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A hint from the deep learning book
“Part III is the most important for a researcher
—someone who wants to understand the 
breadth of perspectives that have been 
brought to the field of deep learning, and 
push the field forward towards true artificial 
intelligence.” 
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2.D applications 47

Figure 2.D.1: Example application of a VAE in [Gómez-Bombarelli et al.,
2016]: design of new molecules with desired chemical properties. (a) A latent
continuous representation z of molecules is learned on a large dataset of
molecules. (b) This continuous representation enables gradient-based search
of new molecules that maximizes some chosen desired chemical property
given by objective function f (z).
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The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in
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n!
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•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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Deep Unsupervised Learning using Nonequilibrium Thermodynamics
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Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q
⇣
x(0···T )

⌘
. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p
⇣
x(0···T )

⌘
. An identity-covariance

Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, fµ

⇣
x(t), t

⌘
� x(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which
uses a Markov chain which slowly converts one distribu-
tion into another to compute a ratio of normalizing con-
stants. In (Burda et al., 2014) it is shown that AIS can also
be performed using the reverse rather than forward trajec-
tory. Langevin dynamics (Langevin, 1908), which are the
stochastic realization of the Fokker-Planck equation, show
how to define a Gaussian diffusion process which has any
target distribution as its equilibrium. In (Suykens & Vande-
walle, 1995) the Fokker-Planck equation is used to perform
stochastic optimization. Finally, the Kolmogorov forward
and backward equations (Feller, 1949) show that for many
forward diffusion processes, the reverse diffusion processes
can be described using the same functional form.

2. Algorithm
Our goal is to define a forward (or inference) diffusion pro-
cess which converts any complex data distribution into a
simple, tractable, distribution, and then learn a finite-time
reversal of this diffusion process which defines our gener-
ative model distribution (See Figure 1). We first describe
the forward, inference diffusion process. We then show

how the reverse, generative diffusion process can be trained
and used to evaluate probabilities. We also derive entropy
bounds for the reverse process, and show how the learned
distributions can be multiplied by any second distribution
(e.g. as would be done to compute a posterior when in-
painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
�
x(0)

�
. The data distribu-

tion is gradually converted into a well behaved (analyti-
cally tractable) distribution ⇡ (y) by repeated application
of a Markov diffusion kernel T⇡ (y|y0;�) for ⇡ (y), where
� is the diffusion rate,

⇡ (y) =

Z
dy0

T⇡ (y|y0;�)⇡ (y0) (1)

q

⇣
x(t)|x(t�1)

⌘
= T⇡

⇣
x(t)|x(t�1);�t

⌘
. (2)
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(a) Linear interpolation

Xt = tX1 + (1� t)X0

(b) Rectified flow Zt

induced by (X0, X1)

(c) Linear interpolation

Zt = tZ1 + (1� t)Z0

(d) Rectified flow Z0
t

induced by (Z0, Z1)

Figure 2: (a) Linear interpolation of data input (X0, X1) ⇠ ⇡0 ⇥ ⇡1. (b) The rectified flow Zt induced by (X0, X1);
the trajectories are “rewired” at the intersection points to avoid the crossing. (c) The linear interpolation of the end
points (Z0, Z1) of flow Zt. (d) The rectified flow induced from (Z0, Z1), which follows straight paths.

Empirically, rectified flow can yield high-quality results for image generation when simulated with a very
few number of Euler steps (see Figure 1, top row). Moreover, with just one step of reflow, the flow becomes
nearly straight and hence yield good results with a single Euler discretization step (Figure 1, the second
row). This substantially improves over the standard denoising diffusion methods. Quantitatively, we claim a
state-of-the-art result of FID (4.85) and recall (0.51) on CIFAR10 for one-step fast diffusion/flow models [5,
48, 91, 99, 47]. The same algorithm also achieves superb result on domain transfer tasks such as image-to-
image translation (see the bottom two rows of Figure 1) and transfer learning.

2 Method

We provide a quick overview of the method in Section 2.1, followed with some discussion and remarks in
Section 2.2. We introduce a nonlinear extension of our method in Section 2.3, with which we clarify the
connection and advantages of our method with the method of probability flow ODEs [73] and DDIM [70].

2.1 Overview

Rectified flow Given empirical observations of X0 ⇠ ⇡0, X1 ⇠ ⇡1, the rectified flow induced from
(X0, X1) is an ordinary differentiable model (ODE) on time t 2 [0, 1],

dZt = v(Zt, t)dt,

which converts Z0 from ⇡0 to a Z1 following ⇡1. The drift force v : Rd ! Rd is set to drive the flow to
follow the direction (X1 �X0) of the linear path pointing from X0 to X1 as much as possible, by solving a
simple least squares regression problem:

min
v

Z 1

0
E
h��(X1 �X0)� v

�
Xt, t

���2
i
dt, with Xt = tX1 + (1� t)X0, (1)

where Xt is the linear interpolation of X0 and X1. Naviely, Xt follows the ODE of dXt = (X1 �X0)dt,
which is non-causal (or anticipating) as the update of Xt requires the information of the final point X1. By
fitting the drift v with X1 � X0, the rectified flow causalizes the paths of linear interpolation Xt, yielding
an ODE flow that can be simulated without seeing the future.

In practice, we parameterize v with a neural network or other nonlinear models and solve (1) with any off-
the-shelf stochastic optimizer, such as stochastic gradient descent, with empirical draws of (X0, X1). See

4

∂p(x, t)
∂t

+ ∇ ⋅ [p(x, t)v] = 0
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Simplified Molecular-Input Line-Entry System (SMILES)

=

Language = anything you can tokenize
Galactica: A Large Language Model for Science

Modality Entity Sequence

Text Abell 370 Abell 370 is a cluster...

LATEX Schwarzschild radius r_{s} = \frac{2GM}{c^2}

Code Transformer class Transformer(nn.Module)

SMILES Glycine C(C(=O)O)N

AA Sequence Collagen ↵-1(II) chain MIRLGAPQTL..

DNA Sequence Human genome CGGTACCCTC..

Table 1: Tokenizing Nature. Galactica trains on text sequences that represent scientific phenomena.

Total dataset size = 106 billion tokens
Data source Documents Tokens Token %
Papers 48 million 88 billion 83.0%
Code 2 million 7 billion 6.9%
Reference Material 8 million 7 billion 6.5%
Knowledge Bases 2 million 2 billion 2.0%
Filtered CommonCrawl 0.9 million 1 billion 1.0%
Prompts 1.3 million 0.4 billion 0.3%
Other 0.02 million 0.2 billion 0.2%

Table 2: The Galactica Corpus. A full breakdown of these sources is contained in the Appendix.

3 Dataset
“Nature is written in that great book which ever is before our eyes – I mean the universe –
but we cannot understand it if we do not first learn the language and grasp the symbols in
which it is written."

Galileo Galilei, The Assayer

The idea that Nature can be understood in terms of an underlying language has a long history (Galilei,
1623; Wigner, 1959; Wheeler, 1990). In recent years, deep learning has been used to represent Nature, such
as proteins and molecules (Jumper et al., 2021; Ross et al., 2021). Amino acids are an alphabet in which
the language of protein structure is written, while atoms and bonds are the language of molecules. At a
higher level, we organize knowledge through natural language, and many works have trained on scientific
text (Beltagy et al., 2019; Lewis et al., 2020a; Gu et al., 2020; Lo et al., 2019b). With Galactica, we train a single
neural network on a large scientific corpus to learn the di�erent languages of science.
Our corpus consists of 106 billion tokens from papers, reference material, encyclopedias and other scientific
sources. We combine natural language sources, such as papers and textbooks, and natural sequences, such
as protein sequences and chemical formulae. We process LATEX where we can capture it, and also include
academic code to capture computational science. We highlight the corpus details in Table 1 and 2. Full details,
including dataset components and filtering logic, are contained in the Appendix.
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can deal practically with approximationmethods
for the graph isomorphism problem.
Additionally, improved sequence generation

models are possible with the ability to read and
write to memory (69). These approaches demon-
strate better ability for learning long- and short-
termpatterns.Morework is neededonRiemannian
optimization methods that exploit the geometry
of latent space. Structured architectures such as
multilevel VAE (85) offer newways of organizing
latent space and are promising research direc-
tions. New approaches also lie in inverse RL,
geared toward learning a reward or loss function
(86). Research in this direction will allow for the
discovery of reward functions associated with
different materials discovery tasks.

Outlook

Inverse design is an important component of the
complex framework required to designmatter at
an accelerated pace. The tools for inverse design,
especially those stemming from the field of ma-
chine learning, have shown rapid progress in
the last several years and have allowed chemical
space to be framed into probabilistic data-driven
models. Generativemodels produce large numbers
of candidate molecules, and the physical realiza-
tions of these candidates will require automated
high-throughput efforts to validate the genera-
tive approach. The community has yet has to
show more than a few examples of successful

closed-loop approaches for the design of matter
(87). The blurring of the barriers between theory
and experiment will lead to AI-enabled auto-
mated laboratories (88, 89).
The combination of inverse design tools with

active learning approaches such as Bayesian
optimization (90, 91) can enable a model that
adapts as it explores chemical space, which
allows for expanding a model in regions of
high uncertainty and enabling the discovery
of regions of molecular space with desirable
properties as a function of composition. Active
learning in the space of objective functions could
lead to a better understanding of the best rewards
to seek while carrying out machine learning.
As seen, central to machine learning meth-

odologies is the representation of molecules;
representations that encode the relevant physics
will tend to generalize better. Despite consider-
able progress, much work remains. Graph and
hierarchical representations of molecules are an
area requiring further study.
The integration of machine learning as a new

pillar of knowledge in the curricula of chemical,
biochemical, medicinal, and materials sciences
will allow for a more rapid adoption of themeth-
odologies summarized in this work.
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Fig. 4. Schematic representation of several architectures found in
generative models. RNNs are used for sequence generation. The VAE
shows the semi-supervised variant, jointly trained by molecules (x) and
properties (y). Latent space is denoted with Z, and latent vectors with z.
In the GAN setting, the noise eventually acquires structure via the

adversarial training. Reinforcement learning (RL) shows a policy
gradient with MTCS in the task of SMILES completion with
arbitrary rewards. Shown in the lower right are hybrid architectures
such as AAE (adversarial autoencoders) and ORGAN, which represents
GAN and RL.
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Figure 4: Symmetry, substructure, and shape conditioning enable geometric molecular pro-
gramming. a, Conditioning on arbitrary symmetry groups is possible by symmetrizing gradient,
noise, and initialization through the sampling process (Appendix L). We show how cyclic Cn, di-
hedral Dn, tetrahedral T , octahedral O, and icosahedral I symmetries can produce a wide variety
of possible homomeric complexes. The righmost protein complex contains 60 subunits and 96,000
total residues. b, Conditioning on partial substructure (monochrome) enables protein “infilling” or
“outfilling”. Top two rows illustrate regeneration (color) of half of a protein (enzyme DHFR, first
row) or CDR loops of an antibody (second row); Appendix K. Next three rows show conditioning
on a pre-defined motif; order and matching location of motif segments is not pre-specified here. c,
Lastly, it is possible to condition on arbitrary volumetric shapes by using gradients derived from
Optimal Transport (Appendix L). We test the ability of Chroma to solve for backbone configura-
tions subject to the complex geometries of the Latin alphabet and numerals.
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Lattice field theoryMolecular simulation

Although no reference for this free-energy dif-
ference in the given simulationmodel is known,
the temperature profile admits basic consistency
checks: The x-ray structure is identified as the
most stable structure at temperatures below
330 K. The internal energy and entropy terms of
the free-energy difference (Eq. 1) are both positive
across all temperatures. Therefore, the free-energy
decreases at high temperatures as the entropic

stabilization becomes stronger. A higher configu-
rational entropy of the “O” state is consistent with
its more open loop structure (compare Fig. 5, G
and H) and the higher degree of fluctuations in
the “O” state observed by the analysis in (30).

Discussion and conclusion

Boltzmann generators can overcome rare event-
sampling problems in many-body systems by

generating independent samples from different
metastable states in one shot. We have demon-
strated this for dense and unstructured many-
body systems with up to 892 atoms (over 2600
dimensions) that are placed simultaneously, with
most samples having globally and locally valid
structures and potential energies in the range of
the equilibrium distribution. In contrast to other
generative neural networks, Boltzmann generators

Noé et al., Science 365, eaaw1147 (2019) 6 September 2019 7 of 11

Fig. 5. One-shot sampling of all-atom structures in different
conformations of the BPTI protein. (A) Boltzmann generator for
macromolecules: Backbone atoms are whitened using PCA; side-chain
atoms are described in normalized internal coordinates (crds). (B) BPTI
x-ray crystal structure (PDB: 5PTI). Cysteine disulfide bridges and
aromatic residues are shown for orientation. (C) One-shot Boltzmann
generator sample of all 892 atoms (2670 dimensions) of the BPTI
protein similar to the x-ray structure. (D) Potential energy distribution
from MD simulation (gray) and Boltzmann generator one-shot samples

(blue). (E) Distribution of bonds and angles compared between
MD simulation (black) and Boltzmann generator (blue).
(F) Representative snapshots of four clusters of structures
generated with the Boltzmann generator. Backbone root mean
square deviation from the x-ray structure is given below the
structure (in angstroms). Marked are the x-ray–like structure
“X” and the open structure “O.” (G and H) Magnification of the
most variable parts of the Boltzmann-generated samples from the
“X” and “O” states. Side chains are shown in atomistic resolution.
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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, t
�
� x(t)

Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q
⇣
x(0···T )

⌘
. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p
⇣
x(0···T )

⌘
. An identity-covariance

Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, fµ

⇣
x(t), t

⌘
� x(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which
uses a Markov chain which slowly converts one distribu-
tion into another to compute a ratio of normalizing con-
stants. In (Burda et al., 2014) it is shown that AIS can also
be performed using the reverse rather than forward trajec-
tory. Langevin dynamics (Langevin, 1908), which are the
stochastic realization of the Fokker-Planck equation, show
how to define a Gaussian diffusion process which has any
target distribution as its equilibrium. In (Suykens & Vande-
walle, 1995) the Fokker-Planck equation is used to perform
stochastic optimization. Finally, the Kolmogorov forward
and backward equations (Feller, 1949) show that for many
forward diffusion processes, the reverse diffusion processes
can be described using the same functional form.

2. Algorithm
Our goal is to define a forward (or inference) diffusion pro-
cess which converts any complex data distribution into a
simple, tractable, distribution, and then learn a finite-time
reversal of this diffusion process which defines our gener-
ative model distribution (See Figure 1). We first describe
the forward, inference diffusion process. We then show

how the reverse, generative diffusion process can be trained
and used to evaluate probabilities. We also derive entropy
bounds for the reverse process, and show how the learned
distributions can be multiplied by any second distribution
(e.g. as would be done to compute a posterior when in-
painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
�
x(0)

�
. The data distribu-

tion is gradually converted into a well behaved (analyti-
cally tractable) distribution ⇡ (y) by repeated application
of a Markov diffusion kernel T⇡ (y|y0;�) for ⇡ (y), where
� is the diffusion rate,

⇡ (y) =

Z
dy0

T⇡ (y|y0;�)⇡ (y0) (1)

q

⇣
x(t)|x(t�1)

⌘
= T⇡

⇣
x(t)|x(t�1);�t

⌘
. (2)
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Probabilistic Generative Modeling

How to express, learn, and sample from a 
high-dimensional probability distribution ? 
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“… the images encountered in 
AI applications occupy a 
negligible proportion of

the volume of image space.”



Boltzmann Machines “Born” Machines

statistical physics quantum physics

p(x) =
e−E(x)

Z
p(x) = |Ψ(x) |2

Ackley, Hinton, Sejnowski, Cognitive Science,‘85
Cheng, Chen, LW, Entropy ’18, 
Han et al, PRX 18’, Liu et al PRA ’18
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FIG. 2. DDQCL on the bars and stripes (BAS) data set. The top left corner shows patterns that belong to BAS22 and that
we would like our quantum circuit to generate. For completeness, the top central image shows undesired patterns. On the top
right corner, we show a possible mapping of the 4 pixels to N = 4 qubits, and we show some of the entangling layer topologies
that can be set up in the ion trap (e.g chain, star, and all). The bottom left corner shows results of DDQCL simulations for
shallow circuits with di↵erent topologies. We show the bootstrapped median and 90% confidence interval over the distribution
of medians of the KL divergence as learning progresses for 100 iterations. The mean-field-like circuit L = 1 (green crosses)
severely underperforms. A significant improvement is obtained with L = 2, where most of the angles for XX gates have been
learned to their maximum entangling value. These observations indicate that entanglement is a key resource for learning the
BAS data set. Note that for L = 2 the choice of topology becomes a key factor for improving the performance. The chain
topology (purple squares) performs slightly better than the star topology (red stars) even though they have the same number
of parameters. The all-to-all topology (orange circles) significantly outperform all the others as it has more expressive power.
The bottom central image extends the previous analysis to deeper circuits with L = 4 and approximatively twice the number
of parameters. All the topologies achieve a lower median KL divergence and the confidence intervals shrink. The bottom right
corner shows the bootstrapped mean qBAS22 and 95% confidence interval for simulations (green bars) and experiments on the
ion trap quantum computer hosted at University of Maryland (pink bars).

depth, gate fidelities, and any other architectural design
aspects such as its qubit-qubit connectivity, in addition
to the native set of single and two-qubit gates available
in hardware.

When framed in the context of information retrieval,
the qBASnm score can be seen as an instantiation of
the widely used F1 score. To score high, it is insu�-
cient to simply retrieve states, which belong to BASnm.
This quantity alone corresponds to the so called precision
(denoted here as p), and it determines the ratio between
the number of measurements belonging to BASnm di-
vided by the total number of measurements [46]. One
also needs to score high in the so called recall (denoted
here by r) which determines the capacity of the circuit
model to retrieve the whole spectrum of patterns belong-

ing to the BASnm. In our context, it is a measure of
“fair sampling”, or the capacity to uniformly retrieve
all the states from BASnm. Within the F1 score, re-
call is a general quantity that can always be computed
as the number of di↵erent BASnm patterns appearing in
the Nreads measurements divided by the total number of
states NBASnm that belong to the data set. If we denote
the number of di↵erent patterns that were measured as
d(Nreads), then r = d(Nreads)/NBASnm. The F1 score is
defined as the harmonic mean of the precision and the re-
call, i.e., F1 = 2pr/(p + r), and to score high (F1 ⇡ 1.0)
it is required to have both a high precision (p ⇡ 1.0)
and high recall in retrieving of all the NBASnm patterns
(r ⇡ 1.0). The F1 score is a useful measure for the qual-
ity of information retrieval and classification algorithms,

Born machine: a quantum (inspired) generative model
p(x) = |Ψ(x) |2

Quantum circuit realizations

Hilbert Space

States with low  
entanglement

Tensor network Born machines
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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�
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�
� x(t)

Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q
⇣
x(0···T )

⌘
. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p
⇣
x(0···T )

⌘
. An identity-covariance

Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, fµ

⇣
x(t), t

⌘
� x(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which
uses a Markov chain which slowly converts one distribu-
tion into another to compute a ratio of normalizing con-
stants. In (Burda et al., 2014) it is shown that AIS can also
be performed using the reverse rather than forward trajec-
tory. Langevin dynamics (Langevin, 1908), which are the
stochastic realization of the Fokker-Planck equation, show
how to define a Gaussian diffusion process which has any
target distribution as its equilibrium. In (Suykens & Vande-
walle, 1995) the Fokker-Planck equation is used to perform
stochastic optimization. Finally, the Kolmogorov forward
and backward equations (Feller, 1949) show that for many
forward diffusion processes, the reverse diffusion processes
can be described using the same functional form.

2. Algorithm
Our goal is to define a forward (or inference) diffusion pro-
cess which converts any complex data distribution into a
simple, tractable, distribution, and then learn a finite-time
reversal of this diffusion process which defines our gener-
ative model distribution (See Figure 1). We first describe
the forward, inference diffusion process. We then show

how the reverse, generative diffusion process can be trained
and used to evaluate probabilities. We also derive entropy
bounds for the reverse process, and show how the learned
distributions can be multiplied by any second distribution
(e.g. as would be done to compute a posterior when in-
painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
�
x(0)

�
. The data distribu-

tion is gradually converted into a well behaved (analyti-
cally tractable) distribution ⇡ (y) by repeated application
of a Markov diffusion kernel T⇡ (y|y0;�) for ⇡ (y), where
� is the diffusion rate,

⇡ (y) =

Z
dy0

T⇡ (y|y0;�)⇡ (y0) (1)

q

⇣
x(t)|x(t�1)

⌘
= T⇡

⇣
x(t)|x(t�1);�t

⌘
. (2)



p(x) ≥ 0x

Normalization ? Sampling ?

∫ dx p(x) 𝔼
x∼p(x)

So, why do we need “generative models” ?

So, why bother ?



4 Monte Carlo methods

dom numbers differed, i.e. the pebbles landed at different locations in
each run.

We shall return later to this table when computing the statistical er-
rors to be expected from Monte Carlo calculations. In the meantime, we
intend to show that the Monte Carlo method is a powerful approach for
the calculation of integrals (in mathematics, physics, and other fields).
But let us not get carried away: none of the results in Table 1.1 has
fallen within the tight error bounds already known since Archimedes
from comparing a circle with regular n-gons:

3.141 ! 3
10
71

< < 3
1
7
! 3.143. (1.1)

The children’s value for is very approximate, but improves and finally
becomes exact in the limit of an infinite number of trials. This is Jacob
Bernoulli’s weak law of large numbers (see Subsection 1.3.2). The chil-
dren also adopt a very sensible rule: they decide on the total number of
throws before starting the game. The other day, in a game of “N=4000”,
they had at some point 355 hits for 452 trials—this gives a very nice ap-

355
452

=
355

4 × 113
= 1

4 × 3.14159292 . . .

/4 = 1
4 × 3.14159265 . . .

proximation to the book value of . Without hesitation, they went on
until the 4000th pebble was cast. They understand that one must not
stop a stochastic calculation simply because the result is just right, nor
should one continue to play because the result is not close enough to
what we think the answer should be.

1.1.2 Markov-chain sampling

In Monte Carlo, it is not only children who play at pebble games. We
can imagine that adults, too, may play their own version at the local
heliport, in the late evenings. After stowing away all their helicopters,
they wander around the square-shaped landing pad (Fig. 1.2), which
looks just like the area in the children’s game, only bigger.

Fig. 1.2 Adults computing the number at the Monte Carlo heliport.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

360 29 — Monte Carlo Methods

where Z =
∫
dxdy P ∗(x) is the volume of the lake. You are provided with a

boat, a satellite navigation system, and a plumbline. Using the navigator, you
can take your boat to any desired location x on the map; using the plumbline
you can measure P ∗(x) at that point. You can also measure the plankton
concentration there.

Problem 1 is to draw 1 cm3 water samples at random from the lake, in
such a way that each sample is equally likely to come from any point within
the lake. Problem 2 is to find the average plankton concentration.

These are difficult problems to solve because at the outset we know nothing
about the depth P ∗(x). Perhaps much of the volume of the lake is contained

Figure 29.3. A slice through a lake
that includes some canyons.

in narrow, deep underwater canyons (figure 29.3), in which case, to correctly
sample from the lake and correctly estimate Φ our method must implicitly
discover the canyons and find their volume relative to the rest of the lake.
Difficult problems, yes; nevertheless, we’ll see that clever Monte Carlo methods
can solve them.

Uniform sampling

Having accepted that we cannot exhaustively visit every location x in the
state space, we might consider trying to solve the second problem (estimating
the expectation of a function φ(x)) by drawing random samples {x(r)}R

r=1

uniformly from the state space and evaluating P ∗(x) at those points. Then
we could introduce a normalizing constant ZR, defined by

ZR =
R∑

r=1

P ∗(x(r)), (29.16)

and estimate Φ =
∫

dNx φ(x)P (x) by

Φ̂ =
R∑

r=1

φ(x(r))
P ∗(x(r))

ZR
. (29.17)

Is anything wrong with this strategy? Well, it depends on the functions φ(x)
and P ∗(x). Let us assume that φ(x) is a benign, smoothly varying function
and concentrate on the nature of P ∗(x). As we learnt in Chapter 4, a high-
dimensional distribution is often concentrated in a small region of the state
space known as its typical set T , whose volume is given by |T | ! 2H(X), where
H(X) is the entropy of the probability distribution P (x). If almost all the
probability mass is located in the typical set and φ(x) is a benign function,
the value of Φ =

∫
dNx φ(x)P (x) will be principally determined by the values

that φ(x) takes on in the typical set. So uniform sampling will only stand
a chance of giving a good estimate of Φ if we make the number of samples
R sufficiently large that we are likely to hit the typical set at least once or
twice. So, how many samples are required? Let us take the case of the Ising
model again. (Strictly, the Ising model may not be a good example, since it
doesn’t necessarily have a typical set, as defined in Chapter 4; the definition
of a typical set was that all states had log probability close to the entropy,
which for an Ising model would mean that the energy is very close to the
mean energy; but in the vicinity of phase transitions, the variance of energy,
also known as the heat capacity, may diverge, which means that the energy
of a random state is not necessarily expected to be very close to the mean
energy.) The total size of the state space is 2N states, and the typical set has
size 2H . So each sample has a chance of 2H/2N of falling in the typical set.

Normalization Sampling

Mackay, Information Theory, Inference, and Learning Algorithms Krauth, Statistical Mechanics: Algorithms and Computations

∫ dx p(x) = 1

So, why bother ?

𝔼
x∼p(x)

We are going to see how modern generative models resolve these two issues
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Known: samples 
Unknown: generating distribution

Known: energy function 
Unknown: samples, partition function

Statistical physicsGenerative modeling

“learn from data” “learn from energy”

F = 𝔼
x∼p(x)

[E(x) + kBT ln p(x)]

Two sides of the same coin

𝕂𝕃(data ∥ p) 𝕂𝕃(p ∥ e−E/kBT)

ℒ = − 𝔼x∼data [ln p(x)]

vs



𝕂𝕃(π ∥ p) ≡ ∫ dxπ(x)[ln π(x) − ln p(x)]
𝕂𝕃(π ∥ p) ≥ 0

𝕂𝕃(π ∥ p) = 0 ⟺ π(x) = p(x)

𝕂𝕃(π ∥ p) ≠ 𝕂𝕃(p ∥ π)

Kullback–Leibler divergence



π(x) ∝ ∑
d∈data

δ(x − d)

min
θ

𝕂𝕃(π ∥ pθ) ⟺ min
θ

{−𝔼x∼data [ln pθ(x)]}

Learn from data

Maximum likelihood estimationtarget model

The lower bound is the entropy of the dataset: complete memorization



Learn from Energy 

π(x) ∝ e−E/kBT

min
θ

𝕂𝕃(pθ ∥ π) ⟺ min
θ { 𝔼

x∼pθ(x)
[E(x) + kBT ln pθ(x)]}

Variational free energytargetmodel

The lower bound is the true free energy: exact solution



Nature tries to minimize free energy

F = E − TS
energy entropy 

 is a cost function of NatureF
Almost the *same* cost function for training deep generative models



energy 

F[p] = ∫ dx p(x)[E(x) + kBT ln p(x)]

Nature minimizes free energy

Difficulties in Applying the Variational 
Principle to Quantum Field Theories1 

Richard P. Feynman 

California Institute of Technology 
Pasadena, California 91125, U.S.A. 

Introduction 
I'd like to talk on some work I did on the variational principle in field theory. At one 
time I thought that the brute force method of doing arithmetic on the machines will 
never get anywhere and we will probably end with something more old-fashioned, 
i.e. some analysis plus the machines to help us with the analytic equations, and 
so I tried to do something along these lines with quantum chromodynamics. So 
I'm talking on the subject of the application of the variational principle to field 
theoretic problems, but in particular to quantum chromodynamics. 

I'm going to give away what I want to say, which is that I didn't get anywhere! 
I got very discouraged and I think I can see why the variational principle is not 
very useful. So I want to take, for the sake of argument, a very strong view -
which is stronger than I really believe - and argue that it is no damn good at all! 

Let us review why the variational principle has gotten a good reputation. Let's 
say you apply it to something like atoms or to simple problems with a small number 
of variables, using the usual analytic methods to get a quantity called the total 
energy, a quantity which is of direct physical significance. The energy levels of 
atoms are very interesting, measurable quantities and they can be calculated with 
accuracy. It was noted that if one had a wave function which had some measure 
of error, say 10 percent, then the error in the energy would be of order 1 percent. 
The error in the energy is quadratic in the error in the wave function. So, by not 
having a perfect wave function, you can still get very good values for the energy 
and that's why the variational method has gotten a good reputation. But it has 
never been a powerful way of getting, with accuracy, the wave function itself. 

Now I want to turn to the other side, the application of the variational principle 
to quantum field theory in a more or less straightforward way. So you write down 
a Hamiltonian in some kind of scheme and then you try to find a wave functional 

1 Transcript of Professor Feynman's talk, taken by the Editors and corrected by the author 
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variational density 😱entropy 

≥ F

Generative  
models!

The variational free energy principle
Gibbs–Bogolyubov-Feynman



energy 

F[p] = 𝔼
x∼p(x)

[E(x) + kBT ln p(x)]

A deep variational free energy approach

Direct samplingTractable entropy 
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Figure 1: The Gaussian q which minimizes ↵-divergence to p (a mixture of two Gaussians), for varying ↵. ↵ ! �1
prefers matching one mode, while ↵!1 prefers covering the entire distribution.
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Figure 2: The mass, mean, and standard deviation of the Gaussian q which minimizes ↵-divergence to p, for varying ↵. In
each case, the true value is matched at ↵ = 1.

the convention of Zhu & Rohwer (1995), with ↵ instead of
�, the formula is:

D↵(p || q) =
R

x ↵p(x) + (1� ↵)q(x)� p(x)↵q(x)1�↵dx

↵(1� ↵)
(2)

As in (1), p and q do not need to be normalized. Both
KL-divergence and ↵-divergence are zero if p = q and
positive otherwise, so they satisfy the basic property of
an error measure. This property follows from the fact
that ↵-divergences are convex with respect to p and q (ap-
pendix A). Some special cases:

D�1(p || q) =
1
2

Z

x

(q(x)� p(x))2

p(x)
dx (3)

lim
↵!0
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D 1
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x
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p(x)�

p
q(x)

⌘2
dx (5)

lim
↵!1

D↵(p || q) = KL(p || q) (6)

D2(p || q) =
1
2

Z

x

(p(x)� q(x))2

q(x)
dx (7)

The case ↵ = 0.5 is known as Hellinger distance (whose
square root is a valid distance metric), and ↵ = 2 is the �2

distance. Changing ↵ to 1� ↵ swaps the position of p and
q.

To illustrate the effect of changing the divergence measure,
consider a simple example, illustrated in figures 1 and 2.
The original distribution p(x) is a mixture of two Gaus-
sians, one tall and narrow, the other short and wide. The
approximation q(x) is required to be a single (scaled) Gaus-
sian, with arbitrary mean, variance, and scale factor. For

different values of ↵, figure 1 plots the global minimum of
D↵(p || q) over q. The solutions vary smoothly with ↵, the
most dramatic changes happening around ↵ = 0.5. When
↵ is a large negative number, the best approximation rep-
resents only one mode, the one with largest mass (not the
mode which is highest). When ↵ is a large positive num-
ber, the approximation tries to cover the entire distribution,
eventually forming an upper bound when ↵ ! 1. Fig-
ure 2 shows that the mass of the approximation continually
increases as we increase ↵.

The properties observed in this example are general, and
can be derived from the formula for ↵-divergence. Start
with the mode-seeking property for ↵ ⌧ 0. It happens be-
cause the valleys of p force the approximation downward.
Looking at (3,4) for example, we see that ↵  0 empha-
sizes q to be small whenever p is small. These divergences
are zero-forcing because p(x) = 0 forces q(x) = 0. In
other words, they avoid “false positives,” to an increasing
degree as ↵ gets more negative. This causes some parts of
p to be excluded. The cost of excluding an x, i.e. setting
q(x) = 0, is p(x)/(1 � ↵). Therefore q will keep the ar-
eas of largest total mass, and exclude areas with small total
mass.

Zero-forcing emphasizes modeling the tails, rather than the
bulk of the distribution, which tends to underestimate the
variance of p. For example, when p is a mixture of Gaus-
sians, the tails reflect the component which is widest. The
optimal Gaussian q will have variance on similar to the
variance of the widest component, even if there are many
overlapping components. For example, if p has 100 identi-
cal Gaussians in a row, forming a plateau, the optimal q is
only as wide as one of them.
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As in (1), p and q do not need to be normalized. Both
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positive otherwise, so they satisfy the basic property of
an error measure. This property follows from the fact
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distance. Changing ↵ to 1� ↵ swaps the position of p and
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To illustrate the effect of changing the divergence measure,
consider a simple example, illustrated in figures 1 and 2.
The original distribution p(x) is a mixture of two Gaus-
sians, one tall and narrow, the other short and wide. The
approximation q(x) is required to be a single (scaled) Gaus-
sian, with arbitrary mean, variance, and scale factor. For

different values of ↵, figure 1 plots the global minimum of
D↵(p || q) over q. The solutions vary smoothly with ↵, the
most dramatic changes happening around ↵ = 0.5. When
↵ is a large negative number, the best approximation rep-
resents only one mode, the one with largest mass (not the
mode which is highest). When ↵ is a large positive num-
ber, the approximation tries to cover the entire distribution,
eventually forming an upper bound when ↵ ! 1. Fig-
ure 2 shows that the mass of the approximation continually
increases as we increase ↵.

The properties observed in this example are general, and
can be derived from the formula for ↵-divergence. Start
with the mode-seeking property for ↵ ⌧ 0. It happens be-
cause the valleys of p force the approximation downward.
Looking at (3,4) for example, we see that ↵  0 empha-
sizes q to be small whenever p is small. These divergences
are zero-forcing because p(x) = 0 forces q(x) = 0. In
other words, they avoid “false positives,” to an increasing
degree as ↵ gets more negative. This causes some parts of
p to be excluded. The cost of excluding an x, i.e. setting
q(x) = 0, is p(x)/(1 � ↵). Therefore q will keep the ar-
eas of largest total mass, and exclude areas with small total
mass.

Zero-forcing emphasizes modeling the tails, rather than the
bulk of the distribution, which tends to underestimate the
variance of p. For example, when p is a mixture of Gaus-
sians, the tails reflect the component which is widest. The
optimal Gaussian q will have variance on similar to the
variance of the widest component, even if there are many
overlapping components. For example, if p has 100 identi-
cal Gaussians in a row, forming a plateau, the optimal q is
only as wide as one of them.
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x ↵p(x) + (1� ↵)q(x)� p(x)↵q(x)1�↵dx

↵(1� ↵)
(2)

As in (1), p and q do not need to be normalized. Both
KL-divergence and ↵-divergence are zero if p = q and
positive otherwise, so they satisfy the basic property of
an error measure. This property follows from the fact
that ↵-divergences are convex with respect to p and q (ap-
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The case ↵ = 0.5 is known as Hellinger distance (whose
square root is a valid distance metric), and ↵ = 2 is the �2

distance. Changing ↵ to 1� ↵ swaps the position of p and
q.

To illustrate the effect of changing the divergence measure,
consider a simple example, illustrated in figures 1 and 2.
The original distribution p(x) is a mixture of two Gaus-
sians, one tall and narrow, the other short and wide. The
approximation q(x) is required to be a single (scaled) Gaus-
sian, with arbitrary mean, variance, and scale factor. For

different values of ↵, figure 1 plots the global minimum of
D↵(p || q) over q. The solutions vary smoothly with ↵, the
most dramatic changes happening around ↵ = 0.5. When
↵ is a large negative number, the best approximation rep-
resents only one mode, the one with largest mass (not the
mode which is highest). When ↵ is a large positive num-
ber, the approximation tries to cover the entire distribution,
eventually forming an upper bound when ↵ ! 1. Fig-
ure 2 shows that the mass of the approximation continually
increases as we increase ↵.

The properties observed in this example are general, and
can be derived from the formula for ↵-divergence. Start
with the mode-seeking property for ↵ ⌧ 0. It happens be-
cause the valleys of p force the approximation downward.
Looking at (3,4) for example, we see that ↵  0 empha-
sizes q to be small whenever p is small. These divergences
are zero-forcing because p(x) = 0 forces q(x) = 0. In
other words, they avoid “false positives,” to an increasing
degree as ↵ gets more negative. This causes some parts of
p to be excluded. The cost of excluding an x, i.e. setting
q(x) = 0, is p(x)/(1 � ↵). Therefore q will keep the ar-
eas of largest total mass, and exclude areas with small total
mass.

Zero-forcing emphasizes modeling the tails, rather than the
bulk of the distribution, which tends to underestimate the
variance of p. For example, when p is a mixture of Gaus-
sians, the tails reflect the component which is widest. The
optimal Gaussian q will have variance on similar to the
variance of the widest component, even if there are many
overlapping components. For example, if p has 100 identi-
cal Gaussians in a row, forming a plateau, the optimal q is
only as wide as one of them.
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the convention of Zhu & Rohwer (1995), with ↵ instead of
�, the formula is:

D↵(p || q) =
R

x ↵p(x) + (1� ↵)q(x)� p(x)↵q(x)1�↵dx

↵(1� ↵)
(2)

As in (1), p and q do not need to be normalized. Both
KL-divergence and ↵-divergence are zero if p = q and
positive otherwise, so they satisfy the basic property of
an error measure. This property follows from the fact
that ↵-divergences are convex with respect to p and q (ap-
pendix A). Some special cases:
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The case ↵ = 0.5 is known as Hellinger distance (whose
square root is a valid distance metric), and ↵ = 2 is the �2

distance. Changing ↵ to 1� ↵ swaps the position of p and
q.

To illustrate the effect of changing the divergence measure,
consider a simple example, illustrated in figures 1 and 2.
The original distribution p(x) is a mixture of two Gaus-
sians, one tall and narrow, the other short and wide. The
approximation q(x) is required to be a single (scaled) Gaus-
sian, with arbitrary mean, variance, and scale factor. For

different values of ↵, figure 1 plots the global minimum of
D↵(p || q) over q. The solutions vary smoothly with ↵, the
most dramatic changes happening around ↵ = 0.5. When
↵ is a large negative number, the best approximation rep-
resents only one mode, the one with largest mass (not the
mode which is highest). When ↵ is a large positive num-
ber, the approximation tries to cover the entire distribution,
eventually forming an upper bound when ↵ ! 1. Fig-
ure 2 shows that the mass of the approximation continually
increases as we increase ↵.

The properties observed in this example are general, and
can be derived from the formula for ↵-divergence. Start
with the mode-seeking property for ↵ ⌧ 0. It happens be-
cause the valleys of p force the approximation downward.
Looking at (3,4) for example, we see that ↵  0 empha-
sizes q to be small whenever p is small. These divergences
are zero-forcing because p(x) = 0 forces q(x) = 0. In
other words, they avoid “false positives,” to an increasing
degree as ↵ gets more negative. This causes some parts of
p to be excluded. The cost of excluding an x, i.e. setting
q(x) = 0, is p(x)/(1 � ↵). Therefore q will keep the ar-
eas of largest total mass, and exclude areas with small total
mass.

Zero-forcing emphasizes modeling the tails, rather than the
bulk of the distribution, which tends to underestimate the
variance of p. For example, when p is a mixture of Gaus-
sians, the tails reflect the component which is widest. The
optimal Gaussian q will have variance on similar to the
variance of the widest component, even if there are many
overlapping components. For example, if p has 100 identi-
cal Gaussians in a row, forming a plateau, the optimal q is
only as wide as one of them.
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“… quick brown fox jumps …”
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Figure 1: Detailed depiction of a single step of the generation process using two-dimensional toy
data (a). It shows the input and output of our architecture (top row) and steps taken when sampling
the absolute position of a new unplaced fourth atom (bottom row). Starting from the point where two
carbon atoms have been placed, the whole remaining placement process of a real-world C7O2H10

isomer generated by our architecture is documented in (b).

of probabilities of distances d(i+1)j between the new atom position and the positions of all preceding
atoms. Our architecture learns these distributions over distances instead of working with absolute
positions directly. It adheres to the invariance of molecules to rotation and translation by design as the
modeled distributions only depend on nuclear charges Z1, ..., Zi+1 and distances Di of preceding
atoms. This approach improves the scalability of our model as we are able to discretize distances
in one dimension independent from the dimensionality of the underlying positions. Using Eq. 2,
we are able to calculate the probability of absolute atom positions. While the generation process is
sequential, the model can be trained efficiently in parallel, where the distances between atoms in the
training data can be used directly as targets.

3 Adapted SchNet architecture

The feature extraction of our autoregressive architecture is shown in Figure 2. It is similar to
SchNet [24, 25] for the prediction of molecular properties. The embedding characterizing the atom
types is split into feature vector x0

i+1 of the new atom i + 1 and feature vectors (x0
1, ...,x

0
i ) of all

preceding atoms. Here lays the main difference to the predictive SchNet architecture which always
has access to the complete molecule. In contrast, our architecture works with partial molecular
data, namely the positions r1, ..., ri of already placed atoms, their nuclear charges Z1, ..., Z1, and
the nuclear charge Zi+1 of an unplaced, new atom whose position ri+1 shall be sampled using
the output of our network. The information about already placed atoms is processed just as in
the predictive SchNet model, using interaction blocks to update feature vectors depending on the
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Figure 1: Detailed depiction of a single step of the generation process using two-dimensional toy
data (a). It shows the input and output of our architecture (top row) and steps taken when sampling
the absolute position of a new unplaced fourth atom (bottom row). Starting from the point where two
carbon atoms have been placed, the whole remaining placement process of a real-world C7O2H10

isomer generated by our architecture is documented in (b).

of probabilities of distances d(i+1)j between the new atom position and the positions of all preceding
atoms. Our architecture learns these distributions over distances instead of working with absolute
positions directly. It adheres to the invariance of molecules to rotation and translation by design as the
modeled distributions only depend on nuclear charges Z1, ..., Zi+1 and distances Di of preceding
atoms. This approach improves the scalability of our model as we are able to discretize distances
in one dimension independent from the dimensionality of the underlying positions. Using Eq. 2,
we are able to calculate the probability of absolute atom positions. While the generation process is
sequential, the model can be trained efficiently in parallel, where the distances between atoms in the
training data can be used directly as targets.

3 Adapted SchNet architecture

The feature extraction of our autoregressive architecture is shown in Figure 2. It is similar to
SchNet [24, 25] for the prediction of molecular properties. The embedding characterizing the atom
types is split into feature vector x0

i+1 of the new atom i + 1 and feature vectors (x0
1, ...,x

0
i ) of all

preceding atoms. Here lays the main difference to the predictive SchNet architecture which always
has access to the complete molecule. In contrast, our architecture works with partial molecular
data, namely the positions r1, ..., ri of already placed atoms, their nuclear charges Z1, ..., Z1, and
the nuclear charge Zi+1 of an unplaced, new atom whose position ri+1 shall be sampled using
the output of our network. The information about already placed atoms is processed just as in
the predictive SchNet model, using interaction blocks to update feature vectors depending on the
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Demo: Generative model of Sycamore data
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Quantum chip Transformer

Can we fake the measurement of the sycamore quantum circuit by training a transformer?
https://colab.research.google.com/drive/11War0qULkudKT3h2i5J6r_EmA4wFKk0Z?usp=sharing
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Implementation: autoregressive masks
Masked Autoencoder Germain et al, 1502.03509

Solving Quantum Statistical Mechanics with
Variational Autoregressive Networks and Quantum Circuits

Jin-Guo Liu,1 Liang Mao,2 Pan Zhang,3 and Lei Wang1, 4

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Department of Physics, Tsinghua University, Beijing 100084, China

3Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
4Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

We extend the ability of unitary quantum circuits by interfacing it with classical autoregressive neural net-
works. The combined model parametrizes a variational density matrix as a classical mixture of quantum pure
states, where the autoregressive network generates bitstring samples as input states to the quantum circuit. We
devise an e�cient variational algorithm to jointly optimize the classical neural network and the quantum circuit
for quantum statistical mechanics problems. One can obtain thermal observables such as the variational free
energy, entropy, and specific heat. As a by product, the algorithm also gives access to low energy excitation
states. We demonstrate applications to thermal properties and excitation spectra of the quantum Ising model
with resources that are feasible on near-term quantum computers.

Introduction– Quantum statistical mechanics poses two
sets of challenges to classical computational approaches. First
of all, classical algorithms generally encounter the di�culties
of diagonalzing exponentially large Hamiltonians or the sign
problem originates from the quantum nature of the problem.
Moreover, even on the eigenbasis one still faces intractable
partition function which involves summation of exponentially
large number of terms.

A straightforward way to address these di�culties is to di-
rectly realize the physical Hamiltonian on analog quantum de-
vices and study the system at thermal equilibrium, for exam-
ple, see Refs. [1, 2]. On the other hand, a potentially more
general approach would be to study thermal properties with a
universal gate model quantum computer. However, it calls for
algorithmic innovations to prepare thermal quantum states on
quantum circuits given their unitary nature. There have been
quantum algorithms to prepare thermal Gibbs states on quan-
tum computers [3–7]. Unfortunately, these approaches may
not be feasible on near-term noisy quantum computers with
limited circuit depth. While variational quantum algorithm
for preparing thermofield double states [8, 9] requires addi-
tional quantum resources such as ancilla qubits, as well as
measuring and extrapolating Renyi entropies. The quantum
imaginary-time evolution [10] relies on exponentially di�cult
tomography on a growing number of qubits and synthesize of
general multi-qubit unitaries.

Recently, Refs. [11, 12] proposed practical approaches to
prepare the thermal density matrix as a classical mixture of
quantum pure states in the eigenbasis. In these proposals,
the classical probabilistic model is either assumed to be fac-
torized or expressed as an energy-based model [13]. How-
ever, the factorized distribution is generally a crude approx-
imation for the Gibbs distribution in the eigenbasis. While
the energy-based model still faces the problem of intractable
partition function, which inhibits e�cient and unbiased sam-
pling, learning, or even evaluating the model likelihood.

Modern probabilistic generative models o↵er solutions to
the intractable partition function problem [15] since the goals
of generative modeling are exactly to represent, learn and

U�

(a)

p�

(b)

�x1
�x2
�x3

x1
x2
x3

Figure 1. (a) The autoregressive network shown in blue is a classi-
cal probabilistic model that parametrizes a joint distribution in the
form of Eq. (2). The model generates bit string as easy to prepare
input product states to the quantum circuit. The neural network and
the circuit produce a parametrized density matrix Eq. (1). (b) An
implementation of the autoregressive model p� using the masked au-
toencoder [14]. The neural network maps bit strings to real-valued
outputs which parametrizes the conditional probabilities in Eq. (2).

sample from complex high-dimensional probability distribu-
tions e�ciently. Popular generative models include autore-
gressive models [14, 16, 17], variational autoencoders [18],
generative adversarial networks [19], and flow-based mod-
els [20]. For the purpose of this study, the autoregressive mod-
els stand out since they support unbiased gradient estimator
for discrete variables, direct sampling, and tractable likelihood
at the same time. The autoregressive models have reached
state-of-the-art performance in modeling realistic data and
found real-world applications in synthesizing natural speech
and images [16, 17]. Variational optimization of the autore-
gressive network has been used for classical statistical physics
problems [21, 22]. Quantum generalization of the network
was also employed for ground state of quantum many-body
systems [23].

In this paper, we combine quantum circuits with autore-
gressive probabilistic models to solve problems in quantum
statistical mechanics. The resulting model allows one to per-
form variational free energy over density matrices e�ciently.
We demonstrate applications of the approach to thermal prop-
erties and excitations of quantum lattice model.
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Other ways to implement autoregressive models: recurrent networks



Masked convolutional Masked self-attention
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apply mask

The solution is simple: when we compute the 
attention weights, we mask out any attention from 
the current token to future tokens in the 
sequence. 

Note that to do this, we need to set the raw 
attention weights to negative infinity, so that after 
the softmax operation, they become 0.

WHAT ABOUT AUTOREGRESSIVE MODELS?
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causal transformer block

Since the self attention is the only part of the 
transformer block that propagates information 
across the time dimension, making that part 
causal, makes the whole block causal. 

With a stack of causal transformer blocks, we can 
easily build an autoregressive model.

POSITION INFORMATION
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This is not a real restaurant, it’s a filthy burger joint.

This is not a filthy burger joint, it’s a real restaurant.

To really interpret the meaning of the sentence, 
we need to be able to access the position of the 
words. Two sentences with their words shuffled 
can mean the exact opposite thing. 

If we feed these sentences, tokenized by word, to 
the architecture on the right, their output label 
will necessarily be the same. The self-attention 
produces the same output vectors, with just the 
order differing in the same way they do for the 
two inputs, and the global pooling just sums all 
the vectors irrespective of position.

EQUIVARIANCE
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This is a property known as equivariance. Self-
attention is permutation equivariance. Whether 
we permute the tokens in the sequence first and 
then apply self-attention, or apply self attention 
and then permute, we get the same result. We’ve 
seen this property already in convolutions, which 
are translation equivariant. This tells us that 
equivariance is not a bad thing; it’s a property that 
allows us to control what structural properties the 
model assumes about the data. 

Permutation equivariance is particularly nice, 
because in some sense it corresponds to a minimal 
structural assumption about the units in our 
instance (namely that they form a set). By carefully 
breaking this equivariance, we can introduce more 
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Figure 1: Left: A visualization of the PixelCNN that maps a neighborhood of pixels to prediction for
the next pixel. To generate pixel xi the model can only condition on the previously generated pixels
x1, . . . xi�1. Middle: an example matrix that is used to mask the 5x5 filters to make sure the model
cannot read pixels below (or strictly to the right) of the current pixel to make its predictions. Right:
Top: PixelCNNs have a blind spot in the receptive field that can not be used to make predictions.
Bottom: Two convolutional stacks (blue and purple) allow to capture the whole receptive field.

combine the strengths of both models by introducing a gated variant of PixelCNN (Gated PixelCNN)
that matches the log-likelihood of PixelRNN on both CIFAR and ImageNet, while requiring less than
half the training time.

We also introduce a conditional variant of the Gated PixelCNN (Conditional PixelCNN) that allows
us to model the complex conditional distributions of natural images given a latent vector embedding.
We show that a single Conditional PixelCNN model can be used to generate images from diverse
classes such as dogs, lawn mowers and coral reefs, by simply conditioning on a one-hot encoding
of the class. Similarly one can use embeddings that capture high level information of an image to
generate a large variety of images with similar features. This gives us insight into the invariances
encoded in the embeddings — e.g., we can generate different poses of the same person based on a
single image. The same framework can also be used to analyse and interpret different layers and
activations in deep neural networks.

2 Gated PixelCNN

PixelCNNs (and PixelRNNs) [30] model the joint distribution of pixels over an image x as the
following product of conditional distributions, where xi is a single pixel:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1). (1)

The ordering of the pixel dependencies is in raster scan order: row by row and pixel by pixel within
every row. Every pixel therefore depends on all the pixels above and to the left of it, and not on any
of other pixels. The dependency field of a pixel is visualized in Figure 1 (left).

A similar setup has been used by other autoregressive models such as NADE [14] and RIDE [26].
The difference lies in the way the conditional distributions p(xi|x1, ..., xi�1) are constructed. In
PixelCNN every conditional distribution is modelled by a convolutional neural network. To make
sure the CNN can only use information about pixels above and to the left of the current pixel, the
filters of the convolution are masked as shown in Figure 1 (middle). For each pixel the three colour
channels (R, G, B) are modelled successively, with B conditioned on (R, G), and G conditioned on R.
This is achieved by splitting the feature maps at every layer of the network into three and adjusting the
centre values of the mask tensors. The 256 possible values for each colour channel are then modelled
using a softmax.

PixelCNN typically consists of a stack of masked convolutional layers that takes an N x N x 3 image
as input and produces N x N x 3 x 256 predictions as output. The use of convolutions allows the
predictions for all the pixels to be made in parallel during training (all conditional distributions from
Equation 1). During sampling the predictions are sequential: every time a pixel is predicted, it is

2

PixelCNN, van den Oord et al, 1601.06759 Causal transformer, 1706.03762

Implementation: autoregressive masks
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Abstract

We explore the properties of byte-level recur-
rent language models. When given sufficient
amounts of capacity, training data, and compute
time, the representations learned by these models
include disentangled features corresponding to
high-level concepts. Specifically, we find a single
unit which performs sentiment analysis. These
representations, learned in an unsupervised man-
ner, achieve state of the art on the binary subset of
the Stanford Sentiment Treebank. They are also
very data efficient. When using only a handful
of labeled examples, our approach matches the
performance of strong baselines trained on full
datasets. We also demonstrate the sentiment unit
has a direct influence on the generative process
of the model. Simply fixing its value to be pos-
itive or negative generates samples with the cor-
responding positive or negative sentiment.

1. Introduction and Motivating Work

Representation learning (Bengio et al., 2013) plays a crit-
ical role in many modern machine learning systems. Rep-
resentations map raw data to more useful forms and the
choice of representation is an important component of any
application. Broadly speaking, there are two areas of re-
search emphasizing different details of how to learn useful
representations.

The supervised training of high-capacity models on large
labeled datasets is critical to the recent success of deep
learning techniques for a wide range of applications such
as image classification (Krizhevsky et al., 2012), speech
recognition (Hinton et al., 2012), and machine transla-
tion (Wu et al., 2016). Analysis of the task specific rep-
resentations learned by these models reveals many fasci-
nating properties (Zhou et al., 2014). Image classifiers
learn a broadly useful hierarchy of feature detectors re-
representing raw pixels as edges, textures, and objects
(Zeiler & Fergus, 2014). In the field of computer vision,

1OpenAI, San Francisco, California, USA. Correspondence to:
Alec Radford <alec@openai.com>.

it is now commonplace to reuse these representations on
a broad suite of related tasks - one of the most successful
examples of transfer learning to date (Oquab et al., 2014).

There is also a long history of unsupervised representation
learning (Olshausen & Field, 1997). Much of the early re-
search into modern deep learning was developed and val-
idated via this approach (Hinton & Salakhutdinov, 2006)
(Huang et al., 2007) (Vincent et al., 2008) (Coates et al.,
2010) (Le, 2013). Unsupervised learning is promising due
to its ability to scale beyond only the subsets and domains
of data that can be cleaned and labeled given resource, pri-
vacy, or other constraints. This advantage is also its diffi-
culty. While supervised approaches have clear objectives
that can be directly optimized, unsupervised approaches
rely on proxy tasks such as reconstruction, density estima-
tion, or generation, which do not directly encourage useful
representations for specific tasks. As a result, much work
has gone into designing objectives, priors, and architectures
meant to encourage the learning of useful representations.
We refer readers to Goodfellow et al. (2016) for a detailed
review.

Despite these difficulties, there are notable applications of
unsupervised learning. Pre-trained word vectors are a vi-
tal part of many modern NLP systems (Collobert et al.,
2011). These representations, learned by modeling word
co-occurrences, increase the data efficiency and general-
ization capability of NLP systems (Pennington et al., 2014)
(Chen & Manning, 2014). Topic modelling can also dis-
cover factors within a corpus of text which align to human
interpretable concepts such as art or education (Blei et al.,
2003).

How to learn representations of phrases, sentences, and
documents is an open area of research. Inspired by the
success of word vectors, Kiros et al. (2015) propose skip-
thought vectors, a method of training a sentence encoder
by predicting the preceding and following sentence. The
representation learned by this objective performs competi-
tively on a broad suite of evaluated tasks. More advanced
training techniques such as layer normalization (Ba et al.,
2016) further improve results. However, skip-thought vec-
tors are still outperformed by supervised models which di-
rectly optimize the desired performance metric on a spe-
cific dataset. This is the case for both text classification
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Abstract

We explore the properties of byte-level recur-
rent language models. When given sufficient
amounts of capacity, training data, and compute
time, the representations learned by these models
include disentangled features corresponding to
high-level concepts. Specifically, we find a single
unit which performs sentiment analysis. These
representations, learned in an unsupervised man-
ner, achieve state of the art on the binary subset of
the Stanford Sentiment Treebank. They are also
very data efficient. When using only a handful
of labeled examples, our approach matches the
performance of strong baselines trained on full
datasets. We also demonstrate the sentiment unit
has a direct influence on the generative process
of the model. Simply fixing its value to be pos-
itive or negative generates samples with the cor-
responding positive or negative sentiment.

1. Introduction and Motivating Work

Representation learning (Bengio et al., 2013) plays a crit-
ical role in many modern machine learning systems. Rep-
resentations map raw data to more useful forms and the
choice of representation is an important component of any
application. Broadly speaking, there are two areas of re-
search emphasizing different details of how to learn useful
representations.

The supervised training of high-capacity models on large
labeled datasets is critical to the recent success of deep
learning techniques for a wide range of applications such
as image classification (Krizhevsky et al., 2012), speech
recognition (Hinton et al., 2012), and machine transla-
tion (Wu et al., 2016). Analysis of the task specific rep-
resentations learned by these models reveals many fasci-
nating properties (Zhou et al., 2014). Image classifiers
learn a broadly useful hierarchy of feature detectors re-
representing raw pixels as edges, textures, and objects
(Zeiler & Fergus, 2014). In the field of computer vision,
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it is now commonplace to reuse these representations on
a broad suite of related tasks - one of the most successful
examples of transfer learning to date (Oquab et al., 2014).

There is also a long history of unsupervised representation
learning (Olshausen & Field, 1997). Much of the early re-
search into modern deep learning was developed and val-
idated via this approach (Hinton & Salakhutdinov, 2006)
(Huang et al., 2007) (Vincent et al., 2008) (Coates et al.,
2010) (Le, 2013). Unsupervised learning is promising due
to its ability to scale beyond only the subsets and domains
of data that can be cleaned and labeled given resource, pri-
vacy, or other constraints. This advantage is also its diffi-
culty. While supervised approaches have clear objectives
that can be directly optimized, unsupervised approaches
rely on proxy tasks such as reconstruction, density estima-
tion, or generation, which do not directly encourage useful
representations for specific tasks. As a result, much work
has gone into designing objectives, priors, and architectures
meant to encourage the learning of useful representations.
We refer readers to Goodfellow et al. (2016) for a detailed
review.

Despite these difficulties, there are notable applications of
unsupervised learning. Pre-trained word vectors are a vi-
tal part of many modern NLP systems (Collobert et al.,
2011). These representations, learned by modeling word
co-occurrences, increase the data efficiency and general-
ization capability of NLP systems (Pennington et al., 2014)
(Chen & Manning, 2014). Topic modelling can also dis-
cover factors within a corpus of text which align to human
interpretable concepts such as art or education (Blei et al.,
2003).

How to learn representations of phrases, sentences, and
documents is an open area of research. Inspired by the
success of word vectors, Kiros et al. (2015) propose skip-
thought vectors, a method of training a sentence encoder
by predicting the preceding and following sentence. The
representation learned by this objective performs competi-
tively on a broad suite of evaluated tasks. More advanced
training techniques such as layer normalization (Ba et al.,
2016) further improve results. However, skip-thought vec-
tors are still outperformed by supervised models which di-
rectly optimize the desired performance metric on a spe-
cific dataset. This is the case for both text classification
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Abstract

Inspired by progress in unsupervised representa-
tion learning for natural language, we examine
whether similar models can learn useful repre-
sentations for images. We train a sequence Trans-
former to auto-regressively predict pixels, without
incorporating knowledge of the 2D input structure.
Despite training on low-resolution ImageNet with-
out labels, we find that a GPT-2 scale model learns
strong image representations as measured by lin-
ear probing, fine-tuning, and low-data classifica-
tion. On CIFAR-10, we achieve 96.3% accuracy
with a linear probe, outperforming a supervised
Wide ResNet, and 99.0% accuracy with full fine-
tuning, matching the top supervised pre-trained
models. An even larger model trained on a mix-
ture of ImageNet and web images is competitive
with self-supervised benchmarks on ImageNet,
achieving 72.0% top-1 accuracy on a linear probe
of our features.

1. Introduction

Unsupervised pre-training played a central role in the resur-
gence of deep learning. Starting in the mid 2000’s, ap-
proaches such as the Deep Belief Network (Hinton et al.,
2006) and Denoising Autoencoder (Vincent et al., 2008)
were commonly used in neural networks for computer vi-
sion (Lee et al., 2009) and speech recognition (Mohamed
et al., 2009). It was believed that a model which learned
the data distribution P (X) would also learn beneficial fea-
tures for the subsequent supervised modeling of P (Y |X)
(Lasserre et al., 2006; Erhan et al., 2010). However, advance-
ments such as piecewise linear activation functions (Nair
& Hinton, 2010), improved initializations (Glorot & Ben-
gio, 2010), and normalization strategies (Ioffe & Szegedy,
2015; Ba et al., 2016) removed the need for pre-training in
order to achieve strong results. Other research cast doubt
on the benefits of deep unsupervised representations and re-

1OpenAI, San Francisco, CA, USA. Correspondence to: Mark
Chen <mark@openai.com>.

ported strong results using a single layer of learned features
(Coates et al., 2011), or even random features (Huang et al.,
2014; May et al., 2017). The approach fell out of favor as
the state of the art increasingly relied on directly encoding
prior structure into the model and utilizing abundant su-
pervised data to directly learn representations (Krizhevsky
et al., 2012; Graves & Jaitly, 2014). Retrospective study of
unsupervised pre-training demonstrated that it could even
hurt performance in modern settings (Paine et al., 2014).

Instead, unsupervised pre-training flourished in a differ-
ent domain. After initial strong results for word vectors
(Mikolov et al., 2013), it has pushed the state of the art
forward in Natural Language Processing on most tasks (Dai
& Le, 2015; Peters et al., 2018; Howard & Ruder, 2018;
Radford et al., 2018; Devlin et al., 2018). Interestingly, the
training objective of a dominant approach like BERT, the
prediction of corrupted inputs, closely resembles that of the
Denoising Autoencoder, which was originally developed for
images.

As a higher dimensional, noisier, and more redundant modal-
ity than text, images are believed to be difficult for genera-
tive modeling. Here, self-supervised approaches designed to
encourage the modeling of more global structure (Doersch
et al., 2015) have shown significant promise. A combination
of new training objectives (Oord et al., 2018), more recent
architectures (Gomez et al., 2017), and increased model ca-
pacity (Kolesnikov et al., 2019) has allowed these methods
to achieve state of the art performance in low data settings
(Hénaff et al., 2019) and sometimes even outperform super-
vised representations in transfer learning settings (He et al.,
2019; Misra & van der Maaten, 2019; Chen et al., 2020).

Given that it has been a decade since the original wave of
generative pre-training methods for images and considering
their substantial impact in NLP, this class of methods is due
for a modern re-examination and comparison with the recent
progress of self-supervised methods. We re-evaluate genera-
tive pre-training on images and demonstrate that when using
a flexible architecture (Vaswani et al., 2017), a tractable and
efficient likelihood based training objective (Larochelle &
Murray, 2011; Oord et al., 2016), and significant compute
resources (2048 TPU cores), generative pre-training is com-
petitive with other self-supervised approaches and learns
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with a linear probe, outperforming a supervised
Wide ResNet, and 99.0% accuracy with full fine-
tuning, matching the top supervised pre-trained
models. An even larger model trained on a mix-
ture of ImageNet and web images is competitive
with self-supervised benchmarks on ImageNet,
achieving 72.0% top-1 accuracy on a linear probe
of our features.

1. Introduction

Unsupervised pre-training played a central role in the resur-
gence of deep learning. Starting in the mid 2000’s, ap-
proaches such as the Deep Belief Network (Hinton et al.,
2006) and Denoising Autoencoder (Vincent et al., 2008)
were commonly used in neural networks for computer vi-
sion (Lee et al., 2009) and speech recognition (Mohamed
et al., 2009). It was believed that a model which learned
the data distribution P (X) would also learn beneficial fea-
tures for the subsequent supervised modeling of P (Y |X)
(Lasserre et al., 2006; Erhan et al., 2010). However, advance-
ments such as piecewise linear activation functions (Nair
& Hinton, 2010), improved initializations (Glorot & Ben-
gio, 2010), and normalization strategies (Ioffe & Szegedy,
2015; Ba et al., 2016) removed the need for pre-training in
order to achieve strong results. Other research cast doubt
on the benefits of deep unsupervised representations and re-
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ported strong results using a single layer of learned features
(Coates et al., 2011), or even random features (Huang et al.,
2014; May et al., 2017). The approach fell out of favor as
the state of the art increasingly relied on directly encoding
prior structure into the model and utilizing abundant su-
pervised data to directly learn representations (Krizhevsky
et al., 2012; Graves & Jaitly, 2014). Retrospective study of
unsupervised pre-training demonstrated that it could even
hurt performance in modern settings (Paine et al., 2014).

Instead, unsupervised pre-training flourished in a differ-
ent domain. After initial strong results for word vectors
(Mikolov et al., 2013), it has pushed the state of the art
forward in Natural Language Processing on most tasks (Dai
& Le, 2015; Peters et al., 2018; Howard & Ruder, 2018;
Radford et al., 2018; Devlin et al., 2018). Interestingly, the
training objective of a dominant approach like BERT, the
prediction of corrupted inputs, closely resembles that of the
Denoising Autoencoder, which was originally developed for
images.

As a higher dimensional, noisier, and more redundant modal-
ity than text, images are believed to be difficult for genera-
tive modeling. Here, self-supervised approaches designed to
encourage the modeling of more global structure (Doersch
et al., 2015) have shown significant promise. A combination
of new training objectives (Oord et al., 2018), more recent
architectures (Gomez et al., 2017), and increased model ca-
pacity (Kolesnikov et al., 2019) has allowed these methods
to achieve state of the art performance in low data settings
(Hénaff et al., 2019) and sometimes even outperform super-
vised representations in transfer learning settings (He et al.,
2019; Misra & van der Maaten, 2019; Chen et al., 2020).

Given that it has been a decade since the original wave of
generative pre-training methods for images and considering
their substantial impact in NLP, this class of methods is due
for a modern re-examination and comparison with the recent
progress of self-supervised methods. We re-evaluate genera-
tive pre-training on images and demonstrate that when using
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resources (2048 TPU cores), generative pre-training is com-
petitive with other self-supervised approaches and learns
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perimental validation set back into the training set, retrain
the model, and report numbers on the respective test set.

3.2. Context Reduction

Because the memory requirements of the transformer de-
coder scale quadratically with context length when using
dense attention, we must employ further techniques to re-
duce context length. If we naively trained a transformer on
a sequence of length 2242 ⇥ 3, our attention logits would be
tens of thousands of times larger than those used in language
models and even a single layer would not fit on a GPU. To
deal with this, we first resize our image to a lower resolution,
which we call the input resolution (IR). Our models have
IRs of either 322 ⇥ 3, 482 ⇥ 3, or 642 ⇥ 3.

An IR of 322 ⇥ 3 is still quite computationally intensive.
While working at even lower resolutions is tempting, prior
work has demonstrated human performance on image classi-
fication begins to drop rapidly below this size (Torralba et al.,
2008). Instead, motivated by early color display palettes,
we create our own 9-bit color palette by clustering (R, G,
B) pixel values using k-means with k = 512. Using this
palette yields an input sequence length 3 times shorter than
the standard (R, G, B) palette, while still encoding color
faithfully. A similar approach was applied to spatial patches
by Ranzato et al. (2014). We call the resulting context length
(322 or 482 or 642) the model resolution (MR). Note that
this reduction breaks permutation invariance of the color
channels, but keeps the model spatially invariant.

3.3. Model

Our largest model, iGPT-XL, contains L = 60 layers and
uses an embedding size of d = 3072 for a total of 6.8B pa-
rameters. Our next largest model, iGPT-L, is essentially
identical to GPT-2 with L = 48 layers, but contains a
slightly smaller embedding size of d = 1536 (vs 1600)
for a total of 1.4M parameters. We use the same model
code as GPT-2, except that we initialize weights in the layer-
dependent fashion as in Sparse Transformer (Child et al.,
2019) and zero-initialize all projections producing logits.

We also train iGPT-M, a 455M parameter model with L =
36 and d = 1024 and iGPT-S, a 76M parameter model with
L = 24 and d = 512 to study the effect of model capacity
on representation quality in a generative model.

3.4. Training

When pre-training iGPT-XL, we use a batch size of 64 and
train for 2M iterations, and for all other models we use
a batch size of 128 and train for 1M iterations. We use
Adam with �1 = 0.9 and �2 = 0.95 and sequentially try the
learning rates 0.01, 0.003, 0.001, 0.0003, ..., stopping once
the final validation loss starts increasing. The learning rate
is warmed up for one epoch, and then decays to 0 following

a cosine schedule. No dropout is used.

When fine-tuning, we use the same batch size and Adam
hyperparameters. Here, we do not employ a cosine sched-
ule, and early stop once we reach the maximum validation
accuracy. Again, no dropout is used.

When running a linear probe on ImageNet, we follow recent
literature and use SGD with momentum 0.9 and a high
learning rate (we try the values 30, 10, 3, ... in the manner
described above) (He et al., 2019). We train for 1000000
iterations with a cosine learning rate schedule. Finally, when
running a linear probe on CIFAR-10, CIFAR-100, or STL-
10, we use the L-BFGS algorithm for consistency with prior
results (Pedregosa et al., 2011).

4. Experiments and Results

We begin with experiments and results from the autore-
gressive formulation of iGPT. Comparisons with the BERT
formulation appear in Section 4.6.

4.1. What Representation Works Best in a Generative

Model Without Latent Variables?

Figure 2. Representation quality depends on the layer from which
we extract features. In contrast with supervised models, the best
representations for these generative models lie in the middle of the
network. We plot this unimodal dependence on depth by showing
linear probes for iGPT-L on CIFAR-10, CIFAR-100, and STL-10.

In supervised pre-training, representation quality tends to
increase monotonically with depth, such that the best rep-
resentations lie at the penultimate layer (Zeiler & Fergus,
2014). Indeed, since a linear layer produces class logits
from pre-logits, a good classifier necessarily achieves high
accuracy on a linear probe of its pre-logits. If a downstream
task also involves classification, it is empirically validated
that penultimate features perform well.

With generative pre-training, it is not obvious whether a task
like pixel prediction is relevant to image classification. This
suggests that the penultimate layer of a model trained for
pixel prediction might not produce the most useful repre-
sentations for classification. Latent variable models such as
VAEs can avoid this issue by explicitly learning a represen-
tation of the input data, but deep autoregressive generative

Representation learned  
by image GPT



been challenging to conventional MCMC and mean-field
approaches.
Next, to demonstrate the ability of capturing multiple

states at low temperature, we consider the Hopfield
model [32], where N spins are connected to each other.
The couplings composed of P random patterns,
Jij ¼ ð1=NÞ

PP
μ¼1 ξ

μ
i ξ

μ
j , with fξμg ∈ f$1gN denoting a

random pattern. At a low temperature with P small, the
system has a retrieval phase where all P patterns are
remembered by the system; hence there are P pure states
in the system [33,34]. The experiments are carried out on a
Hopfield network with N ¼ 100 spins and P ¼ 2 orthogo-
nal random patterns. At low temperature the energy
(probability) landscape contains four modes, corresponding
to two stored patterns and their mirrors (due to Z2

symmetry). As opposed to models defined on lattices,
there is no topology structure to apply convolution, so we
use a simplest VAN with only one layer and NðN − 1Þ=2
parameters. We start training our network at β ¼ 0.3 and
slowly anneal the temperature to β ¼ 1.5. At each temper-
ature, we sample configurations from the trained VAN, and
show their log probability in Fig. 3.
The figure shows that at high temperature with β ¼ 0.3,

samplings are not correlated with the two stored patterns,
and the system is in the paramagnetic state. The log
probability landscape is quite flat, as the Gibbs measure
is dominated by entropy. When β is increased to 1.5, four
peaks of probability emerge and dominate over other
configurations. These four peaks touch coordinates [1, 0],
[0, 1], ½−1; 0&, and ½0;−1& in the X-Y plane, which
correspond exactly to the two patterns and their mirrors.
This is an evidence that our approach avoids collapsing into
a single mode, and gives samplings capturing the features
of the whole landscape, despite that those modes are
separated by high barriers.
Compared with the landscape of Hopfield model in the

retrieval phase which exhibits several local minima in the
energy and probability landscape, models in the spin glass

phase are considerably more complex [35], because they
have an infinite number of pure states, in the picture of
replica symmetry breaking [36]. Here we apply our method
to the classic Sherrington-Kirkpatrick (SK) model [37],
where N spins are connected to each other by couplings Jij
drawn from Gaussian distribution with variance 1=N. So
far the tensor network approaches do not apply to this
model because of long range interactions and the disorder,
which causes negative Z issue [38]. On the thermodynamic
limit with N → ∞ where the free energy concentrates to its
mean value averaged over disorder, using for example
replica method and cavity method, and replica symmetry
breaking, i.e., the Parisi formula [36]. On a single instance
of SK model, the algorithm version of the cavity method,
belief propagation, or Thouless-Anderson-Paler [6] equa-
tions apply as message passing algorithms. On large
systems in the replica symmetry phase, the message
passing algorithms converge and the obtained Bethe free
energy is a good approximation, but in the replica sym-
metry breaking phase they fail to converge. Also notice that
even in the replica symmetry phase, Bethe free energy is
not an upper bound to the true free energy.
As a proof of concept, we use a small system size

N ¼ 20, so we can enumerate all 2N configurations,
compute the exact value of free energy, then evaluate the
performance of our approach. Again, we use a simple VAN
with only one layer.
In Fig. 4(a) we show the free energy obtained from VAN,

compared with NMF and Bethe approximations. The free
energy from VAN is much better than NMF and Bethe, and
even indistinguishable to the exact value. This is quite
remarkable considering that VAN adopts only NðN − 1Þ=2
parameters, which is even smaller than that used in the
belief propagation, NðN − 1Þ. We also checked that our
approach not only gives a good estimate on free energy, it
also obtains accurate energy, entropy, magnetizations, and
correlations.
The ability of solving ordinary statistical mechanics

problems also gives us the ability to solve inverse statistical
mechanics problems. A prototype problem is the inverse

FIG. 3. Log probability of sampled configurations from VAN
trained for a Hopfield model with N ¼ 100 spins, and P ¼ 2
orthogonal patterns. The sampled configurations are projected
onto the two-dimensional space spanned by the two patterns. X
axis (O1) and Y axis (O2) are the overlap (inner product,
normalized to ½−1; 1&) between each sampled configuration
and the two patterns, respectively. (a) β ¼ 0.3, and the system
is in the paramagnetic phase. (b) β ¼ 1.5, and the system is in the
retrieval phase. Note the different scales in the color bars.
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FIG. 4. (a) Free energy of SK model with N ¼ 20 spins. The
inset shows relative errors to exact values in a larger β regime.
Bethe converges only when β ≤ 1.5. (b) The reconstruction error
in the inverse Ising problem. The underlying model is an SK
model with N ¼ 20 spins. VAN uses a network with two layers (a
hidden layer and an output layer).
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Variational autoregressive quantum states

Sharir, Levine, Wies, Carleo, Shashua, PRL ’20 
Hibat-Allah, Ganahl, Hayward,  Melko, Carrasquilla, PRResarch ‘20

ψ(σ) = ψ(σ1)ψ(σ2 |σ1)ψ(σ3 |σ1, σ2)⋯

Barrett et al, Nat. Mach. Intell. ’22

N2 molecule, Choo et al, Nat. Comm. ’20

and double excitations (CISD). In CISD, the Hilbert space is
truncated to include only states which are up to two excitations
away from the Hartree–Fock configuration. It is clear from the
histogram that the RBM is able to capture correlations beyond
double excitations.

Alternative encodings. The above computations were done using
the Jordan–Wigner mapping. To investigate the effect of the
mapping choice on the performance of the RBM, we also per-
formed select calculations using the parity and Bravyi–Kitaev
mappings. All the aforementioned transformations require a
number of spins equal to the number of fermionic modes in the
model. However, the support of the Pauli operators wj= ∣σj∣ in
Eq. (4), i.e., the number of single-qubit Pauli operators in σj that
are different from the identity I, depends on the specific mapping
used. Jordan–Wigner and parity mappings have linear scalings
wj=O(N), while the Bravyi–Kitaev encoding has a more favor-
able scaling wj ¼ Oðlog ðNÞÞ, due to the logarithmic spin support
of the update, parity, and remainder sets in Eq. (2). Note that one
could in principle use generalized superfast mappings42, which
have a support scaling as good as wj ¼ Oðlog ðdÞÞ, where d is the
maximum degree of the fermionic interaction graph defined by
Eq. (1). However, such a mapping is not practical for the models
considered here because the typical large degree of molecular
interactions graphs makes the number of spins required for the
simulation too large compared to the other model-agnostic
mappings.

While these encodings are routinely used as tools to study
fermionic problems on quantum hardware43, their use in classical
computing has not been systematically explored so far. Since they
yield different structured many-body wave functions, it is then
worth analyzing whether more local mappings can be beneficial
for specific NQS representations. In Fig. 3, we analyze the effect of
the different encodings on the accuracy of the variational ground-
state energy for a few representative diatomic molecules. At fixed
computational resources and network expressivity, we typically
find that the RBM ansatz can achieve consistent levels of
accuracy, independent of the nature of the mapping type. While
the Jordan–Wigner allows to achieve the lowest energies in those
examples, the RBM is nonetheless able to efficiently learn the
ground state also in other representations, and chemical accuracy
is achieved in all cases reported in Fig. 3.

Sampling larger basis sets. The spin-based simulations of the QC
problems studied here show a distinctive MCMC sampling
behavior that is not usually found in lattice model simulations of
pure spin models. Specifically, the ground-state wave function of
the diatomic molecules considered is typically sharply peaked
around the Hartree–Fock state, and neighboring excited states.
This behavior is prominently shown also in Fig. 2, where the
largest peaks are several order of magnitude larger than the dis-
tribution tail. As a result of this structure, any uniform sampling
scheme drawing states σ! from the VMC distribution jΨMð σ!Þj2,
is bound to repeatedly draw the most dominant states, while only
rarely sampling less likely configurations. To exemplify this
peculiarity, we study the behavior of the ground state energy as a
function of the number of MCMC samples used at each step of
the VMC optimization. We concentrate on the water molecule in
the larger 6-31g basis. In this case, the Metropolis sampling
scheme exhibits acceptance rates as low as 0.1% or less, as a

Fig. 2 Electronic correlations. Probabilities (in logarithmic scale) of the
500 most probable configurations in the FCI (blue), RBM (orange), and
CISD (green) wavefunctions for the equilibrium nitrogen N2 molecule in the
STO-3G basis.

LiH

N2

Fig. 3 Comparison of different spin mappings. Accuracy of the RBM
(green star) representations for three different mapping types
(Jordan–Wigner, Parity, and Bravyi–Kitaev) and three different molecules
(LiH, C2, and N2) in their equilibrium configuration in the STO-3G basis.
The geometries used are reported in the Methods section.

Fig. 4 Sampling size dependence of the converged energies. Converged
energy of H2O in the 6-31g basis (26 spin-orbitals) as the number of
samples used for each VMC iteration is varied. The converged energy for
the samples obtained using the Metropolis algorithm (blue circles) matches
that obtained using exact sampling (green crosses), beating the accuracy of
CISD and approaching chemical accuracy (red line) for the largest sample
size. In the inset, we also show the variational energy as the number of
hidden units is increased from 2 to 26.
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute2 used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Performance depends strongly on scale, weakly on model shape: Model performance depends most
strongly on scale, which consists of three factors: the number of model parameters N (excluding embed-
dings), the size of the dataset D, and the amount of compute C used for training. Within reasonable limits,
performance depends very weakly on other architectural hyperparameters such as depth vs. width. (Section
3)

Smooth power laws: Performance has a power-law relationship with each of the three scale factors
N,D,C when not bottlenecked by the other two, with trends spanning more than six orders of magnitude
(see Figure 1). We observe no signs of deviation from these trends on the upper end, though performance
must flatten out eventually before reaching zero loss. (Section 3)

Universality of overfitting: Performance improves predictably as long as we scale up N and D in tandem,
but enters a regime of diminishing returns if either N or D is held fixed while the other increases. The
performance penalty depends predictably on the ratio N0.74/D, meaning that every time we increase the
model size 8x, we only need to increase the data by roughly 5x to avoid a penalty. (Section 4)

Universality of training: Training curves follow predictable power-laws whose parameters are roughly
independent of the model size. By extrapolating the early part of a training curve, we can roughly predict the
loss that would be achieved if we trained for much longer. (Section 5)

Transfer improves with test performance: When we evaluate models on text with a different distribution
than they were trained on, the results are strongly correlated to those on the training validation set with
a roughly constant offset in the loss – in other words, transfer to a different distribution incurs a constant
penalty but otherwise improves roughly in line with performance on the training set. (Section 3.2.2)

Sample efficiency: Large models are more sample-efficient than small models, reaching the same level of
performance with fewer optimization steps (Figure 2) and using fewer data points (Figure 4).

Convergence is inefficient: When working within a fixed compute budget C but without any other restric-
tions on the model size N or available data D, we attain optimal performance by training very large models
and stopping significantly short of convergence (see Figure 3). Maximally compute-efficient training would
therefore be far more sample efficient than one might expect based on training small models to convergence,
with data requirements growing very slowly as D ⇠ C0.27 with training compute. (Section 6)

Optimal batch size: The ideal batch size for training these models is roughly a power of the loss only,
and continues to be determinable by measuring the gradient noise scale [MKAT18]; it is roughly 1-2 million
tokens at convergence for the largest models we can train. (Section 5.1)

Taken together, these results show that language modeling performance improves smoothly and predictably
as we appropriately scale up model size, data, and compute. We expect that larger language models will
perform better and be more sample efficient than current models.

3

Kaplan et al, 2001.08361

“It would also be exciting to find a theoretical framework from which the scaling relations can 
be derived: a ‘statistical mechanics’ underlying the ‘thermodynamics’ we have observed.”
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(H) Word in context

Figure 2: Eight examples of emergence in the few-shot prompting setting. Each point is a separate model.
The ability to perform a task via few-shot prompting is emergent when a language model achieves random
performance until a certain scale, after which performance significantly increases to well-above random. Note
that models that used more training compute also typically have more parameters—hence, we show an
analogous figure with number of model parameters instead of training FLOPs as the x-axis in Figure 11.
A–D: BIG-Bench (2022), 2-shot. E: Lin et al. (2021) and Rae et al. (2021). F: Patel & Pavlick (2022). G:
Hendrycks et al. (2021a), Rae et al. (2021), and Ho�mann et al. (2022). H: Brown et al. (2020), Ho�mann
et al. (2022), and Chowdhery et al. (2022) on the WiC benchmark (Pilehvar & Camacho-Collados, 2019).

Word in Context. Finally, Figure 2H shows the Word in Context (WiC) benchmark (Pilehvar & Camacho-
Collados, 2019), which is a semantic understanding benchmark. Notably, GPT-3 and Chinchilla fail to
achieve one-shot performance of better than random, even when scaled to their largest model size of ≥5 · 1023

FLOPs. Although these results so far may suggest that scaling alone may not enable models to solve WiC,
above-random performance eventually emerged when PaLM was scaled to 2.5 ·1024 FLOPs (540B parameters),
which was much larger than GPT-3 and Chinchilla.

4 Augmented Prompting Strategies

Although few-shot prompting is perhaps currently the most common way of interacting with large language
models, recent work has proposed several other prompting and finetuning strategies to further augment the
abilities of language models. If a technique shows no improvement or is harmful when compared to the
baseline of not using the technique until applied to a model of a large-enough scale, we also consider the
technique an emergent ability.

4
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Are Emergent Abilities of Large Language Models a
Mirage?

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo

Computer Science, Stanford University

Abstract

Recent work claims that large language models display emergent abilities, abil-
ities not present in smaller-scale models that are present in larger-scale models.
What makes emergent abilities intriguing is two-fold: their sharpness, transition-
ing seemingly instantaneously from not present to present, and their unpredictabil-
ity, appearing at seemingly unforeseeable model scales. Here, we present an al-
ternative explanation for emergent abilities: that for a particular task and model
family, when analyzing fixed model outputs, one can choose a metric which leads
to the inference of an emergent ability or another metric which does not. Thus,
our alternative suggests that existing claims of emergent abilities are creations of
the researcher’s analyses, not fundamental changes in model behavior on specific
tasks with scale. We present our explanation in a simple mathematical model, then
test it in three complementary ways: we (1) make, test and confirm three predic-
tions on the effect of metric choice using the InstructGPT/GPT-3 family on tasks
with claimed emergent abilities, (2) make, test and confirm two predictions about
metric choices in a meta-analysis of emergent abilities on BIG-Bench; and (3)
show how similar metric decisions suggest apparent emergent abilities on vision
tasks in diverse deep network architectures (convolutional, autoencoder, trans-
formers). In all three analyses, we find strong supporting evidence that emergent
abilities may not be a fundamental property of scaling AI models.

1 Introduction

Emergent properties of complex systems have long been studied across disciplines, from physics to
biology to mathematics. One notable commentary is Nobel Prize-winning physicist P.W. Anderson’s
“More Is Different” [1], which argues that as the complexity of a system increases, new properties
may materialize that cannot (easily or at all) be predicted, even from a precise quantitative under-
standing of the system’s microscopic details. Emergence has recently gained significant attention in
machine learning due to observations that large language models (LLMs), e.g., GPT [3], PaLM [6],
LaMDA [31] can exhibit so-called “emergent abilities” [34, 8, 29, 3] across diverse tasks (Fig. 1).

The term “emergent abilities of LLMs” was recently and crisply defined as “abilities that are not
present in smaller-scale models but are present in large-scale models; thus they cannot be predicted
by simply extrapolating the performance improvements on smaller-scale models” [34]. Such emer-
gent abilities might have first been discovered in the GPT-3 family [3]. Subsequent work empha-
sized the discovery, writing that “[although model] performance is predictable at a general level,
performance on a specific task can sometimes emerge quite unpredictably and abruptly at scale”
[8]; indeed, these emergent abilities were so surprising and so striking that [8] argued such “abrupt,
specific capability scaling” should be considered one of the two top defining features of LLMs. The
terms “breakthrough capabilities” [29] and “sharp left turns” [17, 18] have also been used.

These quotations collectively identify the two defining properties of emergent abilities in LLMs:

Preprint. Under review.
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2 Alternative Explanation for Emergent Abilities

How might smooth, continuous, predictable changes in model performance appear to be sharp and
unpredictable? The intuition is that even if the per-token error rate changes smoothly with model
scale, the researcher’s choice of metric can nonlinearly and/or discontinuously transform the error
rate in a manner that causes the model performance to appear sharp and unpredictable.

To expound, suppose that for models unconstrained by data or compute, the test loss typically falls
smoothly, continuously and predictably with the number of model parameters. One reason to believe
this assumption is the phenomenon known as neural scaling laws, which are empirical observations
that deep networks exhibit power law scaling in the test loss as a function of training dataset size,
number of parameters (model size) or compute [13, 28, 11, 16, 9, 12, 15, 35, 14, 7, 26]; this find-
ing has been observed spanning 7 orders of magnitude across diverse domains including vision,
language modeling and game playing.

Inspired by these neural scaling laws, for concreteness, suppose we have a model family of different
numbers of parameters N > 0 and assume that each model’s per-token cross entropy falls as a power
law with the number of parameters N for constants c > 0,↵ < 0 (Fig. 2A):

LCE(N) =
⇣N
c

⌘↵

To be clear, we do not require this particular functional form to hold; rather, we use this functional
form for illustrative purposes. Let V denote the set of possible tokens, p(v) 2 �|V |�1 denote the
true but unknown probability mass of token v 2 V , and p̂N (v) 2 �|V |�1 denote the N -parameter
model’s predicted probability mass for token v 2 V . Recall that the per-token cross entropy, as a
function of number of model parameters N , is defined as:

LCE(N)
def
=�

X

v2V

p(v) log p̂N (v)

With real data, the true data distribution {pv}v2V is typically unknown, so in practice we substitute
a one-hot distribution of the empirically observed token v⇤, turning the cross entropy loss into:

LCE(N) = � log p̂N (v⇤)

A model with N parameters then has a per-token probability of selecting the correct token (Fig. 2B):

p(single token correct) = exp
⇣
� LCE(N)

⌘
= exp

⇣
� (N/c)↵

⌘

Suppose the researcher then chooses a metric that requires selecting a length-L sequence of tokens
correctly. For example, our task might be L-digit integer addition, and a model’s output is scored as
accurate if and only if all L output digits exactly match all target digits with no additions, deletions
or substitutions. If the probability a token is correct is independent of the other predicted tokens1,
the probability the model correctly outputs all L tokens is:

Accuracy(N) ⇡ pN (single token correct)num. of tokens = exp
⇣
� (N/c)↵

⌘L

This choice of metric nonlinearly scales performance with increasing token sequence length. When
plotting performance on longer sequences on a linear-log plot, one sees a sharp, unpredictable emer-
gent ability (Fig. 2C) that closely matches claimed emergent abilities (inset). What happens if the
researcher switches from a nonlinear metric like Accuracy, under which the per-token error rate
scales geometrically in target length (App. A.3), to an approximately linear metric like Token Edit
Distance, under which the per-token error rate scales quasi-linearly in target length (App. A.2)?

1While the independence assumption is not true, the results with this approximation qualitatively match the
observed emergence claims in practice.
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in
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n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q
⇣
x(0···T )

⌘
. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p
⇣
x(0···T )

⌘
. An identity-covariance

Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, fµ

⇣
x(t), t

⌘
� x(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which
uses a Markov chain which slowly converts one distribu-
tion into another to compute a ratio of normalizing con-
stants. In (Burda et al., 2014) it is shown that AIS can also
be performed using the reverse rather than forward trajec-
tory. Langevin dynamics (Langevin, 1908), which are the
stochastic realization of the Fokker-Planck equation, show
how to define a Gaussian diffusion process which has any
target distribution as its equilibrium. In (Suykens & Vande-
walle, 1995) the Fokker-Planck equation is used to perform
stochastic optimization. Finally, the Kolmogorov forward
and backward equations (Feller, 1949) show that for many
forward diffusion processes, the reverse diffusion processes
can be described using the same functional form.

2. Algorithm
Our goal is to define a forward (or inference) diffusion pro-
cess which converts any complex data distribution into a
simple, tractable, distribution, and then learn a finite-time
reversal of this diffusion process which defines our gener-
ative model distribution (See Figure 1). We first describe
the forward, inference diffusion process. We then show

how the reverse, generative diffusion process can be trained
and used to evaluate probabilities. We also derive entropy
bounds for the reverse process, and show how the learned
distributions can be multiplied by any second distribution
(e.g. as would be done to compute a posterior when in-
painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
�
x(0)

�
. The data distribu-

tion is gradually converted into a well behaved (analyti-
cally tractable) distribution ⇡ (y) by repeated application
of a Markov diffusion kernel T⇡ (y|y0;�) for ⇡ (y), where
� is the diffusion rate,

⇡ (y) =

Z
dy0

T⇡ (y|y0;�)⇡ (y0) (1)

q

⇣
x(t)|x(t�1)

⌘
= T⇡

⇣
x(t)|x(t�1);�t

⌘
. (2)
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Intuition

If the mapping f is 1-to-1, then the total area (or volume) should

not change after the transformation from x to z .

Figure 1: Mapping from one probability density to another. Source:
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We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det
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We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det
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We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det
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Quantum version of the architecture
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FIG. 1. (a) Basic construction of a k = 2 MERA (2 sites renormalized to 1). (b) The squares
represent disentanglers: unitary maps that, from the moving-upward perspective, remove entan-
glement between two adjacent sites. (c) The triangles represent isometries: linear maps that, again
from the moving-upward perspective, coarse-grain two sites into one. Moving downward, we may
think of isometries as unitary operators that, in the MERA, map a state in V ⌦ |0i into V ⌦ V .
The i and j labels in (b) and (c) represent the tensor indices of the disentangler and isometry.

attention to the case D = 1 + 1.

The MERA tensor network is shown in Fig. 1. The quantum system being modeled by

the MERA lives at the bottom of the diagram, henceforth “the boundary” in anticipation of

the AdS/MERA connection to be explored later. We can think of the tensor network as a

quantum circuit that either runs from the top down, starting with a simple input state and

constructing the boundary state, or from the bottom up, renormalizing a boundary state via

coarse-graining. One defining parameter of the MERA is the rescaling factor k, defining the

number of sites in a block to be coarse-grained; in Fig. 1 we have portrayed the case k = 2.

The squares and triangles are the tensors: multilinear maps between direct products of vector

spaces. Each line represents an index i of the corresponding tensor, ranging over values from

1 to the “bond dimension” �. The boundary Hilbert space Hboundary = V
⌦Nboundary is given

by a tensor product of Nboundary individual spaces V , each of dimension �. (In principle
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In this case, either a slow learning rate or many MCMC steps between parameter updates must
be used for optimizing ✓, otherwise the samples may diverge from the target distribution and the
optimization may behave pathologically. In many ways this is analogous to the problems encountered
in bilevel optimization [4] which crop up frequently in machine learning [17], where two coupled
objectives must be optimized simultaneously. Here instead of two coupled minimization problems,
we have a minimization problem coupled to a sampling problem. One way to accelerate learning
is to optimize the mixing rate of the MCMC chain – however, this does not take advantage of our
knowledge about how p✓ is changing.

In principle, if we have samples x1
t , . . .x

n
t from p✓t , the target distribution at time t, then we should

only need to make a small deterministic correction v1
t , . . .v

N
t to the samples to transform them

into samples from the distribution at time t+1, assuming the update �✓t = ✓t+1 � ✓t is sufficiently
small. This should be more efficient at generating samples from the new target density p

⇥
f✓t+1

⇤

than pure MCMC, as it exploits information about the density at the previous time step, rather than
only using information about the current time step. This can be seen as an approximate step in
a continuous-time normalizing flow such as Neural ODEs [2], where the corrections v1

t , . . .v
N
t

approximate a time-dependent flow field v(x; t) that tracks the time evolution of p✓t . No parametric
form for the flow field v(x, t) needs to be learned – only the corrections to individual samples at
each time step are needed. In the next section, we will review normalizing flows and discuss how to
construct such a set of corrections v1

t , . . .v
N
t given only knowledge of p✓t and p✓t+1 .

2 Method

Normalizing Flows In conventional normalizing flows [18], an initial probability distribution p0(x)
with known density that is easy to sample from is transformed deterministically by an invertible
function f giving samples z = f(x) from the distribution p(z). The classic rule for changes to a
probability distribution under change of variable give the log probability as

logp(z) = logp0(f
�1(z))� log

��Jf (f
�1(z))

�� (2)

where Jf is the Jacobian of f . Normalizing flows estimate the probability distribution p by learning
the function f . As computing the log determinant scales as O(N3) with the number of variables in
the most general case, clever choices must be made for the class of functions to learn, such as real
non-volume-preserving flows (Real NVP) [6].

Infinitesimal Flows Another way to reduce the computational overhead of normalizing flows is
to use an ordinary differential equation to generate f [2]. In this case, the probability distribution
changes over a finite time from p(x; 0) to p(z;T ), where z is the end point of a curve defined by the
ODE ẋ(t) = v(x(t)), x(0) = x. For a small time step dt, we can approximate x(t + dt) to first
order as x(t+ dt) = x(t) + dtv(x(t)) +O(dt2). Plugging this into Eq. 2 yields:

logp(x+ dtv(x) +O(dt2); t+ dt) = logp(x; t)� log |Jf (x)| (3)

= logp(x; t)� log|I+ dtJv(x) +O(dt2)| (4)

Taking a Taylor series gives:

logp(x; t+ dt) + dtv(x)Trlogp(x; t+ dt) = logp(x; t)� dtTr(Jv(x)) +O(dt2) (5)

which, in the limit as dt ! 0, becomes:

@logp(x; t)

@t
= �v(x)Trlogp(x; t)� Tr(Jv(x)) = �vT

rlogp(x; t)�r · v (6)

after some rearranging of terms. Here r· is the divergence of a vector field, which is just another
way of writing the trace of the Jacobian. The right-hand side of this equation is also the trace of
the Stein operator of the distribution p(x) applied to the function v(x), and plays a critical role in
Stein variational gradient descent (SVGD) [13]. Switching from the log density to the density (and

2

dropping the t for clarity), we find this expression can be simplified considerably:
1

p(x)

@p(x)

@t
= �vT rp(x)

p(x)
�r · v

@p(x)

@t
= �vT

rp(x)� p(x)r · v

= �r · (v(x)p(x)) (7)
This may also be familiar as the drift term of the Fokker-Planck equation [11, Eq. 6.48] or the
continuity equation for conservation of mass in fluid mechanics. We will denote the change to a
probability distribution �p(x) rather than @p(x)

@t throughout the remainder of the paper, as we will not
always be in the context of differential equations.

Integrable Nonparametric Flows In neural ODEs, the infinitesimal change to the probability
distribution is learned – all that is given is the final position of the samples, and the field v is
approximated by a neural network. In our case, we assume the change to the probability distribution
is known at the start, at least at the position of the samples, and we want to solve Eq. 7 directly for v.
As we are trying to solve for a vector quantity but are only given a scalar, this is underdetermined.
However, if we assume that v is integrable (that it, there exists a scalar function u(x) such that
v(x)p(x) = ru(x)), then Eq. 7 has the same form as Gauss’s law in electromagnetism – v(x)p(x)
plays the role of an electric field while �p(x) is equivalent to the charge density. This equation admits
a general solution of the form

v(x)p(x) =

Z
dz�p(z)G(x� z),

where G is a convolution kernel known as a “Green’s function" [15], which means that G solves
the original equation for a Dirac delta source: r ·G(x) = �(0). In three dimensions, this Green’s
function takes the familiar form of x̂

4⇡|x|2 , where x̂ is the unit vector in the direction of x. In n

dimensions, this will take the form of x̂ divided by the surface area of the n� 1 sphere:

Gn(x) =
�(n2 )x̂

2⇡n/2|x|n�1
=

�(n2 )x

2⇡n/2|x|n

Convolving this gives

v(x)p(x) =

Z
dz�p(z)Gn(x� z) =

Z
dzp(z)

�p(z)

p(z)
Gn(x� z) = Ez⇠p


�p(z)

p(z)
Gn(x� z)

�

v(x) = Ez⇠p


�p(z)

p(z)p(x)
Gn(x� z)

�
(8)

The Green’s function can also be expressed as the gradient of the Coulomb kernel, that is, Gn(x�z) =
rxkn(x, z) where:

kn(x, z) =
�(n2 )

2(n� 2)⇡n/2|x� z|n�2
(9)

The Coulomb kernel is a natural choice for this problem. Not only is convolution with the gradient of
this kernel the only possible solution for Eq. 7 for which v(x)p(x) is integrable, but it is also the
optimal choice of kernel to define an energy for aligning distributions via samples following force
fields [9].1

Unnormalized densities In cases where MCMC would be used for sampling, we typically only
have access to the log of an unnormalized probability distribution, `(x) such that exp(`(x)) / p(x).
Let us assume we also have an infinitesimal change to the log unnormalized probability �`(x). Then
the expression in Eq. 8 simplifies to:

v(x) = Ez⇠p


�`(z)� Ez0⇠p[�`(z0)]

p(x)
Gn(x� z)

�
(10)

1The proof of optimality in [9] can be found at http://www.bioinf.jku.at/publications/2005/
ijcnnsupplementary.pdf
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Residual network ODE integration

xt+1 = xt + v(xt) dx/dt = v(x)
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Backpropagate through an ODE
dx
dt

= v(x, θ, t)

x(t) =
∂ℒ
∂x(t)Adjoint satisfies another ODE to be integrated back in time

dx(t)
dt

= − x(t)
∂v(x, θ, t)

∂x

 Gradient w.r.t. parameter
∂ℒ
∂θ

= ∫
T

0
dt x(t)

∂v(x, θ, t)
∂θ

ℒx1 x2

θ

xN. . .x0

Exercise:  
Derive this!
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Figure 2: Schematic illustration of two applications (a) unsupervised density estimation and (b)
variational free energy calculation for a statistical mechanics problem. In both cases, we integrate
equations 2 and 3 under a parametrized potential function '(x), and optimize '(x) such that the
density at the other end matches to the desired one.
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Figure 3: (a) The NLL of the training (blue) and the test (orange) MNIST dataset. The horizontal
lines indicate results obtained with previous flow-based models reported in Papamakarios et al.
(2017). (b) From top to bottom, Monge-Ampère flow of test MNIST images to the base Gaussian
distribution.

base distribution at time t = 0 to be a simple Gaussian p(x, 0) = N (x). See Appendix C for a
summary of the hyperparameters used in the experiments.

4.1 DENSITY ESTIMATION ON THE MNIST DATASET

First we perform the maximum likelihood estimation, which reduces the dissimilarity between the
empirical density distribution ⇡(x) of a given dataset and the model density p(x) measured by
the KL-divergence DKL (⇡(x)kp(x, T )). It is equivalent to minimize the negative log-likelihood
(NLL):

NLL = �Ex⇠⇡(x)[ln p(x, T )]. (6)
To compute the model likelihood we start from MNIST samples and integrate backwards from time
T to 0. By accumulating the change in the log-likelihood

R 0
T d ln p(x(t), t) we obtain an estimate of

the objective function in equation 6.

To model the MNIST data we need to first transform the images into continuous variables. Fol-
lowing Papamakarios et al. (2017), we first apply the jittering and dequantizing procedure to map
the original grayscale MNIST data to a continuous space. Next, we apply the logit transformation

5

The two use cases

“learn from data” “learn from Energy”

Zhang, E, LW, 1809.10188

Variational free energyMaximum likelihood estimation

F = 𝔼
x∼p(x)

[E(x) + kBT ln p(x)]ℒ = − 𝔼x∼data [ln p(x)]



E = ∑
i<j

1
|xi − xj |

+
N

∑
i

x2
i

Demo: Classical Coulomb gas in a harmonic trap

N = 6 Bolton et al, Sup. Micro ’93

https://colab.research.google.com/drive/1yIlPo5CAjYrqWHeFEZrMlzWNCoNJ6_YP#scrollTo=eQwLElKmaowu
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A B

C D

Figure 2. Energy histograms (A–B) and radial distribution functions (C–D) of the
base distribution, the fully trained model and MD simulation data, for the 500-particle
LJ system (left) and the 512-particle cubic ice system (right).

A key feature of our model architecture is that we can target specific crystal

structures by encoding them into the base distribution. For example, if we are interested

in modelling the hexagonal phase of a crystal, we can choose the lattice of the base

distribution to be hexagonal. Empirically, we find that, after training, the flow model

becomes a sampler for the (metastable) crystal state that we encode in the base

distribution, and does not sample configurations from other states. Thus, by choosing

the base lattice accordingly, we can guide the model towards the state of interest, without

changing the energy function or using ground-truth samples for guidance.

3. Results

We train the models on two di↵erent systems. The first is a truncated and shifted

Lennard-Jones (LJ) crystal in the FCC phase at reduced temperature and density values

of 2 and 1.28, respectively, employing a reduced cuto↵ of 2.7 as in Ref. [30]. The second is

ice I modelled as monatomic Water (mW) [26] in the diamond cubic (Ic) and hexagonal

https://github.com/deepmind/flows_for_atomic_solidsWirnsberger et al, 2111.08696

ln Z = ln 𝔼x∼q(x) [e−βE(x)−ln q(x)]
free energy perturbation (Zwanzig 1954)

Variational free energy with a really deep permutation equivariant flow

Normalizing flows for atomic solids 9

Table 1. Helmholtz free energy estimates, �F̂ /N , obtained with 2M, 2 ⇥ 1M and
100⇥10k samples for LFEP, LBAR and MBAR for LJ, and 2M, 2⇥1M and 200⇥10k
samples for ice. Parentheses show the uncertainties in the last digits (two standard
errors); error bars for LFEP and LBAR were computed using 10 independently trained
models, so they quantify uncertainty both due to randomness in training and due
to finite sample size in estimation; error bars for MBAR were computed across 10
independent estimates. The literature value for LJ is 3.11(4) for 256 particles [30]; the
literature value for mW is unknown. See Supplementary Material for further details.

System N LFEP LBAR MBAR

LJ 256 3.10800(28) 3.10797(1) 3.10798(9)
LJ 500 3.12300(41) 3.12264(2) 3.12262(10)

Ice Ic 64 -25.16311(3) -25.16312(1) -25.16306(20)
Ice Ic 216 -25.08234(7) -25.08238(1) -25.08234(5)
Ice Ic 512 -25.06163(35) -25.06161(1) -25.06156(3)

Ice Ih 64 -25.18671(3) -25.18672(2) -25.18687(26)
Ice Ih 216 -25.08980(3) -25.08979(1) -25.08975(14)
Ice Ih 512 -25.06478(9) -25.06479(1) -25.06480(4)

10�5kBT per particle. We find it remarkable, however, that LFEP can yield comparable

accuracy in most cases without access to MD samples for training or estimation, and

without the need for defining intermediate states. Finally, we compute the Helmholtz

free energy di↵erence between cubic and hexagonal ice for 216 particles by subtracting

the two LFEP estimates in Tab. 1. This yields a value of 12.4(2) J/mol which is in good

agreement with the reported Gibbs free energy di↵erence of 11.2(2) J/mol obtained with

LSMC simulations at atmospheric pressure [31].

4. Discussion

In summary, we have proposed a normalizing-flow model for solids consisting of identical

particles and have demonstrated that it can be optimized to approximate Boltzmann

distributions accurately for system sizes of up to 512 particles, without requiring samples

from the target for training. We have shown that flow-based estimates of radial

distribution functions, bond-order parameters and energy histograms agree well with

MD results, without the need for an unbiasing step. A detailed comparison of free

energy estimates further verifies that our flow-based estimates are correct and accurate.

Our work therefore clearly demonstrates that flow models can approximate single states

of interest with high accuracy without training data, providing a solid foundation for

follow-up work.

A current limitation of our proposed method is the computational cost of training.

Although generating samples from the model and obtaining their probability density is

e�cient as it is trivially parallelizable, training the model with gradient-based methods

is inherently sequential. While training took only a day on the smallest system (64-

ln ZB − ln ZA = ln 𝔼A [e−β(EB−EA)]
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F. Hardware details and computational cost

For our flow experiments, we used 16 A100 GPUs to train each model on the bigger

systems (512-particle mW and 500-particle LJ). It took approximately 3 weeks of

training to reach convergence of the free-energy estimates. Obtaining 2M samples for

evaluation took approximately 12 hours on 8 V100 GPUs for each of these models.

Training on the medium-size systems (216-particle mW and 256-particle LJ) until

convergence took about 4 days on 8 V100 GPUs, obtaining 2M samples took about

4 hours on 4 V100 GPUs. The 64-particle mW systems trained in one day on 4 V100

GPUs and 2M samples took 2 hours to generate on the same 4 V100 GPUs.

For each baseline MBAR estimate, we performed 100 separate simulations for LJ

and 200 for mW, corresponding to the number of stages employed. These simulations

were performed with LAMMPS [8] and each of them ran on multiple CPU cores

communicating via MPI. We used 4 cores for the 64-particle and 216-particle mW

experiments and 8 cores for all other systems. The MD simulations completed after

approximately 11 and 14 hours for LJ (256 and 500 particles), and 7, 20 and 48 hours

for mW (64, 216 and 512 particles). To evaluate the energy matrix for a single MBAR

estimate, we decomposed the problem into the number of stages separate jobs (100

for LJ and 200 for mW), so that each worker evaluated all energies for the samples

corresponding to a single stage on a V100 GPU. Each of these jobs took less than

10 minutes for LJ (both system sizes) and approximately 0.5, 1 and 4 hours for mW

with 64, 216 and 512 particles. Running pymbar [9] until convergence on a CPU took

between 20 minutes and two hours for a single estimate.

G. Supplementary experimental results

A B

Supplementary Figure 2. Energy histograms (A) and radial distribution functions

(B) of the base distribution, the fully trained model and MD simulation data, for the

512-particle hexagonal ice system.
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For our flow experiments, we used 16 A100 GPUs to train each model on the bigger

systems (512-particle mW and 500-particle LJ). It took approximately 3 weeks of

training to reach convergence of the free-energy estimates. Obtaining 2M samples for

evaluation took approximately 12 hours on 8 V100 GPUs for each of these models.

Training on the medium-size systems (216-particle mW and 256-particle LJ) until

convergence took about 4 days on 8 V100 GPUs, obtaining 2M samples took about

4 hours on 4 V100 GPUs. The 64-particle mW systems trained in one day on 4 V100

GPUs and 2M samples took 2 hours to generate on the same 4 V100 GPUs.

For each baseline MBAR estimate, we performed 100 separate simulations for LJ

and 200 for mW, corresponding to the number of stages employed. These simulations

were performed with LAMMPS [8] and each of them ran on multiple CPU cores

communicating via MPI. We used 4 cores for the 64-particle and 216-particle mW

experiments and 8 cores for all other systems. The MD simulations completed after

approximately 11 and 14 hours for LJ (256 and 500 particles), and 7, 20 and 48 hours

for mW (64, 216 and 512 particles). To evaluate the energy matrix for a single MBAR

estimate, we decomposed the problem into the number of stages separate jobs (100

for LJ and 200 for mW), so that each worker evaluated all energies for the samples

corresponding to a single stage on a V100 GPU. Each of these jobs took less than

10 minutes for LJ (both system sizes) and approximately 0.5, 1 and 4 hours for mW

with 64, 216 and 512 particles. Running pymbar [9] until convergence on a CPU took

between 20 minutes and two hours for a single estimate.

G. Supplementary experimental results

A B

Supplementary Figure 2. Energy histograms (A) and radial distribution functions

(B) of the base distribution, the fully trained model and MD simulation data, for the

512-particle hexagonal ice system.
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Monte Carlo Gradient Estimation in Machine Learning

classes, gradients-of-measure or gradients-of-paths. We derived the score-function estimator and the
measure-valued gradient estimator as instances of gradients of measure, both of which exploit the
measure in the stochastic objective to derive the gradient. And we derived the pathwise estimator
that uses knowledge of the sampling path to obtain the gradient. All these methods benefit from
variance reduction techniques and we reviewed four approaches for variance reduction we might
consider in practice. We further explored the use of these estimators through a set of case studies,
and explored some of the other tools for gradient estimation that exist beyond the three principal
estimators.

10.1 Guidance in Choosing Gradient Estimators

With so many competing approaches, we o↵er our rules of thumb in choosing an estimator, which
follow the intuition we developed throughout the paper:

• If our estimation problem involves continuous functions and measures that are continuous
in the domain, then using the pathwise estimator is a good default. It is relatively easy to
implement and a default implementation, one without other variance reduction, will typically
have variance that is low enough so as not to interfere with the optimisation.

• If the cost function is not di↵erentiable or a black-box function then the score-function or the
measure-valued gradients are available. If the number of parameters is low, then the measure-
valued gradient will typically have lower variance and would be preferred. But if we have a
high-dimensional parameter set, then the score function estimator should be used.

• If we have no control over the number of times we can evaluate a black-box cost function,
e↵ectively only allowing a single evaluation of it, then the score function is the only estimator
of the three we reviewed that is applicable.

• The score function estimator should, by default, always be implemented with at least a basic
variance reduction. The simplest option is to use a baseline control variate estimated with a
running average of the cost value.

• When using the score-function estimator, some attention should be paid to the dynamic range
of the cost function and its variance, and to find ways to keep its value bounded within a
reasonable range, e.g., transforming the cost so that it is zero mean, or using a baseline.

• For all estimators, track the variance of the gradients if possible and address high variance by
using a larger number of samples from the measure, decreasing the learning rate, or clipping
the gradient values. It may also be useful to restrict the range of some parameters to avoid
extreme values, e.g., by clipping them to a desired interval.

• The measure-valued gradient should be used with some coupling method for variance reduc-
tion. Coupling strategies that exploit relationships between the positive and negative compo-
nents of the density decomposition, and which have shared sampling paths, are known for the
commonly-used distributions.

• If we have several unbiased gradient estimators, a convex combination of them might have
lower variance than any of the individual estimators.

• If the measure is discrete on its domain then the score-function or measure-valued gradient
are available. The choice will again depend on the dimensionality of the parameter space.

• In all cases, we strongly recommend having a broad set of tests to verify the unbiasedness of
the gradient estimator when implemented.
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exp

cos

Figure 3: Variance of the stochastic estimates of r✓EN (x|µ,�2) [f(x; k)] for µ = � = 1 as a function
of k. Top: f(x; k) = exp(�kx

2), bottom: f(x; k) = cos kx. Left: ✓ = µ; right: ✓ = �.
The graphs in the bottom row show the function (solid) and its gradient (dashed): for
k 2 {0.1, 1, 10} for the exponential function, and k 2 {0.5, 1.58, 5.} for the cosine function.

Figures 2 and 3 also demonstrate the importance of variance reduction. The score function estimator
is commonly used with a control variate, a way to reduce the variance of the gradient that we explore
further in Section 7. We see a large decrease in variance by employing this technique. The variance
of the measure-valued derivative estimator in these plots is also shown with a form of variance
reduction (known as coupling), and for these simple cost functions, there are regimes of the function
that allow corrections that drive the variance to zero; we can see this where the kink in the plot for
the variance of the mean-gradient for the cosine cost function.

From this initial exploration, we find that there are several criteria to be judged when choosing
an unbiased gradient estimator: computational cost, implications on the use of di↵erentiable and
non-di↵erentiable cost functions, the change in behaviour as the cost itself changes (e.g., during
learning), and the availability of e↵ective variance reduction techniques to achieve low variance. We
will revisit these figures again in subsequent sections as we develop the precise description of these
methods. We will assess each estimator based on these criteria, working towards building a deeper
understanding of them and their implications for theory and practice.

10
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where the indicator 1y<ybest is one if the condition is met, and zero otherwise. There are
many such objectives, in areas such as Bayesian optimisation, active learning and bandits
(Shahriari et al., 2016; Wilson et al., 2018), all of which involve computing the gradient of an
expectation of a loss function, with wide use in computer graphics, model architecture search,
automatic machine learning, and treatment design; again highlighting the central role that
general-purpose gradient estimators play in modern applications.

While these five areas are entire fields of their own, they are also important problems for which
there is ongoing e↵ort throughout machine learning. There are also many other problems where
the need for computing stochastic gradients appears, including systems modelling using stochastic
di↵erential equations, parameter learning of generative models in algorithms such as variational
autoencoders, generative adversarial networks and generative stochastic networks (Rezende et al.
(2014); Kingma and Welling (2014b); Goodfellow et al. (2014); Bengio et al. (2014)), in bandits
and online learning (Hu et al., 2016), in econometrics and simulation-based estimation (Gouriéroux
and Monfort, 1996), and in instrumental-variables estimation and counter-factual reasoning (Hart-
ford et al., 2016). An ability to compute complicated gradients gives us the confidence to tackle
increasingly more complicated and interesting problems.

3. Intuitive Analysis of Gradient Estimators

The structure of the sensitivity analysis problem r✓Ep(x;✓) [f(x)] (2) directly suggests that gradients
can be computed in two ways:

Derivatives of Measure. The gradient can be computed by di↵erentiation of the measure p(x;✓).
Gradient estimators in this class include the score function estimator (Section 4) and the
measure-valued gradient (Section 6).

Derivatives of Paths. The gradient can be computed by di↵erentiation of the cost f(x), which
encodes the pathway from parameters ✓, through the random variable x, to the cost value.
In this class of estimators, we will find the pathwise gradient (Section 5), harmonic gradient
estimators and finite di↵erences (Section 9.5), and Malliavin-weighted estimators (Section 9.7).

We focus our attention on three classes of gradient estimators: the score function, pathwise and
measure-valued gradient estimators. All three estimators satisfy two desirable properties that we
identified previously, they are consistent and unbiased ; but they di↵er in their variance behaviour
and in their computational cost. Before expanding on the mathematical descriptions of these three
gradient estimators, we compare their performance in simplified problems to develop an intuitive
view of the di↵erences between these methods with regards to performance, computational cost,
di↵erentiability, and variability of the cost function.

Consider the stochastic gradient problem (2) that uses Gaussian measures for three simple families
of cost functions, quadratics, exponentials and cosines:

⌘ = r✓

Z
N (x|µ, �

2)f(x; k)dx; ✓ 2 {µ, �}; f 2 {(x � k)2, exp(�kx
2), cos(kx)}. (10)

We are interested in estimates of the gradient (10) with respect to the mean µ and the standard
deviation � of the Gaussian distribution. The cost functions vary with a parameter k, which allows
us to explore how changes in the cost a↵ect the gradient. In the graphs that follow, we use numerical
integration to compute the variance of these gradients. To reproduce these graphs, see the note on
code in the introduction.

8
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Flow on manifolds

flow

Figure 4: Density on a 2-dimensional sphere formed by mapping the sphere to R
2, trans-

forming the density there, and mapping R
2 back to the sphere.

points x 2 R
M on the manifold using coordinates u 2 R

D. The map T induces a metric
G(u) on the tangent space of X at x = T (u), given by (Kobayashi and Nomizu, 1963):

G(u) = JT (u)
>JT (u). (103)

As a result, an infinitesimal volume on X is given by d⌫(x) =
p
detG(u) du. A formula

relating the density on X to that on the Euclidean space R
D can be derived from the

conservation of measure (eq. 87) by setting U = R
D, taking dµ(u) to be the Lebesgue

measure on R
D, and reparameterizing d⌫(x) =

p
detG(u) du, which yields:

Z

!
pu(u) du =

Z

!
px(T (u))

p
detG(u) du. (104)

Since the above must be true for any ! ✓ R
D, it follows that:

pu(u) = px(T (u))
p
detG(u), (105)

which gives the density on R
D as a function of the density on the manifold. If we restrict

the range of T to X , we can define the inverse mapping T�1 : X ! R
D and then use it to

obtain the density on the manifold:

px(x) = pu
�
T�1(x)

� ⇥
detG

�
T�1(x)

�⇤�1/2
. (106)

The usual density-transformation formula for flows on R
D is a particular case of eq. 106.

Taking X = R
D and M = D, the Jacobian JT (u) becomes D ⇥ D, and the infinitesimal

volume on X simplifies to:

d⌫(x) =
p
(det JT (u))2 du = |det JT (u)| du, (107)

which retrieves the standard flow on R
D.

Using the above approach, we can define flows for which both U and X are D-dimensional
Riemannian manifolds. We start from a base density defined on a manifold U , transform
it to R

D using the inverse embedding map for U , perform any number of standard flow
steps on R

D, and finally transform the resulting density on the target manifold X using

36
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Figure 2: Like other normalizing flows, drawing samples from an approximate posterior with Inverse
Autoregressive Flow (IAF) consists of an initial sample z drawn from a simple distribution, such as a
Gaussian with diagonal covariance, followed by a chain of nonlinear invertible transformations of z,
each with a simple Jacobian determinants.

The flow consists of a chain of T of the following transformations:

zt = µt + �t � zt�1 (10)

where at the t-th step of the flow, we use a different autoregressive neural network with inputs zt�1

and h, and outputs µt and �t. The neural network is structured to be autoregressive w.r.t. zt�1, such
that for any choice of its parameters, the Jacobians dµt

dzt�1
and d�t

dzt�1
are triangular with zeros on the

diagonal. As a result, dzt
dzt�1

is triangular with �t on the diagonal, with determinant
QD

i=1 �t,i. (Note
that the Jacobian w.r.t. h does not have constraints.) Following eq. (5), the density under the final
iterate is:

log q(zT |x) = �
DX

i=1

 
1
2✏

2
i +

1
2 log(2⇡) +

TX

t=0

log �t,i

!
(11)

The flexibility of the distribution of the final iterate zT , and its ability to closely fit to the true posterior,
increases with the expressivity of the autoregressive models and the depth of the chain. See figure 2
for an illustration.

A numerically stable version, inspired by the LSTM-type update, is where we let the autoregressive
network output [mt, st], two unconstrained real-valued vectors:

[mt, st] AutoregressiveNN[t](zt,h;✓) (12)

and compute zt as:

�t = sigmoid(st) (13)
zt = �t � zt�1 + (1� �t)�mt (14)

This version is shown in algorithm 1. Note that this is just a particular version of the update of
eq. (10), so the simple computation of the final log-density of eq. (11) still applies.

We found it beneficial for results to parameterize or initialize the parameters of each
AutoregressiveNN[t] such that its outputs st are, before optimization, sufficiently positive, such as
close to +1 or +2. This leads to an initial behaviour that updates z only slightly with each step of IAF.
Such a parameterization is known as a ’forget gate bias’ in LSTMs, as investigated by Jozefowicz
et al. (2015).

Perhaps the simplest special version of IAF is one with a simple step, and a linear autoregressive
model. This transforms a Gaussian variable with diagonal covariance, to one with linear dependencies,
i.e. a Gaussian distribution with full covariance. See appendix A for an explanation.

Autoregressive neural networks form a rich family of nonlinear transformations for IAF. For non-
convolutional models, we use the family of masked autoregressive networks introduced in (Germain
et al., 2015) for the autoregressive neural networks. For CIFAR-10 experiments, which benefits more
from scaling to high dimensional latent space, we use the family of convolutional autoregressive
autoencoders introduced by (van den Oord et al., 2016b,c).

We found that results improved when reversing the ordering of the variables after each step in the IAF
chain. This is a volume-preserving transformation, so the simple form of eq. (11) remains unchanged.
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a

b

c

Figure 1: Deterministic versus stochastic normalizing flow for the double well. Red arrows
indicate deterministic transformations, blue arrows indicate stochastic dynamics. a) 3 RealNVP
blocks (2 layers each). b) Same with 20 BD steps before or after RealNVP blocks. c) Unbiased
sample from true distribution.
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Figure 2: Schematic for Stochastic Normalizing Flow (SNF). An SNF transforms a tractable prior
µZ(z) / exp(�u0(z)) to a complicated target distribution µX(x) / exp(�u1(x)) by a sequence of
deterministic invertible transformations (flows, grey boxes) and stochastic dynamics (sample, ochre)
that sample with respect to a guiding potential u�(x). SNFs can be trained and run in forward mode
(black) and reverse mode (blue).

Contributions. We show that NFs can be interwoven with stochastic sampling blocks into arbitrary
sequences, that together overcome topological constraints and improve expressivity over deterministic
flow architectures (Fig. 1a, b). Furthermore, NSFs have improved sampling efficiency over pure
stochastic sampling as the flow’s and sampler’s parameters can be optimized jointly.

Our main result is that NSFs can be trained in a similar fashion as NFs and exact importance weights
for each sample ending in x can be computed, facilitating asymptotically unbiased sampling from the
target density. The approach avoids explicitly computing pX(x) which would require solving the
intractable integral over all stochastic paths ending in x.

We apply the model to the recently introduced problem of asymptotically unbiased sampling of
molecular structures with flows [32] and show that it significantly improves sampling the multi-modal
torsion angle distributions which are the relevant degrees of freedom in the system. We further show
the advantage of the method over pure flow-based sampling / MCMC by quantitative comparison on
benchmark data sets and on sampling from a VAE’s posterior distribution.

Code is available at github.com/noegroup/stochastic_normalizing_flows

2 Stochastic normalizing flows

A SNF is a sequence of T stochastic and deterministic transformations. We sample z = y0 from the
prior µZ , and generate a forward path (y1, . . . ,yT ) resulting in a proposal yT (Fig. 2). Correspond-
ingly, latent space samples can be generated by starting from a sample x = yT and invoking the
backward path (yT�1, . . . ,y0). The conditional forward / backward path probabilities are

Pf (z=y0 ! yT =x) =
T�1Y

t=0

qt(yt ! yt+1), Pb(x=yT ! y0 =z) =
T�1Y

t=0

q̃t(yt+1 ! yt) (8)
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Discrete flows

Tran et al, 1905.10347, Hoogeboom et al, 1905.07376, van den Berg 2006.12459

Figure 1: Left: 3D probability distribution tensor, only nonzero values are indicated with colored
cubes, all empty space is assumed to be filled with zero-valued cubes. Middle left: an example of
an additive transformation conditioned on x3: y1 = x1 + bt1(x3)e, y2 = x2 + bt2(x3)e, y3 = x3.
Middle right: an example of an additive transformation conditioned on x1 and x3: y1 = x1,
y2 = x2 + bt2(x1, x3)e, y3 = x3. Right: a distribution tensor that a single additive transformation of
the form of Eq. (4) cannot generate from the cube on the left.

operator is replaced by the identity function during back propagation. This leads to biased gradient
estimates for the parameters ✓, a topic that we will come back to in section 5.

Tran et al. [52] introduce flows for discrete values that are not required to be ordinal, but which do
have a finite number of possible values: x 2 X = {0, 1, ...,K � 1}d. They introduce a bijector
in the form of a coupling layer with a scale and translation and a modulo operation: [ya,yb] =
[xa, (s✓(xa) � xb + t✓(xa))modK], with � denoting element-wise multiplication. The elements
of the scale s and translation t are assumed to take on values in 1, 2...,K � 1 and 0, 1, ...,K � 1
respectively. The above equation is only invertible when s and K are co-prime, in which case the
modular multiplicative inverse s�1 can be obtained through the extended Euclidean algorithm. Tran
et al. [52] also introduce an autoregressive version, where yi = [si(y<i)xi + t(y<i)]modK.

In practice, each element xi, si and ti for i 2 {1, ..., d} is represented as a one-hot vector. In
order to apply gradient-based methods to optimize the neural network parameters ✓, another form
of a straight-through estimator is used. In the forward pass, the scale and translation are obtained
by taking the argmax over the outputs of a neural net: si = onehot(argmax(�i)), with �i the
first half of the output of a neural network: [�i, ⌧ i] = nn✓(x1). The one-hot translation ti is
obtained similarly from ⌧ i. In the backward pass the non-differential operators are replaced with
si = softmax(�i/T ), where T denotes a temperature parameter that determines how closely the
softmax operator approximates the combined effect of the one-hot and argmax operator.

In summary, the main differences between discrete flows [52] and integer discrete flows [19] are
respectively: i) a finite number of classes versus a countably infinite number of classes, ii) non-ordinal
classes versus ordinal classes, iii) different straight-through estimators that approximate the respective
quantization operators: one-hot quantization versus rounding. The consequence of i) and its influence
on the flexibility to model arbitrary probability distributions is discussed in Section 4. The influence
of quantization operators on optimization for integer discrete flows will be discussed in Section 5.

4 Flexibility of flows for discrete random variables

As discussed by Papamakarios et al. [38], it might seem that normalizing flows for discrete random
variables are not able to model complicated distributions due to their restriction of only being able to
permute the probabilities of the probability distribution tensor. This appears to be in contrast with
many continuous flows that are non-volume preserving such as affine transformations [11], neural
spline flows [14] and Flow++ [17]. In this section we aim to show that flows for discrete random
variables are more flexible than previously claimed. We will do this by starting with an educative
example as proposed by Papamakarios et al. [38].

Consider the case of a two-dimensional random variable x = (x1, x2), with x1, x2 2 {0, 1}, and a
data-distribution given by

px(x1, x2) :

x1\x2 0 1⇣ ⌘
0 0.1 0.3
1 0.2 0.4

. (5)

4

p(x) = p(y = 𝒯(x))



Optimal Transport Theory
42 3 The founding fathers of optimal transport

minimize the total cost. Monge assumed that the transport cost of one
unit of mass along a certain distance was given by the product of the
mass by the distance.
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Fig. 3.1. Monge’s problem of déblais and remblais

Nowadays there is a Monge street in Paris, and therein one can find
an excellent bakery called Le Boulanger de Monge. To acknowledge this,
and to illustrate how Monge’s problem can be recast in an economic
perspective, I shall express the problem as follows. Consider a large
number of bakeries, producing loaves, that should be transported each
morning to cafés where consumers will eat them. The amount of bread
that can be produced at each bakery, and the amount that will be
consumed at each café are known in advance, and can be modeled as
probability measures (there is a “density of production” and a “density
of consumption”) on a certain space, which in our case would be Paris
(equipped with the natural metric such that the distance between two
points is the length of the shortest path joining them). The problem is
to find in practice where each unit of bread should go (see Figure 3.2),
in such a way as to minimize the total transport cost. So Monge’s
problem really is the search of an optimal coupling; and to be more
precise, he was looking for a deterministic optimal coupling.

Fig. 3.2. Economic illustration of Monge’s problem: squares stand for production
units, circles for consumption places.

Monge problem (1781): How to transport earth with optimal cost ?

Monge Kantorovich Dantzig Brenier McCann VillaniOttoKoopmans

Nobel Prize in Economics ’75 Fields Metal ’10 Fields Metal ’18
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q
⇣
x(0···T )

⌘
. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p
⇣
x(0···T )

⌘
. An identity-covariance

Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, fµ

⇣
x(t), t

⌘
� x(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which
uses a Markov chain which slowly converts one distribu-
tion into another to compute a ratio of normalizing con-
stants. In (Burda et al., 2014) it is shown that AIS can also
be performed using the reverse rather than forward trajec-
tory. Langevin dynamics (Langevin, 1908), which are the
stochastic realization of the Fokker-Planck equation, show
how to define a Gaussian diffusion process which has any
target distribution as its equilibrium. In (Suykens & Vande-
walle, 1995) the Fokker-Planck equation is used to perform
stochastic optimization. Finally, the Kolmogorov forward
and backward equations (Feller, 1949) show that for many
forward diffusion processes, the reverse diffusion processes
can be described using the same functional form.

2. Algorithm
Our goal is to define a forward (or inference) diffusion pro-
cess which converts any complex data distribution into a
simple, tractable, distribution, and then learn a finite-time
reversal of this diffusion process which defines our gener-
ative model distribution (See Figure 1). We first describe
the forward, inference diffusion process. We then show

how the reverse, generative diffusion process can be trained
and used to evaluate probabilities. We also derive entropy
bounds for the reverse process, and show how the learned
distributions can be multiplied by any second distribution
(e.g. as would be done to compute a posterior when in-
painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
�
x(0)

�
. The data distribu-

tion is gradually converted into a well behaved (analyti-
cally tractable) distribution ⇡ (y) by repeated application
of a Markov diffusion kernel T⇡ (y|y0;�) for ⇡ (y), where
� is the diffusion rate,

⇡ (y) =

Z
dy0

T⇡ (y|y0;�)⇡ (y0) (1)

q

⇣
x(t)|x(t�1)

⌘
= T⇡

⇣
x(t)|x(t�1);�t

⌘
. (2)
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ABSTRACT

We revisit the challenging problem of training Gaussian-Bernoulli restricted
Boltzmann machines (GRBMs), introducing two innovations. We propose a novel
Gibbs-Langevin sampling algorithm that outperforms existing methods like Gibbs
sampling. We propose a modified contrastive divergence (CD) algorithm so that
one can generate images with GRBMs starting from noise. This enables direct
comparison of GRBMs with deep generative models, improving evaluation pro-
tocols in the RBM literature. Moreover, we show that modified CD and gradient
clipping are enough to robustly train GRBMs with large learning rates, thus re-
moving the necessity of various tricks in the literature. Experiments on Gaussian
Mixtures, MNIST, FashionMNIST, and CelebA show GRBMs can generate good
samples, despite their single-hidden-layer architecture. Our code is released at:
https://github.com/lrjconan/GRBM

1 INTRODUCTION

Restricted Boltzmann machines (RBMs) (Smolensky, 1986; Freund & Haussler, 1991; Hinton,
2002) are energy-based generative models with stochastic binary units. A variant of Boltzmann
machines (Ackley et al., 1985), they have a bipartite graphical structure that enables efficient proba-
bilistic inference, and they can be stacked to form deep belief networks (DBNs) (Hinton & Salakhut-
dinov, 2006; Bengio et al., 2006; Hinton et al., 2006). Gaussian-Bernoulli RBMs (GRBMs) (Welling
et al., 2004; Hinton & Salakhutdinov, 2006) extend RBMs to model continuous data by replacing
the binary visible units of the RBM with Gaussian random variables.

GRBMs remain challenging to learn, however, despite many proposed modifications to the model
or training algorithm. For instance, Lee et al. (2007) add a regularization term to encourage sparsely
activated binary hidden units. Krizhevsky et al. (2009) attribute the difficulties in learning to high-
frequency noise present in natural images. Factorized high-order terms were introduced in (Ranzato
& Hinton, 2010; Ranzato et al., 2010) to allow GRBMs to explicitly learn the covariance structure
among pixels. Nair & Hinton (2010) suggest that binary hidden units are problematic, and proposed
model variants with real-valued hidden units. Cho et al. (2011a; 2013) advocate the use of parallel
tempering sampling (Earl & Deem, 2005), adaptive learning rate, and enhanced gradient (Cho et al.,
2011b) to improve GRBM learning. Melchior et al. (2017) conclude that difficulties in GRBM
training are due to training algorithms rather than the model itself; they advocate the use of gradient
clipping, specialized weight initialization, and contrastive divergence (CD) (Hinton, 2002) rather
than persistent CD (Tieleman, 2008). Upadhya & Sastry (2021) propose a stochastic difference of
convex functions programming (S-DCP) algorithm to replace CD in training GRBMs.

An important motivation for seeking to improve GRBM learning is so that a GRBM can be used to
convert real-valued data to stochastic binary data. This would make it easy for researchers to explore
novel ways of implementing stochastic binary Boltzmann machines to model real-valued data. To
that end, we propose improved GRBM learning methods for image data. Specifically,

• We propose a hybrid Gibbs-Langevin sampling algorithm that outperforms predominant
use of Gibbs sampling. To the best of our knowledge this is the first use of Langevin
sampling for GRBM training (with or without Metropolis adjustment).

⇤Work done partially as a visiting faculty researcher at Google Brain.
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use of Gibbs sampling. To the best of our knowledge this is the first use of Langevin
sampling for GRBM training (with or without Metropolis adjustment).
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ABSTRACT

We revisit the challenging problem of training Gaussian-Bernoulli restricted
Boltzmann machines (GRBMs), introducing two innovations. We propose a novel
Gibbs-Langevin sampling algorithm that outperforms existing methods like Gibbs
sampling. We propose a modified contrastive divergence (CD) algorithm so that
one can generate images with GRBMs starting from noise. This enables direct
comparison of GRBMs with deep generative models, improving evaluation pro-
tocols in the RBM literature. Moreover, we show that modified CD and gradient
clipping are enough to robustly train GRBMs with large learning rates, thus re-
moving the necessity of various tricks in the literature. Experiments on Gaussian
Mixtures, MNIST, FashionMNIST, and CelebA show GRBMs can generate good
samples, despite their single-hidden-layer architecture. Our code is released at:
https://github.com/lrjconan/GRBM

1 INTRODUCTION

Restricted Boltzmann machines (RBMs) (Smolensky, 1986; Freund & Haussler, 1991; Hinton,
2002) are energy-based generative models with stochastic binary units. A variant of Boltzmann
machines (Ackley et al., 1985), they have a bipartite graphical structure that enables efficient proba-
bilistic inference, and they can be stacked to form deep belief networks (DBNs) (Hinton & Salakhut-
dinov, 2006; Bengio et al., 2006; Hinton et al., 2006). Gaussian-Bernoulli RBMs (GRBMs) (Welling
et al., 2004; Hinton & Salakhutdinov, 2006) extend RBMs to model continuous data by replacing
the binary visible units of the RBM with Gaussian random variables.

GRBMs remain challenging to learn, however, despite many proposed modifications to the model
or training algorithm. For instance, Lee et al. (2007) add a regularization term to encourage sparsely
activated binary hidden units. Krizhevsky et al. (2009) attribute the difficulties in learning to high-
frequency noise present in natural images. Factorized high-order terms were introduced in (Ranzato
& Hinton, 2010; Ranzato et al., 2010) to allow GRBMs to explicitly learn the covariance structure
among pixels. Nair & Hinton (2010) suggest that binary hidden units are problematic, and proposed
model variants with real-valued hidden units. Cho et al. (2011a; 2013) advocate the use of parallel
tempering sampling (Earl & Deem, 2005), adaptive learning rate, and enhanced gradient (Cho et al.,
2011b) to improve GRBM learning. Melchior et al. (2017) conclude that difficulties in GRBM
training are due to training algorithms rather than the model itself; they advocate the use of gradient
clipping, specialized weight initialization, and contrastive divergence (CD) (Hinton, 2002) rather
than persistent CD (Tieleman, 2008). Upadhya & Sastry (2021) propose a stochastic difference of
convex functions programming (S-DCP) algorithm to replace CD in training GRBMs.

An important motivation for seeking to improve GRBM learning is so that a GRBM can be used to
convert real-valued data to stochastic binary data. This would make it easy for researchers to explore
novel ways of implementing stochastic binary Boltzmann machines to model real-valued data. To
that end, we propose improved GRBM learning methods for image data. Specifically,

• We propose a hybrid Gibbs-Langevin sampling algorithm that outperforms predominant
use of Gibbs sampling. To the best of our knowledge this is the first use of Langevin
sampling for GRBM training (with or without Metropolis adjustment).
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the binary visible units of the RBM with Gaussian random variables.

GRBMs remain challenging to learn, however, despite many proposed modifications to the model
or training algorithm. For instance, Lee et al. (2007) add a regularization term to encourage sparsely
activated binary hidden units. Krizhevsky et al. (2009) attribute the difficulties in learning to high-
frequency noise present in natural images. Factorized high-order terms were introduced in (Ranzato
& Hinton, 2010; Ranzato et al., 2010) to allow GRBMs to explicitly learn the covariance structure
among pixels. Nair & Hinton (2010) suggest that binary hidden units are problematic, and proposed
model variants with real-valued hidden units. Cho et al. (2011a; 2013) advocate the use of parallel
tempering sampling (Earl & Deem, 2005), adaptive learning rate, and enhanced gradient (Cho et al.,
2011b) to improve GRBM learning. Melchior et al. (2017) conclude that difficulties in GRBM
training are due to training algorithms rather than the model itself; they advocate the use of gradient
clipping, specialized weight initialization, and contrastive divergence (CD) (Hinton, 2002) rather
than persistent CD (Tieleman, 2008). Upadhya & Sastry (2021) propose a stochastic difference of
convex functions programming (S-DCP) algorithm to replace CD in training GRBMs.

An important motivation for seeking to improve GRBM learning is so that a GRBM can be used to
convert real-valued data to stochastic binary data. This would make it easy for researchers to explore
novel ways of implementing stochastic binary Boltzmann machines to model real-valued data. To
that end, we propose improved GRBM learning methods for image data. Specifically,

• We propose a hybrid Gibbs-Langevin sampling algorithm that outperforms predominant
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Diffusion models

I will follow the score-matching route https://yang-song.net/blog/2021/score/ 



Score matching

𝔽(π ∥ p) = ∫ dx π(x) ∇xln π(x) − ∇xln p(x)
2

Minimizing Fisher divergence avoids the intractable partition function problem 

How to learn the model without knowing  ?∇ln π

However, it brings up another problem

target model



Implicit score matching

𝔽(π ∥ p) = ∫ dx π(x)( |∇ln p(x) |2 + 2∇2ln p(x)) + const .

Integrate by parts Hyvarinen JMLR ‘05

The  laplacian term can be difficult to compute

Curiously, the same expression for the kinetic energy of a wavefunction

Cheaper stochastic estimate: 
Song et al, 1905.07088

∇2ψ
ψ

= |∇ln ψ |2 + ∇2ln ψ
Forward laplacian: 

 Li et al, 2307.08214



Denoising score matching

𝔽(q ∥ p) = 𝔼x∼q(x) |∇ln q(x) − ∇ln p(x) |2

q(x) = ∫ q(x |x0)π(x0)dx0

Perturb data with small noise

q(x |x0) = 𝒩(x; x0, σ2)

= 𝔼x0∼π(x0)𝔼x∼q(x|x0) |∇ln q(x |x0) − ∇ln p(x) |2 + const .

Fisher divergence between perturbed data and model is computable

x0 − x
σ2

the restoring force xx0

Vincent 2011



𝔼x∼q(x) |∇ln q(x) − sθ |2 = 𝔼x0∼π(x0)𝔼x∼q(x|x0) |∇ln q(x |x0) − sθ |2 + const .

Independent  
of θ

Claim:

Proof:

𝔼x0∼π(x0)𝔼x∼q(x|x0) |s |2 = ∫ dx0 ∫ dxπ(x0)q(x |x0) |s |2 = ∫ dxq(x) |s |2 = 𝔼x∼q(x) |s2 |

𝔼x0∼π(x0)𝔼x∼q(x|x0)[s ⋅ ∇ln q(x |x0)] = ∫ dx0 ∫ dxπ(x0)q(x |x0)
s ⋅ ∇q(x |x0)

q(x |x0)

= ∫ dx0 ∫ dxπ(x0)s ⋅ ∇q(x |x0)

= ∫ dxs ⋅ ∇q(x) = 𝔼x∼q(x)[s ⋅ ∇ln q(x)]

sθ = ∇ln pθ(x)score



Why score matching did not take off? 

xt+ϵ = xt +
ϵ
2

∇ln p(xt) + ϵ𝒩(0,I)

Hard to sample between modes with Langevin dynamics

xt ∼ p(xt)
for ϵ → 0, t → ∞



From denoising score matching to diffusion model
Song et al, Generative modeling by estimating gradients of the data distribution, 1907.05600

Sohl-Dickstein et al, Deep unsupervised learning using nonequilibrium thermodynamics, 1503.03585
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<latexit sha1_base64="t0i1pCznTHPDu6bVK1eC39Lb+4A="></latexit>

min
✓

Et⇠U(0,T )Ex0⇠q0(x0)Ext⇠qt(xt|x0)||s✓(xt, t)�rxt log qt(xt|x0)||22

Denoising Score Matching

• Instead, diffuse individual data points     . Diffused               is tractable!

Forward diffusion process (fixed)

<latexit sha1_base64="1FJ2Efhg5qcTrvU55qAcEPfzByE=">AAAB+XicbVDLSsNAFL2pr1pfUZduBqvgqiRSqsuCG5cV7APaECbTSTt0Mgkzk2IJ/RM3LhRx65+482+ctFlo64GBwzn3cs+cIOFMacf5tkobm1vbO+Xdyt7+weGRfXzSUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024wucv97pRKxWLxqGcJ9SI8EixkBGsj+bY9iLAeB2H2NPedioFvV52aswBaJ25BqlCg5dtfg2FM0ogKTThWqu86ifYyLDUjnM4rg1TRBJMJHtG+oQJHVHnZIvkcXRpliMJYmic0Wqi/NzIcKTWLAjOZ51SrXi7+5/VTHd56GRNJqqkgy0NhypGOUV4DGjJJieYzQzCRzGRFZIwlJtqUlZfgrn55nXSua26jVn+oV5sXRR1lOINzuAIXbqAJ99CCNhCYwjO8wpuVWS/Wu/WxHC1Zxc4p/IH1+QN+q5Ir</latexit>x0
<latexit sha1_base64="GS205AhwIbESFdeXgSRcbzQfuPg=">AAAB+XicbVDLSsNAFL2pr1pfUZduBqvgqiRS1GXBjcsKfUEbwmQ6aYdOJmFmUiyhf+LGhSJu/RN3/o2TNgttPTBwOOde7pkTJJwp7TjfVmljc2t7p7xb2ds/ODyyj086Kk4loW0S81j2AqwoZ4K2NdOc9hJJcRRw2g0m97nfnVKpWCxaepZQL8IjwUJGsDaSb9uDCOtxEGZPc79VMfDtqlNzFkDrxC1IFQo0fftrMIxJGlGhCcdK9V0n0V6GpWaE03llkCqaYDLBI9o3VOCIKi9bJJ+jS6MMURhL84RGC/X3RoYjpWZRYCbznGrVy8X/vH6qwzsvYyJJNRVkeShMOdIxymtAQyYp0XxmCCaSmayIjLHERJuy8hLc1S+vk851zb2p1R/r1cZFUUcZzuAcrsCFW2jAAzShDQSm8Ayv8GZl1ov1bn0sR0tWsXMKf2B9/gC1y5JP</latexit>xT

<latexit sha1_base64="AqTsPoJ8QRhCLsOZsLF1Tq44dYA=">AAAB+XicbVBNS8NAFHypX7V+RT16CVbBU0mkqMeCF48VbC20oWy2m3bpZhN2X4ol9J948aCIV/+JN/+NmzYHbR1YGGbe481OkAiu0XW/rdLa+sbmVnm7srO7t39gHx61dZwqylo0FrHqBEQzwSVrIUfBOoliJAoEewzGt7n/OGFK81g+4DRhfkSGkoecEjRS37Z7EcFREGZPsz5WDPp21a25czirxCtIFQo0+/ZXbxDTNGISqSBadz03QT8jCjkVbFbppZolhI7JkHUNlSRi2s/myWfOuVEGThgr8yQ6c/X3RkYiradRYCbznHrZy8X/vG6K4Y2fcZmkyCRdHApT4WDs5DU4A64YRTE1hFDFTVaHjogiFE1ZeQne8pdXSfuy5l3V6vf1auOsqKMMJ3AKF+DBNTTgDprQAgoTeIZXeLMy68V6tz4WoyWr2DmGP7A+fwDmy5Jv</latexit>xt… …

diffusion 
time

<latexit sha1_base64="cJsxGNpqK+W2GHDdEsl0q4vaP2c=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KokU9Vjw4rGCaQttKJvtpl262YTdiVBKf4MXD4p49Qd589+4aXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4LvfbT1wbkahHnKQ8iOlQiUgwilbysWzRr1TdmjsHWSVeQapQoNmvfPUGCctirpBJakzXc1MMplSjYJLPyr3M8JSyMR3yrqWKxtwE0/mxM3JhlQGJEm1LIZmrvyemNDZmEoe2M6Y4MsteLv7ndTOMboOpUGmGXLHFoiiTBBOSf04GQnOGcmIJZVrYWwkbUU0Z2nzyELzll1dJ66rmXdfqD/Vq47yIowSncAaX4MENNOAemuADAwHP8ApvjnJenHfnY9G65hQzJ/AHzucPrGiNMw==</latexit>

t
diffused data 

sample <latexit sha1_base64="AqTsPoJ8QRhCLsOZsLF1Tq44dYA=">AAAB+XicbVBNS8NAFHypX7V+RT16CVbBU0mkqMeCF48VbC20oWy2m3bpZhN2X4ol9J948aCIV/+JN/+NmzYHbR1YGGbe481OkAiu0XW/rdLa+sbmVnm7srO7t39gHx61dZwqylo0FrHqBEQzwSVrIUfBOoliJAoEewzGt7n/OGFK81g+4DRhfkSGkoecEjRS37Z7EcFREGZPsz5WDPp21a25czirxCtIFQo0+/ZXbxDTNGISqSBadz03QT8jCjkVbFbppZolhI7JkHUNlSRi2s/myWfOuVEGThgr8yQ6c/X3RkYiradRYCbznHrZy8X/vG6K4Y2fcZmkyCRdHApT4WDs5DU4A64YRTE1hFDFTVaHjogiFE1ZeQne8pdXSfuy5l3V6vf1auOsqKMMJ3AKF+DBNTTgDprQAgoTeIZXeLMy68V6tz4WoyWr2DmGP7A+fwDmy5Jv</latexit>xt

neural 
network

score of diffused 
data sample

Vincent, in Neural Computation, 2011
Song and Ermon, NeurIPS, 2019
Song et al. ICLR, 2021

<latexit sha1_base64="eNVMkJXCYevgI79ft3d7SQpc2DM=">AAACCXicbVC7TsMwFHV4lvIKMLJYFKSyVAmqgLESC2OR6ENqo8hxndaq4wT7BlGFriz8CgsDCLHyB2z8DUmbobQcydLxOffq3nu8SHANlvVjLC2vrK6tFzaKm1vbO7vm3n5Th7GirEFDEaq2RzQTXLIGcBCsHSlGAk+wlje8yvzWPVOah/IWRhFzAtKX3OeUQCq5Jr5zodwNCAw8P3kYu/A487FOi0XXLFkVawK8SOyclFCOumt+d3shjQMmgQqidce2InASooBTwcbFbqxZROiQ9FknpZIETDvJ5JIxPkmVHvZDlT4JeKLOdiQk0HoUeGlltqae9zLxP68Tg3/pJFxGMTBJp4P8WGAIcRYL7nHFKIhRSghVPN0V0wFRhEIaXhaCPX/yImmeVezzSvWmWqod53EU0CE6QmVkowtUQ9eojhqIoif0gt7Qu/FsvBofxue0dMnIew7QHxhfvxy/mdk=</latexit>

qt(xt|x0)
<latexit sha1_base64="1FJ2Efhg5qcTrvU55qAcEPfzByE=">AAAB+XicbVDLSsNAFL2pr1pfUZduBqvgqiRSqsuCG5cV7APaECbTSTt0Mgkzk2IJ/RM3LhRx65+482+ctFlo64GBwzn3cs+cIOFMacf5tkobm1vbO+Xdyt7+weGRfXzSUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024wucv97pRKxWLxqGcJ9SI8EixkBGsj+bY9iLAeB2H2NPedioFvV52aswBaJ25BqlCg5dtfg2FM0ogKTThWqu86ifYyLDUjnM4rg1TRBJMJHtG+oQJHVHnZIvkcXRpliMJYmic0Wqi/NzIcKTWLAjOZ51SrXi7+5/VTHd56GRNJqqkgy0NhypGOUV4DGjJJieYzQzCRzGRFZIwlJtqUlZfgrn55nXSua26jVn+oV5sXRR1lOINzuAIXbqAJ99CCNhCYwjO8wpuVWS/Wu/WxHC1Zxc4p/IH1+QN+q5Ir</latexit>x0

data 
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After expectations,                                         !
<latexit sha1_base64="K9f83K2ay2t203lPpxdHLz4iHTs="></latexit>

s✓(xt, t) ⇡ rxt log qt(xt)

• Denoising Score Matching:

<latexit sha1_base64="ON6f5QfBeJLr/8l+XY5R0c9FRgU="></latexit>

qt(xt|x0) = N (xt; �tx0,�
2
t I)

<latexit sha1_base64="yqYMfP/TZS8iKSBKV3tjLYmW+FM=">AAACDXicbVA9SwNBEN2LXzF+RS1tDhMhFgl3IaiNINhYKhgTyCXH3maSLNnbO3bnhHDkD9j4V2wsFLG1t/PfuIkpNPHBwOO9GWbmBbHgGh3ny8osLa+srmXXcxubW9s7+d29Ox0likGdRSJSzYBqEFxCHTkKaMYKaBgIaATDy4nfuAeleSRvcRRDO6R9yXucUTSSny96mvdD6mOneu6WoZOWPS7RdzroBYC0pI+7euznC07FmcJeJO6MFMgM137+0+tGLAlBIhNU65brxNhOqULOBIxzXqIhpmxI+9AyVNIQdDudfjO2j4zStXuRMiXRnqq/J1Iaaj0KA9MZUhzoeW8i/ue1EuydtVMu4wRBsp9FvUTYGNmTaOwuV8BQjAyhTHFzq80GVFGGJsCcCcGdf3mR3FUr7kmldlMrXBRncWTJATkkJeKSU3JBrsg1qRNGHsgTeSGv1qP1bL1Z7z+tGWs2s0/+wPr4Bi/Wmuw=</latexit>

�2
t = 1� e�

R t
0 �(s)ds

<latexit sha1_base64="5csNGsgEGhWzfj3FRC5grPM/eNk="></latexit>

�t = e�
1
2

R t
0 �(s)ds

<latexit sha1_base64="ZwczRm8EwbKEv1uLVyn4USLA6f4="></latexit>

dxt = �1

2
�(t)xt dt+

p
�(t) d!t

“Variance Preserving” SDE:
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q(x0)
<latexit sha1_base64="Frtl7jj79vvBpy7yUIC/bT97H/4=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSLUTUmkqMuiG5cV+oI2hMl00g6dTOLMRC2xn+LGhSJu/RJ3/o1Jm4W2Hhg4nHMv98zxIs6UtqxvY2V1bX1js7BV3N7Z3ds3SwdtFcaS0BYJeSi7HlaUM0FbmmlOu5GkOPA47Xjj68zv3FOpWCiaehJRJ8BDwXxGsE4l1yzdVfoB1iPPTx6nbvO0WHTNslW1ZkDLxM5JGXI0XPOrPwhJHFChCcdK9Wwr0k6CpWaE02mxHysaYTLGQ9pLqcABVU4yiz5FJ6kyQH4o0yc0mqm/NxIcKDUJvHQyi6kWvUz8z+vF2r90EiaiWFNB5of8mCMdoqwHNGCSEs0nKcFEsjQrIiMsMdFpW1kJ9uKXl0n7rGqfV2u3tXL9Kq+jAEdwDBWw4QLqcAMNaAGBB3iGV3gznowX4934mI+uGPnOIfyB8fkD8FCTJQ==</latexit>

q(xT )

Song et al, 1907.05600 
Ho et al, 2006.11239

From denoising score matching to diffusion model

The objective of denoising diffusion probabilistic model

Sample with annealed Langevin dynamics with decreasing steps  ϵt

xt+1 = xt +
ϵt

2
s(xt, t) + ϵt𝒩(0,I)

https://cvpr2022-tutorial-diffusion-models.github.io



A tale of three equations

Fokker-Planck equation (PDE)

xt+dt = xt + fdt + 2dt𝒩(0,I)

Langevin equation (SDE)

∂p(x, t)
∂t

+ ∇ ⋅ [p(x, t)f] − ∇2p(x, t) = 0

Maoutsa et al, 2006.00702 
Song et al, 2011.13456

(Another way to reverse the diffusion is 
via the reverse-time SDE Anderson 1982)

dx
dt

= f − ∇ln p(x, t) ≡ v

“Particle method” (ODE)



A tale of three equations

Fokker-Planck equation (PDE)

dx
dt

= f − ∇ln p(x, t) ≡ v

∂p(x, t)
∂t

+ ∇ ⋅ [p(x, t)(f − ∇ln p(x, t)] = 0

“Particle method” (ODE)

Maoutsa et al, 2006.00702 
Song et al, 2011.13456

(Another way to reverse the diffusion is 
via the reverse-time SDE Anderson 1982)

xt+dt = xt + fdt + 2dt𝒩(0,I)

Langevin equation (SDE)



from Langevin  
to Fokker-Planck

9.1 Brownian motion of a particle 191

=
(

1
4!D"

)3/2

exp



−"

(
"̇x−"v#"x$

)2

4D



 % (9.16)

By subdividing the time interval t into infinitesimal segments of size ",
repeated application of the above evolution operator yields

!#"x& t$ =
〈
"x
∣∣T#"$t/"

∣∣0
〉

=
∫ #"x&t$

#0&0$

""x#'$

#
exp



−
∫ t

0
d'

(
"̇x−"v#"x$

)2

4D



%
(9.17)

The integral is over all paths connecting the initial and final points; each path’s
weight is related to its deviation from the classical trajectory, "̇x = "v#"x$. The
recursion relation in Eq. (9.13) can now be written as

!#"x& t$ =
∫

d3"x ′
(

1
4!D"

)3/2

exp

[

−
(
"x− "x ′ − ""v#"x ′$

)2

4D"

]

!#"x ′& t − "$& (9.18)

and simplified by the change of variables,

"y = "x ′ + ""v#"x ′$− "x =⇒
d3"y = d3"x ′ (1+ "( · "v#"x′$

)
= d3"x ′ (1+ "( · "v#"x$+$#"2$

)
%

(9.19)

Keeping only terms at order of ", we obtain

!#"x& t$ =
[
1− "( · "v#"x$

] ∫
d3"y

(
1

4!D"

)3/2

e− y2
4D" !#"x+ "y − ""v#"x$& t − "$

=
[
1− "( · "v#"x$

] ∫
d3"y

(
1

4!D"

)3/2

e− y2
4D"

×
[

!#"x& t$+ #"y − ""v#"x$$ ·(! + yiyj −2"yivj + "2vivj

2
(i(j! − "

)!

)t
+$#"2$

]

=
[
1− "( · "v#"x$

][
! − ""v ·( + "D(2! − "

)!

)t
+$#"2$

]
%

(9.20)

Equating terms at order of " leads to the Fokker–Planck equation,
)!

)t
+( · "J = 0& with "J = "v! −D(!% (9.21)

The Fokker–Planck equation is simply the statement of conservation of prob-
ability. The probability current has a deterministic component "v! , and a
stochastic part −D(! . A stationary distribution, )!/)t = 0, is obtained if
the net current vanishes. It is now easy to check that the Boltzmann weight,
!eq%#"x$ ∝ exp*−% #"x$/kBT+, with (!eq% = "v!eq%/#,kBT $, leads to a stationary
state as long as the fluctuation–dissipation condition in Eq. (9.12) is satisfied.



Lessons from diffusion models

https://cvpr2022-tutorial-diffusion-models.github.io/

56

<latexit sha1_base64="t0i1pCznTHPDu6bVK1eC39Lb+4A="></latexit>

min
✓

Et⇠U(0,T )Ex0⇠q0(x0)Ext⇠qt(xt|x0)||s✓(xt, t)�rxt log qt(xt|x0)||22

Denoising Score Matching

• Instead, diffuse individual data points     . Diffused               is tractable!

Forward diffusion process (fixed)

<latexit sha1_base64="1FJ2Efhg5qcTrvU55qAcEPfzByE=">AAAB+XicbVDLSsNAFL2pr1pfUZduBqvgqiRSqsuCG5cV7APaECbTSTt0Mgkzk2IJ/RM3LhRx65+482+ctFlo64GBwzn3cs+cIOFMacf5tkobm1vbO+Xdyt7+weGRfXzSUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024wucv97pRKxWLxqGcJ9SI8EixkBGsj+bY9iLAeB2H2NPedioFvV52aswBaJ25BqlCg5dtfg2FM0ogKTThWqu86ifYyLDUjnM4rg1TRBJMJHtG+oQJHVHnZIvkcXRpliMJYmic0Wqi/NzIcKTWLAjOZ51SrXi7+5/VTHd56GRNJqqkgy0NhypGOUV4DGjJJieYzQzCRzGRFZIwlJtqUlZfgrn55nXSua26jVn+oV5sXRR1lOINzuAIXbqAJ99CCNhCYwjO8wpuVWS/Wu/WxHC1Zxc4p/IH1+QN+q5Ir</latexit>x0
<latexit sha1_base64="GS205AhwIbESFdeXgSRcbzQfuPg=">AAAB+XicbVDLSsNAFL2pr1pfUZduBqvgqiRS1GXBjcsKfUEbwmQ6aYdOJmFmUiyhf+LGhSJu/RN3/o2TNgttPTBwOOde7pkTJJwp7TjfVmljc2t7p7xb2ds/ODyyj086Kk4loW0S81j2AqwoZ4K2NdOc9hJJcRRw2g0m97nfnVKpWCxaepZQL8IjwUJGsDaSb9uDCOtxEGZPc79VMfDtqlNzFkDrxC1IFQo0fftrMIxJGlGhCcdK9V0n0V6GpWaE03llkCqaYDLBI9o3VOCIKi9bJJ+jS6MMURhL84RGC/X3RoYjpWZRYCbznGrVy8X/vH6qwzsvYyJJNRVkeShMOdIxymtAQyYp0XxmCCaSmayIjLHERJuy8hLc1S+vk851zb2p1R/r1cZFUUcZzuAcrsCFW2jAAzShDQSm8Ayv8GZl1ov1bn0sR0tWsXMKf2B9/gC1y5JP</latexit>xT

<latexit sha1_base64="AqTsPoJ8QRhCLsOZsLF1Tq44dYA=">AAAB+XicbVBNS8NAFHypX7V+RT16CVbBU0mkqMeCF48VbC20oWy2m3bpZhN2X4ol9J948aCIV/+JN/+NmzYHbR1YGGbe481OkAiu0XW/rdLa+sbmVnm7srO7t39gHx61dZwqylo0FrHqBEQzwSVrIUfBOoliJAoEewzGt7n/OGFK81g+4DRhfkSGkoecEjRS37Z7EcFREGZPsz5WDPp21a25czirxCtIFQo0+/ZXbxDTNGISqSBadz03QT8jCjkVbFbppZolhI7JkHUNlSRi2s/myWfOuVEGThgr8yQ6c/X3RkYiradRYCbznHrZy8X/vG6K4Y2fcZmkyCRdHApT4WDs5DU4A64YRTE1hFDFTVaHjogiFE1ZeQne8pdXSfuy5l3V6vf1auOsqKMMJ3AKF+DBNTTgDprQAgoTeIZXeLMy68V6tz4WoyWr2DmGP7A+fwDmy5Jv</latexit>xt… …

diffusion 
time

<latexit sha1_base64="cJsxGNpqK+W2GHDdEsl0q4vaP2c=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KokU9Vjw4rGCaQttKJvtpl262YTdiVBKf4MXD4p49Qd589+4aXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4LvfbT1wbkahHnKQ8iOlQiUgwilbysWzRr1TdmjsHWSVeQapQoNmvfPUGCctirpBJakzXc1MMplSjYJLPyr3M8JSyMR3yrqWKxtwE0/mxM3JhlQGJEm1LIZmrvyemNDZmEoe2M6Y4MsteLv7ndTOMboOpUGmGXLHFoiiTBBOSf04GQnOGcmIJZVrYWwkbUU0Z2nzyELzll1dJ66rmXdfqD/Vq47yIowSncAaX4MENNOAemuADAwHP8ApvjnJenHfnY9G65hQzJ/AHzucPrGiNMw==</latexit>

t
diffused data 

sample <latexit sha1_base64="AqTsPoJ8QRhCLsOZsLF1Tq44dYA=">AAAB+XicbVBNS8NAFHypX7V+RT16CVbBU0mkqMeCF48VbC20oWy2m3bpZhN2X4ol9J948aCIV/+JN/+NmzYHbR1YGGbe481OkAiu0XW/rdLa+sbmVnm7srO7t39gHx61dZwqylo0FrHqBEQzwSVrIUfBOoliJAoEewzGt7n/OGFK81g+4DRhfkSGkoecEjRS37Z7EcFREGZPsz5WDPp21a25czirxCtIFQo0+/ZXbxDTNGISqSBadz03QT8jCjkVbFbppZolhI7JkHUNlSRi2s/myWfOuVEGThgr8yQ6c/X3RkYiradRYCbznHrZy8X/vG6K4Y2fcZmkyCRdHApT4WDs5DU4A64YRTE1hFDFTVaHjogiFE1ZeQne8pdXSfuy5l3V6vf1auOsqKMMJ3AKF+DBNTTgDprQAgoTeIZXeLMy68V6tz4WoyWr2DmGP7A+fwDmy5Jv</latexit>xt

neural 
network

score of diffused 
data sample

Vincent, in Neural Computation, 2011
Song and Ermon, NeurIPS, 2019
Song et al. ICLR, 2021

<latexit sha1_base64="eNVMkJXCYevgI79ft3d7SQpc2DM=">AAACCXicbVC7TsMwFHV4lvIKMLJYFKSyVAmqgLESC2OR6ENqo8hxndaq4wT7BlGFriz8CgsDCLHyB2z8DUmbobQcydLxOffq3nu8SHANlvVjLC2vrK6tFzaKm1vbO7vm3n5Th7GirEFDEaq2RzQTXLIGcBCsHSlGAk+wlje8yvzWPVOah/IWRhFzAtKX3OeUQCq5Jr5zodwNCAw8P3kYu/A487FOi0XXLFkVawK8SOyclFCOumt+d3shjQMmgQqidce2InASooBTwcbFbqxZROiQ9FknpZIETDvJ5JIxPkmVHvZDlT4JeKLOdiQk0HoUeGlltqae9zLxP68Tg3/pJFxGMTBJp4P8WGAIcRYL7nHFKIhRSghVPN0V0wFRhEIaXhaCPX/yImmeVezzSvWmWqod53EU0CE6QmVkowtUQ9eojhqIoif0gt7Qu/FsvBofxue0dMnIew7QHxhfvxy/mdk=</latexit>

qt(xt|x0)
<latexit sha1_base64="1FJ2Efhg5qcTrvU55qAcEPfzByE=">AAAB+XicbVDLSsNAFL2pr1pfUZduBqvgqiRSqsuCG5cV7APaECbTSTt0Mgkzk2IJ/RM3LhRx65+482+ctFlo64GBwzn3cs+cIOFMacf5tkobm1vbO+Xdyt7+weGRfXzSUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024wucv97pRKxWLxqGcJ9SI8EixkBGsj+bY9iLAeB2H2NPedioFvV52aswBaJ25BqlCg5dtfg2FM0ogKTThWqu86ifYyLDUjnM4rg1TRBJMJHtG+oQJHVHnZIvkcXRpliMJYmic0Wqi/NzIcKTWLAjOZ51SrXi7+5/VTHd56GRNJqqkgy0NhypGOUV4DGjJJieYzQzCRzGRFZIwlJtqUlZfgrn55nXSua26jVn+oV5sXRR1lOINzuAIXbqAJ99CCNhCYwjO8wpuVWS/Wu/WxHC1Zxc4p/IH1+QN+q5Ir</latexit>x0

data 
sample <latexit sha1_base64="1FJ2Efhg5qcTrvU55qAcEPfzByE=">AAAB+XicbVDLSsNAFL2pr1pfUZduBqvgqiRSqsuCG5cV7APaECbTSTt0Mgkzk2IJ/RM3LhRx65+482+ctFlo64GBwzn3cs+cIOFMacf5tkobm1vbO+Xdyt7+weGRfXzSUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024wucv97pRKxWLxqGcJ9SI8EixkBGsj+bY9iLAeB2H2NPedioFvV52aswBaJ25BqlCg5dtfg2FM0ogKTThWqu86ifYyLDUjnM4rg1TRBJMJHtG+oQJHVHnZIvkcXRpliMJYmic0Wqi/NzIcKTWLAjOZ51SrXi7+5/VTHd56GRNJqqkgy0NhypGOUV4DGjJJieYzQzCRzGRFZIwlJtqUlZfgrn55nXSua26jVn+oV5sXRR1lOINzuAIXbqAJ99CCNhCYwjO8wpuVWS/Wu/WxHC1Zxc4p/IH1+QN+q5Ir</latexit>x0

After expectations,                                         !
<latexit sha1_base64="K9f83K2ay2t203lPpxdHLz4iHTs="></latexit>

s✓(xt, t) ⇡ rxt log qt(xt)

• Denoising Score Matching:

<latexit sha1_base64="ON6f5QfBeJLr/8l+XY5R0c9FRgU="></latexit>

qt(xt|x0) = N (xt; �tx0,�
2
t I)

<latexit sha1_base64="yqYMfP/TZS8iKSBKV3tjLYmW+FM=">AAACDXicbVA9SwNBEN2LXzF+RS1tDhMhFgl3IaiNINhYKhgTyCXH3maSLNnbO3bnhHDkD9j4V2wsFLG1t/PfuIkpNPHBwOO9GWbmBbHgGh3ny8osLa+srmXXcxubW9s7+d29Ox0likGdRSJSzYBqEFxCHTkKaMYKaBgIaATDy4nfuAeleSRvcRRDO6R9yXucUTSSny96mvdD6mOneu6WoZOWPS7RdzroBYC0pI+7euznC07FmcJeJO6MFMgM137+0+tGLAlBIhNU65brxNhOqULOBIxzXqIhpmxI+9AyVNIQdDudfjO2j4zStXuRMiXRnqq/J1Iaaj0KA9MZUhzoeW8i/ue1EuydtVMu4wRBsp9FvUTYGNmTaOwuV8BQjAyhTHFzq80GVFGGJsCcCcGdf3mR3FUr7kmldlMrXBRncWTJATkkJeKSU3JBrsg1qRNGHsgTeSGv1qP1bL1Z7z+tGWs2s0/+wPr4Bi/Wmuw=</latexit>

�2
t = 1� e�

R t
0 �(s)ds

<latexit sha1_base64="5csNGsgEGhWzfj3FRC5grPM/eNk="></latexit>

�t = e�
1
2

R t
0 �(s)ds

<latexit sha1_base64="ZwczRm8EwbKEv1uLVyn4USLA6f4="></latexit>

dxt = �1

2
�(t)xt dt+

p
�(t) d!t

“Variance Preserving” SDE:

<latexit sha1_base64="pHOJjjRZ/AF3g89zy5Wdxt+YFhE=">AAAB+nicbVDLSsNAFL2pr1pfqS7dBItQNyWRoi6LblxWsA9oQ5hMJ+3QySTOTNQS+yluXCji1i9x5984abPQ1gMDh3Pu5Z45fsyoVLb9bRRWVtfWN4qbpa3tnd09s7zfllEiMGnhiEWi6yNJGOWkpahipBsLgkKfkY4/vsr8zj0Rkkb8Vk1i4oZoyGlAMVJa8szyXbUfIjXyg/Rx6tknpZJnVuyaPYO1TJycVCBH0zO/+oMIJyHhCjMkZc+xY+WmSCiKGZmW+okkMcJjNCQ9TTkKiXTTWfSpdayVgRVEQj+urJn6eyNFoZST0NeTWUy56GXif14vUcGFm1IeJ4pwPD8UJMxSkZX1YA2oIFixiSYIC6qzWniEBMJKt5WV4Cx+eZm0T2vOWa1+U680LvM6inAIR1AFB86hAdfQhBZgeIBneIU348l4Md6Nj/lowch3DuAPjM8fuVSTAQ==</latexit>

q(x0)
<latexit sha1_base64="Frtl7jj79vvBpy7yUIC/bT97H/4=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSLUTUmkqMuiG5cV+oI2hMl00g6dTOLMRC2xn+LGhSJu/RJ3/o1Jm4W2Hhg4nHMv98zxIs6UtqxvY2V1bX1js7BV3N7Z3ds3SwdtFcaS0BYJeSi7HlaUM0FbmmlOu5GkOPA47Xjj68zv3FOpWCiaehJRJ8BDwXxGsE4l1yzdVfoB1iPPTx6nbvO0WHTNslW1ZkDLxM5JGXI0XPOrPwhJHFChCcdK9Wwr0k6CpWaE02mxHysaYTLGQ9pLqcABVU4yiz5FJ6kyQH4o0yc0mqm/NxIcKDUJvHQyi6kWvUz8z+vF2r90EiaiWFNB5of8mCMdoqwHNGCSEs0nKcFEsjQrIiMsMdFpW1kJ9uKXl0n7rGqfV2u3tXL9Kq+jAEdwDBWw4QLqcAMNaAGBB3iGV3gznowX4934mI+uGPnOIfyB8fkD8FCTJQ==</latexit>

q(xT )

Continuous normalizing flow has great potential: diffusion model is an “existence proof”

Going beyond maximum likelihood estimation training (even if we can)

Break the loss into small pieces, sample them (layer-wise regression)
https://blog.alexalemi.com/

diffusion.html

The conditional trick (originated from denoising score matching Vincent 2011)
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Score Matching

• Naïve idea, learn model for the score function by direct regression?

Forward diffusion process (fixed)

<latexit sha1_base64="1FJ2Efhg5qcTrvU55qAcEPfzByE=">AAAB+XicbVDLSsNAFL2pr1pfUZduBqvgqiRSqsuCG5cV7APaECbTSTt0Mgkzk2IJ/RM3LhRx65+482+ctFlo64GBwzn3cs+cIOFMacf5tkobm1vbO+Xdyt7+weGRfXzSUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024wucv97pRKxWLxqGcJ9SI8EixkBGsj+bY9iLAeB2H2NPedioFvV52aswBaJ25BqlCg5dtfg2FM0ogKTThWqu86ifYyLDUjnM4rg1TRBJMJHtG+oQJHVHnZIvkcXRpliMJYmic0Wqi/NzIcKTWLAjOZ51SrXi7+5/VTHd56GRNJqqkgy0NhypGOUV4DGjJJieYzQzCRzGRFZIwlJtqUlZfgrn55nXSua26jVn+oV5sXRR1lOINzuAIXbqAJ99CCNhCYwjO8wpuVWS/Wu/WxHC1Zxc4p/IH1+QN+q5Ir</latexit>x0
<latexit sha1_base64="GS205AhwIbESFdeXgSRcbzQfuPg=">AAAB+XicbVDLSsNAFL2pr1pfUZduBqvgqiRS1GXBjcsKfUEbwmQ6aYdOJmFmUiyhf+LGhSJu/RN3/o2TNgttPTBwOOde7pkTJJwp7TjfVmljc2t7p7xb2ds/ODyyj086Kk4loW0S81j2AqwoZ4K2NdOc9hJJcRRw2g0m97nfnVKpWCxaepZQL8IjwUJGsDaSb9uDCOtxEGZPc79VMfDtqlNzFkDrxC1IFQo0fftrMIxJGlGhCcdK9V0n0V6GpWaE03llkCqaYDLBI9o3VOCIKi9bJJ+jS6MMURhL84RGC/X3RoYjpWZRYCbznGrVy8X/vH6qwzsvYyJJNRVkeShMOdIxymtAQyYp0XxmCCaSmayIjLHERJuy8hLc1S+vk851zb2p1R/r1cZFUUcZzuAcrsCFW2jAAzShDQSm8Ayv8GZl1ov1bn0sR0tWsXMKf2B9/gC1y5JP</latexit>xT

<latexit sha1_base64="AqTsPoJ8QRhCLsOZsLF1Tq44dYA=">AAAB+XicbVBNS8NAFHypX7V+RT16CVbBU0mkqMeCF48VbC20oWy2m3bpZhN2X4ol9J948aCIV/+JN/+NmzYHbR1YGGbe481OkAiu0XW/rdLa+sbmVnm7srO7t39gHx61dZwqylo0FrHqBEQzwSVrIUfBOoliJAoEewzGt7n/OGFK81g+4DRhfkSGkoecEjRS37Z7EcFREGZPsz5WDPp21a25czirxCtIFQo0+/ZXbxDTNGISqSBadz03QT8jCjkVbFbppZolhI7JkHUNlSRi2s/myWfOuVEGThgr8yQ6c/X3RkYiradRYCbznHrZy8X/vG6K4Y2fcZmkyCRdHApT4WDs5DU4A64YRTE1hFDFTVaHjogiFE1ZeQne8pdXSfuy5l3V6vf1auOsqKMMJ3AKF+DBNTTgDprQAgoTeIZXeLMy68V6tz4WoyWr2DmGP7A+fwDmy5Jv</latexit>xt… …

diffusion 
time

<latexit sha1_base64="cJsxGNpqK+W2GHDdEsl0q4vaP2c=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KokU9Vjw4rGCaQttKJvtpl262YTdiVBKf4MXD4p49Qd589+4aXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4LvfbT1wbkahHnKQ8iOlQiUgwilbysWzRr1TdmjsHWSVeQapQoNmvfPUGCctirpBJakzXc1MMplSjYJLPyr3M8JSyMR3yrqWKxtwE0/mxM3JhlQGJEm1LIZmrvyemNDZmEoe2M6Y4MsteLv7ndTOMboOpUGmGXLHFoiiTBBOSf04GQnOGcmIJZVrYWwkbUU0Z2nzyELzll1dJ66rmXdfqD/Vq47yIowSncAaX4MENNOAemuADAwHP8ApvjnJenHfnY9G65hQzJ/AHzucPrGiNMw==</latexit>
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But                        (score of the marginal diffused density           ) is not tractable!
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rxt log qt(xt)

Vincent, “A Connection Between Score Matching and Denoising Autoencoders”, Neural Computation, 2011
Song and Ermon, “Generative Modeling by Estimating Gradients of the Data Distribution”, NeurIPS, 2019
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q(xT )

https://cvpr2022-tutorial-diffusion-models.github.io/

Continuous normalizing flow has great potential: diffusion model is an “existence proof”

Going beyond maximum likelihood estimation training (even if we can)

Break the loss into small pieces, sample them (layer-wise regression)
https://blog.alexalemi.com/

diffusion.html

The conditional trick (originated from denoising score matching Vincent 2011)



Flow matching

Liu et al 2209.03003, Albergo et al, 2209.15571, Lipman et al, 2210.02747

data distribution
p(x,1) = 𝒩(0,I) p(x,0) = q(x)

∂p(x, t)
∂t

+ ∇ ⋅ [p(x, t)u(x, t)] = 0

ground truth 
velocity field

ℒ = 𝔼t∼𝒰(0,1)𝔼x∼p(x,t) vθ(x, t) − u(x, t)
2

base distribution



The “conditional” trick

∂p(x |x0, t)
∂t

+ ∇ ⋅ [p(x |x0, t)u(x |x0, t)] = 0

ℒ = 𝔼t∼𝒰(0,1)𝔼x0∼q(x0)𝔼x∼p(x|x0,t) vθ(x, t) − u(x |x0, t)
2

Given a conditional  
continuity equation

We can learn the ground truth velocity by regressing on the conditional velocity 

Then, up to a constant, we have



Claim:

Proof:

p(x, t)u(x, t) = ∫ p(x |x0, t)u(x |x0, t) q(x0)dx0p(x, t) = ∫ p(x |x0, t) q(x0)dx0

ℒCFM = ℒFM + const .

ℒCFM = 𝔼t∼𝒰(0,1)𝔼x0∼q(x0)𝔼x∼p(x|x0,t) vθ(x, t) − u(x |x0, t)
2

ℒFM = 𝔼t∼𝒰(0,1)𝔼x∼p(x,t) vθ(x, t) − u(x, t)
2

𝔼x0∼q(x0)𝔼x∼p(x|x0,t) vθ
2

= ∫ dx0 ∫ dxq(x0)p(x |x0, t) |vθ |2 = ∫ dxp(x, t) |vθ |2 = 𝔼x∼p(x,t) vθ
2

𝔼x0∼q(x0)𝔼x∼p(x|x0,t) [vθ ⋅ u(x |x0, t)] = ∫ dx0 ∫ dxq(x0)p(x |x0, t)[vθ ⋅ u(x |x0, t)]

= ∫ dxp(x, t)vθ ⋅ u(x, t) = 𝔼x∼p(x,t) [vθ ⋅ u(x, t)]

where



x1 ∼ 𝒩(0,I) x0 ∼ q(x)

x = (1 − t)x0 + tx1

Causalizing linear interpolation with rectified flow 2209.03003  
https://www.cs.utexas.edu/~lqiang/rectflow/html/intro.html

Examples of flow matching

ℒ = 𝔼t∼𝒰(0,1)𝔼x0∼q(x0)𝔼x1∼𝒩(0,I) vθ(x, t) − (x1 − x0)
2

u(x |x0, t) =
dx
dt

= x1 − x0p(x |x0, t) = 𝒩 ((1 − t)x0, t2)



x1 ∼ 𝒩(0,I) x0 ∼ q(x)

x = (1 − t)x0 + tx1

Causalizing linear interpolation with rectified flow 2209.03003  
https://www.cs.utexas.edu/~lqiang/rectflow/html/intro.html

Examples of flow matching

ℒ = 𝔼t∼𝒰(0,1)𝔼x0∼q(x0)𝔼x1∼𝒩(0,I) vθ(x, t) − (x1 − x0)
2

u(x |x0, t) =
dx
dt

= x1 − x0p(x |x0, t) = 𝒩 ((1 − t)x0, t2)



Flow matching is all you need!

400x speedup compared to continuous normalizing flow (Albergo et al, 2209.15571)

This framework contains various diffusion models as special cases

Fast generation with rectified transportation path (Liu et al 2209.03003)

Surpasses diffusion model on Imagenet in likelihood and sample quality 

(Lipman et al, 2210.02747)

Generalization to flow on Riemannian manifolds (Chen et al, 2302.03660)

X Contents

11 The Jacobian equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

12 Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

13 Qualitative picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

Part II Optimal transport and Riemannian geometry 367

14 Ricci curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

15 Otto calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

16 Displacement convexity I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

17 Displacement convexity II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

18 Volume control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

19 Density control and local regularity . . . . . . . . . . . . . . . . . . 521

20 Infinitesimal displacement convexity . . . . . . . . . . . . . . . . . 541

21 Isoperimetric-type inequalities . . . . . . . . . . . . . . . . . . . . . . . 561

22 Concentration inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

23 Gradient flows I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645

24 Gradient flows II: Qualitative properties . . . . . . . . . . . . . 709

25 Gradient flows III: Functional inequalities . . . . . . . . . . . . 735

Part III Synthetic treatment of Ricci curvature 747

26 Analytic and synthetic points of view . . . . . . . . . . . . . . . . 751

27 Convergence of metric-measure spaces . . . . . . . . . . . . . . . 759

28 Stability of optimal transport . . . . . . . . . . . . . . . . . . . . . . . . 789

The base distribution does not have to be Gaussian



https://twitter.com/michael_galkin/status/1711845455817261409



Demo: free energy of classical Coulomb gas 

Z = 𝔼x∼q(x) [e−βE(x)−ln q(x)]

Base density 
Gaussian samples

Target density 
Monte Carlo samples

ℒ = 𝔼t∼𝒰(0,1)𝔼x0∼𝒩(0,I)𝔼x1∼exp(−βE)/Z x1 − x0 − v(x, t)
2

Interpolate samples to  
estimate free energy  

differences

ln q(x) = ln 𝒩(0,I) − ∫
1

0
∇ ⋅ vdt

https://colab.research.google.com/drive/1t-Vk37Axxp040B7uXFUNlk-zeCC2lcX3?usp=sharing
Jarzynski PRE ’02, see also likelihood-based training of flows Wirnsberger et al, 2002.04913, 2111.08696



Tensor  
Networks

Quantum  
Circuits

p(x)
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.

21A. Georges et al.: Dynamical mean-field theory of . . .
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q
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x(0···T )
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p
�
x(0···T )

�
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�
x(t)

, t
�
� x(t)

Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q
⇣
x(0···T )

⌘
. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p
⇣
x(0···T )

⌘
. An identity-covariance

Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, fµ

⇣
x(t), t

⌘
� x(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which
uses a Markov chain which slowly converts one distribu-
tion into another to compute a ratio of normalizing con-
stants. In (Burda et al., 2014) it is shown that AIS can also
be performed using the reverse rather than forward trajec-
tory. Langevin dynamics (Langevin, 1908), which are the
stochastic realization of the Fokker-Planck equation, show
how to define a Gaussian diffusion process which has any
target distribution as its equilibrium. In (Suykens & Vande-
walle, 1995) the Fokker-Planck equation is used to perform
stochastic optimization. Finally, the Kolmogorov forward
and backward equations (Feller, 1949) show that for many
forward diffusion processes, the reverse diffusion processes
can be described using the same functional form.

2. Algorithm
Our goal is to define a forward (or inference) diffusion pro-
cess which converts any complex data distribution into a
simple, tractable, distribution, and then learn a finite-time
reversal of this diffusion process which defines our gener-
ative model distribution (See Figure 1). We first describe
the forward, inference diffusion process. We then show

how the reverse, generative diffusion process can be trained
and used to evaluate probabilities. We also derive entropy
bounds for the reverse process, and show how the learned
distributions can be multiplied by any second distribution
(e.g. as would be done to compute a posterior when in-
painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
�
x(0)

�
. The data distribu-

tion is gradually converted into a well behaved (analyti-
cally tractable) distribution ⇡ (y) by repeated application
of a Markov diffusion kernel T⇡ (y|y0;�) for ⇡ (y), where
� is the diffusion rate,

⇡ (y) =

Z
dy0

T⇡ (y|y0;�)⇡ (y0) (1)

q

⇣
x(t)|x(t�1)

⌘
= T⇡

⇣
x(t)|x(t�1);�t

⌘
. (2)



Variational autoencoders
Close connection to the variational calculus we have learned  

p(x) =
e−βE(x)

Z
p(z |x) =

p(x, z)
p(x)

Variational free energy Variational Bayes/Variational inference

Kingma, Welling, 1312.6114

∫ dx q(x)[ln q(x) + βE(x)] ≥ − ln Z ∫ dz q(z |x)[ln q(z |x) − ln p(x, z)] ≥ − ln p(x)



2.2 generative model zoo 27

forming variational inference [80], which also has deep connection
variational mean field approaches in statistical physics. In fact, the
predecessor of VAE is called Helmholtz machines [81]. The general
idea of an autoencoder is to let the input data go through a network
with bottleneck and restore itself. After training, the first half of the
network is an encoder which transform the data x into the latent
space z . And the second half of the network is a decoder which trans-
form latent variables into the data manifold. The bottleneck means
that we typically require that the latent space has lower dimension or
simpler probability distribution than the original data.

Suppose the latent variables p(z) follow a simple prior distribution, Intractable posterior
such as an independent Gaussian. The decoder is parameterized by a
neural network which gives the conditional probability p(x|z). Thus,
the joint probability distribution of the visible and latent variables is
also known p(x, z) = p(x|z)p(z). However, the encoder probability
given by the posterior p(z|x) = p(x, z)/p(x) is much more difficult to
evaluate since normalization factor p(x) is intractable. One needs to
marginalize the latent variables z in the joint probability distribution
p(x) =

R
p(x, z)dz.

The intractable integration over the latent variables also prevent
us minimizing the NLL on the dataset. To deal with such problem,
we employ variational approach originated from statistical physics.
The variational Bayes methods is an application of the variational free
energy calculation in statistical physics Eq. (26) for inference problem.
For each data we introduce

L(x) = h� ln p(x, z) + ln q(z|x)iz⇠q(z|x), (53)

which is a variational upper bound of � ln p(x) since L(x)+ ln p(x) = This breakup is also
the foundation of the
Expectation-
Maximization
algorithm, where one
iterates alternatively
between optimizing
the variational
posterior (E) and the
parameters (M) to
learn models with
latent variables [5].

KL(q(z|x)||p(z|x)) � 0. We see that q(z|x) provides a variational ap-
proximation of the posterior p(z|x). By minimizing L one effectively
pushes the two distributions together. And the variational free en-
ergy becomes exact only when q(z|x) matches to p(z|x). In fact, �L

is called evidence lower bound (ELBO) in variational inference.
We can obtain an alternative form of the variational free energy

Lq,f(x) = � hln pq(x|z)iz⇠qf(z|x) + KL(qf(z|x)||p(z)). (54)

The first term of Eq. (54) is the reconstruction negative log-likelihood,
while the second term is the KL divergence between the approximate
posterior distribution and the latent prior. We also be explicit about
the network parameters q, f of the encoder and decoder.

The decoder neural network pq(x|z) accepts the latent vector z and
outputs the parametrization of the conditional probability. It can be

ln pq(x|z) = Â
i

xi ln x̂i + (1 � xi) ln(1 � x̂i), (55)

x̂ = DecoderNeuralNetq(z), (56)

http://wangleiphy.github.io/lectures/PILtutorial.pdf



(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
p✓(x|z) with the learned parameters ✓.

(a) 2-D latent space (b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities
of latent space.

B Solution of �DKL(q�(z)||p✓(z)), Gaussian case

The variational lower bound (the objective to be maximized) contains a KL term that can often be
integrated analytically. Here we give the solution when both the prior p✓(z) = N (0, I) and the
posterior approximation q�(z|x(i)) are Gaussian. Let J be the dimensionality of z. Let µ and �
denote the variational mean and s.d. evaluated at datapoint i, and let µj and �j simply denote the
j-th element of these vectors. Then:

Z
q✓(z) log p(z) dz =

Z
N (z;µ,�2) logN (z;0, I) dz

= �J

2
log(2⇡)� 1

2

JX

j=1

(µ2
j + �2

j )

10

Learned MNIST  
latent space

Kingma, Welling, 1312.6114
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can deal practically with approximationmethods
for the graph isomorphism problem.
Additionally, improved sequence generation

models are possible with the ability to read and
write to memory (69). These approaches demon-
strate better ability for learning long- and short-
termpatterns.Morework is neededonRiemannian
optimization methods that exploit the geometry
of latent space. Structured architectures such as
multilevel VAE (85) offer newways of organizing
latent space and are promising research direc-
tions. New approaches also lie in inverse RL,
geared toward learning a reward or loss function
(86). Research in this direction will allow for the
discovery of reward functions associated with
different materials discovery tasks.

Outlook

Inverse design is an important component of the
complex framework required to designmatter at
an accelerated pace. The tools for inverse design,
especially those stemming from the field of ma-
chine learning, have shown rapid progress in
the last several years and have allowed chemical
space to be framed into probabilistic data-driven
models. Generativemodels produce large numbers
of candidate molecules, and the physical realiza-
tions of these candidates will require automated
high-throughput efforts to validate the genera-
tive approach. The community has yet has to
show more than a few examples of successful

closed-loop approaches for the design of matter
(87). The blurring of the barriers between theory
and experiment will lead to AI-enabled auto-
mated laboratories (88, 89).
The combination of inverse design tools with

active learning approaches such as Bayesian
optimization (90, 91) can enable a model that
adapts as it explores chemical space, which
allows for expanding a model in regions of
high uncertainty and enabling the discovery
of regions of molecular space with desirable
properties as a function of composition. Active
learning in the space of objective functions could
lead to a better understanding of the best rewards
to seek while carrying out machine learning.
As seen, central to machine learning meth-

odologies is the representation of molecules;
representations that encode the relevant physics
will tend to generalize better. Despite consider-
able progress, much work remains. Graph and
hierarchical representations of molecules are an
area requiring further study.
The integration of machine learning as a new

pillar of knowledge in the curricula of chemical,
biochemical, medicinal, and materials sciences
will allow for a more rapid adoption of themeth-
odologies summarized in this work.

REFERENCES AND NOTES

1. Royal Geographical Society, 21st Century Challenges (2015);
https://21stcenturychallenges.org/challenges/.

2. D. Segal, Materials for the 21st Century (Oxford Univ. Press,
2017).

3. M. C. Scharber et al., Adv. Mater. 18, 789–794 (2006).
4. E. O. Pyzer-Knapp, C. Suh, R. Gómez-Bombarelli,

J. Aguilera-Iparraguirre, A. Aspuru-Guzik, Annu. Rev. Mater.
Res. 45, 195–216 (2015).

5. D. J. Newman, G. M. Cragg, J. Nat. Prod. 79, 629–661
(2016).

6. P. Kirkpatrick, C. Ellis, Nature 432, 823–823 (2004).
7. A. Mullard, Nature 549, 445–447 (2017).
8. J.-L. Reymond, Acc. Chem. Res. 48, 722–730 (2015).
9. A. M. Virshup, J. Contreras-García, P. Wipf, W. Yang,

D. N. Beratan, J. Am. Chem. Soc. 135, 7296–7303 (2013).
10. C. Qian, T. Siler, G. A. Ozin, Small 11, 64–69 (2015).
11. M. I. Jordan, T. M. Mitchell, Science 349, 255–260 (2015).
12. A. Aspuru-Guzik, R. Lindh, M. Reiher, ACS Cent. Sci. 4, 144–152

(2018).
13. P. B. Jørgensen, M. N. Schmidt, O. Winther, Mol. Inform. 37,

1700133 (2018).
14. E. Maine, E. Garnsey, Res. Policy 35, 375–393 (2006).
15. A. Aspuru-Guzik, K. Persson, Materials Acceleration Platform:

Accelerating Advanced Energy Materials Discovery by
Integrating High-Throughput Methods and Artificial Intelligence.
Mission Innovation (2018): Innovation Challenge 6.

16. T. Weymuth, M. Reiher, Int. J. Quantum Chem. 114, 823–837
(2014).

17. A. Zunger, Nat. Rev. Chem. 2, 0121 (2018).
18. C. Kuhn, D. Beratan, J. Phys. Chem. 100, 10595–10599

(1996).
19. J. R. Broach, J. Thorner, Nature 384 (suppl.), 14–16 (1996).
20. S. Hoelder, P. A. Clarke, P. Workman, Mol. Oncol. 6, 155–176

(2012).
21. D. Xiao, L. A. Martini, R. C. Snoeberger 3rd, R. H. Crabtree,

V. S. Batista, J. Am. Chem. Soc. 133, 9014–9022 (2011).
22. S. A. Lopez, B. Sanchez-Lengeling, J. de Goes Soares,

A. Aspuru-Guzik, Joule 1, 857–870 (2017).
23. I. Y. Kanal, S. G. Owens, J. S. Bechtel, G. R. Hutchison,

J. Phys. Chem. Lett. 4, 1613–1623 (2013).
24. J. Hachmann et al., Energy Environ. Sci. 7, 698–704 (2014).

Sanchez-Lengeling et al., Science 361, 360–365 (2018) 27 July 2018 5 of 6

Fig. 4. Schematic representation of several architectures found in
generative models. RNNs are used for sequence generation. The VAE
shows the semi-supervised variant, jointly trained by molecules (x) and
properties (y). Latent space is denoted with Z, and latent vectors with z.
In the GAN setting, the noise eventually acquires structure via the

adversarial training. Reinforcement learning (RL) shows a policy
gradient with MTCS in the task of SMILES completion with
arbitrary rewards. Shown in the lower right are hybrid architectures
such as AAE (adversarial autoencoders) and ORGAN, which represents
GAN and RL.
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can deal practically with approximationmethods
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Additionally, improved sequence generation

models are possible with the ability to read and
write to memory (69). These approaches demon-
strate better ability for learning long- and short-
termpatterns.Morework is neededonRiemannian
optimization methods that exploit the geometry
of latent space. Structured architectures such as
multilevel VAE (85) offer newways of organizing
latent space and are promising research direc-
tions. New approaches also lie in inverse RL,
geared toward learning a reward or loss function
(86). Research in this direction will allow for the
discovery of reward functions associated with
different materials discovery tasks.

Outlook

Inverse design is an important component of the
complex framework required to designmatter at
an accelerated pace. The tools for inverse design,
especially those stemming from the field of ma-
chine learning, have shown rapid progress in
the last several years and have allowed chemical
space to be framed into probabilistic data-driven
models. Generativemodels produce large numbers
of candidate molecules, and the physical realiza-
tions of these candidates will require automated
high-throughput efforts to validate the genera-
tive approach. The community has yet has to
show more than a few examples of successful

closed-loop approaches for the design of matter
(87). The blurring of the barriers between theory
and experiment will lead to AI-enabled auto-
mated laboratories (88, 89).
The combination of inverse design tools with

active learning approaches such as Bayesian
optimization (90, 91) can enable a model that
adapts as it explores chemical space, which
allows for expanding a model in regions of
high uncertainty and enabling the discovery
of regions of molecular space with desirable
properties as a function of composition. Active
learning in the space of objective functions could
lead to a better understanding of the best rewards
to seek while carrying out machine learning.
As seen, central to machine learning meth-

odologies is the representation of molecules;
representations that encode the relevant physics
will tend to generalize better. Despite consider-
able progress, much work remains. Graph and
hierarchical representations of molecules are an
area requiring further study.
The integration of machine learning as a new

pillar of knowledge in the curricula of chemical,
biochemical, medicinal, and materials sciences
will allow for a more rapid adoption of themeth-
odologies summarized in this work.
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Fig. 4. Schematic representation of several architectures found in
generative models. RNNs are used for sequence generation. The VAE
shows the semi-supervised variant, jointly trained by molecules (x) and
properties (y). Latent space is denoted with Z, and latent vectors with z.
In the GAN setting, the noise eventually acquires structure via the

adversarial training. Reinforcement learning (RL) shows a policy
gradient with MTCS in the task of SMILES completion with
arbitrary rewards. Shown in the lower right are hybrid architectures
such as AAE (adversarial autoencoders) and ORGAN, which represents
GAN and RL.
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q
⇣
x(0···T )

⌘
. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p
⇣
x(0···T )

⌘
. An identity-covariance

Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, fµ

⇣
x(t), t

⌘
� x(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which
uses a Markov chain which slowly converts one distribu-
tion into another to compute a ratio of normalizing con-
stants. In (Burda et al., 2014) it is shown that AIS can also
be performed using the reverse rather than forward trajec-
tory. Langevin dynamics (Langevin, 1908), which are the
stochastic realization of the Fokker-Planck equation, show
how to define a Gaussian diffusion process which has any
target distribution as its equilibrium. In (Suykens & Vande-
walle, 1995) the Fokker-Planck equation is used to perform
stochastic optimization. Finally, the Kolmogorov forward
and backward equations (Feller, 1949) show that for many
forward diffusion processes, the reverse diffusion processes
can be described using the same functional form.

2. Algorithm
Our goal is to define a forward (or inference) diffusion pro-
cess which converts any complex data distribution into a
simple, tractable, distribution, and then learn a finite-time
reversal of this diffusion process which defines our gener-
ative model distribution (See Figure 1). We first describe
the forward, inference diffusion process. We then show

how the reverse, generative diffusion process can be trained
and used to evaluate probabilities. We also derive entropy
bounds for the reverse process, and show how the learned
distributions can be multiplied by any second distribution
(e.g. as would be done to compute a posterior when in-
painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
�
x(0)

�
. The data distribu-

tion is gradually converted into a well behaved (analyti-
cally tractable) distribution ⇡ (y) by repeated application
of a Markov diffusion kernel T⇡ (y|y0;�) for ⇡ (y), where
� is the diffusion rate,

⇡ (y) =

Z
dy0

T⇡ (y|y0;�)⇡ (y0) (1)

q

⇣
x(t)|x(t�1)

⌘
= T⇡

⇣
x(t)|x(t�1);�t

⌘
. (2)
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can deal practically with approximationmethods
for the graph isomorphism problem.
Additionally, improved sequence generation

models are possible with the ability to read and
write to memory (69). These approaches demon-
strate better ability for learning long- and short-
termpatterns.Morework is neededonRiemannian
optimization methods that exploit the geometry
of latent space. Structured architectures such as
multilevel VAE (85) offer newways of organizing
latent space and are promising research direc-
tions. New approaches also lie in inverse RL,
geared toward learning a reward or loss function
(86). Research in this direction will allow for the
discovery of reward functions associated with
different materials discovery tasks.

Outlook

Inverse design is an important component of the
complex framework required to designmatter at
an accelerated pace. The tools for inverse design,
especially those stemming from the field of ma-
chine learning, have shown rapid progress in
the last several years and have allowed chemical
space to be framed into probabilistic data-driven
models. Generativemodels produce large numbers
of candidate molecules, and the physical realiza-
tions of these candidates will require automated
high-throughput efforts to validate the genera-
tive approach. The community has yet has to
show more than a few examples of successful

closed-loop approaches for the design of matter
(87). The blurring of the barriers between theory
and experiment will lead to AI-enabled auto-
mated laboratories (88, 89).
The combination of inverse design tools with

active learning approaches such as Bayesian
optimization (90, 91) can enable a model that
adapts as it explores chemical space, which
allows for expanding a model in regions of
high uncertainty and enabling the discovery
of regions of molecular space with desirable
properties as a function of composition. Active
learning in the space of objective functions could
lead to a better understanding of the best rewards
to seek while carrying out machine learning.
As seen, central to machine learning meth-

odologies is the representation of molecules;
representations that encode the relevant physics
will tend to generalize better. Despite consider-
able progress, much work remains. Graph and
hierarchical representations of molecules are an
area requiring further study.
The integration of machine learning as a new

pillar of knowledge in the curricula of chemical,
biochemical, medicinal, and materials sciences
will allow for a more rapid adoption of themeth-
odologies summarized in this work.
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Fig. 4. Schematic representation of several architectures found in
generative models. RNNs are used for sequence generation. The VAE
shows the semi-supervised variant, jointly trained by molecules (x) and
properties (y). Latent space is denoted with Z, and latent vectors with z.
In the GAN setting, the noise eventually acquires structure via the

adversarial training. Reinforcement learning (RL) shows a policy
gradient with MTCS in the task of SMILES completion with
arbitrary rewards. Shown in the lower right are hybrid architectures
such as AAE (adversarial autoencoders) and ORGAN, which represents
GAN and RL.
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evolution of the walkers, as derived from Eq. (23), can be
found elsewhere.45,67 The form of q̂ is known exactly at infi-
nite temperature (b¼ 0, q̂ ¼ 1̂), providing an initial condi-
tion for Eq. (22). For the electron gas, however, it turns out
that simulating a differential equation that evolves a mean-
field density matrix at inverse temperature b to the exact
density matrix at inverse temperature b is much more effi-
cient than solving Eq. (22), an insight that leads to the
“interaction picture” version of DMQMC39,46 used through-
out this work.

The sign problem manifests itself in DMQMC as an
exponential growth in the number of walkers required for the
sampled density matrix to emerge from the statistical
noise.67–70 Working in a discrete Hilbert space helps to reduce
the noise by ensuring a more efficient cancellation of positive
and negative contributions, enabling larger systems and lower
temperatures to be treated than would otherwise be possible.
Nevertheless, at some point, the walker numbers required
become overwhelming and approximations are needed.
Recently, we have applied the initiator approximation71–73 to
DMQMC (i"DMQMC). In principle, at least, this allows a
systematic approach to the exact result with an increasing
walker number. More details on the use of the initiator
approximation in DMQMC and its limitations can be found in
Ref. 39.

F. Applicability of the QMC methods

To conclude the discussion of Quantum Monte Carlo, in
Fig. 2, we give a schematic overview of the parameter com-
binations where the different methods can be used to obtain
results in the thermodynamic limit (for a discussion of finite-
size corrections, see Sec. V) with a relative accuracy of
DV=V # 0:003. Standard PIMC (black) is only useful for
high temperatures and low densities where fermionic
exchange does not play an important role and, therefore,
does not give access to the WDM regime. PB-PIMC (green)
significantly extends the possible parameter combinations to

lower temperature (down to h ¼ 0:5 for rs $ 1) and is avail-
able over the entire density range for h ! 2. In contrast, both
CPIMC (red) and DMQMC (blue) are feasible for all h at
small rs and eventually break down with increasing rs due to
coupling effects. Despite their apparent similar range of
applicability, it turns out that CPIMC is significantly more
efficient at higher temperature, while DMQMC is superior at
low h.

IV. SIMULATION RESULTS FOR THE FINITE SYSTEM

The first step towards obtaining QMC results for the
warm dense electron gas in the thermodynamic limit is to
carry out accurate simulations of a finite model system. In
Fig. 3, we compare results for the density dependence of the
exchange correlation energy Exc of the UEG for N¼ 33 spin-
polarized electrons and two different temperatures. The first
results, shown as blue squares, were obtained with RPIMC31

for rs $ 1. Subsequently, Groth, Dornheim, and co-work-
ers44,51 showed that the combination of PB-PIMC (red
crosses) and CPIMC (red circles) allows for an accurate
description of this system for h $ 0:5. In addition, it was
revealed that RPIMC is afflicted with a systematic nodal error
for densities greater than the relatively low value at which
rs¼ 6. Nevertheless, the FSP precludes the use of PB-PIMC
at lower temperatures and, even at h ¼ 0:5 and rs¼ 2, the sta-
tistical uncertainty becomes large. The range of applicability
of DMQMC is similar to that of CPIMC, and the DMQMC
results (green diamonds) fully confirm the CPIMC results.39,46

Further, the introduction of the initiator approximation (i-
DMQMC) has made it possible to obtain results up to rs¼ 2
for h ¼ 0:5. Although i-DMQMC is, in principle, systemati-
cally improvable and controlled, the results suggest that the
initiator approximation may introduce a small systematic shift
at lower densities.

In summary, the recent progress in fermionic QMC
methods has resulted in a consensus regarding the finite-N
UEG for temperatures h $ 0:5. However, there remains a
gap at rs % 2" 6 and h < 0:5 where, at the moment, no reli-
able data are available.

FIG. 2. Density-temperature-plane around the WDM regime. Shown are the
parameter combinations where standard PIMC (black), PB-PIMC (green),
CPIMC (red), and DMQMC (blue) can be used to obtain data in the thermo-
dynamic limit with an accuracy of DV=V # 0:003.

FIG. 3. Exchange-correlation energy of N¼ 33 spin-polarized electrons as a
function of the density parameter rs for two isotherms. Shown are results
from CPIMC and PB-PIMC taken from Ref. 51, restricted PIMC from Ref.
31, and DMQMC from Ref. 39. For h ¼ 0:5, all data have been shifted by
0.05 Hartree. In the case of DMQMC, the initiator approximation is used.
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Hamburg, Germany;25,26 and the upcoming FAIR facility at GSI
Darmstadt, Germany.27,28 A particularly exciting application is inertial
confinement fusion18–20 where electronic quantum effects are impor-
tant during the initial phase. Aside from dense plasmas, many con-
densed matter systems exhibit WDM behavior – if they are subject to
strong excitation, e.g., by lasers or free electron lasers.29,30

The behavior of all these very diverse systems is characterized by,
among others, electronic quantum effects, moderate to strong
Coulomb correlations, and finite temperature (FT) effects. Quantum
effects of electrons are of relevance at a low temperature and/or if mat-
ter is very highly compressed, such that the temperature is of the order
of (or lower than) the Fermi temperature (for the relevant parameter
range, see Fig. 1 and, for the parameter definitions, see Sec. II).

An important role in the theoretical description of quantum plas-
mas is being played by the quantum kinetic theory.31–38 During the last
25years, improved and generalized quantum kinetic equations have been
derived starting from reduced density operators, e.g., Refs. 39 and 40, or
nonequilibrium Green functions (NEGFs);41–44 for text books, see Refs.
40 and 45–47 and references therein. Another direction in quantum
plasma theory is first principles computer simulations such as quantum
Monte Carlo (QMC),4,48–55 semiclassical molecular dynamics (SC-MD)
with quantum potentials, e.g., Ref. 56, electronic force fields,57,58 and vari-
ous variants of quantumMD, e.g., Refs. 59–63.

A recent breakthrough occurred with the application of
Kohn–Sham density functional theory (DFT) simulations because
they, for the first time, enabled the self-consistent simulation of realis-
tic warm dense matter that includes both plasma and condensed mat-
ter phases, e.g., Refs. 64–66. Further developments include orbital-free

DFT (OF-DFT) methods, e.g., Refs. 67 and 68, and time-dependent
DFT (TD-DFT), e.g., Ref. 69. In DFT simulations, however, a bottle-
neck is the exchange–correlation (XC) functional for which a variety
of options exist, the accuracy of which is often poorly known, what
limits the predictive power of the method. This requires tests against
independent methods such as quantum Monte Carlo simulations for
the electron component4 or against electron-ion quantum Monte
Carlo.70–72 Also, the use of finite-temperature functionals was shown
to be important73,74 when the XC-contribution is comparable to the
thermal energy, see Ref. 75 for a topical discussion and Ref. 76 for an
extensive investigation of hydrogen. One goal of this paper is to pre-
sent an overview of these results and discuss future research
directions.

Motivated by time-resolved experiments, e.g., Ref. 77, the theo-
retical description of the nonequilibrium dynamics of warm dense
matter is attracting increasing interest, e.g., Ref. 78. Time-dependent
x-ray Thomson scattering was modeled in Refs. 79 and 80. Here, the
powerful methods are quantum kinetic equations81,82 and nonequilib-
rium Green functions, e.g., Refs. 83 and 84.

All of the above-mentioned simulation approaches are complex
and require substantial amounts of computer time. At the same time,
the above-mentioned simulations are currently only feasible for small
length scales and simulation durations. Therefore, simplified models
that would allow to reach larger length and time scales are highly
desirable. Possible candidates are fluid models for quantum plasmas
that are obtained via a suitable coarse graining procedure, as in the
case of classical plasmas. Quantum hydrodynamics (QHD) models for
dense plasmas have experienced high activity since the work of
Manfredi and Haas.85,86 However, their version of QHD involved sev-
eral assumptions, the validity of which remained open for a long time.
Corrections of the coefficients in the QHD equations were recently
obtained in Refs. 87 and 88, and a systematic derivation of the QHD
equations from the time-dependent Kohn-Sham equations is given in
Ref. 89. We also mention a recent alternative approach that is based
on the computation of semiclassical Bohm trajectories.90

The goal of this paper is to present a summary of some of the
recent ab initio simulations of the electron gas under warm dense mat-
ter conditions, including thermodynamic functions and local field cor-
rections developments. Furthermore, we summarize recent progress in
the field of QHD for quantum plasmas. In addition to an overview of
recent developments, we present new results for (a) the application
of the finite-temperature exchange correlation free energy in DFT sim-
ulations of dense hydrogen and carbon (Sec. IV); (b) for the dynamic
density response function, vðx; qÞ (Sec. IIIC); (c) for the screened
potential of an ion in a correlated plasma, based on the ab initioQMC
input for the local field correction (Sec. VF); and (d) on the dispersion
of ion-acoustic modes in a correlated quantum plasma (Sec. VG).

This paper is organized as follows: in Sec. II, we recall the main
parameters of warm dense matter and the relevant temperature and
density range. Section III presents an overview on recent quantum
Monte Carlo simulations followed by finite-temperature DFT results
in Sec. IV. WDM out of equilibrium and its treatment via a QHD
model is discussed in Sec. V.

II. WARM DENSE MATTER PARAMETERS
Let us recall the basic parameters of warm dense matter:40,89 the

first are the electron degeneracy parameters h ¼ kBT=EF and

FIG. 1. Density-temperature plane with examples of plasmas and characteristic
plasma parameters. ICF denotes inertial confinement fusion. Metals (semicon-
ductors) refer to the electron gas in metals (electron–hole plasma in semicon-
ductors). Weak electronic coupling is found outside the line Ceff ¼ 0:1, cf.
Eq. (4). Electronic (ionic) quantum effects are observed to the right of the line
v ¼ 1 (vp ¼ 1). The coupling strength of quantum electrons increases with rs
(with decreasing density). Atomic ionization due to thermal effects (due to pres-
sure ionization) is dominant above (to the right of) the red line, aion ¼ 0:5, for
the case of an equilibrium hydrogen plasma.91 The values of vp and rs refer to
the case of hydrogen. Figure modified from Ref. 89.
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Quantum relative entropy

S (ρ | |σ)

Density matrix ρ

Variational free-energy

Probability density p

Classical world  Quantum world

Kullback-Leibler divergence

𝕂𝕃 (p | |q)

F =
1
β

Tr(ρ ln ρ) + Tr(ρH)F = ∫ dx [ 1
β

p(x)ln p(x) + p(x)E(x)]
Variational free-energy



Density matrix

ρ = ∑
n

pn |Ψn⟩⟨Ψn |

Classical probability  pn
Quantum state basis |Ψn⟩

Normalizing flowDiscrete probabilistic models 
e.g. an autoregressive model

particle 
coordinates

quasiparticle 
coordinates 
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Variational density matrix with two generative models

F[ρ] = kBT Tr(ρ ln ρ) + Tr(Hρ)
Trρ = 1 ρ ≻ 0 ρ† = ρ ⟨X |ρ |X′ ⟩ = ( − )𝒫⟨𝒫X |ρ |X′ ⟩s . t .

min Gibbs–Bogolyubov-Feynman-
Delbrück–Molière

c.f. Cranmer et al, 1904.05903, Saleh et al, 2308.16468
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Point Transformations in Quantum Mechanics
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An isomorphism is shown to exist between the group of point transformations in classical mechanics and
a certain subgroup of the group of all unitary transformations in quantum mechanics. This isomorphism is
used to indicate that the quantum analogs of physically signi6cant classical expressions can be constructed
uniquely in any coordinate system. There is no ambiguity in the ordering of noncommuting quantum
operators, and the method of constructing the quantum analogs is covariant under general coordinate
transformations. The method is actually only applicable to systems having Lagrangians which are at most
quadratic in the velocities, but this includes all systems which are presently of interest in physics. The
method is applied to two intrinsically nonlinear examples, one of which is the gravitational field, The correct
Hamiltonian operator for a quantized version of Einstein's gravitational theory is constructed.

&. INTRODUCTION

"/RESENT day methods of formulating quantum
mechanics are based more or less completely on

analogy with classical mechanics. There are certain
well-known rules for passing from the classical theory
to the quantum theory. One replaces ordinary numbers
by operators and Poisson brackets by commutator
brackets. In principle, however, an ambiguity always
presents itself when one is faced with the task of con-
structing the quantum analog of a classica]. expression
which involves the product of two factors whose poisson
bracket does not vanish. One does not know, o priori,
how the corresponding quantum factors should be
ordel ed.
Fortunately, the systems occurring in nature are for

the most part simple enough in their mathematical
description so that one has no trouble in deciding what
the correct order should be. Nevertheless the aforemen-
tioned ambiguity represents a real deficiency in the
present theory, because (1) the simplicity of natural
systems is only apparent and is due to the fact that for
such systems there usua11y exist what may be called
"natural" coordinates in which the dynamical equations
take particularly simple forms, and (2) the trans-
formation theory of dynamics, which plays such an
important role in the quantum theory, owes its validity
to the invariance of classical Hamiltonian systems under
a much wider group of transformations than one has
heretofore been able to incorporate sensibly into the
quantum scheme, owing to said ambiguity.
It is known that a true correspondence between the

classical and quantum theories exists with respect to a
certain subgroup of the group of all canonical trans-
formations, namely the subgroup of all linear inhomo-
geneous canonical transformations. If one restricts
oneself to this subgroup, then an isomorphism can be
set up between classical quantities and their quantum
analogs, when these quantities are at most quadratic
in the canonical variables. A similar isomorphism does
not exist, however, for other classical quantities, even

*Now a Fulbright grantee at the Tata Institute of Fundamental
Research, Bombay, India.

undcx' this I'cstllctcd subgI'oup. Thc qucstloIl thclcfolc
arises: Is it possible, for a given dynamical system, to
choose the canonical variables in such a way that the
important physical quantities, energy, momentum, etc.,
become quadratic in these variables' Unfortunately,
the answer to this question is no in many cases of im-
portance, e.g., interacting 6clds.
Even in the case of interacting systems, however, no

ambiguity in formulating the quantum theory has
arisen in practice, because one has always supposed that
a clear distinction could bc made between the various
systems in interaction, and. one has usually imagined
that it makes sense to talk about "free systems" and to
treat the interactions as perturbations. For the "free
systems" the answer to the above question is in the
afhrmative and a set of "natural" dynamical variables
does exist. But, as we have already remarked, the
existence of "natural" variables is more apparent than
real, and may be more a reflection of the way our minds
work than of the way nature works.
MoI'c pertinent to the plcscnt dlscusslon ls thc fRct

that the linear inhomogeneous subgroup of canonical
transformations is never used, as such, in practice.
Indeed, the restriction to this subgroup is highly arti-
hcial. A type of canonical transformation which has
much more physical content and which is much more
frequently used in solving actual problems is a general
transformation of the coordinate variables, i.e., a
so-called point transformation.
In using point transformations in quantum theory,

one usually 6rst "quantizes" a given system in a set of
"natural" coordinates (e.g., rectilinear coordinates) and
then carries out the coordinate changes afterwards.
However, if we adopt seriously the philosophy of
general relativity, then we should say that one coor-
dinate system is as good as another, and we need not
hRvc felt obllgcd to carry out thc .quantlzRtlon ln R
"natural" coordinate system. Our rules of quantization,
as mell as our quantum-mechanical equations, should bc
' For a full discussion of this point, see L Van Hove, "Sur le

problkme des Relations entre les Transformations Unitaires de la
Mbcanique Quantique et les Transformations Canoniques de la
Mhcanique Classique. " (To be published. )

p''= 2[ax'/»", p 1+ (3 3)

That Eq. (3.3) gives the correct quantum trans-
formation law for the momentum operators may be
shown by making explicit use of expressions (2.24). We
hRve

t9$~ | 8X2
p4 pl+ pf)

8$ 2 Bx

where

formulating the quantum analog of Eq. (3.2). For the
only problem here is that of correctly symmetrizing the
right-hand side of (3.2) so as to make it Hermitian. One
may easily convince oneself that all methods of sym-
metrization lead to the same result, namely, '

5=-', [X'(x), p,],. (3.10)
S is the generator of the infinitesimal point trans-
formation.
The subgroup of unitary transformations in quantum

mechanics which corresponds isomorphically to the
group of all. point transformations in classical mechanics
is given by the set of all unitary operators exp(r5/iA),
where 5 has the form (3.10) and where v is an arbitrary
parameter. Each set of functions A' de6nes a one-
parameter subgroup of the point-transformation group.

4. DYNAMICAL SYSTEMS IN GENERAL COORDINATES

In this section we shall consider the set of all dy-
namical systems which, in the classical theory, have a
Lagrangian function of the form

+
8$ kg Bx~ Bx

(3.5) I= G2,,x-'x'+A, &' V,— (4.1)

which shows that the i:nverse transformation has the
same form as (3.3).
The unitary representations of the point-transforma-

tion group may be obtained by determining the
infinitesimal generators of the group. An in6nitesimal
point transformation may be expressed in the form

x"=*+~~'(x) (3.7)
P''=P.—l~[(a/ax")~'(x), P~]+, (3 g)

where ~ is an infinitesimal constant and A' is a function
of the x's. More generally, every function f of the x's
and p's transforms under (3.7, 8) according to

f'=f+(e/+) Lf, 5] (3 9)

For example, one might expand Bx&'/Bx" in a power series in
the x's. The operator p could then be inserted between the x's
in any symmetrical fashion in each term of the series, The result
of commuting p symmetrica11y to the left and to the right through
the x's is to produce two terms of order 5 which cancel each
other, leaving simply the expression (3.3).

Equation (3.5) is, however, just the usual transforma-
tion law for the contracted Christoffel symbol. Ex-
pressions (2.24) are therefore covariant under point
transformations,
That there exists an isomorphism between the group

of poillt tlRnsfoI'nlatlons ln clRsslcal mechanics Rnd R

corresponding subgroup of the group of all unitary
transformations in quantum mechanics is thus quite
evident. The group property ensures that each point
transformation has an inverse. It is instructive to display
explicitly the inverse of Eq. (3.3).We write
—2[ax'&'/ax', p ]+
=l[a '/a*' [a*"/a*",p],]+
=—,'[[ax'&/»', ax'/ax'&]+, p„]~

+,'[ ax" /ax-&', [pI, ax'&'/ax']]

=-,'[a,j', pI,]+,'~A[ax'/ax", a'x'&/»"ax']= p, , (3.6)

where 6,;, A;, and V are functions of the x's and where
the matrix IIG,,II is symmetric and nonsingular. We
assert that this set includes all systems in nature which
satisfy Bose-Einstein statlstlcs, i.c.

&
for which Poisson

brackets, involving coordinates and momenta singly as
well as multiply, correspond to commutator brackets in
the quantum theory. The case of I'ermi-Dirac systems
will be discussed brieQy in Sec. 7.
There exist, to be sure, Bose-Einstein systems which

have Lagrangians of the form (4.1) but for which the
matrix IIG;, II is singular. The singularity of the matrix,
however, simply implies that the momenta are not all
independent, and the lagrangian for such a system can
always be replaced by a Lagrangian for which IIG
nonsingular, together with a set of supplementary con-
ditions expressing the relations between the momenta.
The existence of such supplementary conditions does
not alter the discussion which follows.
Under general coordinate transformations the quan-

tities V, A;, and G;, transform like a scalar, a covariant
vector, and a covariant tensor respectively. V and A;
have respectively the nature of a scalar and a vector
potential. 6;; can likewise be regarded as a tensor
potential. However, it is a true potential only if it
cannot be "transformed away, " i.e., if there exists no
coordinate system in which it is everywhere constant.
We shall tentatively identify 6;;with the metric tensor
of the manifold of the x's—or rather with some con-
stRnt nlultlplc of lt

~v=~Cv (4.2)
We shall subsequently discuss in fuller detail the
reasons for this identification.
The Hamiltonian function corresponding to the

Lagrangian (4.1) has the form
&=(1/2I )g""(O' A')(P~ A;)+V — (4—3)

where g'~' is the contravariant inverse of the metric
tensor and the momenta are given by

(4 4)

Coordinate transformation induces a unitary  e
i
2 [Λi(x), pi]+



Normalizing flow
materialize this dream 



Example: uniform electron gas

rs

Fundamental model for metals ( ) 
Fermi liquid despite of non-perturbative 

2 < rs < 6
rs

Input to the density  
functional theory calculations

Ec[n] = ∫ d3r n(ϵueg
c +⋯)

H = −
N

∑
i=1

ℏ2 ∇2
i

2m
+ ∑

i<j

e2

|xi − xj |



ρ = ∑
K

p(K) ΨK⟩⟨ΨK

Normalized probability 
distribution 

Orthonormal  
many-electron basis

∑
K

p(K) = 1 ⟨ΨK |ΨK′ 
⟩ = δK,K′ 

Deep generative models for  
the variational density matrix

Fermi 
sea

Low-energy excited 
states are labeled in 
the same way as the 

ideal Fermi gas
K = {k1, k2, …, kN}

Imposing physics constraints into deep generative models 



Autoregressive model for p(K)

p(K) = p(k1)p(k2 |k1)p(k3 |k1, k2)⋯

Pauli exclusion: we are modeling a set of words with no repetitions and no order
We use masked casual self-attention Vaswani et al 1706.03762; Alternative solution: Hibat-Allah et al, 2002.02793, Barrett et al, 2109.12606

N

M

(M
N ) MN

Momentum 
distribution

Language

# of fermions # of words

Momentum 
cutoff

Vocabulary

Space

Fermionic 
occupation 
in k-space

quick
brown fox

jumps



ΨK(X) =
det(eiki⋅zj)

N!
⋅ det ( ∂Z

∂X )
1
2

Electron  
coordinates

Quasi-particle  
coordinates

Jacobian of the  
transformationOrthonormal many-body states

Fermion statistics: the flow should be permutation equivariant

X Z

we use FermiNet layer Pfau et al, 1909.02487, PRR ’20 

Normalizing flow for |Ψn⟩



Feynman’s backflow in the deep learning era
zi = xi+∑

j≠i

η( |xi − xj | ) (xj − xi)
Feynman & Cohen 1956 

wavefunction for liquid Helium
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E Commun. Math. Stat 17’,  Harbor el al 1705.03341, Lu et al 1710.10121, Chen et al, 1806.07366Taddei et al,  PRB ‘15

Iterative backflow  deep residual network  continuous normalizing flow→ →



Continuous flow of electron density in a quantum dot

github.com/fermiflow
Xie, Zhang, LW, 2105.08644, JML ‘22

Fermi Flow

http://github.com/fermiflow/


Continuous flow of electron density in a quantum dot

github.com/fermiflow
Xie, Zhang, LW, 2105.08644, JML ‘22

Fermi Flow

http://github.com/fermiflow/


Jointly optimize  and  to minimize the variational free energy |ΨK⟩ p(K)

F = 𝔼
K∼p(K)

kBT ln p(K) + 𝔼
X∼ ⟨X |ΨK⟩

2 [ ⟨X |H |ΨK⟩
⟨X |ΨK⟩ ]

Boltzmann 
distribution

Born  
probability 

The objective function



Benchmarks on spin-polarized electron gases

3D electron gas T/TF=0.0625

Brown et al, PRL ‘13 
restricted PIMC N=33, rs=10
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2D electron gas T=0

Tanatar, Ceperley, PRB, ’89 
Slater-Jastrow VMC N=37, rs=5
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⇒
m*
m

=
s
s0

s =
π2kB

3
m*
m

T
TF

Application: m* from low temperature entropy

A fundamental quantity appears in nearly all physical properties of a Fermi liquid 
There have been debates despite its fundamental role and long history of study 

Eich, Holzmann, Vignale, PRB ‘17

interacting electrons 

noninteracting electrons 

Richard D. Mattuck  
A Guide to Feynman 

Diagrams in the Many-
body Problem



Quasi-particles effective mass of 3d electron gas 

> 50 years of conflicting results !

ONE —PARTICLE GREEN'S FUNCTION

l.20

I.l 5

I lo-

1.05

0.95

SPECIFlC HEAT OF AN ELECTRON GAS same effect has been noted earlier in case of a dilute
I'ermi gas, "and is there supposed to disappear when
higher order terms are taken into account. To see if this
attraction might be strong enough to make a spherical
Fermi surface unstable, we considered the following
distortion,

1+8)k/ko) 1, 8(rj'. Sist(k, 8)= 1
1+8&k/k, &1, 8&~—q: his (k,8)=1
1&k/k, &1—-',~'8:

(its+(k, 8) =8is (k,8) =—1, 8 ~ 0, rI —+ 0.
The lowering in energy from f relative to the increase in
energy from I' then becomes ag'lnq where a, the co-
efFicient of the singular term in f, ranges between 0.015
and 0.038 when r, goes from 1 to 6. The attraction is
thus far too weak to be of any importance.
It should be pointed out that it is not clear if there

should be a s' factor in f when we use an approximation
Go instead of the self-consistent G. To see this we use the
results from Appendix 8 and write

0.90

OCC

E=Q t e(k)+ V,(((k)]+AL':,

FIG. 12. Specific heat of an electron gas. The specific heat of
an interacting electron gas divided by that of a non-interacting
or Sommerfeld electron gas (L'1+ (third column from the right in
Table VI)A 'l is plotted against r.

Since f,"i depends on e(((,0) and e(((,0) depends on f,
%atabe can write down an equation for y from a self-
consistency requirement:

~-'=1—Z—hs~ hi(X~/(1+l ~)). (11'?)

Watabe's expressions for Cs/C —1 and Xs/X—1 are the
same as those in Eq. (114)multiplied by y ' a,nd with li
replaced by )y. This is obvious from Eq. (116a).
Specifically he thus obtains X/Xs ——p. Watabe's result
for y ranges from 1.12 to 1.32 when r, goes from 1 to 5.
Our values for y as given by Eq. (116b) using fs, f.('i
and f,('i with the s' factor agree with Watabe's within
1'Po. Also Glick's result" for y at r, =2 agrees accurately
with Katabe's and ours. This is a quite remarkable
coincidence, which we cannot explain.
%e now make a few remarks on the analytical be-

havior of the different contributions to f, (8). f,"'(8)
varies between —0.25 and —0.25(l~/(1+X/2)). The slope
of f, ' (()&i8s zero at 8 and 8=rr. fs(8) and f. (8()s&start
out with finite values at 0=0 and go to infinity at 8=m
as ln(1+cos8). The coeScients of the ln term have
opposite signs and roughly the same magnitude. Ke
thus have a singular attraction between quasiparticles
of opposite momenta and opposite spin giving a tendency
towards a superconducting state. This effect does rot
come from the logarithmic singularity in e(((,0). The

gI:= (l Ly(k', G)+e*"
(2s.)'
XTr(V.((G+G 'G—1—lnGo 'G)ldk'(, l,

G (k, ) = ( —(k)—V„. (k))—'; e(k) = (k'k'/2m) .

Suppose now that we approximate G by Go in hI&., which
since AP: is stationary might not be too serious. %e then
have

Since

I.=g e(k)+ 0 @(k'; G)dk'(, i.
(2') 4

8Gs(k)/Siss ——2s.i8(k—k') 8(e—s(k)—V,r((k)) (120)

we have that

E(k)= 8E/8ms= e(k)+M(kq e(k)+ Vgff(k)),
f(k,k') =RE(k)/its 2sss 'I(k, k');

e= c'= e(ks)+ V,(((ks) .

Suppose on the other hand that we start from

E(k) = e(k)+M(k, I;(k)),

(121)

(122)

"See A. A. Abrikosov eI gt. , (Ref. 2), p. 36.

where 3f is a functional of Gs. We then have for f
f(k,k') =2sss 'I(k, k'); e= e = e(ks)+ Veff(kE) (123)

The equations for f, (121) and (123), may be compared
to Eq. (32). We thus get different results depending on

Hedin Phy. Rev. 1965
5

FIG. 3. Quasiparticle e↵ective masses m⇤ of paramagnetic
and ferromagnetic 3D-HEGs as functions of 1/N , where N is
the system size.

GW calculations with a random-phase-approximation-
screened free-electron model (SRPA) [55], suggest that
the e↵ective mass decreases at low density. The GW ap-
proximation is expected to be accurate at high density
(rs  1), which is consistent with the behavior shown
in Fig. 4, where the di↵erences between the various GW

results reduce as the density increases. Indeed, the dif-
ference between the DMC and GW e↵ective masses is
quite small at rs = 1. Recently, the single-particle exci-
tation spectra and quasiparticle e↵ective masses of 3D-
HEGs have been calculated using variational diagram-
matic Monte Carlo (VDMC) [53], in which high-order
Feynman diagrams are sampled using Monte Carlo meth-
ods [56]. The behavior of the VDMC e↵ective mass as a
function of density is close to some of the GW results, as
can be observed from Fig. 4. To the best of our knowl-
edge, there are no reliable experimental results for the ef-
fective mass of the 3D-HEG. However, the bandwidth of
Na metal, which has a band e↵ective mass (incorporating
crystal lattice e↵ects) of 1.23, has been measured [61, 62]
and can be compared with that of the 3D-HEG at den-
sity parameter rs = 4. Neither our DMC results nor the

FIG. 4. Quasiparticle e↵ective masses m⇤ of paramagnetic
(Para) and ferromagnetic (Ferro) 3D-HEGs at the infinite-
system-size limit as functions of density parameter rs. Padé
functions were fitted to the DMC quasiparticle energy bands
to determine the e↵ective mass. The many-body GWx and
variational diagrammatic Monte Carlo (VDMC) results are
from Refs. [52] and [53], respectively. The GW -SS and GW -
SRPA results are from Refs. [54] and [55], respectively. The
GW results are for paramagnetic 3D-HEGs.

existing VDMC and GW results explain the experimen-
tally estimated 18–25% bandwidth narrowing relative to
self-consistent band theoretical calculations [61, 62].

In summary, we have calculated the single-particle en-
ergy bands and quasiparticle e↵ective masses of para-
magnetic and ferromagnetic 3D-HEGs using the DMC
method. Two fitting functions, of Padé and quartic form,
have been used to obtain the gradient of the energy band
at the Fermi wavevector and hence the e↵ective mass
at each finite system size studied. We found that the
e↵ective masses of paramagnetic and ferromagnetic sys-
tems of any given finite size are almost independent of
the choice of trial wave function and the fitting func-
tion used. The DMC bandwidths of paramagnetic and
ferromagnetic 3D-HEGs are larger than that of the free-
electron model but smaller than the HF bandwidth at
all densities considered. The DMC bandwidth for a 3D-
HEG with density parameter rs = 4 agrees with previous
QMC results for the bandwidth of Na. A su�ciently
high precision is achieved in our simulations that the
systematic finite-size errors in the e↵ective masses can
be eliminated by extrapolation to the thermodynamic
limit. Our DMC results predict that the e↵ective mass
of the 3D-HEG decreases as the density decreases from
r1 = 1 to rs = 10. This reduction is more pronounced in
the ferromagnetic system than the paramagnetic system.
The good agreement between DMC results for Na and
the 3D-HEG indicates that the 3D-HEG provides a good

Azadi, Drummond, Foulkes, PRL 2021
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Strongly correlated two-dimensional plasma
explored from entropy measurements
A.Y. Kuntsevich1,2, Y.V. Tupikov3, V.M. Pudalov1,2 & I.S. Burmistrov2,4

Charged plasma and Fermi liquid are two distinct states of electronic matter intrinsic to dilute

two-dimensional electron systems at elevated and low temperatures, respectively. Probing

their thermodynamics represents challenge because of lack of an adequate technique. Here,

we report a thermodynamic method to measure the entropy per electron in gated structures.

Our technique appears to be three orders of magnitude superior in sensitivity to a.c.

calorimetry, allowing entropy measurements with only 108 electrons. This enables us to

investigate the correlated plasma regime, previously inaccessible experimentally in two-

dimensional electron systems in semiconductors. In experiments with clean two-dimensional

electron system in silicon-based structures, we traced entropy evolution from the plasma to

Fermi liquid regime by varying electron density. We reveal that the correlated plasma regime

can be mapped onto the ordinary non-degenerate Fermi gas with an interaction-enhanced

temperature-dependent effective mass. Our method opens up new horizons in studies of

low-dimensional electron systems.
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Next, directly compare computed entropy with the experiment

the modified effective mass. Lacking a microscopic theory for
non-degenerate strongly interacting electron system, we fitted our
results using equation (4) with a density dependent effective mass
m*(n) as a fitting parameter.

Thus extracted effective mass for different temperatures is
shown in Fig. 2b. In the high temperature limit T\UcEF,
the kinetic energy of electrons is given by temperature; hence,
the 2D electron gas turns out to be weakly interacting and
qS/qn is expected to be described by equation (4) with the
density-independent effective mass close to the band mass
value mb.

In general, for a given temperature, the effective mass exhibits a
re-entrant behaviour: as density decreases m* first grows, then
passes through a maximum and falls down approaching a value of
the order of mb. The lower the temperature, the higher maximum
value the effective mass reaches. The enhanced effective mass is in
a qualitative agreement with the low-temperature Shubnikov-de-
Haas measurements of ref. 4 (shown with a thick curve in
Fig. 2b).

The low-density region, where the effective mass falls as
density decreases, corresponds to a non-degenerate strongly
correlated electron plasma regime (EFtToU). We are not aware
of any theory describing this domain. To treat the data in this
regime, we suggest the following phenomenological approach.
For the degenerate clean 2D Fermi liquid, renormalization of its
physical parameters, and, particularly, the effective mass, is
governed by a single dimensionless variable equal to the ratio of
the potential interaction energy U to the kinetic Fermi energy,
rs ¼ 1= a"B

ffiffiffiffiffiffi
pn

p" #
=EF (ref. 14). Here a"B ¼ k‘ 2= mbe2ð Þ stands for

the effective Bohr radius with average dielectric constant.

As explained above, when temperature increases, the interac-
tions for a given density weaken and cannot be characterized
anymore by rspU/EF. Correspondingly, to describe our m*(n,T)
data set over the wide range of densities and temperatures,
we suggest a phenomenological effective interaction parameter
~rs ¼ pa2Bnþ aTgþ b=Eg

FU
b

" #& 1=2
; which interpolates the two

limits, of the degenerate Fermi liquid and non-degenerate
correlated plasma. It appears that all nonmonotonic m*(n)
dependencies for various temperatures collapse onto a single
curve, when we choose a¼ 0.4, b¼ 1 and g¼ 1 (see the inset in
Fig. 2b). Some supporting reasonings from the plasma physics
can be found in Supplementary Note 7, though the precision of
our measurements is not too high to exclude other possible
~rs n;Tð Þ functional forms.

Role of the in-plane magnetic field. To have a deeper insight
into the effective mass renormalization in the low-density regime,
we repeat the same measurements with the in-plane magnetic
fields B||¼ 5.5, and 9 T, which produce Zeeman splitting EZ: 0.5
and 1meV, respectively (see Fig. 2c). At low densities (EFuT,
region A in Fig. 2c) the plasma is spin-polarized by B||¼ 9 T.
Therefore, both, S and qS/qn at B||¼ 9 T are expected to be less
than the respective zero field values.

Region A is located in the vicinity of the critical density for
sample Si-UW2 (nc E8' 1010 cm& 2) and below it. If the free
spins existed in the 2D system in the region A, as the Mott–
Wigner scenario of the 2D MIT predicts19, they would be fully
polarized by the magnetic field gmBB4T (that is, at both B||¼ 9 T
and B||¼ 5.5 T), and the entropy would fall significantly by ns ln2
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Figure 2 | Entropy per electron in zero perpendicular field. (a) The entropy per electron qS/qn versus density (symbols) for various temperatures,
sample Si-UW2. Inset: the same data versus dimensionless density (EF/T), the solid curve is the expectation for the Fermi gas with the Si band parameters,
the dashed curve is the expectation for the FL with negative qm*/qn (see text); (b) the effective mass m* versus density. The black curve corresponds to
the approximation of m* from the Shubnikov-de-Haas measurements4. Symbols are the m*(n,T) data determined using equation (4) from the measured
qS/qn values. Different symbols correspond to different temperatures (shown in the inset). Scaling of the effective mass versus effective interaction
parameter ~rs is shown in the inset(see text). (c) The signal qS/qn(n) at 3.2 K for Si-UW2 is shown with filled symbols: at zero field (black boxes), B||¼ 5.5 T
(blue triangles) and 9T (red boxes). Empty symbols (right axis) are the corresponding effective masses at B¼0 (black) and B||¼9T (red). The bars
illustrate schematically the band diagram for two spin subbands in the regions A, B and C. Vertical dashed lines depict schematic borders between the
regions A, B and C. (d) The entropy of the 2D electron system measured in Si-UW2 for three temperatures (symbols). Inset: temperature dependence of
the entropy for n¼ 10.5' 1011 cm& 2 (EF¼ 75K) and 3.9' 1011 cm& 2 (EF¼ 30K). Dashed curves denote the upper estimate for the entropy.
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FAQs
Where to get training data ?

Do I understand the “black box” model  ?

How do we know it is correct ?

No training data. Data are self-generated from the generative model.

Variational principle: lower free-energy is better.

a) I don’t care (as long as it is sufficiently accurate). 

b)  contains the Landau energy functional 
       illustrates adiabatic continuity.

ln p(K)
Z ↔ X

E[δnk] = E0 + ∑
k

ϵkδnk +
1
2 ∑

k,k′ 

fk,k′ δnkδnk′ 



“Using AI to accelerate scientific discovery”  talk by Demis Hassabis in 2021“Using AI to accelerate scientific discovery” Demis Hassabis, co-founder and CEO of DeepMind 2021



Why now ? 
Variational free-energy is a fundamental principle for T>0 
quantum systems

Now, it is has became possible by integrating recent advances in 
generative models

However, it was under-exploited for solving practical problems 
(mostly due to intractable entropy for nontrivial density matrices)



The Universe as a generative model

Thank you!
Discovering physical laws: learning the action

Solving physical problems: optimizing the action
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 Machine learning for physicists 
https://github.com/wangleiphy/ml4p 



https://iopscience.iop.org/collections/mlst-230424-207


