Generative models for physicists

Lei Wang (王磊)
Institute of Physics, CAS
https://wangleiphy.github.io

Plan

(2) Generative models and their physics genes
(3) Applications: electron gases and dense hydrogen

Science is more than fitting, so is machine learning

Discriminative learning Generative learning

$$
y=f(\boldsymbol{x})
$$

$$
\text { or } p(y \mid x)
$$

$$
p(\boldsymbol{x}, y)
$$

Science is more than fitting, so is machine learning

Discriminative learning
Generative learning

$$
\begin{gathered}
y=f(\boldsymbol{x}) \\
\text { or } p(y \mid \boldsymbol{x})
\end{gathered}
$$

$$
p(\boldsymbol{x}, y)
$$

What I cannot create
O do not undentind.

Progress in Brain Research
Volume 165, 2007, Pages 535-547
Computational Neuroscience: Theoretical Insights into Brain Function

To recognize shapes, first learn to generate images

Geoffrey E. Hinton $\boldsymbol{2}$,
Department of Computer Science, University of Toronto, 10 Kings College Road, Toronto, M5S 3G4 Canada

ChatGPT: Optimizing Language Models for Dialogue
November 30, 2022 - Announcements, Research

DALL•E API Now Available in Public Beta
November 3, 2022 - Announcements, API

DALL•E Now Available Without Waitlist
September 28, 2022 - Announcements

Introducing Whisper

September 21, 2022 - Research

DALL•E: Introducing Outpainting

August 31, 2022 - Announcements

Our Approach to Alignment Research
August 24, 2022 - Research

New and Improved Content Moderation Tooling
August 10, 2022 - Announcements

OpenAI Technical Goals

June 20, 2016 - Announcements

```
Generative Models
June 16, 2016 - Research, Milestones
```


Team Update

```
May 25, 2016 - Announcements
OpenAI Gym Beta
April 27, 2016 - Research
Welcome, Pieter and Shivon!
April 26, 2016 - Announcements
```


Team++

```
March 31, 2016 - Announcements
```


Introducing OpenAI

```
December 11, 2015 - Announcements
```

1. Introduction
"Part III is the most important for a researcher -someone who wants to understand the breadth of perspectives that have been brought to the field of deep learning, and push the field forward towards true artificial intelligence."

2. Introduction -someone who wants to understand the breadth of perspectives that have been brought to the field of deep learning, and push the field forward towards true artificial intelligence."

Probabilistic Machine Learning

2022 (855 pages)

Probabilistic Machine Learning
$2023(1352+332$ pages $)$
https://probml.github.io/pml-book/

Boltzmann
Machine
1985

Monte Carlo
Ising model

Variational Autoencoder

2013
Diffusion
Model
2015

Born
Machine
2017

Flow
Matching
2022

Variational mean field

Nonequilibrium Tensor networks thermodynamics Quantum circuits

Fluid optimal transportation

$$
\frac{\partial p(\boldsymbol{x}, t)}{\partial t}+\nabla \cdot[p(\boldsymbol{x}, t) \boldsymbol{v}]=0
$$

(1) Leverage the power of modern generative models for physics
(2) Statistical, quantum, fluid, ... physics insights into generative models
https://future.com/how-to-build-gpt-3-for-science/

How to Build a GPT-3 for Science sscientifc literature and data)
 text $\sim p($ text \mid prompt $)$

Josh Nicholson
Posted August 18, 2022

Galactica, ChemGPT, MaterBERT, ChemCrow, MatChat...

You may ask (prompts):

"Tell me why this hypothesis is wrong"
"Tell me why my treatment idea won't work"
"Generate a new treatment idea"
"What evidence is there to support social policy X?"
"Who has published the most reliable research in this field?"
"Write me a scientific paper based on my data"

Language $=$ anything you can tokenize

II
"CN1C=NC2=C1C(=O)N(C(=O)N2C)C"
Simplified Molecular-Input Line-Entry System (SMILES)
https://whitead.github.io/svelte-chem-algebra/

Meta AI, Galactica: A Large Language Model for Science, 2211.09085

Modality	Sequence
Text	Abell 370 is a cluster...
$\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$	$r_{\text {_ }}\{\mathrm{s}\}=\backslash \mathrm{frac}\{2 \mathrm{GM}\}\left\{\mathrm{c}^{\wedge} 2\right\}$
Code	class Transformer (nn.Module)
SMILES	$\mathrm{C}(\mathrm{C}(=0) \mathrm{O}) \mathrm{N}$
AA Sequence	MIRLGAPQTL. .
DNA Sequence	CGGTACCCTC. .

Comment | Published: 19 May 2023
The future of chemistry is language

Andrew D. White \boxtimes

Nature Reviews Chemistry (2023) | Cite this article

Generative AI for matter engineering

Review: "Inverse molecular design using machine learning", Sanchez-Lengeling \& Aspuru-Guzik, Science '18

CASP 15 invited talk by John Jumper

Mapping ML methods to protein problems

Outline

- Generative models and diffusion
- Protein language models and the scaling hypothesis
- Next problems

Generative AI for matter computation

Renormalization group

Li and LW, PRL '18
Li, Dong, Zhang, LW, PRX '20

Molecular simulation

Noe et al, Science ' 19 Wirnsberger et al, JCP ' 20

Lattice field theory

Albergo et al, PRD '19 Kanwar et al, PRL ‘20

These are principled calculations: quantitatively accurate, interpretable, reliable, and generalizable even without data

Generative models and their physics genes

Probabilistic Generative Modeling

$p(\boldsymbol{x})$

How to express, learn, and sample from a high-dimensional probability distribution?

"random" images

"natural" images

Probab

DEEP LEARNING

lan Goodfellow, Yoshua Bengio, and Aaron Courville

How to
 high-din

eling

G

Page 159
"... the images encountered in Al applications occupy a negligible proportion of the volume of image space."
"random"

Boltzmann Machines

Ackley, Hinton, Sejnowski, Cognitive Science‘‘85

$$
p(\boldsymbol{x})=\frac{e^{-E(\boldsymbol{x})}}{Z}
$$

statistical physics

"Born" Machines

Cheng, Chen, LW, Entropy '18,
Han et al, PRX 18', Liu et al PRA '18

$$
p(\boldsymbol{x})=|\Psi(\boldsymbol{x})|^{2}
$$

quantum physics

Born machine: a quantum (inspired) generative model

$$
p(\boldsymbol{x})=|\Psi(\boldsymbol{x})|^{2}
$$

Quantum circuit realizations

Rigetti to build UK's first

 commercial quantum computerSiddharth Venkataramakrishnan in London SEPTEMBER 22020
Among the first tasks for the computer is creating a "Quantum Circuit Born Machine", said Alexei Kondratyev, managing director

IonQ and GE R
Potential of Que Aggregation June 23, 2022

COLLEGE PARK, Md. promising early results the benefits of quantum distributions in risk man
Leveraging a Quantum Circuit Born Machinebased framework on standardized, historical indexes, lonQ and GE Research, the central innovation hub for the C

Applications of Quantum Machine Learning
$\overline{\text { Cambridge Quantum }}$

Tensor network Born machines

Hilbert Space
States with low
entanglement

Generative models and their physics genes

So, why bother?

Normalization?
Sampling ?
$\int d x p(x)$

$$
\underset{x \sim p(x)}{\mathbb{E}}
$$

So, why bother?

Mackay, Information Theory, Inference, and Learning Algorithms

Sampling

Krauth, Statistical Mechanics: Algorithms and Computations

We are going to see how modern generative models resolve these two issues

Generative models	Statistical physics
Negative log-likelihood	Energy function
Score function	Force
Latent variables	Collective variables/coarse graining/renormalization group
Partition function	Free energy calculation
Sample diversity	Enhanced sampling

Two sides of the same coin

Generative modeling

Known: samples
Unknown: generating distribution
"learn from data"

$$
\mathscr{L}=-\mathbb{E}_{\boldsymbol{x} \sim \text { datata }}[\ln p(\boldsymbol{x})]
$$

Statistical physics

Known: energy function
Unknown: samples, partition function

"learn from energy"

$$
F=\underset{x \sim p(x)}{\mathbb{E}}\left[E(\boldsymbol{x})+k_{B} T \ln p(\boldsymbol{x})\right]
$$

Kullback-Leibler divergence

$$
\begin{aligned}
& \mathbb{K} \mathbb{L}(\pi \| p) \equiv \int d \boldsymbol{x} \pi(\boldsymbol{x})[\ln \pi(\boldsymbol{x})-\ln p(\boldsymbol{x})] \\
& \mathbb{K} \mathbb{L}(\pi \| p) \geq 0 \\
& \mathbb{K} \mathbb{L}(\pi \| p)=0 \Longleftrightarrow \pi(\boldsymbol{x})=p(\boldsymbol{x}) \\
& \mathbb{K} \mathbb{L}(\pi \| p) \neq \mathbb{K} \mathbb{L}(p \| \pi)
\end{aligned}
$$

Learn from data

$$
\pi(x) \propto \sum_{d \in \mathrm{data}} \delta(x-d)
$$

The lower bound is the entropy of the dataset: complete memorization

Learn from Energy

$$
\pi(\boldsymbol{x}) \propto e^{-E / k_{B} T}
$$

The lower bound is the true free energy: exact solution

Nature tries to minimize free energy

F is a cost function of Nature
Almost the *same* cost function for training deep generative models

The variational free energy principle

Gibbs-Bogolyubov-Feynman

Difficulties in Applying the Variational Principle to Quantum Field Theories ${ }^{1}$

Generative models!
Richard P. Feynman

Deep variational free energy approach

Deep generative models unlock the power of the Gibbs-Bogolyubov-Feynman-variational principle

$$
F[p]=\underset{x \sim p(x)}{\mathbb{E}}\left[\begin{array}{cc}
\downarrow \\
\text { energy }
\end{array} \quad\left[\begin{array}{c}
\downarrow \\
\\
\end{array}\right]+k_{B} T \ln p(\boldsymbol{x})\right]
$$

Li and LW, PRL ‘18 Wu, LW, Zhang, PRL '19 with normalizing flow \& autoregressive models

Tractable entropy
 Direct sampling

Turning a sampling problem to an optimization problem better leverages the deep learning engine:

Forward KL or Reverse KL?

Maximum likelihood estimation

$\min _{\theta} \mathbb{K} \mathbb{L}\left(\right.$ data $\left.\| p_{\theta}\right)$
Mode covering

Variational free energy

$\min \mathbb{K} \mathbb{L}\left(p_{\theta} \| e^{-E / k_{B} T}\right)$
 θ
 Mode seeking

"Jack of all trades, master of none" - 2302.10724
filling the gap vs pushing the boundary of human knowledge
α-divergence

$$
D_{-1}(p \| q)=\frac{1}{2} \int_{x} \frac{(q(x)-p(x))^{2}}{p(x)} d x
$$

$$
\lim _{\alpha \rightarrow 0} D_{\alpha}(p \| q)=\operatorname{KL}(q \| p)
$$

$$
D_{\alpha}(p \| q)=\frac{\int_{x} \alpha p(x)+(1-\alpha) q(x)-p(x)^{\alpha} q(x)^{1-\alpha} d x}{\alpha(1-\alpha)}
$$

$$
D_{\frac{1}{2}}(p \| q)=2 \int_{x}(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x
$$

$$
\lim _{\alpha \rightarrow 1} D_{\alpha}(p \| q)=\operatorname{KL}(p \| q)
$$

$$
D_{2}(p \| q)=\frac{1}{2} \int_{x} \frac{(p(x)-q(x))^{2}}{q(x)} d x
$$

$\alpha=0$

$\alpha=0.5$

$\alpha=1$

$\alpha=\infty$

Fisher divergence, defined as

$$
F(q, p)=\int_{\mathbb{R}^{d}}\|\nabla \log q(\theta)-\nabla \log p(\theta)\|^{2} q(\theta) d \theta
$$

Autoregressive models

$$
p(\boldsymbol{x})=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \cdots
$$

Language: GPT 2005.14165
".. quick brown fox jumps ..."

Image: PixelCNN 1601.06759

Speech: WaveNet 1609.03499

Molecular graph: 1810.11347

Autoregressive models

$$
p(\boldsymbol{x})=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \cdots
$$

Language: GPT 2005.14165
".. quick brown fox jumps ..."

Image: PixelCNN 1601.06759

Speech: WaveNet 1609.03499

Molecular graph: 1810.11347

Demo: Generative model of Sycamore data

Quantum chip

bitstrings $\sim|\Psi(x)|^{2}$

Transformer

Can we fake the measurement of the sycamore quantum circuit by training a transformer?

Implementation: autoregressive masks

Masked Autoencoder Germain et al, 1502.03509

Other ways to implement autoregressive models: recurrent networks

Implementation: autoregressive masks

Masked convolutional
PixelCNN, van den Oord et al, 1601.06759

Masked self-attention
Causal transformer, 1706.03762

The transformer block

input
output

Masked self-attention

$$
y_{i}=\sum_{j} \alpha\left(x_{i}, x_{j}\right) x_{j}
$$

raw attention weights

mask
$\begin{array}{lllll}\boldsymbol{y}_{1} & y_{2} & y_{3} & y_{4} & y_{5}\end{array}$

$\boldsymbol{\chi}_{1}$
\boldsymbol{x}_{2}
χ_{3}
$\boldsymbol{x}_{3} \quad \chi$
$\boldsymbol{\chi}_{4}$
χ_{5}
$\boldsymbol{\chi}_{5} \quad \chi_{6}$

Learning to Generate Reviews and Discovering Sentiment

"Sentiment neuron"

Alec Radford ${ }^{1}$ Rafal Jozefowicz ${ }^{1}$ Ilya Sutskever ${ }^{1}$

We explore the properties of byte-level recurrent language models. When given sufficient amounts of capacity, training data, and compute time, the representations learned by these models include disentangled features corresponding to high-level concepts. Specifically, we find a single unit which performs sentiment analysis. These representations, learned in an unsupervised manner, achieve state of the art on the binary subset of the Stanford Sentiment Treebank. They are also very data efficient. When using only a handful of labeled examples, our approach matches the performance of strong baselines trained on full datasets. We also demonstrate the sentiment unit has a direct influence on the generative process of the model. Simply fixing its value to be positive or negative generates samples with the corresponding positive or negative sentiment.

Representation learned by image GPT

Inspired by progress in unsupervised representation learning for natural language, we examine whether similar models can learn useful representations for images. We train a sequence Transformer to auto-regressively predict pixels, without incorporating knowledge of the 2D input structure. Despite training on low-resolution ImageNet without labels, we find that a GPT-2 scale model learns strong image representations as measured by linear probing, fine-tuning, and low-data classification. On CIFAR-10, we achieve 96.3% accuracy with a linear probe, outperforming a supervised Wide ResNet, and 99.0% accuracy with full finetuning, matching the top supervised pre-trained models. An even larger model trained on a mixture of ImageNet and web images is competitive with self-supervised benchmarks on ImageNet, achieving 72.0% top- 1 accuracy on a linear probe of our features.

Figure 2. Representation quality depends on the layer from which we extract features. In contrast with supervised models, the best representations for these generative models lie in the middle of the network. We plot this unimodal dependence on depth by showing linear probes for iGPT-L on CIFAR-10, CIFAR-100, and STL-10.

Variational autoregressive network for statistical mechanics

Sherrington-Kirkpatrick spin glass

Naive mean-field factorized probability

$$
p(\boldsymbol{X})=\prod_{i} p\left(x_{i}\right)
$$

Bethe approximation pairwise interaction

$$
p(\boldsymbol{X})=\prod_{i} p\left(x_{i}\right) \prod_{(i, j) \in E} \frac{p\left(x_{i}, x_{j}\right)}{p\left(x_{i}\right) p\left(x_{j}\right)}
$$

$\underset{\substack{\text { Variational autoregressive } \\ \text { network }}}{\text { V }} p(\boldsymbol{X})=\prod_{i} p\left(x_{i} \mid \boldsymbol{x}_{<i}\right)$

Wu, LW, Zhang, PRL '19
github.com/wdphy16/stat-mech-van

Variational autoregressive quantum states

$$
\psi(\boldsymbol{\sigma})=\psi\left(\sigma_{1}\right) \psi\left(\sigma_{2} \mid \sigma_{1}\right) \psi\left(\sigma_{3} \mid \sigma_{1}, \sigma_{2}\right) \cdots
$$

N 2 molecule, Choo et al, Nat. Comm. '2o

Objective function: ground state energy
McMillan 1965, Carleo \& Troyer Science 2017

$$
\frac{\langle\psi| \hat{H}|\psi\rangle}{\langle\psi \mid \psi\rangle}=\underset{\sigma \sim|\psi(\sigma)|^{2}}{\mathbb{E}}\left[\frac{\hat{H} \psi(\boldsymbol{\sigma})}{\psi(\boldsymbol{\sigma})}\right]
$$

Sharir, Levine, Wies, Carleo, Shashua, PRL'2o
Hibat-Allah, Ganahl, Hayward, Melko, Carrasquilla, PRResarch ' 20
Barrett et al, Nat. Mach. Intell. '22
Zhao et al, MLST. '23 Shang et al, 2307.09343

Scaling law

Kaplan et al, 2001.08361

"It would also be exciting to find a theoretical framework from which the scaling relations can be derived: a 'statistical mechanics' underlying the 'thermodynamics' we have observed."

Emergent abilities: more is different

\longrightarrow LaMDA \longrightarrow GPT-3 \longrightarrow Gophe
(B) IPA transliterate

\qquad - PaLM - . Random

Wei et al, 2206.07682
https://www.jasonwei.net/ blog/emergence

$\operatorname{Accuracy}(N) \approx p_{N}(\text { single token correct })^{\text {num. of tokens }}=\exp \left(-(N / c)^{\alpha}\right)^{L}$
"The researcher's choice of metric can nonlinearly and/or discontinuously transform the error rate in a manner that causes the model performance to appear sharp and unpredictable."

Generative models and their physics genes

Normalizing flows

(9) Parallel WaveNet 1711.10433

Normalizing flows

(9) Parallel WaveNet 1711.10433

Normalizing flow in a nutshell

Physics intuition of normalizing flow

High-dimensional, nonlinear, learnable, composable transformations

Flow architecture design

Composability

$$
\begin{gathered}
z=\mathscr{T}(\boldsymbol{x}) \\
\mathscr{T}=\mathscr{T}_{1} \circ \mathscr{T}_{2} \circ \mathscr{T}_{3} \circ \ldots
\end{gathered}
$$

Balanced
efficiency \& inductive bias

$$
\left|\operatorname{det}\left(\frac{\partial z}{\partial x}\right)\right|
$$

Autoregressive

Blockwise

$$
\frac{\partial p(\boldsymbol{x}, t)}{\partial t}+\nabla \cdot[p(\boldsymbol{x}, t) \boldsymbol{v}]=0
$$

Continuous flow

Example of a building block

Forward

$$
\left\{\begin{array}{l}
\boldsymbol{x}_{<}=\boldsymbol{z}_{<} \quad \text { neural nets } \\
\boldsymbol{x}_{>}=\boldsymbol{z}_{>} \odot e^{s\left(z_{<}\right)}+t\left(\boldsymbol{z}_{<}\right)
\end{array}\right.
$$

Inverse

$$
\left\{\begin{array}{l}
\boldsymbol{z}_{<}=\boldsymbol{x}_{<} \\
\boldsymbol{z}_{>}=\left(\boldsymbol{x}_{>}-t\left(\boldsymbol{x}_{<}\right)\right) \odot e^{-s\left(\boldsymbol{x}_{<}\right)}
\end{array}\right.
$$

Log-Abs-Jacobian-Det

$$
\ln \left|\operatorname{det}\left(\frac{\partial x}{\partial z}\right)\right|=\sum_{i}\left[s\left(z_{<}\right)\right]_{i}
$$

Real NVP, Dinh et al,16o5.08803

Why is flow useful for physics?

-

Renormalization group

Effective theory emerges upon transformation of the variables

Monte Carlo update

Physics happens on a manifold Train neural nets to unfold that manifold

Neural network renormalization group

Collective variables

Physical variables
Li, LW, PRL'18 lio12589/NeuralRG

Neural network renormalization group

Collective variables
Li, LW, PRL '18 lio12589/NeuralRG

Probability Transformation
$\ln p(x)=\ln \mathscr{N}(z)-\ln \left|\operatorname{det}\left(\frac{\partial x}{\partial z}\right)\right|$

Physical variables

Quantum version of the architecture

Entanglement
Renormalization
Ansatz

Connection to wavelets

Nonlinear \& adaptive generalizations of wavelets Guy, Wavelets \& RG1999+ White, Evenbly, Qi, Wavelets, MERA, and holographic mapping 2013+

Neural network holographic RG

Physical variables on the boundary

Latent variables in the bulk

RG flows along the radial direction
Information is preserved by the flow
Hu, Li, LW, You, PRR '20
See also Hashimoto et al 1809.10536, 2006.00712

Mutual information reveals the emergent geometry in the bulk

Continuous normalizing flows

$$
\ln p(x)=\ln \mathscr{N}(z)-\ln \left|\operatorname{det}\left(\frac{\partial \boldsymbol{x}}{\partial z}\right)\right|
$$

Consider infinitesimal change-of-variables Chen et al 1806.07366

$$
\begin{array}{cc}
\boldsymbol{x}=z+\varepsilon \boldsymbol{v} & \ln p(x)-\ln \mathscr{N}(z)=-\ln \left|\operatorname{det}\left(1+\varepsilon \frac{\partial v}{\partial z}\right)\right| \\
\frac{d \boldsymbol{x}}{d t}=\boldsymbol{v} & \frac{d \ln p(x, t)}{d t}=-\nabla \cdot \boldsymbol{v}
\end{array}
$$

Continuous normalizing flows

$$
\ln p(x)=\ln \mathscr{N}(z)-\ln \left|\operatorname{det}\left(\frac{\partial x}{\partial z}\right)\right|
$$

Consider infinitesimal change-of-variables Chen et al 1806.07366

$$
\begin{array}{cc}
\boldsymbol{x}=z+\varepsilon \boldsymbol{v} & \ln p(\boldsymbol{x})-\ln \mathcal{N}(z)=-\ln \left|\operatorname{det}\left(1+\varepsilon \frac{\partial v}{\partial z}\right)\right| \\
\varepsilon \rightarrow 0 \\
\frac{d x}{d t}=v & t=0 \prod_{t=1}
\end{array}
$$

Fluid physics behind flows

Zhang, E, LW 1809.10188
$\frac{d \boldsymbol{x}}{d t}=\boldsymbol{v}$
$\frac{d \ln p(\boldsymbol{x}, t)}{d t}=-\nabla \cdot \boldsymbol{v}$

wangleiphy/MongeAmpereFlow

$$
\frac{d}{d t}=\frac{\partial}{\partial t}+v \cdot \nabla \quad \begin{gathered}
\text { "material } \\
\text { derivative" }
\end{gathered}
$$

Lagrangian v.s. Euler approach to fluid mechanics

Infinitesimal Flows Another way to reduce the computational overhead of normalizing flows is to use an ordinary differential equation to generate f [2]. In this case, the probability distribution changes over a finite time from $p(\mathbf{x} ; 0)$ to $p(\mathbf{z} ; T)$, where \mathbf{z} is the end point of a curve defined by the ODE $\dot{\mathbf{x}}(t)=\mathbf{v}(\mathbf{x}(t)), \mathbf{x}(0)=\mathbf{x}$. For a small time step $d t$, we can approximate $\mathbf{x}(t+d t)$ to first order as $\mathbf{x}(t+d t)=\mathbf{x}(t)+d t \mathbf{v}(\mathbf{x}(t))+\mathcal{O}\left(d t^{2}\right)$. Plugging this into Eq. 2 yields:

$$
\begin{align*}
\log p\left(\mathbf{x}+d t \mathbf{v}(\mathbf{x})+\mathcal{O}\left(d t^{2}\right) ; t+d t\right) & =\log p(\mathbf{x} ; t)-\log \left|\mathbf{J}_{f}(\mathbf{x})\right| \tag{3}\\
& =\log p(\mathbf{x} ; t)-\log \left|\mathbf{I}+d t \mathbf{J}_{\mathbf{v}}(\mathbf{x})+\mathcal{O}\left(d t^{2}\right)\right| \tag{4}
\end{align*}
$$

Taking a Taylor series gives:

$$
\begin{equation*}
\log p(\mathbf{x} ; t+d t)+d t \mathbf{v}(\mathbf{x})^{T} \nabla \log p(\mathbf{x} ; t+d t)=\log p(x ; t)-d t \operatorname{Tr}\left(\mathbf{J}_{v}(\mathbf{x})\right)+\mathcal{O}\left(d t^{2}\right) \tag{5}
\end{equation*}
$$

which, in the limit as $d t \rightarrow 0$, becomes:

$$
\begin{equation*}
\frac{\partial \log p(\mathbf{x} ; t)}{\partial t}=-\mathbf{v}(\mathbf{x})^{T} \nabla \log p(\mathbf{x} ; t)-\operatorname{Tr}\left(\mathbf{J}_{\mathbf{v}}(\mathbf{x})\right)=-\mathbf{v}^{T} \nabla \log p(\mathbf{x} ; t)-\nabla \cdot \mathbf{v} \tag{6}
\end{equation*}
$$

after some rearranging of terms. Here $\nabla \cdot$ is the divergence of a vector field, which is just another way of writing the trace of the Jacobian. The right-hand side of this equation is also the trace of the Stein operator of the distribution $p(\mathbf{x})$ applied to the function $\mathbf{v}(\mathbf{x})$, and plays a critical role in Stein variational gradient descent (SVGD) [13]. Switching from the log density to the density (and dropping the t for clarity), we find this expression can be simplified considerably:

$$
\begin{align*}
\frac{1}{p(\mathbf{x})} \frac{\partial p(\mathbf{x})}{\partial t} & =-\mathbf{v}^{T} \frac{\nabla p(\mathbf{x})}{p(\mathbf{x})}-\nabla \cdot \mathbf{v} \\
\frac{\partial p(\mathbf{x})}{\partial t} & =-\mathbf{v}^{T} \nabla p(\mathbf{x})-p(\mathbf{x}) \nabla \cdot \mathbf{v} \\
& =-\nabla \cdot(\mathbf{v}(\mathbf{x}) p(\mathbf{x})) \tag{7}
\end{align*}
$$

This may also be familiar as the drift term of the Fokker-Planck equation [11, Eq. 6.48] or the continuity equation for conservation of mass in fluid mechanics. We will denote the change to a

Pfau \& Rezende 2012.02035

Neural Ordinary Differential Equations

Residual network

$$
x_{t+1}=x_{t}+v\left(x_{t}\right)
$$

ODE integration

$d x / d t=v(x)$
Harbor el al 1705.03341
Chen et al, 1806.07366

Lu et al 1710.10121,
E Commun. Math. Stat 17'...

Neural Ordinary Differential Equations

Residual network

$$
x_{t+1}=x_{t}+v\left(x_{t}\right)
$$

ODE integration

Chen et al, 1806.07366

$$
\begin{array}{ll}
d \boldsymbol{x} / d t=\boldsymbol{v}(\boldsymbol{x}) \quad & \text { Harbor el al 1705.03341 } \\
& \text { Lu et al 1710.10121, } \\
& \text { E Commun. Math. Stat } 17^{\prime} \ldots .
\end{array}
$$

Backpropagate through an ODE

$$
\frac{d \boldsymbol{x}}{d t}=\boldsymbol{v}(\boldsymbol{x}, \boldsymbol{\theta}, t)
$$

Adjoint $\overline{\boldsymbol{x}}(t)=\frac{\partial \mathscr{L}}{\partial \boldsymbol{x}(t)}$ satisfies another ODE to be integrated back in time

$$
\frac{d \overline{\boldsymbol{x}}(t)}{d t}=-\overline{\boldsymbol{x}}(t) \frac{\partial \boldsymbol{v}(\boldsymbol{x}, \boldsymbol{\theta}, t)}{\partial \boldsymbol{x}}
$$

Gradient w.r.t. parameter

$$
\frac{\partial \mathscr{L}}{\partial \boldsymbol{\theta}}=\int_{0}^{T} d t \overline{\boldsymbol{x}}(t) \frac{\partial \boldsymbol{v}(\boldsymbol{x}, \boldsymbol{\theta}, t)}{\partial \boldsymbol{\theta}}
$$

Continuous normalizing flows implemented with NeuralODE

Chen et al, 1806.07366, Grathwohl et al 1810.01367

Samples

Continuous normalizing flow have no structural constraints on the transformation Jacobian

Continuous normalizing flows implemented with NeuralODE

Chen et al, 1806.07366, Grathwohl et al 1810.01367

Samples

Continuous normalizing flow have no structural constraints on the transformation Jacobian

The two use cases

Zhang, E, LW, 1809.10188

Maximum likelihood estimation
"learn from data"

$$
\mathscr{L}=-\mathbb{E}_{\boldsymbol{x} \sim \text { datat }}[\ln p(\boldsymbol{x})]
$$

Variational free energy

$$
\mathscr{N}(\boldsymbol{x}) \xrightarrow{\int_{0}^{T} \dot{\boldsymbol{x}} d t} \frac{e^{-E(x)}}{Z}
$$

"learn from Energy"

$$
F=\underset{x \sim p(x)}{\mathbb{E}}\left[E(\boldsymbol{x})+k_{B} T \ln p(\boldsymbol{x})\right]
$$

Demo: Classical Coulomb gas in a harmonic trap

$$
E=\sum_{i<j} \frac{1}{x_{i}-x_{j} \mid}+\sum_{i}^{N} x_{i}^{2}
$$

Case study: Normalizing flow for atomic solids

Variational free energy with a really deep permutation equivariant flow

System	N	LFEP	LBAR	MBAR
LJ	256	$3.10800(28)$	$3.10797(1)$	$3.10798(9)$
LJ	500	$3.12300(41)$	$3.12264(2)$	$3.12262(10)$

$$
\ln Z=\ln \mathbb{E}_{x \sim q(x)}\left[e^{-\beta E(x)-\ln q(x)}\right]
$$

free energy perturbation (Zwanzig 1954)

$$
\ln Z_{B}-\ln Z_{A}=\ln \mathbb{E}_{A}\left[e^{-\beta\left(E_{B}-E_{A}\right)}\right]
$$

Wirnsberger et al, 2111.08696 https://github.com/deepmind/flows_for_atomic_solids

Normalizing flow for atomic solids

F. Hardware details and computational cost

For our flow experiments, we used 16 A100 GPUs to train each model on the bigger systems (512-particle mW and 500-particle LJ). It took approximately 3 weeks of training to reach convergence of the free-energy estimates. Obtaining 2 M samples for evaluation took approximately 12 hours on 8 V100 GPUs for each of these models.

For each baseline MBAR estimate, we performed 100 separate simulations for LJ and 200 for mW , corresponding to the number of stages employed. These simulations were performed with LAMMPS [8] and each of them ran on multiple CPU cores communicating via MPI. We used 4 cores for the 64 -particle and 216-particle mW experiments and 8 cores for all other systems. The MD simulations completed after approximately 11 and 14 hours for LJ (256 and 500 particles), and 7, 20 and 48 hours for $\mathrm{mW}(64,216$ and 512 particles). To evaluate the energy matrix for a single MBAR

Training: Monte Carlo Gradient Estimators

$$
\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{\theta}}}[f(\boldsymbol{x})]
$$

Score function estimator (REINFORCE)

Review: 1906.10652

$$
\nabla_{\theta} \mathbb{E}_{\boldsymbol{x} \sim p_{\theta}}[f(\boldsymbol{x})]=\mathbb{E}_{\boldsymbol{x} \sim p_{\theta}}\left[f(\boldsymbol{x}) \nabla_{\theta} \ln p_{\theta}(\boldsymbol{x})\right]
$$

Pathwise estimator (Reparametrization trick) $\boldsymbol{x}=g_{\theta}(\boldsymbol{z})$

$$
\nabla_{\theta} \mathbb{E}_{\boldsymbol{x} \sim p_{\theta}}[f(\boldsymbol{x})]=\mathbb{E}_{\boldsymbol{z} \sim \mathcal{N}(z)}\left[\nabla_{\theta} f\left(g_{\theta}(\boldsymbol{z})\right)\right]
$$

With so many competing approaches, we offer our rules of thumb in choosing an estimator, which follow the intuition we developed throughout the paper:

- If our estimation problem involves continuous functions and measures that are continuous in the domain, then using th pathwise estimator is a good default. It is relatively easy to implement and a default implementation, one without other variance reduction, will typically have variance that is low enough so as not to interfere with the optimisation.
- If the cost function is not differentiable or a black-box function then the score-function or the measure-valued gradients are available. If the number of parameters is low, then the measurevalued gradient will typically have lower variance and would be preferred. But if we have a high-dimensional parameter set, then the score function estimator should be used.
- If we have no control over the number of times we can evaluate a black-box cost function, effectively only allowing a single evaluation of it, then the score function is the only estimator of the three we reviewed that is applicable.
- The score function estimator should, by default, always be implemented with at least a basic variance reduction. The simplest option is to use a baseline control variate estimated with a running average of the cost value.
- When using the score-function estimator, some attention should be paid to the dynamic range of the cost function and its variance, and to find ways to keep its value bounded within a reasonable range, e.g., transforming the cost so that it is zero mean, or using a baseline.
- For all estimators, track the variance of the gradients if possible and address high variance by using a larger number of samples from the measure, decreasing the learning rate, or clipping the gradient values. It may also be useful to restrict the range of some parameters to avoid extreme values, e.g., by clipping them to a desired interval.
- The measure-valued gradient should be used with some coupling method for variance reduction. Coupling strategies that exploit relationships between the positive and negative components of the density decomposition, and which have shared sampling paths, are known for the commonly-used distributions.
- If we have several unbiased gradient estimators, a convex combination of them might have lower variance than any of the individual estimators.
- If the measure is discrete on its domain then the score-function or measure-valued gradient are available. The choice will again depend on the dimensionality of the parameter space.
- In all cases, we strongly recommend having a broad set of tests to verify the unbiasedness of the gradient estimator when implemented.

Mohamed et al, 1906.10652

More discussions

Roeder et al, 1703.09194
Vaitl et al 2206.09016, 2207.08219

$$
\eta=\nabla_{\theta} \int \mathcal{N}\left(x \mid \mu, \sigma^{2}\right) f(x ; k) d x ; \quad \theta \in\{\mu, \sigma\}
$$

https://github.com/deepmind/mc_gradients Mohamed et al, 1906.10652

Symmetries

$$
\begin{array}{cc}
\text { Invariance } & \text { Equivariance } \\
\rho(g \boldsymbol{x})=\rho(\boldsymbol{x}) & \mathscr{T}(g \boldsymbol{z})=g \mathscr{T}(\boldsymbol{z})
\end{array}
$$

Spatial symmetries, permutation symmetries, gauge symmetries...

Flow on manifolds

Periodic variables, gauge fields, ...
Gemici et al 1611.02304, Rezende et al, 2002.02428, Boyda et al, 2008.05456

Obstructions

Dupont et al 1904.01681, Cornish et al, 1909.13833, Zhang et al, 1907.12998, Zhong et al, 2006.00392...

Mix with other approaches

Kingma et al, 1606.04934,…

Levy et al, 1711.09268, Wu et al 2002.06707, ...

Discrete flows

$$
p(\boldsymbol{x})=p(\boldsymbol{y}=\mathscr{T}(\boldsymbol{x}))
$$

Tran et al, 1905.10347, Hoogeboom et al, 1905.07376, van den Berg 2006.12459

Optimal Transport Theory

Monge problem (1781): How to transport earth with optimal cost ?

from Cuturi, Solomon NISP 2017 tutorial

Optimal Transport Theory

Monge problem (1781): How to transport earth with optimal cost ?

Monge

Koopmans

Brenier

Otto

McCann

Villani

Figalli

Nobel Prize in Economics '75

Optimal Transport Theory

Monge problem (1781): How to transport earth with optimal cost ?

Brenier theorem (1991)
Under certain conditions the optimal map is

$$
z \mapsto \boldsymbol{x}=\nabla u(z)
$$

Monge-Ampère Equation $\frac{\mathcal{N}(\boldsymbol{z})}{p(\nabla u(z))}=\operatorname{det}\left(\frac{\partial^{2} u}{\partial z_{i} \partial z_{j}}\right)$

Monge-Ampère Flow

Zhang, E, LW 1809.10188
wangleiphy/MongeAmpereFlow

$$
\frac{\partial \rho(\boldsymbol{x}, t)}{\partial t}+\nabla \cdot[\rho(\boldsymbol{x}, t) \nabla \varphi]=0
$$

(1) Drive the flow with an "irrotational" velocity field
(2) Impose symmetry to the scalar valued potential for symmetric generative model

$$
\varphi(g \boldsymbol{x})=\varphi(\boldsymbol{x}) \quad \Longrightarrow \quad \rho(g \boldsymbol{x})=\rho(\boldsymbol{x})
$$

Neural Canonical Transformations

Li, Dong, Zhang, LW, PRX '20 lio12589/neuralCT

Learn harmonic frequencies of the base to identify slow collective modes
See Bondesan et al 1906.04645, Ishikawa et al 2103.00372 for investigations on integrability

Generative models and their physics genes

Boltzmann machines

$$
\mathscr{L}=-\mathbb{E}_{\boldsymbol{x} \sim \operatorname{data}}[\ln p(\boldsymbol{x})] \quad p(\boldsymbol{x})=e^{-E(\boldsymbol{x})} / Z
$$

Learn

Gaussian-Bernoulli RBMs Without Tears

Renjie Liao ${ }^{* 1}$, Simon Kornblith ${ }^{2}$, Mengye Ren ${ }^{3}$, David J. Fleet ${ }^{2,4,5}$, Geoffrey Hinton ${ }^{2,4,5}$

Boltzmann machines

$$
\mathscr{L}=-\mathbb{E}_{\boldsymbol{x} \sim \text { data }}[\ln p(\boldsymbol{x})] \quad p(\boldsymbol{x})=e^{-E(\boldsymbol{x})} / Z
$$

Learn

Gaussian-Bernoulli RBMs Without Tears

$$
\text { Renjie Liao }^{* 1} \text {, Simon Kornblith }{ }^{2} \text {, Mengye Ren }{ }^{3} \text {, David J. Fleet }{ }^{2,4,5} \text {, Geoffrey Hinton }{ }^{2,4,5}
$$

Boltzmann machines

$$
\mathscr{L}=-\mathbb{E}_{\boldsymbol{x} \sim \text { data }}[\ln p(\boldsymbol{x})] \quad p(\boldsymbol{x})=e^{-E(\boldsymbol{x})} / Z
$$

Learn

Generate

Gaussian-Bernoulli RBMs Without Tears

$$
\text { Renjie Liao }^{* 1} \text {, Simon Kornblith }{ }^{2} \text {, Mengye Ren }{ }^{3} \text {, David J. Fleet }{ }^{2,4,5} \text {, Geoffrey Hinton }{ }^{2,4,5}
$$

Boltzmann machines

$$
\mathscr{L}=-\mathbb{E}_{\boldsymbol{x} \sim \text { data }}[\ln p(\boldsymbol{x})] \quad p(\boldsymbol{x})=e^{-E(\boldsymbol{x})} / Z
$$

Learn

Generate

Gaussian-Bernoulli RBMs Without Tears

$$
\text { Renjie Liao }^{* 1} \text {, Simon Kornblith }{ }^{2} \text {, Mengye Ren }{ }^{3} \text {, David J. Fleet }{ }^{2,4,5} \text {, Geoffrey Hinton }{ }^{2,4,5}
$$

Diffusion models

I will follow the score-matching route https://yang-song.net/blog/2021/score/

Score matching

Minimizing Fisher divergence avoids the intractable partition function problem

$$
\underset{\sim}{\mathbb{F}(\pi \| p)=\int d x \pi(x)\left|\nabla_{x} \ln \pi(x)-\nabla_{x} \ln p(x)\right|^{2} \text { target model }}
$$

However, it brings up another problem

How to learn the model without knowing $\nabla \ln \pi$?

Implicit score matching

Integrate by parts Hyvarinen JMLR ${ }^{\circ}{ }_{5}$

$$
\mathbb{F}(\pi \| p)=\int d x \pi(x)\left(|\nabla \ln p(x)|^{2}+2 \nabla^{2} \ln p(x)\right)+\text { const }
$$

The laplacian term can be difficult to compute
Cheaper stochastic estimate: Song et al, 1905.07088

Curiously, the same expression for the kinetic energy of a wavefunction

$$
\frac{\nabla^{2} \psi}{\psi}=|\nabla \ln \psi|^{2}+\nabla^{2} \ln \psi
$$

Forward laplacian:
Li et al, 2307.08214

Denoising score matching

Perturb data with small noise Vincent 2011

$$
q(x)=\int q\left(x \mid x_{0}\right) \pi\left(x_{0}\right) d x_{0} \quad q\left(x \mid x_{0}\right)=\mathscr{N}\left(x ; x_{0}, \sigma^{2}\right)
$$

Fisher divergence between perturbed data and model is computable

$$
\begin{aligned}
\mathbb{F}(q \| p) & =\mathbb{E}_{\boldsymbol{x} \sim q(\boldsymbol{x})}|\nabla \ln q(\boldsymbol{x})-\nabla \ln p(\boldsymbol{x})|^{2} \\
& =\mathbb{E}_{\boldsymbol{x}_{0} \sim \pi\left(\boldsymbol{x}_{\mathbf{0}}\right)} \mathbb{E}_{\boldsymbol{x} \sim q\left(\boldsymbol{x} \mid \boldsymbol{x}_{0}\right)}\left|\nabla \ln q\left(\boldsymbol{x} \mid \boldsymbol{x}_{\mathbf{0}}\right)-\nabla \ln p(\boldsymbol{x})\right|^{2}+\mathrm{const} .
\end{aligned}
$$

$\frac{x_{0}-x}{\sigma^{2}}$ the restoring force

Claim:

$$
\begin{aligned}
& \mathbb{E}_{\boldsymbol{x} \sim q(\boldsymbol{x})}\left|\nabla \ln q(\boldsymbol{x})-\boldsymbol{s}_{\theta}\right|^{2}=\mathbb{E}_{x_{0} \sim \pi\left(x_{0}\right)} \mathbb{E}_{\boldsymbol{x} \sim q\left(\boldsymbol{x} \mid x_{0}\right)}\left|\nabla \ln q\left(\boldsymbol{x} \mid \boldsymbol{x}_{\mathbf{0}}\right)-\boldsymbol{s}_{\theta}\right|^{2}+\text { const } \\
& \downarrow \\
& \text { score } s_{\theta}=\nabla \ln p_{\theta}(\boldsymbol{x}) \text { Independent } \\
& \text { of } \theta
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& \mathbb{E}_{x_{0} \sim \pi\left(x_{0}\right)} \mathbb{E}_{x \sim q\left(x \mid x_{0}\right)}|s|^{2}=\int d x_{0} \int d x \pi\left(x_{0}\right) q\left(x \mid x_{0}\right)|s|^{2}=\int d x q(x)|s|^{2}=\mathbb{E}_{x \sim q(x)}\left|s^{2}\right| \\
& \begin{aligned}
\mathbb{E}_{x_{0} \sim \pi\left(x_{0}\right)} \mathbb{E}_{x \sim q\left(x \mid x_{0}\right)}\left[s \cdot \nabla \ln q\left(x \mid x_{0}\right)\right] & =\int d x_{0} \int d x \pi\left(x_{0}\right) q\left(x \mid x_{0}\right) \frac{s \cdot \nabla q\left(x \mid x_{0}\right)}{q\left(x \mid x_{0}\right)} \\
& =\int d x_{0} \int d x \pi\left(x_{0}\right) s \cdot \nabla q\left(x \mid x_{0}\right) \\
& =\int d x s \cdot \nabla q(x)=\mathbb{E}_{x \sim q(x)}[s \cdot \nabla \ln q(x)]
\end{aligned}
\end{aligned}
$$

Why score matching did not take off?

Hard to sample between modes with Langevin dynamics

From denoising score matching to diffusion model

Song et al, Generative modeling by estimating gradients of the data distribution, 1907.05600
Built upon this intuition, we propose to improve score-based generative modeling by 1) perturbing the data using various levels of noise; and 2) simultaneously estimating scores corresponding to all noise levels by training a single conditional score network. After training, when using Langevin dynamics to generate samples, we initially use scores corresponding to large noise, and gradually anneal down the noise level. This helps smoothly transfer the benefits of large noise levels to low noise levels where the perturbed data are almost indistinguishable from the original ones. In what follows, we will elaborate more on the details of our method, including the architecture of our score networks, the training objective, and the annealing schedule for Langevin dynamics.

Sohl-Dickstein et al, Deep unsupervised learning using nonequilibrium thermodynamics, 1503.03585

The essential idea, inspired by non-equilibrium statistical physics, is to systematically and slowly destroy structure in a data distribution through an iterative forward diffusion process. We then learn a reverse diffusion process that restores structure in data, yielding a highly flexible and tractable generative model of the data. This ap-

We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On $256 x 256$ LSUN, we obtain sample quality similar to ProgressiveGAN. Our implementation is available at https://github.com/hojonathanho/diffusion.

From denoising score matching to diffusion model

The objective of denoising diffusion probabilistic model
Song et al, 1907.05600 Ho et al, 2006.11239
https://cvpr2022-tutorial-diffusion-models.github.io

Sample with annealed Langevin dynamics with decreasing steps ϵ_{t}

$$
x_{t+1}=x_{t}+\frac{\epsilon_{t}}{2} s\left(x_{t}, t\right)+\sqrt{\epsilon_{t}} \mathcal{N}(0, I)
$$

A tale of three equations

Langevin equation (SDE)

$$
\boldsymbol{x}_{t+d t}=\boldsymbol{x}_{t}+\boldsymbol{f d t}+\sqrt{2 d t} \mathscr{N}(0, I)
$$

Fokker-Planck equation (PDE)

$$
\frac{\partial p(\boldsymbol{x}, t)}{\partial t}+\nabla \cdot[p(\boldsymbol{x}, t) f]-\nabla^{2} p(\boldsymbol{x}, t)=0
$$

"Particle method" (ODE)

$$
\frac{d \boldsymbol{x}}{d t}=f-\nabla \ln p(\boldsymbol{x}, t) \equiv v
$$

A tale of three equations

Langevin equation (SDE)

$$
\boldsymbol{x}_{t+d t}=\boldsymbol{x}_{t}+f d t+\sqrt{2 d t} \mathscr{N}(0, I)
$$

Fokker-Planck equation (PDE)

$$
\frac{\partial p(\boldsymbol{x}, t)}{\partial t}+\nabla \cdot[p(\boldsymbol{x}, t)(\boldsymbol{f}-\nabla \ln p(\boldsymbol{x}, t)]=0
$$

"Particle method" (ODE)

$$
\frac{d \boldsymbol{x}}{d t}=f-\nabla \ln p(\boldsymbol{x}, t) \equiv v
$$

$$
\begin{equation*}
\mathcal{P}(\vec{x}, t)=\int \mathrm{d}^{3} \vec{x}^{\prime}\left(\frac{1}{4 \pi D \epsilon}\right)^{3 / 2} \exp \left[-\frac{\left(\vec{x}-\vec{x}^{\prime}-\epsilon \vec{v}\left(\vec{x}^{\prime}\right)\right)^{2}}{4 D \epsilon}\right] \mathcal{P}\left(\vec{x}^{\prime}, t-\epsilon\right) \tag{9.18}
\end{equation*}
$$

and simplified by the change of variables,

$$
\begin{align*}
\vec{y} & =\vec{x}^{\prime}+\epsilon \vec{v}\left(\vec{x}^{\prime}\right)-\vec{x} \Longrightarrow \\
\mathrm{~d}^{3} \vec{y} & =\mathrm{d}^{3} \vec{x}^{\prime}\left(1+\epsilon \nabla \cdot \vec{v}\left(\vec{x}^{\prime}\right)\right)=\mathrm{d}^{3} \vec{x}^{\prime}\left(1+\epsilon \nabla \cdot \vec{v}(\vec{x})+\mathcal{O}\left(\epsilon^{2}\right)\right) \tag{9.19}
\end{align*}
$$

Keeping only terms at order of ϵ, we obtain

$$
\begin{align*}
\mathcal{P}(\vec{x}, t) & =[1-\epsilon \nabla \cdot \vec{v}(\vec{x})] \int \mathrm{d}^{3} \vec{y}\left(\frac{1}{4 \pi D \epsilon}\right)^{3 / 2} \mathrm{e}^{-\frac{y^{2}}{4 D \epsilon}} \mathcal{P}(\vec{x}+\vec{y}-\epsilon \vec{v}(\vec{x}), t-\epsilon) \\
& =[1-\epsilon \nabla \cdot \vec{v}(\vec{x})] \int \mathrm{d}^{3} \vec{y}\left(\frac{1}{4 \pi D \epsilon}\right)^{3 / 2} \mathrm{e}^{-\frac{y^{2}}{4 D \epsilon}} \\
& \times\left[\mathcal{P}(\vec{x}, t)+(\vec{y}-\epsilon \vec{v}(\vec{x})) \cdot \nabla \mathcal{P}+\frac{y_{i} y_{j}-2 \epsilon y_{i} v_{j}+\epsilon^{2} v_{i} v_{j}}{2} \nabla_{i} \nabla_{j} \mathcal{P}-\epsilon \frac{\partial \mathcal{P}}{\partial t}+\mathcal{O}\left(\epsilon^{2}\right)\right] \\
& =[1-\epsilon \nabla \cdot \vec{v}(\vec{x})]\left[\mathcal{P}-\epsilon \vec{v} \cdot \nabla+\epsilon D \nabla^{2} \mathcal{P}-\epsilon \frac{\partial \mathcal{P}}{\partial t}+\mathcal{O}\left(\epsilon^{2}\right)\right] . \tag{9.20}
\end{align*}
$$

Equating terms at order of ϵ leads to the Fokker-Planck equation,

$$
\begin{equation*}
\frac{\partial \mathcal{P}}{\partial t}+\nabla \cdot \vec{J}=0, \quad \text { with } \quad \vec{J}=\vec{v} \mathcal{P}-D \nabla \mathcal{P} \tag{9.21}
\end{equation*}
$$

from Langevin to Fokker-Planck

Fields

Lessons from diffusion models

Continuous normalizing flow has great potential: diffusion model is an "existence proof"
Going beyond maximum likelihood estimation training (even if we can)

Break the loss into small pieces, sample them (layer-wise regression)
https://blog.alexalemi.com/
diffusion.html

The conditional trick (originated from denoising score matching Vincent 2011)

$\left.\min _{\boldsymbol{\theta}} \underbrace{\mathbb{E}_{t \sim \mathcal{U}(0, T)}}_{$| diffusion |
| :---: |
| time t |$} \underbrace{\mathbb{E}_{\mathbf{x}_{0} \sim q_{0}\left(\mathbf{x}_{0}\right)}}_{$| data |
| :---: |
| sample \mathbf{x}_{0} |$} \underbrace{\mathbb{E}_{\mathbf{x}_{t} \sim q_{t}\left(\mathbf{x}_{t} \mid \mathbf{x}_{0}\right)}}_{$| diffused data |
| :---: |
| sample \mathbf{x}_{t} |$} \| \underbrace{}_{$| neural |
| :---: |
| network |$} \right\rvert\, \mathbf{s}_{\boldsymbol{\theta}}\left(\mathbf{x}_{t}, t\right)-\underbrace{\nabla_{\mathbf{x}_{t}} \log q_{t}\left(\mathbf{x}_{t} \mid \mathbf{x}_{0}\right) \|_{2}^{2}}_{$| score of diffused |
| :---: |
| data sample |$}$

Lessons from diffusion models

Continuous normalizing flow has great potential: diffusion model is an "existence proof"

Going beyond maximum likelihood estimation training (even if we can)

Break the loss into small pieces, sample them (layer-wise regression)
https://blog.alexalemi.com/ diffusion.html

The conditional trick (originated from denoising score matching Vincent 2011)

https://cupr2022-tutorial-diffusion-models.github.io/

Flow matching

$$
p(\boldsymbol{x}, 1)=\mathscr{N}(0, I)
$$

base distribution
ground truth
velocity field

$$
p(\boldsymbol{x}, 0)=q(\boldsymbol{x})
$$

data distribution

$$
\frac{\partial p(\boldsymbol{x}, t)}{\partial t}+\nabla \cdot[p(\boldsymbol{x}, t) \boldsymbol{u}(\boldsymbol{x}, t)]=0
$$

$$
\mathscr{L}=\mathbb{E}_{t \sim U(0,1)} \mathbb{E}_{\boldsymbol{x} \sim p(\boldsymbol{x}, t)}\left|\boldsymbol{v}_{\theta}(\boldsymbol{x}, t)-\boldsymbol{u}(\boldsymbol{x}, t)\right|^{2}
$$

Liu et al 2209.03003, Albergo et al, 2209.15571, Lipman et al, 2210.02747

The "conditional" trick

Given a conditional continuity equation

$$
\frac{\partial p\left(\boldsymbol{x} \mid \boldsymbol{x}_{0}, t\right)}{\partial t}+\nabla \cdot\left[p\left(\boldsymbol{x} \mid \boldsymbol{x}_{0}, t\right) \boldsymbol{u}\left(\boldsymbol{x} \mid \boldsymbol{x}_{0}, t\right)\right]=0
$$

Then, up to a constant, we have

$$
\mathscr{L}=\mathbb{E}_{t \sim U(0,1)} \mathbb{E}_{\boldsymbol{x}_{0} \sim q\left(\boldsymbol{x}_{0}\right)} \mathbb{E}_{\boldsymbol{x} \sim p\left(\boldsymbol{x} \mid x_{0}, t\right)}\left|\boldsymbol{v}_{\theta}(\boldsymbol{x}, t)-\boldsymbol{u}\left(\boldsymbol{x} \mid \boldsymbol{x}_{0}, t\right)\right|^{2}
$$

We can learn the ground truth velocity by regressing on the conditional velocity

Claim: $\quad \mathscr{L}_{\mathrm{CFM}}=\mathscr{L}_{\mathrm{FM}}+$ const.

where $\quad \mathscr{L}_{\mathrm{FM}}=\mathbb{E}_{t \sim \mathcal{U}(0,1)} \mathbb{E}_{\boldsymbol{x} \sim p(x, t)}\left|\boldsymbol{v}_{\theta}(\boldsymbol{x}, t)-\boldsymbol{u}(\boldsymbol{x}, t)\right|^{2}$

$$
\begin{aligned}
\mathscr{L}_{\mathrm{CFM}} & =\mathbb{E}_{t \sim u(0,1)} \mathbb{E}_{\boldsymbol{x}_{0} \sim q\left(\boldsymbol{x}_{0}\right)} \mathbb{E}_{\boldsymbol{x} \sim p\left(x \mid \boldsymbol{x}_{0}, t\right)}\left|\boldsymbol{v}_{\theta}(\boldsymbol{x}, t)-\boldsymbol{u}\left(\boldsymbol{x} \mid \boldsymbol{x}_{0}, t\right)\right|^{2} \\
p(\boldsymbol{x}, t) & =\int p\left(\boldsymbol{x} \mid \boldsymbol{x}_{0}, t\right) q\left(\boldsymbol{x}_{0}\right) d \boldsymbol{x}_{0} \quad p(\boldsymbol{x}, t) \boldsymbol{u}(\boldsymbol{x}, t)=\int p\left(\boldsymbol{x} \mid \boldsymbol{x}_{0}, t\right) \boldsymbol{u}\left(\boldsymbol{x} \mid \boldsymbol{x}_{0}, t\right) q\left(\boldsymbol{x}_{0}\right) d \boldsymbol{x}_{0}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& \mathbb{E}_{x_{0} \sim q\left(x_{0}\right)} \mathbb{E}_{\boldsymbol{x \sim p (x | x _ { 0 } , t)}}\left|v_{\theta}\right|^{2}=\int d x_{0} \int d \boldsymbol{x} q\left(\boldsymbol{x}_{0}\right) p\left(\boldsymbol{x} \mid x_{0}, t\right)\left|\boldsymbol{v}_{\theta}\right|^{2}=\int d \boldsymbol{x p}(\boldsymbol{x}, t)\left|\boldsymbol{v}_{\theta}\right|^{2}=\mathbb{E}_{\boldsymbol{x} \sim p(x, t)}\left|\boldsymbol{v}_{\theta}\right|^{2} \\
& \mathbb{E}_{\boldsymbol{x}_{0} \sim q\left(x_{0}\right)} \mathbb{E}_{\boldsymbol{x} \sim p\left(x \mid x_{0} t\right)}\left[\boldsymbol{v}_{\theta} \cdot \boldsymbol{u}\left(\boldsymbol{x} \mid x_{0}, t\right)\right]=\int d x_{0} \int d x q\left(\boldsymbol{x}_{0}\right) p\left(\boldsymbol{x} \mid x_{0}, t\right)\left[\boldsymbol{v}_{\theta} \cdot \boldsymbol{u}\left(\boldsymbol{x} \mid x_{0}, t\right)\right] \\
&=\int d x p(\boldsymbol{x}, t) \boldsymbol{v}_{\theta} \cdot \boldsymbol{u}(\boldsymbol{x}, t)=\mathbb{E}_{x \sim p(x, t)}\left[\boldsymbol{v}_{\theta} \cdot \boldsymbol{u}(\boldsymbol{x}, t)\right]
\end{aligned}
$$

Examples of flow matching

$$
p\left(x \mid x_{0}, t\right)=\mathcal{N}\left((1-t) x_{0}, t^{2}\right) \quad \boldsymbol{u}\left(\boldsymbol{x} \mid x_{0}, t\right)=\frac{d \boldsymbol{x}}{d t}=x_{1}-x_{0}
$$

Causalizing linear interpolation with rectified flow 2209.03003 https://www.cs.utexas.edu/~qiang/rectflow/html/intro.html

Examples of flow matching

$$
p\left(x \mid x_{0}, t\right)=\mathcal{N}\left((1-t) x_{0}, t^{2}\right) \quad \boldsymbol{u}\left(\boldsymbol{x} \mid x_{0}, t\right)=\frac{d \boldsymbol{x}}{d t}=x_{1}-x_{0}
$$

Causalizing linear interpolation with rectified flow 2209.03003 https://www.cs.utexas.edu/~qiang/rectflow/html/intro.html

Flow matching is all you need!

This framework contains various diffusion models as special cases
The base distribution does not have to be Gaussian
Fast generation with rectified transportation path (Liu et al 2209.03003)
400x speedup compared to continuous normalizing flow (Albergo et al, 2209.15571)
Surpasses diffusion model on Imagenet in likelihood and sample quality (Lipman et al, 2210.02747)

Generalization to flow on Riemannian manifolds (Chen et al, 2302.0366o)

Demo: free energy of classical Coulomb gas

$$
\begin{aligned}
\mathscr{L} & =\mathbb{E}_{t \sim \mathscr{U}(0,1)} \mathbb{E}_{\boldsymbol{x}_{0} \sim \mathcal{N}(0, I)} \mathbb{E}_{\boldsymbol{x}_{1} \sim \exp (-\beta E) / Z}\left|\boldsymbol{x}_{1}-\boldsymbol{x}_{0}-\boldsymbol{v}(\boldsymbol{x}, t)\right|^{2} \\
Z & =\mathbb{E}_{\boldsymbol{x} \sim q(\boldsymbol{x})}\left[e^{-\beta E(\boldsymbol{x})-\ln q(\boldsymbol{x})}\right] \quad \ln q(\boldsymbol{x})=\ln \mathscr{N}(0, I)-\int_{0}^{1} \nabla \cdot \boldsymbol{v} d t
\end{aligned}
$$

Base density
Gaussian samples

Target density
Monte Carlo samples
C. https://colab.research.google.com/drive/lt-Vk37Axxpo4oB7uXFUNlk-zeCC2lcX3? ${ }^{2}$ usp=sharing Jarzynski PRE 'o2, see also likelihood-based training of flows Wirnsberger et al, 2002.04913, 2111.08696

Generative models and their physics genes

Variational autoencoders

Kingma, Welling, 1312.6114
Close connection to the variational calculus we have learned

$$
p(\boldsymbol{x})=\frac{e^{-\beta E(x)}}{Z}
$$

$$
p(z \mid x)=\frac{p(x, z)}{p(\boldsymbol{x})}
$$

Variational free energy

$$
\int d \boldsymbol{x} q(\boldsymbol{x})[\ln q(\boldsymbol{x})+\beta E(\boldsymbol{x})] \geq-\ln Z
$$

Variational Bayes/Variational inference

$$
\int d z q(z \mid x)[\ln q(z \mid x)-\ln p(x, z)] \geq-\ln p(x)
$$

For each data we introduce

$$
\begin{equation*}
\mathcal{L}(x)=\langle-\ln p(x, z)+\ln q(z \mid x)\rangle_{z \sim q(z \mid x)}, \tag{53}
\end{equation*}
$$

which is a variational upper bound of $-\ln p(x)$ since $\mathcal{L}(x)+\ln p(x)=$ $\mathbb{K L}(q(z \mid x)|\mid p(z \mid x)) \geq 0$. We see that $q(z \mid x)$ provides a variational approximation of the posterior $p(z \mid x)$. By minimizing \mathcal{L} one effectively pushes the two distributions together. And the variational free energy becomes exact only when $q(z \mid x)$ matches to $p(z \mid x)$. In fact, $-\mathcal{L}$ is called evidence lower bound (ELBO) in variational inference.

We can obtain an alternative form of the variational free energy

$$
\begin{equation*}
\mathcal{L}_{\theta, \phi}(x)=-\left\langle\ln p_{\theta}(x \mid z)\right\rangle_{z \sim q_{\phi}(z \mid x)}+\mathbb{K} \mathbb{L}\left(q_{\phi}(z \mid x) \| p(z)\right) \tag{54}
\end{equation*}
$$

The first term of Eq. (54) is the reconstruction negative log-likelihood, while the second term is the KL divergence between the approximate posterior distribution and the latent prior. We also be explicit about the network parameters $\boldsymbol{\theta}, \boldsymbol{\phi}$ of the encoder and decoder.

http://wangleiphy.github.io/lectures/PILtutorial.pdf

66660000000000000000 44282222000000000002 42222222355500000002 9422222235555000002 9492222233355555531 9999222233335555533 9999988333333355537 99999888333333588887 9999998833333888887 79999988883388888888 79999988888888888998 $7999998888886666659 夕$ 79999998885666666659 99499999855666666651 $944449999 \mathrm{SB6} 66666651$ 94444999951666666661 94449999911166666611 999999711111116111 7977777111111111111 77777791111111111111

Learned MNIST
 latent space

Kingma, Welling, 1312.6114

Chemical design using continuous latent variables

Gomez-Bombarelli et al,1610.02415

GAN

Likelihood free simulator

Prone to mode collapse "de"generate

More tricky to train than others

https://www.christies.com/Features/A-collaboration-between-two-artists-one-human-one-a-machine-9332-1.aspx

Performance have been surpassed by diffusion models

I found GAN to be less useful for quantitative scientific applications

GAN

Likelihood free simulator

Prone to mode collapse "de"generate

More tricky to train than others

https://www.christies.com/Features/A-collaboration-between-two-artists-one-human-one-a-machine-9332-1.aspx

Performance have been surpassed by diffusion models

I found GAN to be less useful for quantitative scientific applications

Generative models and their physics genes

Generative AI for Science

How to Build a GPT-3 for Science

Matter inverse design
Scientific language model
(3) $F=E-T S$

Nature's cost function

$A b$-initio study of quantum matters at $\mathrm{T}>\mathrm{O}$

$$
H=-\sum_{i} \frac{\hbar^{2}}{2 m_{e}} \nabla_{i}^{2}-\sum_{I} \frac{\hbar^{2}}{2 m_{I}} \nabla_{I}^{2}-\sum_{I, i} \frac{Z_{I} e^{2}}{\left|R_{I}-r_{i}\right|}+\frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{\left|r_{i}-r_{j}\right|}+\frac{1}{2} \sum_{I \neq J} \frac{Z_{I} Z_{J} e^{2}}{\left|R_{I}-R_{J}\right|}
$$

Quantum Monte Carlo methods are limited by the "sign problem"

Dornheim et al, Phys. Plasmas '17 Bonitz et al, Phys. Plasmas '2o

Classical world

Quantum world

Probability density p
Density matrix ρ

Kullback-Leibler divergence

$$
\mathbb{K} \mathbb{L}(p|\mid q)
$$

Variational free-energy

$$
F=\int d \boldsymbol{x}\left[\frac{1}{\beta} p(\boldsymbol{x}) \ln p(\boldsymbol{x})+p(\boldsymbol{x}) E(\boldsymbol{x})\right]
$$

Quantum relative entropy

$$
S(\rho \| \sigma)
$$

Variational free-energy
$F=\frac{1}{\beta} \operatorname{Tr}(\rho \ln \rho)+\operatorname{Tr}(\rho H)$

Variational density matrix with two generative models

$$
\begin{aligned}
\min & F[\rho]=k_{B} T \operatorname{Tr}(\rho \ln \rho)+\operatorname{Tr}(H \rho) \quad \begin{array}{c}
\text { Gibbs-Bogolyubov-Feynman- } \\
\text { Delbrück-Molière }
\end{array} \\
\text { s.t. } & \operatorname{Tr} \rho=1 \quad \rho \succ 0 \quad \rho^{\dagger}=\rho \quad\langle X| \rho\left|X^{\prime}\right\rangle=(-)^{\mathscr{P}}\langle\mathscr{P} X| \rho\left|X^{\prime}\right\rangle
\end{aligned}
$$

$$
\rho=\sum_{n} p_{n}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right|
$$

Classical probability p_{n}
Quantum state basis $\left|\Psi_{n}\right\rangle$

quasiparticle coordinates

Discrete probabilistic models e.g. an autoregressive model
$\sqrt{\text { Normalizing flow }}$
c.f. Cranmer et al, 1904.05903, Saleh et al, 2308.16468

Point Transformations in Quantum Mechanics

Bryce Seligman DeWitr*
Ecole d'Eté de Physique Théorique de l'Université de Grenoble, Les Houches, Haute Savoie, France
(Received September 14, 1951)

An isomorphism is shown to exist between the group of point transformations in classical mechanics and a certain subgroup of the group of all unitary transformations in quantum mechanics. This isomorphism is

The unitary representations of the point-transformation group may be obtained by determining the infinitesimal generators of the group. An infinitesimal point transformation may be expressed in the form

$$
\begin{align*}
& x^{\prime i}=x^{i}+\epsilon \Lambda^{i}(x), \tag{3.7}\\
& p_{i}^{\prime}=p_{i}-\frac{1}{2} \epsilon\left[\left(\partial / \partial x^{i}\right) \Lambda^{j}(x), p_{i}\right]_{+}, \tag{3.8}
\end{align*}
$$

Coordinate transformation induces a unitary $e^{\frac{i}{2}\left[\Lambda^{i}(x), p_{i}\right]_{+}}$

Point Transformations and the Many Body Problem*

M. Eger \dagger and E. P. (iross
Brandeis University, Waltham, Massachusetts

An investigation is made of possible uses of many dimensional coordinate transformations in the quantum many-body problem. The transformed Hamiltonian is quadratic in the momenta with a space dependent metric. The original potential energy undergoes alteration and an additional "metric' potential energy appears. A relatively complete analysis of the transformed original potential is made, and the coordinate transformation can be used to suppress undesirable features of the original potential. For bosons one can attempt to directly map a complete set of noninteracting states onto approximate eigenstates of the system with interactions. Contact is made with a theory of weakly interacting bosons. In the general case it emerges that a given transformation uniquely fixes all the spatial correlation functions, which can be explicitly computed. The extended point transform can then be used as a link between diverse experimental quantities. The full use of the transformation to compute from first principles requires adequate approximations to the Jacobian and the inverse transform. These problems are not studied.

Example: uniform electron gas

$$
H=-\sum_{i=1}^{N} \frac{\hbar^{2} \nabla_{i}^{2}}{2 m}+\sum_{i<j} \frac{e^{2}}{\left|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right|}
$$

$$
E_{c}[n]=\int d^{3} r n\left(\epsilon_{c}^{\mathrm{ueg}}+\cdots\right)
$$

Fundamental model for metals ($2<r_{s}<6$) Fermi liquid despite of non-perturbative r_{s}

Input to the density
functional theory calculations

Deep generative models for the variational density matrix

Low-energy excited states are labeled in the same way as the ideal Fermi gas

$$
K=\left\{k_{1}, k_{2}, \ldots, k_{N}\right\}
$$

$$
\rho=\sum_{K} p(K)\left|\Psi_{K}\right\rangle\left\langle\Psi_{K}\right|
$$

$$
\text { (1) } \sum_{\boldsymbol{K}} p(\boldsymbol{K})=1 \quad \text { (2) }\left\langle\Psi_{\boldsymbol{K}} \mid \Psi_{\boldsymbol{K}^{\prime}}\right\rangle=\delta_{\boldsymbol{K}, \boldsymbol{K}^{\prime}}
$$

(1) Autoregressive model for $p(\boldsymbol{K})$

Fermionic occupation $p(\boldsymbol{K})=p\left(\boldsymbol{k}_{1}\right) p\left(\boldsymbol{k}_{2} \mid \boldsymbol{k}_{1}\right) p\left(\boldsymbol{k}_{3} \mid \boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) \cdots$ in k-space

	Momentum distribution	Language
N	\# of fermions	\# of words
M	Momentum cutoff	Vocabulary
Space	$\binom{M}{N}$	M^{N}

Pauli exclusion: we are modeling a set of words with no repetitions and no order
We use masked casual self-attention Vaswani et al 1706.03762; Alternative solution: Hibat-Allah et al, 2002.02793, Barrett et al, 2109.12606

$\sqrt{\text { Normalizing flow }}$ for $\left|\Psi_{n}\right\rangle$

Electron coordinates

Quasi-particle
coordinates

$$
\Psi_{K}(X)=\frac{\operatorname{det}\left(e^{i \boldsymbol{k}_{i} \cdot z_{j}}\right)}{\sqrt{N!}} \cdot\left|\operatorname{det}\left(\frac{\partial \mathbb{Z}}{\partial \mathbb{X}}\right)\right|_{\text {Orthonormal many-body states }}^{\frac{1}{2}} \underbrace{}_{\substack{\text { Jacobian of the } \\ \text { transformation }}}
$$

Fermion statistics: the flow should be permutation equivariant we use FermiNet layer Pfau et al, 1909.02487, PRR '20

Feynman's backflow in the deep learning era

Feynman \& Cohen 1956
wavefunction for liquid Helium

Iterative backflow \rightarrow deep residual network \rightarrow continuous normalizing flow
Taddei et al, PRB '15 E Commun. Math. Stat 17', Harbor el al 1705.03341, Lu et al 1710.10121, Chen et al, 1806.07366

Fermi Flow

Xie, Zhang, LW, 2105.08644, JML ' 22
github.com/fermiflow

Continuous flow of electron density in a quantum dot

Fermi Flow

Xie, Zhang, LW, 2105.08644, JML ' 22
github.com/fermiflow

Continuous flow of electron density in a quantum dot

The objective function

$$
F=\underset{\boldsymbol{K} \sim p(\boldsymbol{K})}{\mathbb{E}}\left[k_{B} T \ln p(\boldsymbol{K})+\underset{\substack{\text { X } \sim \mid\left\langle\boldsymbol{X} \mid \Psi_{K}\right\rangle \\ \mathbb{E}}}{\mathbb{E}}\left[\frac{\langle\boldsymbol{X}| H\left|\Psi_{\boldsymbol{K}}\right\rangle}{\left\langle\boldsymbol{X} \mid \Psi_{\boldsymbol{K}}\right\rangle}\right]\right]
$$

Jointly optimize $\left|\Psi_{K}\right\rangle$ and $p(\boldsymbol{K})$ to minimize the variational free energy

Benchmarks on spin-polarized electron gases

3D electron gas $\mathrm{T} / \mathrm{T}_{\mathrm{F}}=0.0625$

2D electron gas $\mathrm{T}=\mathrm{o}$

epochs

Application: m^{*} from low temperature entropy

Eich, Holzmann, Vignale, PRB ' 17

$$
s=\frac{\pi^{2} k_{B}}{3} \frac{m^{*}}{m} \frac{T}{T_{F}}
$$

Richard D. Mattuck
A Guide to Feynman Diagrams in the Manybody Problem

$m \quad S_{0}>$ noninteracting electrons

A fundamental quantity appears in nearly all physical properties of a Fermi liquid There have been debates despite its fundamental role and long history of study

Quasi-particles effective mass of 3 d electron gas

> 50 years of conflicting results !

Two-dimensional electron gas experiments

Volume 91, NUMBER 4

Spin-Independent Origin of the Strongly Enhanced Effective Mass in a Dilute 2D Electron System

A. A. Shashkin, * Maryam Rahimi, S. Anissimova, and S.V. Kravchenko Physics Department, Northeastern University, Boston, Massachusetts 02115, USA
V.T. Dolgopolov

Institute of Solid State Physics, Chernogolovka, Moscow District 142432, Russia

T. M. Klapwijk

Department of Applied Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands (Received 13 January 2003; published 24 July 2003)

PRL 101, 026402 (2008)

Effective Mass Suppression in Dilute, Spin-Polarized Two-Dimensional Electron Systems

Medini Padmanabhan, T. Gokmen, N. C. Bishop, and M. Shayegan
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA (Received 19 September 2007; published 7 July 2008)

Layer thickness, valley, disorder, spin-orbit coupling...

37 spin-polarized electrons in 2D @ T/T $\mathrm{T}_{\mathrm{F}=0.15}$

Effective mass of spin-polarized 2DEG

More pronounced suppression of m^{*} in the low-density strong-coupling region

Experiments on spin-polarized 2DEG

Drommond, Needs, PRB'13

Quantum oscillation experiments
Padmanabhan et al, PRL 'o8

Entropy measurement of 2DEG

ARTICLE

Received 16 May 2014 | Accepted 27 Apr 2015 | Published 23 Jun 2015
Strongly correlated two-dimensional plasma explored from entropy measurements

```
A.Y. Kuntsevich1,2, Y.V. Tupikov}\mp@subsup{}{}{3}, V.M. Pudalov 1,2 & I.S. Burmistrov 2,4
```

Maxwell relation $\left(\frac{\partial S}{\partial n}\right)_{T}=-\left(\frac{\partial \mu}{\partial T}\right)_{n}$

FAQs

Where to get training data?

No training data. Data are self-generated from the generative model.

How do we know it is correct?

Variational principle: lower free-energy is better.

Do I understand the "black box" model ?

a) I don't care (as long as it is sufficiently accurate).
b) $\ln p(\boldsymbol{K})$ contains the Landau energy functional

$$
E\left[\delta n_{k}\right]=E_{0}+\sum_{k} \epsilon_{k} \delta n_{k}+\frac{1}{2} \sum_{k \cdot k^{\prime}} f_{k, k^{\prime}} \delta n_{k} \delta n_{k^{\prime}}
$$

What makes for a suitable problem?

Why now?

Variational free-energy is a fundamental principle for $\mathrm{T}>\mathrm{O}$ quantum systems

However, it was under-exploited for solving practical problems (mostly due to intractable entropy for nontrivial density matrices)

Now, it is has became possible by integrating recent advances in generative models

The Universe as a generative model

$$
\begin{aligned}
& S=\int d \sqrt{-g}\left[\frac{m_{p}^{2}}{2} R-\frac{1}{4} F_{N}^{a} F_{a}^{a v}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\left|D_{\mu} \Phi\right|^{2}-V(\underline{D})\right]
\end{aligned}
$$

Thank you!

Discovering physical laws: learning the action Solving physical problems: optimizing the action

2.23	Overview
3.2	Machine learning practices
3.9	A hitchhiker's guide to deep learning
3.16	Research projects hands-on
3.23	Symmetries in machine learning
3.30	Differentiable programming
4.6	Generative models-I
4.13	Generative models-II
4.20	Research projects presentation
4.27	Al for science: why now?

Machine learning for physicists
https://github.com/wangleiphy/ml4p

```
IOPScience Q Journals * Books Publishing Support & Login *
```


Machine Learning: Science and Technology

Focus on Generative Al in Science

https://iopscience.iop.org/collections/mlst-230424-207

