves continuous functions and measures that are continuous
in the domain, then using th{ pathwise estimator]is a good default. It is relatively easy to
implement and a default implementation, one without other variance reduction, will typically
have variance that is low enough so as not to interfere with the optimisation.

If the cost function is not differentiable or a black-box function then the score-function or the

measure-valued gradients pre available. If the number of parameters is low, then the measure-

valued gradient will typically have lower variance and would be preferred. But if we have a
high-dimensional parameter set, then the' score function estimatoj should be used.

If we have no control over the number of times we can evaluate a black-box cost function,
effectively only allowing a single evaluation of it, then the score function is the only estimator
of the three we reviewed that is applicable.

The score function estimator should, by default, always be implemented with at least a basic
variance reduction. The simplest option is to use a baseline control variate estimated with a
running average of the cost value.

When using the score-function estimator, some attention should be paid to the dynamic range
of the cost function and its variance, and to find ways to keep its value bounded within a
reasonable range, e.g., transforming the cost so that it is zero mean, or using a baseline.

For all estimators, track the variance of the gradients if possible and address high variance by
using a larger number of samples from the measure, decreasing the learning rate, or clipping
the gradient values. It may also be useful to restrict the range of some parameters to avoid
extreme values, e.g., by clipping them to a desired interval.

The measure-valued gradient should be used with some coupling method for variance reduc-
tion. Coupling strategies that exploit relationships between the positive and negative compo-
nents of the density decomposition, and which have shared sampling paths, are known for the
commonly-used distributions.

If we have several unbiased gradient estimators, a convex combination of them might have
lower variance than any of the individual estimators.

If the measure is discrete on its domain then the score-function or measure-valued gradient
are available. The choice will again depend on the dimensionality of the parameter space.

In all cases, we strongly recommend having a broad set of tests to verify the unbiasedness of
the gradient estimator when implemented.

Mohamed et al, 1006.10652
VH [EXNPH [f(X)]

When to use which ?

More discussions

Roeder et al, 1703.009194
Vaitl et al 2206.09016, 2207.08219
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https:/github.com/deepmind/mc_gradients Mohamed et al, 1006.10652



Symmetries

; Normalizing ¥ =9
Invariance E.quivariance
p(gx) = p(x) T (82) =87 (@)

Spatial symmetries, permutation symmetries, gauge symmetries...



Flow on manifolds

Periodic variables, gauge fields, ...

Gemici et al 1611.02304, Rezende et al, 2002.02428, Boyda et al, 2008.05456
Neural ODE on manifolds, Falorsi et al, 2006.06663, Lou et al, 2006.10254, Mathieu et al, 2006.10605



Obstructions

Dupont et al 1004.01681, Cornish et al, 1009.13833, Zhang et al, 1007.12998, Zhong et al, 2006.00302...



Mix with other approaches

NNNNNNNNNN

----------------
bR ]
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e
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el Autoregressive NN

Prior —p
pz(z) €

e

g

Kingma et al, 1606.04934,...

—p Target
“ px(x)

Levy et al, 1711.09268, Wu et al 2002.06707, ...



Discrete flows

px) =ply =T (x))

Tran et al, 1905.10347, Hoogeboom et al, 1005.07376, van den Berg 2000.12459



Optimal Transport Theory

Monge problem (1781): How to transport earth with optimal cost ?
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Kantorovich Koopmans ' Brenier Villani Figalli

Fields Metal 10 Fields Metal 18

from Cuturi, Solomon NISP 2017 tutorial

Nobel Prize in Economics ’75




Optimal Transport Theory

Monge problem (1781): How to transport earth with optimal cost ?
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Optimal Transport Theory

Monge problem (1781): How to transport earth with optimal cost ?

\p(x)
74 / T ﬂ

N
, Under certain conditions
Brenier theorem (1991) . optimal map is Z— X =VuR)

Monge-Ampere Equation




Monge-Ampere Flow

Zhang, E, LW 1800.10188
wangleiphy/MongeAmpereFlow

op(x, 1)
ot

— 4+ V- [p(x t)Vgﬂ] = ()

@ Drive the flow with an “irrotational” velocity field

(2) Impose symmetry to the scalar valued potential for symmetric
generative model

pgx)=pkx) = pgx)=px)



Neural Canonical Transformations

Li, Dong, Zhang, LW, PRX "20 lio12589/neural C'T
Pi+w;O;

K(P,Q) = )

- 2

Symplectic
Flow

physical space latent space

Learn harmonic frequencies of the base to identify slow collective modes
See Bondesan et al 1006.04645, Ishikawa et al 2103.00372 for investigations on integrability



Generative models and their physics genes

Tensor

Networks

Goodfellow,

NIPS tutorial, 1701.00160
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Boltzmann machines

— = Lx~data [lnp(x)] plx) = e /7
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Boltzmann machines

— 7 Lx~data [lnp(x)] p(x) = e "W/7Z
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Boltzmann machines

— = Lx~data [lnp(x)] plx) = e /7

Generate

Vé’g — <V(9E>data o <V6’E>model
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Boltzmann machines
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[ will follow the score-matching route https:



Score matching

Minimizing Fisher divergence avoids the intractable partition function problem

Hr || p) = de n(x)| V. Inz(x) — V., Inp(x) i

[\

target model

However, it brings up another problem

How to learn the model without knowing V1n 7 ?



Implicit score matching

Integrate by parts  Hyvarinen JMLR ‘o5

Hz || p) = de n(x)( | VIn p(x) |2 + 2V21np(x)) + const.

The laplacian term can be difficult to compute Cheaper stochastic estimate:
Song et al, 1005.07088

Curiously, the same expression for the kinetic energy of a wavefunction

2

Vv
Y~ |VIny|* + Viny
1/ Li et al, 2307.08214

Forward laplacian:




Denoising score matching

Perturb data with small noise Vincent 2011
g(x) = IQ(x | Xo)7(x)dX, q(x | xg) = N (x;x,, 02)

Fisher divergence between perturbed data and model is computable

Nq || p) = Ey oy | VIng(x) — Vinp(x) |

= g (x| g) | Ving(x [x,) — VIn p(x) \2 + const .

Xg— X ] X
X — the restoring force V .
0]

Xo~7t(X)




Claim:

_qu(x) ‘ Vln Q(X) — S@ ‘2 —

Xo~7(X)

2
= g (x| g) | Ving(x |xy) —s,|~ + const.

!

score Sy, = VlInpy(x) Independent

Proof:

= ~or(x0) ‘qu(x‘xO)[S - Ving(x|xy)] = de()[dxn(x())q(x\xo)

of @

_XONJZ'(XO) _x~q(x\x0) ‘ 5 ‘2 — [dx() [dxn(x())Q(x ‘ x()) ‘ S ‘2 — JdXQ(x) ‘ S ‘2 — _x~q(x) ‘ S2 ‘

s+ Vg(x|xy)
q(x | Xp)

— J'de[dXﬂ(X())S ' VQ(X ‘ X())

= des - Vgx) =k, s VIngx)]



Why score matching did not take oft?

Hard to sample between modes with Langevin dynamics

€
X . =X+ 5 Vinp(x,) + \/E/V(O,I) x, ~ p(x,)

for e -0, t—>




From denoising score matching to diffusion model

Song et al, Generative modeling by estimating gradients of the data distribution, 1907.05600

Built upon this intuition, we propose to improve score-based generative modeling by 1) perturbing
the data using various levels of noise; and 2) simultaneously estimating scores corresponding to all
noise levels by training a single conditional score network. After training, when using Langevin
dynamics to generate samples, we 1nitially use scores corresponding to large noise, and gradually
anneal down the noise level. This helps smoothly transfer the benefits of large noise levels to low
noise levels where the perturbed data are almost indistinguishable from the original ones. In what
follows, we will elaborate more on the details of our method, including the architecture of our score
networks, the training objective, and the annealing schedule for Langevin dynamics.

Sohl-Dickstein et al, Deep unsupervised learning using nonequilibrium thermodynamics, 1503.03535

The essential idea, inspired by non-equilibrium
statistical physics, 1s to systematically and slowly
destroy structure in a data distribution through
an iterative forward diffusion process. We then
learn a reverse diffusion process that restores
structure in data, yielding a highly flexible and
tractable generative model of the data. This ap-

We present high quality image synthesis results using diffusion probabilistic models,
a class of latent variable models inspired by considerations from nonequilibrium
thermodynamics. Our best results are obtained by training on a weighted variational
bound designed according to a novel connection between diffusion probabilistic
models and denoising score matching with Langevin dynamics, and our models nat-
urally admit a progressive lossy decompression scheme that can be interpreted as a
generalization of autoregressive decoding. On the unconditional CIFAR10 dataset,
we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On
256x256 LSUN, we obtain sample quality similar to ProgressiveGAN. Our imple-
mentation is available at https://github. com/hojonathanho/diffusion.

Ho et al, Denoising diffusion probabilistic models, 2006.11239



From denoising score matching to diffusion model

Song et al, 1007.05600

The objective of denoising diffusion probabilistic model
Ho et al, 2006.11239

https:/cvpr2022-tutorial-diffusion-models.github.io

~

meln 4"t~2/1(0,T) %0~ 0 (%0)

~

<1"}(tf\iqt(}(t‘)(())HSO (Xt7 t) - v}(t log qt<Xt‘XO)H§

diffusion data diffused data neural score of diffused
time ¢ sample xg sample x; network data sample

Sample with annealed Langevin dynamics with decreasing steps ¢,

€
X, 1 =X+ Ets(xt, 1) + \/Et,/l/(O,I)



A tale of three equations

LLangevin equation (SDE)

X, = X, +fdt +/2dt. N (0,])

Fokker-Planck equation (PDE)

op(x, 1)
ot

+ V- [pGx,n)f| = Vp(x,1) =0

“Particle method” (ODE)

dax

—=f—Vinpx,t) =v
(Another way to reverse the diffusion is At f P (x, 1) Maoutsa et al, 2006.00702

via the reverse-time SDE Anderson 1982) Song et al, 2011.13456



A tale of three equations

LLangevin equation (SDE)

X, = X, +fdt +/2dt. N (0,])

Fokker-Planck equation (PDE)

op(x, t
p(x )+V
ot

- |p@.0(f = Vinpee,1) | =0

“Particle method” (ODE)

dax

—=f—Vinpx,t) =v
(Another way to reverse the diffusion is At f P (x, 1) Maoutsa et al, 2006.00702

via the reverse-time SDE Anderson 1982) Song et al, 2011.13456



- - 1 3/2 -
P(x, t):/d3x’ (47TD6) exp | — P(x',t—e), (9.18)

and simplified by the change of variables,

N

5 =3 +e(F)—F =

(9.19)
&’y =X (1+€V-0(x)) =d°%' (1+€V-v(X) +O(€?)).
Keeping only terms at order of €, we obtain
: i 2. 5
P(x,t)= [1 —eV-v(x)] f d’y (47TDE) e e P(x+y—ev(x),t—e€)
i 2.
—[1—€eV.0(x 39 ~ D¢
_[1 eV v(x)] /d y(47TDE) e 4D
I > o y;— 2€y,v;+ €20, 0P _
« | PG+ G —B(R)) - VP + 2 Eyzvf "N VP - -+ 0(e)
>0 > 2 0P 2
= [1—6V-v(x)] P—€ev-V+eDV-P —e€ ry FO(€7) |.
(9.20)
Equating terms at order of € leads to the Fokker—Planck equation,
P 5 S
— 4+V.J=0, with J=93P—DVP. (9.21)

ot

from Langevin
to Fokker-Planck

MEHRAN KARDAR

Statistical Physics of

Fields

more information - www.cambridge.org/9780521873413



.essons from diffusion models

Continuous normalizing flow has great potential: diffusion model is an “existence proof”

Going beyond maximum likelihood estimation training (even if we can)

https:/blog.alexalemi.com/

Break the loss into small pieces, sample them (layer-wise regression) diffusion. html

The conditional trick (originated from denoising score matching Vincent 2011)

A A

min By 4(0,7) B ~go (x0) Bx e (x:1x0) [0 (X2, £) — Vi, log g2 (x¢[%0)[5

diffusion data diffused data neural score of diffused
time ¢ sample xg sample x; network data sample

https:/cvpr2022-tutorial-diffusion-models.github.io




.essons from diffusion models

Continuous normalizing flow has great potential: diffusion model is an “existence proof”

Going beyond maximum likelihood estimation training (even if we can)

https:/blog.alexalemi.com/

Break the loss into small pieces, sample them (layer-wise regression) diffusion. html

The conditional trick (originated from denoising score matching Vincent 2011)

N

mein 43t~2/{((),T) ‘thth (x+) | ‘SH (Xta t) o vXt 10g dt (Xt) | ‘%

diffusion diffused neural score of
time ¢ data x; network diffused data
(marginal)

https:/cvpr2022-tutorial-diffusion-models.github.io




Flow matching

px,1) = 4 (0,I) ground truth px,0) = g(x)
base distribution velocity field w data distribution

op(x, 1)
ot

—>

+ V- |pGx, Hux, 0| =0

)
Z = E90.0)Ex~per.n |v9(x, 1) — u(x, t)|

Liu et al 2209.03003, Albergo et al, 2209.15571, Lipman et al, 2210.02747



The “conditional” trick

Given a conditional op(x ‘x()a 1)
continuity equation ot

+ V- [p(x | xg, Du(x | x0,1)| =0

Then, up to a constant, we have

2
2 = Froa0.)Exgmgag) Exmpalxgn | Yo 1) — u(x | Xo, f)|

We can learn the ground truth velocity by regressing on the conditional velocity



Claim: gCFM — gFM + const.

2
Where SZFM — _Z‘NCZ[(O,l) _pr(x,t) V@(x, t) — u(x, t) |

2
Zerm = B0 Exgmgoe) Exmpelg.s |v9(x 1) — u(x [ x, 1) |

p(x,1) = Jp(x | X, 1) g(Xp)dx, px,Du(x,t) = [p(x | X0, Du(x | xy, 1) g(xo)dx,

Proof:

2
2 2
Cxo~q(xo) Tx~pxlxgt) | YOl = [de[de(xO)p(x [ X0, 1) [vg|™ = dep(x, D1vel™ = Exopien

—X~q(xo) = x~p(x|x0,t) [VH ' u(x |x()9 t)] — de() JdXQ(x())p(x ‘x()a t) ["'9 ' u(x ‘x(), t)]

— dep(x, l‘)Vg - u(x, 1) = —x~p(x,1) [‘)H - u(x, t)]




Examples of flow matching

, dx
px|xy,t) =N ((1 — )Xy, t ) ux|xy,t) = ~ =X, — X,
/&\\ = =0xy + s,
x; ~ N0, Xo ~ q(x)
2
Z = E, 901 = ~qCio) Ex ~ 0.1 | VolXs 1) — (X — Xp)

Causalizing linear interpolation with rectified flow 2209.03003

- https:/www.cs.utexas.edu/~lgiang/rectflow/html/intro.html



Examples of flow matching

, dx
px|xy,t) =N ((1 — )Xy, t ) ux|xy,t) = ~ =X, — X,
/&\\ = =0xy + s,
x; ~ N0, Xo ~ q(x)
2
Z = E, 901 = ~qCio) Ex ~ 0.1 | VolXs 1) — (X — Xp)

Causalizing linear interpolation with rectified flow 2209.03003

- https:/www.cs.utexas.edu/~lgiang/rectflow/html/intro.html



Flow matching is all you need!

This framework contains various diffusion models as special cases

The base distribution does not have to be Gaussian

Fast generation with rectified transportation path (Liu et al 2209.03003)

400X speedup compared to continuous normalizing flow (Albergo et al, 2209.15571)

Surpasses diffusion model on Imagenet in likelihood and sample quality
(Lipman et al, 2210.02747)

CEDRIC VILLANI

Generalization to flow on Riemannian manifolds (Chen et al, 2302.03660) =

Part II Optimal transport and Riemannian geometry
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Demo: free energy of classical Coulomb gas

2
Z =E, 0.1 = o~ N (0,1 Cx ~exp(=BE)Z | ¥1 — X0 v(x, t)|

1

Z=Ey e €O ngx) = In#(0,]) - J V - vdt
0

—

Interpolate samples to
estimate free energy

I differences E——
Base density Target density
Gaussian samples Monte Carlo samples

https:/colab.research.google.com/drive/1t-Vk37Axxpo40B7uXFUNIk-zeCC2lcX3?usp=sharing
Jarzynski PRE "02, see also likelihood-based training of flows Wirnsberger et al, 2002.04013, 2111.08696




Generative models and their physics genes

Tensor

Networks

Goodfellow,

NIPS tutorial, 1701.00160

p(x)

4) Expli¢it density
N\

< / GAN

Direct

Implicit denswy

N

Tractable density

Approximate density

Markov Chain

GSN
-Fully visible belief nets
-NADE | / \ |
MADE Varlatlonal Markov Chain
-PixelRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)
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Variational autoencoders

Kingma, Welling, 1312.6114

Close connection to the variational calculus we have learned

—pE(x) (x,2)
e P\X, <
p(x) = ——— p|x) =
7 p(x)
Variational free energy Variational Bayes/Variational inference

[dx q(x)|In g(x) + PE(x)| > —InZ sz q(z]x)[In g(z|x) — In p(x,z)| > — In p(x)

representation of the input.




For each data we introduce

‘C(x) — <—lnp(x, Z) +1n6](z‘x)>z~q(z\x)/ (53)

which is a variational upper bound of — In p(x) since L(x) +1In p(x) =
KIL(g(z|x)||p(z|x)) > 0. We see that g(z|x) provides a variational ap-
proximation of the posterior p(z|x). By minimizing £ one effectively
pushes the two distributions together. And the variational free en-
ergy becomes exact only when g(z|x) matches to p(z|x). In fact, — L
is called evidence lower bound (ELBO) in variational inference.

We can obtain an alternative form of the variational free energy

Lo.p(x) = = (I o(3]2)) 1~y () + KL (g (20| [p(2).  G4)

The first term of Eq. (54) is the reconstruction negative log-likelihood,
while the second term is the KL divergence between the approximate
posterior distribution and the latent prior. We also be explicit about
the network parameters 0, ¢ of the encoder and decoder.

http:/wangleiphy.github.io/lectures/PlLtutorial.pdf




Learned MNIST
latent space

Kingma, Welling, 1312.6114
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Chemical design using continuous latent variables

Gomez-Bombarelli et al,1610.02415
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GAN

Gaussian Generative
Noise Network

il Z=

s
B e
:333‘ 2
;;j:‘
|
=, SV
p‘:‘.‘{} ‘.A!
§? ‘:;
£ MY
M
= b
".73.‘\ i
:

=

L/

: s S L E L L L TS L R R
T
Bs 8 5

Likelihood ftree simulator

R N o o ™ gl
o —————

e

¥

v,

4;- )
5

2\
Q| |
) |
) &
) E
) B
ol
Al
il
il

ey U SO

Prone to mode collapse “de’generate

el

e e
»
7 X

Il

; ;‘_4' (8
I A o oo (100 E, [t (4 mﬁﬂl? (5
j - — . \

DA S S = R N =)
T {: = Lf,k\pq
» & fqi““‘"\\“ '-""Q ST

B S g N A Nt
&
A =

More tricky to train than others

https:/www.christies.com/Features/A-collaboration-between-
two-artists-one-human-one-a-machine-g332-1.aspx

Performance have been surpassed by diffusion models

| found GAN to be less useful for quantitative scientific applications
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Gaussian Generative
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Generative models and their physics genes

Tensor

Networks

Goodfellow,

NIPS tutorial, 1701.00160

p(x)

4) Expli¢it density
N\

< / GAN

Direct

Implicit denswy

N

Tractable density

Approximate density

Markov Chain

GSN
-Fully visible belief nets
-NADE | / \ |
MADE Varlatlonal Markov Chain
-PixelRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)

1

U —

Quantum
Circuits

+Diffusion models

VVVVVVVV
‘‘‘‘‘‘

4 a

4444444444
vvvvvvvv

AAAAA



Generative Al for Science

@ HQW toBuilda GPT-3for  gcjentific language model
Science

@ .' % § Matter inverse design

@ F = F — TS Nature’s cost function

T T —




Ab-initio study of quantum matters at T>0

2 2 2
. h 2 h 2 VAT VAYAT:
T Ly, P Ly, T 4R, 5 2 & |R —R
7 _ g ‘ atmospheres | /A
Tokamak ©f neutron stars| ;%l ter.
6 - V /é“ -
. /// mterlor
. High pressure i /
-------- arcs ICF 7 /
d;-). f S —— | 7 " o i 1 ; 7 Quantum Monte Carlo methods
= iy SIS arge: ) ’_,»'/" '; : ;7 ’ are limited by the “sign problem”
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ﬂ D) | o ccaceeem==="TT : / : /| P/ / Y. ]
. 2 O I--°- 0 / : : - 1775 ‘
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Classical world

Probability density p

Kullback-Leibler divergence

KL (pllq)

Variational free-energy

F = de [%p(x)lnp(x) +p(x)E(x)]

Quantum world

Density matrix p

Quantum relative entropy

S(pllo)

Variational free-energy

F = %Tr(p Inp) + Tr(pH)



Variational density matrix with two generative models

Delbrick—Moliéere

s.t. Tip=1 p>=0 pl=p (XIp|X)=(—)(PX]|p|X)

\ Xie, Zhang, LW, JML “22

Quantum state basis |¥,)

<« >

v Normalizing flow

mln F [p] — kBT Tl‘(p ln p) —|— TI‘( H p) Gibbs-Bogolyubov-Feynman-

Classical probability p,

Discrete probabilistic models

particle
coordinates

e.g. an autoregressive model
c.f. Cranmer et al, 1004.05903, Saleh et al, 2308.16468



https://arxiv.org/search/physics?searchtype=author&query=Saleh,+Y

PHYSICAL REVIEW VOLUME 85, NUMBER ¢ FEBRUARY 15, 1952

Point Transformations in Quantum Mechanics

Bryce SrrLicMAN DEWITT*
Ecole d’'Eté de Physique T héorique de I’ Université de Grenoble, Les Houches, Haute Savoie, France

(Received September 14, 1951)

An isomorphism is shown to exist between the group of point transformations in classical mechanics and
a certain subgroup of the group of all unitary transformations in quantum mechanics. This isomorphism is

The unitary representations of the point-transforma-
tion group may be obtained by determining the
infinitesimal generators of the group. An infinitesimal
point transformation may be expressed in the form

¥ = x4+ eAi(x), (3.7)
p/=p—3d(0/05N @, pL, (3D

Coordinate transformation induces a unitary e2'"* )i+



ANNALS OF PHYSICS: 24, 63-88 (1963)

Point Transformations and the Many Body Problem™

M. EGerT anp E. P. (Gross

Branders University, Waltham, Massachusetts

An investigation is made of possible uses of many dimensional coordinate
transformations in the quantum many-body problem. The transformed Hamil-
tonian 18 quadratic in the momenta with a space dependent metrie. The original
potential energy undergoes alteration and an additional ‘‘metrie’’ potential
energy appears. A relatively complete analysis of the transformed original po-
tential 1s made, and the coordinate transformation can be used to suppress
undesirable features of the original potential. For bosons one can attempt to
directly map a complete set of noninteracting states onto approximate eigen-
states of the system with interactions. Contact 1s made with a theory of weakly
interacting bosons. In the general case it emerges that a given transformation
uniquely fixes all the spatial correlation functions, which can be explicitly com-
puted. The extended point transform can then be used as a link between diverse
experimental quantities. The full use of the transformation to compute from
first prineiples requires adequate approximations to the Jacobian and the in- \/ Normalizing flow
verse transform. These problems are not studied.

materialize this dream




Example: uniform electron gas

2 ) O PS

N 2
h-V: e
R T
=1 2m i<j |xi_xj‘ f o.o o

E [n] = JdSI‘ n(e. =+---)

Fundamental model for metals (2 < r, < 6) Input to the density
Fermi liquid despite of non-perturbative r functional theory calculations



Deep generative models for
the variational density matrix

. Normalized probability Orthonormal
Low-energy excited distribution many-electron basis

states are labeled in
@ D=1 @ (Yxl¥k) =dkx
K

the same way as the
ideal Fermi gas

K —_ {kl’k2’ ’kN}

Imposing physics constraints into deep generative models



@ Autoregressive model for p(K)

rermionic pK) = P(k1)P(k2 | k1)P(k3 |k1, kz)"‘

occupation
in k-space
Momentum [ aneuage
distribution U8
N # of fermions # of words dq Ul Ck
Momentum bl’ own f OX
M cutoff Vocabulary )
jumps
M N
Space M
N

Pauli exclusion: we are modeling a set of words with no repetitions and no order

We use masked casual self-attention Vaswani et al 1706.03762; Alternative solution: Hibat-Allah et al, 2002.02793, Barrett et al, 2109.12606



v/ Normalizing flow for |V )

Electron X C 5

coordinates

|

det(e™) 07\ |’
W (X)= —— - |det [ —
\V/N! 0X
k, Jacobian of the

transformation

Orthonormal many-body states

Fermion statistics: the flow should be permutation equivariant

we use FermiNet layer Pfau et al, 1009.02487, PRR "20



Feynman'’s backflow in the deep learning era

<——%¢Q§f‘-} = X+ 2 7( ‘xi — X; ) (xj — xi) .:;:m-we
Vkal

q,u.cusf ) pa cticle

Feynman & Cohen 1956
wavefunction for liquid Helium

- - —
- - = -
a O e © a O
OSE ‘SE ‘EE
=R = Q) = Q)
8 = C = 8 =
> > >

= = = s e
5"‘5 5"5 5"5
=3 = 3 = 3
= - Lo

[terative backflow — deep residual network — continuous normalizing flow

Taddei et al, PRB ‘15 E Commun. Math. Stat 17/, Harbor el al 1705.03341, Lu et al 1710.10121, Chen et al, 1806.07366



Fermi Flow

Xie, Zhang, LW, 2105.08644, JML ‘22

github.com/fermiflow

Continuous flow of electron density in a quantum dot


http://github.com/fermiflow/

Fermi Flow

Xie, Zhang, LW, 2105.08644, JML ‘22

github.com/fermiflow

Continuous flow of electron density in a quantum dot


http://github.com/fermiflow/

The objective function

(X |H|¥Pg)
K~p(K) XN‘<X|\}IK>‘2 <X‘ TK)
Boltzmann Born
distribution probability

Jointly optimize | W) and p(K) to minimize the variational free energy



Benchmarks on spin-polarized electron gases

3D electron gas T/ Tr=0.0625 2D electron gas T=0
—0.085
—(0.265-
—0.090 - —0.270-
> >
&= £5 —0.275-
~ —0.095 ~
—0.280-
—0.100 1 Brown et al, PRL ‘13 —0.285- Tanatar, Ceperley, PRB, ‘89
restricted PIMC N=33, rs=10 Slater-Jastrow VMC N=37, rs=5

10!
epochs epochs




Application: m* from low temperature entropy

Eich, Holzmann, Vignale, PRB ‘17

2
72«. kB ’/’/l>I< T Richard D. Mattuck

A Guide to Feynman

S —_— — —
Diagrams in the Many-
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noninteracting electrons

A fundamental quantity appears in nearly all physical properties of a Fermi liquid
There have been debates despite its fundamental role and long history of study



Quasi-particles effective mass of 3d electron gas

Hedin Phy. Rev. 1965 Azadi, Drummond, Foulkes, PRL 2021
1.2 -@- GWpsa(RPA)
ﬁ @ -« GWp(RPA)
| ’ -~ GWosa(Gy)
1.1 GWp(G)
: —8— GWp(G.&G-)
] — GWOSA(G+&G—)
1.0 -¥-- GW-SS
| M- GW-SRPA
X | X VDMC-Para)
S * 09 ® DMC-Para
1.05 E | Y DMC-Ferro
0.8-
0.7
0.6

o O 1 2 3 4 5 6 7 8 9 10
r re

> 50 years of conflicting results !



Two-dimensional electron gas experiments

week ending
VOLUME 91, NUMBER 4 PHYSICAL REVIEW LETTERS 25 JULY 2003

Spin-Independent Origin of the Strongly Enhanced Effective Mass
in a Dilute 2D Electron System

m*/m> 1
A. A. Shashkin,* Maryam Rahimi, S. Anissimova, and S.V. Kravchenko

Physics Department, Northeastern University, Boston, Massachusetts 02115, USA

V.T. Dolgopolov
Institute of Solid State Physics, Chernogolovka, Moscow District 142432, Russia

) - 0 0 |
T. M. Klapwijk
Department of Applied Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands \ o~

(Received 13 January 2003; published 24 July 2003)

k endi
PRL 101, 026402 (2008) PHYSICAL REVIEW LETTERS 11 JULY 2008
Effective Mass Suppression in Dilute, Spin-Polarized Two-Dimensional Electron Systems m=*/m< 1

Medini Padmanabhan, T. Gokmen, N. C. Bishop, and M. Shayegan

Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
(Received 19 September 2007; published 7 July 2008)

Layer thickness, valley, disorder, spin-orbit coupling...



37 spin-polarized electrons in 2D @ T/ Tr=0.15

/ Erszl ETS:3 §7“3:5 17“8:10
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Effective mass of spin-polarized 2DEG

1.0

0.9-
0.8+
0.7~

0.5-
0.4-

0.3~

0.2

+>0.6-

Previous excited state calculations
€«— extrapolated to N = o©

/ Drummond, Needs, PRB 13

k‘ Perturbative theory
\‘ valid for r, < 1
\ T
\
{}\
0 9 10

More pronounced suppression of m*in the low-density strong-coupling region



Experiments on spin-polarized 2DEG

Asgari et al, PRB ‘09

i

G*+/Dyson ——
G't/OSA ——

] |

5 10 15

m* (a.u.)

Drommond, Needs, PRB’13

e = GW,KO, SC [31]

I ' I ¥
x DMC (pres. work)
+ DMC [20]
Exp. [1]
- = GW, KO, OSA [31]

Quantum osci
Padmana

Go

lation experiments
ohan et al, PRL 08

<men et al, PRB ‘o9



Entropy measurement of 2DEG

ARTICLE

Received 16 May 2014 | Accepted 27 Apr 2015 | Published 23 Jun 2015

Strongly correlated two-dimensional plasma
explored from entropy measurements

A.Y. Kuntsevich?, Y.V. Tupikov3, V.M. Pudalov"? & L.S. Burmistrov®*

05 o |
Maxwell relation — | =—\|— e o
an T a T 7 1 \@f_\j&g\%& *A*A-u«‘.“ v L ?7};3 K

Electron density (10" cm™)

0S/on
N
/!ZI

Next, directly compare computed entropy with the experiment



FAQS

Where to get training data ?
No training data. Data are self-generated from the generative model.

How do we know 1t is correct ?

Variational principle: lower free-energy is better.

Do I understand the “black box” model ?

a) I don’t care (as long as it is sufficiently accurate).

1
' : Elom] = E €xOMy, + — S oy
b) In p(K) contains the Landau energy functional = Eot 2,60t 2 ooy

< X illustrates adiabatic continuity.



“Using Al to accelerate scientific discovery” Demis Hassabis, co-founder and CEO of DeepMind 2021

E

What makes for a suitable probl

Massive combinatorial Clear objective function Either lots of data

search space (metric) to optimise and/or an accurate and
against efficient simulator




Why now ?

Variational free-energy is a fundamental principle for T>0
quantum systems

However, it was under-exploited for solving practical problems
(mostly due to intractable entropy for nontrivial density matrices)

Now, it is has became possible by integrating recent advances in
generative models



The Universe as a generative model

Thank you!

Discovering physical laws: learning the action
Solving physical problems: optimizing the action



2.23
3.2
3-9
3.16

3-23
3-30

413

4.20

427

Overview

Machine learning practices

A hitchhiker’s guide to deep
learning

Research projects hands-on
Symmetries in machine learning
Differentiable programming
Generative models-I

Generative models-II

Research projects presentation

Al for science: why now ?

Machine learning for physicists
https:/github.com/wangleiphy/mlgp
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