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a

What is the killer app of a 
near-term quantum computer ?

In about next 3 years

Small: O(10)-O(103) qubits
Shallow: O(102)-O(104)  gates
Noisy: no error correction



Quantum  
Machine Learning

Quantum Annealing  
and Optimization

Cryptography Search Linear Algebra

Quantum  
Simulation

|x⟩ = |b⟩AEvidence for quantum
 annealing w

ith m
ore than
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1

The natural two-qubit interaction is the XY exchange
coupling [28] Hxy

1;2 ¼ ðJ=2Þðσx1σx2 þ σy1σ
y
2Þ mediated by

virtual photons in a common cavity mode, which we also
refer to as the XY interaction. Here, σx;yi are the Pauli
operators acting on qubit i, and J denotes the effective
qubit-qubit coupling strength [30]. The XY interaction is
activated by tuning the transition frequency of qubit Q1
(5.44 GHz) into resonance with qubit Q2 (5.24 GHz) for a
time τ using nanosecond time scale magnetic flux bias
pulses [31] (see Appendix B). When the qubit transition
frequencies are degenerate, the resonator-mediated cou-
pling strength is spectroscopically determined to be
J ¼ −40.4 MHz. To make the presentation of the simu-
lation results independent of the actual J, we express the
interaction time τ for a given J in terms of the acquired
quantum phase angle 2jJjτ. In our setup, the action of the
XY gate [Fig. 1(a)] is characterized by full process
tomography for a complete set of 16 initial two-qubit
states and a series of 25 different interaction times τ finding
process fidelities no lower than 89% (see Appendix D).

In Figs. 2(a) and 2(b), we present nonstationary spin
dynamics under the XY exchange interaction for a char-
acteristic initial two-qubit state j↑iðj↑i þ j↓iÞ=

ffiffiffi
2

p
with

spins pointing in perpendicular directions along þ z and
þ x, respectively. During the XY interaction, the state of
one spin is gradually swapped to the other spin and vice
versa, with a phase angle of π=2. This corresponds to the
iSWAP gate [32]. As a consequence, the measured Bloch
vectors move along the YZ and XZ planes. For a quantum
phase angle of 2jJjτ ¼ π, they point along the þ y and þ z
directions, respectively, in good agreement with the ideal
unitary time evolution indicated by dashed lines in
Figs. 2(a) and 2(b). We also find that the two-qubit
entanglement characterized by the measured negativity
[33] of 0.246 is close to the maximum expected value of
0.25 for this initial state at a quantum phase angle of π=2.
As a consequence, the Bloch vectors do not remain on the
surface of the Bloch sphere but rather lie within the sphere.
The anisotropic Heisenberg model describes spins inter-

acting in three spatial dimensions,

Hxyz ¼
X

ði;jÞ
ðJxσxi σxj þ Jyσ

y
i σ

y
j þ Jzσ

z
iσ

z
jÞ; ð1Þ

where the sum is taken over pairs of neighboring spins i and
j. Jx, Jy, and Jz are the couplings of the spins along the x, y,
and z coordinates, respectively. Since it does not occur
naturally in circuit QED, we decompose the Heisenberg
interaction into a sequence of XY and single-qubit gates, as
shown in Fig. 1(b). We combine three successive effective
XY, XZ, and YZ gates derived from the XY gate by basis
transformations [16] to realize the isotropic Heisenberg
model with Jx ¼ Jy ¼ Jz ¼ J versus interaction time τ.
Since the XY, XZ, and YZ operators commute for two
spins, the Trotter formula is exact after a single step.
To compare the Heisenberg (XYZ) interaction with the

XY exchange interaction, we prepare the same initial state
as presented in Figs. 2(a) and 2(b). The isotropic
Heisenberg interaction described by the scalar product
between two vectorial spin-1=2 operators preserves the
angle between the two spins. As a result, the initially
perpendicular Bloch vectors of qubits Q1 and Q2 remain
perpendicular during the interaction [Fig. 2(c)] and rotate
clockwise along an elliptical path that spans a plane
perpendicular to the diagonal at half-angle between the
two Bloch vectors [Fig. 2(c)].
In accordance with theory, the XYZ interaction leads to a

full SWAP operation for a quantum phase angle of
2jJjτ ¼ π=2, where the Bloch vectors point along the
þ x and þ z directions. For the given initial state, we
observe a maximum negativity of 0.210 close to the
expected value of 0.25 for the Heisenberg interaction at
a quantum phase angle of 2jJjτ ¼ π=4. As for the XY
interaction, we characterize the Heisenberg interaction with

FIG. 1. (a) Circuit diagram to characterize the XY exchange
interaction on qubits Q1 and Q2 symbolized by the vertical line
(×), which is activated for a time τ. To perform standard process
tomography of this interaction, separable initial states are
prepared using single-qubit rotations Rprep

1;2 (green) in the begin-
ning and the final state is characterized using single-qubit basis
rotations Rtom

1;2 and joint two-qubit readout (yellow). (b) Digital
quantum simulation of the two-spin Heisenberg (XYZ) inter-
action for time τ. The first step after state preparation is to apply
the XY gate for a time τ (dashed box labeled as XY). In the second
and third steps (dashed boxes with labels XZ and YZ), XZ and
YZ gates are realized using single-qubit rotations R% π=2

x;y (blue) by
an angle % π=2 about the x or y axis transforming the basis in
which the XY gate acts. (c) Protocol to decompose and simulate
Ising spin dynamics in a homogeneous transverse magnetic field.
The circuit between the bold vertical bars with two dots is
repeated n times, invoking each XY and phase gates for a time
τ=n. See text for details. The actual pulse scheme is provided in
Appendix C.
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The natural two-qubit interaction is the XY exchange
coupling [28] Hxy

1;2 ¼ ðJ=2Þðσx1σx2 þ σy1σ
y
2Þ mediated by

virtual photons in a common cavity mode, which we also
refer to as the XY interaction. Here, σx;yi are the Pauli
operators acting on qubit i, and J denotes the effective
qubit-qubit coupling strength [30]. The XY interaction is
activated by tuning the transition frequency of qubit Q1
(5.44 GHz) into resonance with qubit Q2 (5.24 GHz) for a
time τ using nanosecond time scale magnetic flux bias
pulses [31] (see Appendix B). When the qubit transition
frequencies are degenerate, the resonator-mediated cou-
pling strength is spectroscopically determined to be
J ¼ −40.4 MHz. To make the presentation of the simu-
lation results independent of the actual J, we express the
interaction time τ for a given J in terms of the acquired
quantum phase angle 2jJjτ. In our setup, the action of the
XY gate [Fig. 1(a)] is characterized by full process
tomography for a complete set of 16 initial two-qubit
states and a series of 25 different interaction times τ finding
process fidelities no lower than 89% (see Appendix D).

In Figs. 2(a) and 2(b), we present nonstationary spin
dynamics under the XY exchange interaction for a char-
acteristic initial two-qubit state j↑iðj↑i þ j↓iÞ=

ffiffiffi
2

p
with

spins pointing in perpendicular directions along þ z and
þ x, respectively. During the XY interaction, the state of
one spin is gradually swapped to the other spin and vice
versa, with a phase angle of π=2. This corresponds to the
iSWAP gate [32]. As a consequence, the measured Bloch
vectors move along the YZ and XZ planes. For a quantum
phase angle of 2jJjτ ¼ π, they point along the þ y and þ z
directions, respectively, in good agreement with the ideal
unitary time evolution indicated by dashed lines in
Figs. 2(a) and 2(b). We also find that the two-qubit
entanglement characterized by the measured negativity
[33] of 0.246 is close to the maximum expected value of
0.25 for this initial state at a quantum phase angle of π=2.
As a consequence, the Bloch vectors do not remain on the
surface of the Bloch sphere but rather lie within the sphere.
The anisotropic Heisenberg model describes spins inter-

acting in three spatial dimensions,

Hxyz ¼
X

ði;jÞ
ðJxσxi σxj þ Jyσ

y
i σ

y
j þ Jzσ

z
iσ

z
jÞ; ð1Þ

where the sum is taken over pairs of neighboring spins i and
j. Jx, Jy, and Jz are the couplings of the spins along the x, y,
and z coordinates, respectively. Since it does not occur
naturally in circuit QED, we decompose the Heisenberg
interaction into a sequence of XY and single-qubit gates, as
shown in Fig. 1(b). We combine three successive effective
XY, XZ, and YZ gates derived from the XY gate by basis
transformations [16] to realize the isotropic Heisenberg
model with Jx ¼ Jy ¼ Jz ¼ J versus interaction time τ.
Since the XY, XZ, and YZ operators commute for two
spins, the Trotter formula is exact after a single step.
To compare the Heisenberg (XYZ) interaction with the

XY exchange interaction, we prepare the same initial state
as presented in Figs. 2(a) and 2(b). The isotropic
Heisenberg interaction described by the scalar product
between two vectorial spin-1=2 operators preserves the
angle between the two spins. As a result, the initially
perpendicular Bloch vectors of qubits Q1 and Q2 remain
perpendicular during the interaction [Fig. 2(c)] and rotate
clockwise along an elliptical path that spans a plane
perpendicular to the diagonal at half-angle between the
two Bloch vectors [Fig. 2(c)].
In accordance with theory, the XYZ interaction leads to a

full SWAP operation for a quantum phase angle of
2jJjτ ¼ π=2, where the Bloch vectors point along the
þ x and þ z directions. For the given initial state, we
observe a maximum negativity of 0.210 close to the
expected value of 0.25 for the Heisenberg interaction at
a quantum phase angle of 2jJjτ ¼ π=4. As for the XY
interaction, we characterize the Heisenberg interaction with

FIG. 1. (a) Circuit diagram to characterize the XY exchange
interaction on qubits Q1 and Q2 symbolized by the vertical line
(×), which is activated for a time τ. To perform standard process
tomography of this interaction, separable initial states are
prepared using single-qubit rotations Rprep

1;2 (green) in the begin-
ning and the final state is characterized using single-qubit basis
rotations Rtom

1;2 and joint two-qubit readout (yellow). (b) Digital
quantum simulation of the two-spin Heisenberg (XYZ) inter-
action for time τ. The first step after state preparation is to apply
the XY gate for a time τ (dashed box labeled as XY). In the second
and third steps (dashed boxes with labels XZ and YZ), XZ and
YZ gates are realized using single-qubit rotations R% π=2

x;y (blue) by
an angle % π=2 about the x or y axis transforming the basis in
which the XY gate acts. (c) Protocol to decompose and simulate
Ising spin dynamics in a homogeneous transverse magnetic field.
The circuit between the bold vertical bars with two dots is
repeated n times, invoking each XY and phase gates for a time
τ=n. See text for details. The actual pulse scheme is provided in
Appendix C.
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FIG. 1. Illustration of the three common steps of hybrid quantum-classical algorithms. These steps have

to be repeated until convergence or when a su�ciently good quality of the solution is reached. 1) State

preparation involving the quantum hardware capable of tunable gates characterized by parameters “n (blue),

2) measurement of the quantum state and evaluation of the objective function (red), 3) iteration of the

optimization method to determine promising changes in the state preparation (green). Notice that a single

parameter “n may characterize more than one gate, for example see “1 and “6 in the blue box. In practice,

many state preparations and measurements are necessary before proceeding with a single update of the

parameters.

quantum state, records the outcomes and analyze them to obtain the value of the objective function

corresponding to the prepared state. The third step is the classical optimization iteration that,

based on previous results, suggests new parameter values to improve the quality of the state. We

pictorially illustrate these three parts and their interplay in Fig. 1.

As mentioned, the goal of variational algorithms is to find an approximate solution to certain

problems. The quality of such approximation is given by the value of the objective function that one

desires to maximize (or minimize). The objective function is expressed as a quantum observable,

noted here with Ĉ, of the qubit register. It can be a genuinely quantum quantity, as is the case

for the energy of molecular systems, or classical in nature, for example when it is associated to

combinatorial optimization, scheduling problems or financial modeling. Given the quantum register

in state |„Í, the objective function is given by the expectation value È„| Ĉ |„Í.

⟨H⟩θ

Peruzzo et al,  
Nat. Comm. ’13Quantum circuit as a variational ansatz 
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one measures the phase Ent and collapses the system
register to the state jni with probability janj2.
Our PEA implementation is based on a modification of

Kitaev’s iterative phase estimation algorithm [8,35]. The
circuit we use is shown in Fig. 4 and detailed descriptions
of the subroutines we use to control UTrotð2kt0Þ on an
ancilla are shown in Appendix C. The rotation ZΦðkÞ in
Fig. 4 feeds back classical information from the prior k − 1
measurements using phase kickback as

ΦðkÞ ¼ π
Xk−1

l¼0

jl
2l−kþ1

: ð7Þ

With iterative phase estimation, one measures the phase
accumulated on the system one bit at a time. Even when a0
is very small, one can use iterative phase estimation to
measure eigenvalues if the system register remains coherent
throughout the entire phase determination. Since the
Hartree-Fock state has strong overlap with the ground state
of molecular hydrogen (i.e., jh0jϕij2 > 0.5), we are able to
measure each bit independently with a majority-voting
scheme, reducing coherence requirements. For b bits,
the ground-state energy is digitally computed as a binary
expansion of the measurement outcomes,

Eb
0 ¼ −

π
t0

Xb−1

k¼0

jk
2kþ1

: ð8Þ

Experimentally computed energies are plotted alongside
VQE results in Fig. 3(a). Because energies are measured

digitally in iterative phase estimation, the experimentally
determined PEA energies in Fig. 3(a) agree exactly with
theoretical simulations of Fig. 4, which differ from the exact
energies due to the approximation of Eq. (5). The primary
difficulty of the PEA experiment is that the controlled
application of UTrotð2kt0Þ requires complex quantum
circuitry and long coherent evolutions. Accordingly, we
approximate the propagator in Eq. (5) using a single
Trotter step (ρ ¼ 1), which is not sufficient for chemical
accuracy. Our PEA experiment shows an error in the
dissociation energy of ð1% 1Þ × 10−2 hartree.
In addition to taking only one Trotter step, we perform

classical simulations of the error in Eq. (5) under different
orderings of the Hγ in order to find the optimal Trotter
sequences at each value ofR. The Trotter sequences we use
in our experiment as well as parameters such as t0 are
reported in Appendix C. Since this optimization is intrac-
table for larger molecules, our PEA protocol benefits from
inefficient classical preprocessing (unlike our VQE imple-
mentation). Nevertheless, this is the first time the canonical
quantum algorithm for chemistry has been executed in its
entirety and, as such, represents a significant step towards
scalable implementations.

IV. EXPERIMENTAL METHODS

Both algorithms are implemented with a superconduct-
ing quantum system based on the Xmon [48], a variant of
the planar transmon qubit [49], in a dilution refrigerator
with a base temperature of 20 mK. Each qubit consists
of a superconducting quantum interference device

(a) (b)

FIG. 3. Computed H2 energy curve and errors. (a) Energy surface of molecular hydrogen as determined by both VQE and PEA. VQE
approach shows dissociation energy error of ð8% 5Þ × 10−4 hartree (error bars on VQE data are smaller than markers). PEA approach
shows dissociation energy error of ð1% 1Þ × 10−2 hartree. (b) Errors in VQE energy surface. Red dots show error in the experimentally
determined energies. Green diamonds show the error in the energies that would have been obtained experimentally by running the circuit
at the theoretically optimal θ instead of the experimentally optimal θ. The discrepancy between blue and red dots provides experimental
evidence for the robustness of VQE, which could not have been anticipated via numerical simulations. The gray band encloses the
chemically accurate region relative to the experimental energy of the atomized molecule. The dissociation energy is relative to the
equilibrium geometry, which falls within this envelope.
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jφð~θÞi≡Uð~θÞjϕi. Even if jϕi is a simple product state and
Uð~θÞ is a very shallow circuit, jφð~θÞi can contain complex
many-body correlations and span an exponential number of
standard basis states.
We can express the mapping Uð~θÞ as a concatenation

of parametrized quantum gates, U1ðθ1ÞU2ðθ2Þ…UnðθnÞ.
In this work, we parametrize our circuit according to
unitary coupled cluster theory [20,22,23]. As described
in Appendix D, unitary coupled cluster theory predicts that
the ground state of Eq. (1) can be expressed as

jφðθÞi ¼ e−iθX0Y1 j01i; ð3Þ

where jϕi ¼ j01i is the Hartree-Fock (mean-field) state
of molecular hydrogen in the representation of Eq. (1).
As discussed in Appendix D, unitary coupled cluster
theory is widely believed to be classically intractable and
is known to be strictly more powerful than the “gold
standard” of classical electronic structure theory, coupled
cluster theory [43–46]. The gate model circuit that
performs this unitary mapping is shown in the software
section of Fig. 1.
VQE solves for the parameter vector ~θ with a classical

optimization routine. One first prepares an initial ansatz
jφð~θ0Þi and then estimates the ansatz energy E ð~θ0Þ by
measuring the expectation values of each term in Eq. (1)
and summing these values together as

E ð~θÞ ¼
X

γ

gγhφð~θÞjHγjφð~θÞi; ð4Þ

where the gγ are scalars and the Hγ are local Hamiltonians

as in Eq. (1). The initial guess ~θ0 and the corresponding
objective value E ð~θ0Þ are then fed to a classical greedy
minimization routine (e.g., gradient descent), which then
suggests a new setting of the parameters ~θ1. The energy
E ð~θ1Þ is then measured and returned to the classical outer
loop. This continues for m iterations until the energy
converges to a minimum value E ð~θmÞ, which represents
the VQE approximation to E 0.
Because our experiment requires only a single varia-

tional parameter, as in Eq. (3), we elect to scan 1000
different values of θ ∈ ½−π; πÞ in order to obtain expect-
ation values that define the entire potential energy curve.
We do this to simplify the classical feedback routine but at
the cost of needing slightly more experimental trials. These
expectation values are shown in Fig. 2(a) and the corre-
sponding energy surfaces at different bond lengths are
shown in Fig. 2(b). The energy surface in Fig. 2(b) is
locally optimized at each bond length to emulate an on-the-
fly implementation.
Figure 3(a) shows the exact and experimentally deter-

mined energies of molecular hydrogen at different bond
lengths. The minimum energy bond length (R¼ 0.72 Å)
corresponds to the equilibrium bond length, whereas the
asymptote on the right-hand part of the curve corresponds
to dissociation into two hydrogen atoms. The energy
difference between these points is the dissociation energy,
and the exponential of this quantity determines the chemi-
cal dissociation rate. Our VQE experiment correctly pre-
dicts this quantity with an error of ð8% 5Þ × 10−4 hartree,
which is below the chemical accuracy threshold. Error bars

FIG. 1. Hardware and software schematic of the variational quantum eigensolver. (Hardware) micrograph shows two Xmon transmon
qubits and microwave pulse sequences to perform single-qubit rotations (thick lines), dc pulses for two-qubit entangling gates (dashed
lines), and microwave spectroscopy tones for qubit measurements (thin lines). (Software) quantum circuit diagram shows preparation of
the Hartree-Fock state, followed by application of the unitary coupled cluster ansatz in Eq. (3) and efficient partial tomography (Rt) to
measure the expectation values in Eq. (1). Finally, the total energy is computed according to Eq. (4) and provided to a classical optimizer
which suggests new parameters.
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the case of H2, remove two qubits associated with the spin–parity 
 symmetries, reducing the Hamiltonian to a six-qubit problem that 
encodes eight spin orbitals. A similar approach is used to map LiH 
onto four qubits. The Hamiltonians for H2, LiH and BeH2 at their 
 lowest-energy interatomic distances (bond distance) are given  explicitly 
in Supplementary Information.

The results from an optimization procedure are illustrated in Fig. 2, 
using the Hamiltonian for BeH2 at the interatomic distance of 1.7 Å. 
Although using a large number of entanglers UENT helps to achieve 
better energy estimates in the absence of noise, the combined effect 
of decoherence and finite sampling sets the optimal depth for opti-
mizations on our quantum hardware to 0–2 entanglers. The results 
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Figure 2 | Experimental implementation of six-qubit optimization. The 
minimum energy of the six-qubit Hamiltonian describing BeH2 with an 
interatomic distance of l =  1.7 Å (data points) is plotted along with the 
exact value (black dashed line). For each iteration k, the gradient at each 
control θk is approximated using 1,000 samples for energy estimation  
at θ+k  (blue) and θ−k  (red), which are perturbations to θk along opposite 
directions of a random axis in parameter space. The error bars correspond 
to the standard error of the mean. The inset shows the simultaneous 

optimization of 30 Euler angles that control the trial state preparation. 
Each colour refers to a particular qubit (Q1–Q6; q =  1, 2, …), following the 
colour scheme in Fig. 1. The final energy estimate (green dashed line) is 
obtained using the average angle over the last 25 angle updates (indicated 
by the green dotted arrow), to mitigate the effect of stochastic fluctuations, 
and with a higher number of samples (100,000), to obtain a more accurate 
energy estimation.

CR
2–4

CR 6–
5

CR
1–3

CR
2–4

CR
1–3

CR
2–4

0 1 2 3 4

Interatomic distance (Å)

–1.2

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

En
er

gy
 (h

ar
tr

ee
)

0

50

100

1 2 3 4 5

Interatomic distance (Å)

–8.0

–7.8

–7.6

–7.4

–7.2

–7.0

–6.8

–6.6

0

20

40

C
R

2–
1

Q1 

Q2 

Q3 Q4 Q5 

Q7 

Q6 Q1 

Q2 

Q3 Q4 Q5 

Q7 

Q6 

H H 

H Li 

1 2 3 4 5

Interatomic distance (Å)

–15.5

–15.0

–14.5

–14.0

–13.5

–13.0

–12.5

–12.0

0

20

40

C
R

2–
1CR4–5

Q1 

Q2 

Q3 Q4 Q5 

Q7 

Q6 

Be 
H H 

a b

 

c 

Figure 3 | Application to quantum chemistry. a–c, Experimental results 
(black filled circles), exact energy surfaces (dotted lines) and density plots 
(shading; see colour scales) of outcomes from numerical simulations, 
for several interatomic distances for H2 (a), LiH (b) and BeH2 (c). The 
experimental and numerical results presented are for circuits of depth 
d =  1. The error bars on the experimental data are smaller than the 
size of the markers. The density plots are obtained from 100 numerical 

outcomes at each interatomic distance. The top insets in each panel 
highlight the qubits used for the experiment and the cross-resonance 
gates (arrows, labelled CRc–t; where ‘c’ denotes the control qubit and ‘t’ the 
target qubit) that constitute UENT. The bottom insets are representations 
of the molecular geometry (not to scale). For all the three molecules, 
the deviation of the experimental results from the exact curves is well 
explained by the stochastic simulations.
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the state | 00…0〉 , applying d entanglers UENT that  alternate with N Euler 
rotations, giving
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Because the qubits are all initialized in their ground state | 0〉 , the first 
set of Z rotations of Uq,0(θ) is not implemented, resulting in a total of 
p =  N(3d +  2) independent angles. In the experiment, the evolution 
time τ and the individual couplings in H0 can be controlled. However, 
numerical simulations indicate that accurate optimizations are 
obtained for fixed-phase entanglers UENT, leaving the p control angles 
as  variational parameters. Our hardware-efficient approach does not 
rely on the accurate implementation of specific two-qubit gates and can 
be used with any UENT that generates sufficient entanglement. This is 
in  contrast to unitary coupled-cluster trial states, which require high- 
fidelity  quantum gates that approximate a unitary operator tailored on 
the basis of a theoretical ansatz. For the experiments considered here, 
the entanglers UENT are composed of a sequence of two-qubit cross- 
resonance gates23. Simulations as a function of entangler phase show 
plateaus of minimal energy error around gate phases that correspond 
to the maximal pairwise concurrence; see Supplementary Information. 
We therefore set the entangler evolution time τ at the beginning of such 
plateaus, to reduce decoherence effects.

In our experiments, the Z rotations are implemented as frame 
changes in the control software24, whereas the X rotations are imple-
mented by appropriately scaling the amplitude of calibrated Xπ pulses, 
using a fixed total time of 100 ns for every single-qubit rotation. The 
cross-resonance gates that compose UENT are implemented by driving 
a control qubit Qc with a microwave pulse that is resonant with a target 
qubit Qt. We use Hamiltonian tomography of these gates to determine 
the strengths of the various interaction terms, and the gate time for 

maximal entanglement23. We set our two-qubit gate times at 150 ns, to 
try to minimize the effect of decoherence without compromising the 
accuracy of the optimization outcome; see Supplementary Information.

After each trial state is prepared, we estimate the associated energy 
by measuring the expectation values of the individual Pauli terms in 
the Hamiltonian. These estimates are affected by stochastic fluctua-
tions due to finite sampling. Different post-rotations are applied after 
trial-state preparation for sampling different Pauli operators (Fig. 1c, d). 
We group the Pauli operators into tensor product basis sets that require 
the same post-rotations. We numerically show that such grouping 
reduces the energy fluctuations, while keeping the same total number 
of samples, thereby reducing the time overhead for energy estimation; 
see Supplementary Information. The energy estimates are then used 
in a gradient descent algorithm that relies on a simultaneous perturba-
tion stochastic approximation (SPSA) to update the control parameters. 
The SPSA algorithm approximates the gradient using only two energy 
measurements, regardless of the dimensions of the parameter space p, 
achieving a level of accuracy comparable to that of standard gradient 
descent methods, in the presence of stochastic fluctuations10. This is 
crucial for optimizing over many qubits and long depths for trial-state 
preparation, enabling us to optimize over a number of parameters as 
large as p =  30.

To address molecular problems on our quantum processor, we rely on 
a compact encoding of the second-quantized fermionic Hamiltonians 
onto qubits. The Hamiltonian for molecular H2 has four spin orbitals, 
representing the spin-degenerate 1s orbitals of the two hydrogen atoms. 
We use a binary tree encoding11 to map the Hamiltonian to a four-
qubit system, and remove the two qubits that are associated with the 
spin parities of the system9. The Hamiltonian for BeH2 is defined on 
the basis of the 1s, 2s and 2px orbitals that are associated with Be, and 
the 1s orbital that is associated with each H atom, for a total of ten spin 
orbitals. We then assume perfect filling of the innermost two 1s spin 
orbitals of Be, after shifting their energies by diagonalizing the non- 
interacting part of the fermionic Hamiltonian. We map the eight- 
spin-orbital Hamiltonian of BeH2 using parity mapping and, as in 
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Figure 1 | Quantum chemistry on a superconducting quantum 
processor. Solving electronic-structure problems on a quantum computer 
relies on mappings between fermionic and qubit operators. a, Parity 
mapping of eight spin orbitals (drawn in blue and red, not to scale) onto 
eight qubits, which are then reduced to six qubits owing to fermionic 
spin and parity symmetries. The length of the bars indicate the parity of 
the spin orbitals that are encoded in each qubit. b, False-coloured optical 
micrograph of the superconducting quantum processor with seven 
transmon qubits. These qubits are coupled via two coplanar waveguide 
resonators (violet) and have individual coplanar waveguide resonators 

for control and read-out. c, Hardware-efficient quantum circuit for trial-
state preparation and energy estimation, shown here for six qubits. For 
each iteration k, the circuit is composed of a sequence of interleaved 
single-qubit rotations Uq,d(θk) and entangling unitary operations UENT 
that entangle all of the qubits in the circuit. A final set of post-rotations 
(I, X− π/2 or Yπ/2) before the qubits are read out is used to measure the 
expectation values of the individual Pauli terms in the Hamiltonian and to 
estimate the energy of the trial state. d, An example of the pulse sequence 
for the preparation of a six-qubit trial state, in which UENT is implemented 
as a sequence of two-qubit cross-resonance gates.
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the case of H2, remove two qubits associated with the spin–parity 
 symmetries, reducing the Hamiltonian to a six-qubit problem that 
encodes eight spin orbitals. A similar approach is used to map LiH 
onto four qubits. The Hamiltonians for H2, LiH and BeH2 at their 
 lowest-energy interatomic distances (bond distance) are given  explicitly 
in Supplementary Information.

The results from an optimization procedure are illustrated in Fig. 2, 
using the Hamiltonian for BeH2 at the interatomic distance of 1.7 Å. 
Although using a large number of entanglers UENT helps to achieve 
better energy estimates in the absence of noise, the combined effect 
of decoherence and finite sampling sets the optimal depth for opti-
mizations on our quantum hardware to 0–2 entanglers. The results 
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Figure 2 | Experimental implementation of six-qubit optimization. The 
minimum energy of the six-qubit Hamiltonian describing BeH2 with an 
interatomic distance of l =  1.7 Å (data points) is plotted along with the 
exact value (black dashed line). For each iteration k, the gradient at each 
control θk is approximated using 1,000 samples for energy estimation  
at θ+k  (blue) and θ−k  (red), which are perturbations to θk along opposite 
directions of a random axis in parameter space. The error bars correspond 
to the standard error of the mean. The inset shows the simultaneous 

optimization of 30 Euler angles that control the trial state preparation. 
Each colour refers to a particular qubit (Q1–Q6; q =  1, 2, …), following the 
colour scheme in Fig. 1. The final energy estimate (green dashed line) is 
obtained using the average angle over the last 25 angle updates (indicated 
by the green dotted arrow), to mitigate the effect of stochastic fluctuations, 
and with a higher number of samples (100,000), to obtain a more accurate 
energy estimation.
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Figure 3 | Application to quantum chemistry. a–c, Experimental results 
(black filled circles), exact energy surfaces (dotted lines) and density plots 
(shading; see colour scales) of outcomes from numerical simulations, 
for several interatomic distances for H2 (a), LiH (b) and BeH2 (c). The 
experimental and numerical results presented are for circuits of depth 
d =  1. The error bars on the experimental data are smaller than the 
size of the markers. The density plots are obtained from 100 numerical 

outcomes at each interatomic distance. The top insets in each panel 
highlight the qubits used for the experiment and the cross-resonance 
gates (arrows, labelled CRc–t; where ‘c’ denotes the control qubit and ‘t’ the 
target qubit) that constitute UENT. The bottom insets are representations 
of the molecular geometry (not to scale). For all the three molecules, 
the deviation of the experimental results from the exact curves is well 
explained by the stochastic simulations.
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are computed with Gaussian process regression [47], which
interpolates the energy surface based on local errors from
the shot-noise-limited expectation value measurements in
Fig. 2(a).
Errors in our simulation as a function of R are shown in

Fig. 3(b). The curve in Fig. 3(b) becomes nearly flat past
R ¼ 2.5 Å because the same angle is experimentally
chosen for each R past this point. Note that the exper-
imental energies are always greater than or equal
to the exact energies due to the variational principle.
Figure 3(b) shows that VQE has substantial robustness to
systematic errors. While this possibility had been pre-
viously hypothesized [23], we report the first experimen-
tal signature of robustness and show that it allows for a
successful computation of the dissociation energy. By
performing (inefficient) classical simulations of the circuit
in Fig. 1, we identify the theoretically optimal value of θ at
each R . In fact, for this system, at every value of R there
exists θ such that E ðθÞ ¼ E 0. However, due to experi-
mental error, the theoretically optimal value of θ differs
substantially from the experimentally optimal value of θ.
This can be seen in Fig. 3(b) from the large discrepancy
between the green diamonds (experimental energy errors
at theoretically optimal θ) and the red dots (experimental
energy errors at experimentally optimal θ). The exper-
imental energy curve at theoretically optimal θ shows an
error in the dissociation energy of 1.1 × 10−2 hartree,
which is more than an order of magnitude worse. One
could anticipate this discrepancy by looking at the raw
data in Fig. 2(a), which shows that the experimentally
measured expectation values deviate considerably from
the predictions of theory. In a sense, the green diamonds
in Fig. 3(b) show the performance of a nonvariational

algorithm, which in theory gives the exact answer, but in
practice fails due to systematic errors.

III. PHASE ESTIMATION ALGORITHM

We also report an experimental demonstration of the
original quantum algorithm for chemistry [2]. Similar to
VQE, the first step of this algorithm is to prepare the system
register in a state having good overlap with the ground state
of the Hamiltonian H. In our case, we begin with the
Hartree-Fock state jϕi. We then evolve this state under H
using a Trotterized approximation to the time-evolution
operator. The execution of this unitary is controlled on an
ancilla initialized in the superposition state ðj0iþ j1iÞ=

ffiffiffi
2

p
.

The time-evolution operator can be approximated using
Trotterization [34] as

e−iHt ¼ e−it
P

γ
gγHγ ≈UTrotðtÞ≡

"Y
γ
e−igγHγ t=ρ

#
ρ
; ð5Þ

where the Hγ are local Hamiltonians as in Eq. (1) and the
error in this approximation depends linearly on the time
step ρ−1 [34]. Application of the propagator induces a
phase on the system register so that

e−iHtjϕi ¼
"X

n

e−iE ntjnihnj
#
jϕi ¼

X

n

ane−iE ntjni; ð6Þ

where jni are eigenstates of the Hamiltonian such that
Hjni ¼ E njni and an ¼ hnjϕi. By controlling this evolu-
tion on the ancilla superposition state, one entangles the
system register with the ancilla. Accordingly, by measuring
the phase between the j0i state and j1i state of the ancilla,

FIG. 2. Variational quantum eigensolver: raw data and computed energy surface. (a) Data showing the expectation values of terms in
Eq. (1) as a function of θ, as in Eq. (3). Black lines nearest to the data show the theoretical values. While such systematic phase errors
would prove disastrous for PEA, our VQE experiment is robust to this effect. (b) Experimentally measured energies (in hartree) as a
function of θ and R . This surface is computed from (a) according to Eq. (4). The white curve traces the theoretical minimum energy; the
values of theoretical and experimental minima at each R are plotted in Fig. 3(a). Errors in this surface are given in Fig. 6.
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the case of H2, remove two qubits associated with the spin–parity 
 symmetries, reducing the Hamiltonian to a six-qubit problem that 
encodes eight spin orbitals. A similar approach is used to map LiH 
onto four qubits. The Hamiltonians for H2, LiH and BeH2 at their 
 lowest-energy interatomic distances (bond distance) are given  explicitly 
in Supplementary Information.

The results from an optimization procedure are illustrated in Fig. 2, 
using the Hamiltonian for BeH2 at the interatomic distance of 1.7 Å. 
Although using a large number of entanglers UENT helps to achieve 
better energy estimates in the absence of noise, the combined effect 
of decoherence and finite sampling sets the optimal depth for opti-
mizations on our quantum hardware to 0–2 entanglers. The results 
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Figure 2 | Experimental implementation of six-qubit optimization. The 
minimum energy of the six-qubit Hamiltonian describing BeH2 with an 
interatomic distance of l =  1.7 Å (data points) is plotted along with the 
exact value (black dashed line). For each iteration k, the gradient at each 
control θk is approximated using 1,000 samples for energy estimation  
at θ+k  (blue) and θ−k  (red), which are perturbations to θk along opposite 
directions of a random axis in parameter space. The error bars correspond 
to the standard error of the mean. The inset shows the simultaneous 

optimization of 30 Euler angles that control the trial state preparation. 
Each colour refers to a particular qubit (Q1–Q6; q =  1, 2, …), following the 
colour scheme in Fig. 1. The final energy estimate (green dashed line) is 
obtained using the average angle over the last 25 angle updates (indicated 
by the green dotted arrow), to mitigate the effect of stochastic fluctuations, 
and with a higher number of samples (100,000), to obtain a more accurate 
energy estimation.
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Figure 3 | Application to quantum chemistry. a–c, Experimental results 
(black filled circles), exact energy surfaces (dotted lines) and density plots 
(shading; see colour scales) of outcomes from numerical simulations, 
for several interatomic distances for H2 (a), LiH (b) and BeH2 (c). The 
experimental and numerical results presented are for circuits of depth 
d =  1. The error bars on the experimental data are smaller than the 
size of the markers. The density plots are obtained from 100 numerical 

outcomes at each interatomic distance. The top insets in each panel 
highlight the qubits used for the experiment and the cross-resonance 
gates (arrows, labelled CRc–t; where ‘c’ denotes the control qubit and ‘t’ the 
target qubit) that constitute UENT. The bottom insets are representations 
of the molecular geometry (not to scale). For all the three molecules, 
the deviation of the experimental results from the exact curves is well 
explained by the stochastic simulations.
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A method to study strongly interacting quantum many-body systems at and away from criticality
is proposed. The method is based on a MERA-like tensor network that can be e�ciently and reliably
contracted on a noisy quantum computer using a number of qubits that is much smaller than the
system size. We prove that the outcome of the contraction is stable to noise and that the estimated
energy upper bounds the ground state energy. The stability, which we numerically substantiate,
follows from the positivity of operator scaling dimensions under renormalization group flow. The
variational upper bound follows from a particular assignment of physical qubits to di↵erent locations
of the tensor network plus the assumption that the noise model is local. We postulate a scaling
law for how well the tensor network can approximate ground states of lattice regulated conformal
field theories in d spatial dimensions and provide evidence for the postulate. Under this postulate,
a O(logd(1/�))-qubit quantum computer can prepare a valid quantum-mechanical state with energy
density � above the ground state. In the presence of noise, � = O(✏ logd+1(1/✏)) can be achieved,
where ✏ is the noise strength.

I. INTRODUCTION

Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.

Quantum
Processor

Classical
Optimizer

Energy
Lowered

Energy
Measured

FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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contracted on a noisy quantum computer using a number of qubits that is much smaller than the
system size. We prove that the outcome of the contraction is stable to noise and that the estimated
energy upper bounds the ground state energy. The stability, which we numerically substantiate,
follows from the positivity of operator scaling dimensions under renormalization group flow. The
variational upper bound follows from a particular assignment of physical qubits to di↵erent locations
of the tensor network plus the assumption that the noise model is local. We postulate a scaling
law for how well the tensor network can approximate ground states of lattice regulated conformal
field theories in d spatial dimensions and provide evidence for the postulate. Under this postulate,
a O(logd(1/�))-qubit quantum computer can prepare a valid quantum-mechanical state with energy
density � above the ground state. In the presence of noise, � = O(✏ logd+1(1/✏)) can be achieved,
where ✏ is the noise strength.

I. INTRODUCTION

Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.
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FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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contracted on a noisy quantum computer using a number of qubits that is much smaller than the
system size. We prove that the outcome of the contraction is stable to noise and that the estimated
energy upper bounds the ground state energy. The stability, which we numerically substantiate,
follows from the positivity of operator scaling dimensions under renormalization group flow. The
variational upper bound follows from a particular assignment of physical qubits to di↵erent locations
of the tensor network plus the assumption that the noise model is local. We postulate a scaling
law for how well the tensor network can approximate ground states of lattice regulated conformal
field theories in d spatial dimensions and provide evidence for the postulate. Under this postulate,
a O(logd(1/�))-qubit quantum computer can prepare a valid quantum-mechanical state with energy
density � above the ground state. In the presence of noise, � = O(✏ logd+1(1/✏)) can be achieved,
where ✏ is the noise strength.

I. INTRODUCTION

Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.

Quantum
Processor

Classical
Optimizer

Energy
Lowered

Energy
Measured

FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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Differentiable Quantum Programming
It is a paradigm beyond quantum-classical hybrid



Near term：
What can we do with noisy 
circuits of limited depth ?

Long term:
Are we really good at  
programing quantum computers ? 

VQE with fewer qubits
Huggins, Patel, Whaley, Stoudenmire, 1803.11537TNS inspired circuit architecture

Quantum generative model Gao, Zhang, Duan, 1711.02038
Quantum adversarial training Dallaire-Demers, Lloyd, Benedetti  1804.08641,1804.09139, 1806.00463

Quantum circuit classifier Farhi, Neven, 1802.06002 Havlicek et al, 1804.11326

Liu, Zhang, Wan, LW, 1902.02663

• Variational quantum eigensovler (VQE) 

• Quantum circuit Born machine (QCBM) 

• Quantum approximate optimization algorithm (QAOA) 

• Quantum pattern recognition 

…

Quantum code
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A method to study strongly interacting quantum many-body systems at and away from criticality
is proposed. The method is based on a MERA-like tensor network that can be e�ciently and reliably
contracted on a noisy quantum computer using a number of qubits that is much smaller than the
system size. We prove that the outcome of the contraction is stable to noise and that the estimated
energy upper bounds the ground state energy. The stability, which we numerically substantiate,
follows from the positivity of operator scaling dimensions under renormalization group flow. The
variational upper bound follows from a particular assignment of physical qubits to di↵erent locations
of the tensor network plus the assumption that the noise model is local. We postulate a scaling
law for how well the tensor network can approximate ground states of lattice regulated conformal
field theories in d spatial dimensions and provide evidence for the postulate. Under this postulate,
a O(logd(1/�))-qubit quantum computer can prepare a valid quantum-mechanical state with energy
density � above the ground state. In the presence of noise, � = O(✏ logd+1(1/✏)) can be achieved,
where ✏ is the noise strength.

I. INTRODUCTION

Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.

Quantum
Processor

Classical
Optimizer

Energy
Lowered

Energy
Measured

FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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Differentiable Quantum Programming

Quantum Software 2.0

It is a paradigm beyond quantum-classical hybrid



+ + =

https://yaoquantum.org/

• Differentiable programming quantum circuits 
• Batched quantum register with GPU acceleration 
• Quantum block intermediate representation

Features:

Xiu-Zhe Luo (IOP, CAS → Waterloo & PI)
Jin-Guo Liu (IOP, CAS → Harvard)

Be prepared for Quantum Software 2.0



Stacks of Yao
Yao

CuYao

QuAlgorithmZoo

YaoExtensions

CUDA specializations

YaoSym

YaoBlocks

YaoBase

YaoArrayRegister

YaoBlocks.AD

BitBasis LuxurySparse

https://github.com/QuantumBFS



Why Julia ?
• Julia is fast!  

• Generic programming (type system and 
multiple dispatch) 

• The future of technical computing http://ljuug.org

https://julialang.org/benchmarks/
http://ljuug.org


Why Julia ?
• Julia is fast!  

• Generic programming (type system and 
multiple dispatch) 

• The future of technical computing

https://julialang.org/benchmarks/


Why Julia ?
• Julia is fast!  

• Generic programming (type system and 
multiple dispatch) 

• Future of technical computing

https://julialang.org/benchmarks/


Demo 1
https://github.com/wangleiphy/YaoTutorial
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Quantum RegistersQBIRQuantum Algorithms

Matrix Representation
Tagging

Parameter ManagementArithmetics

Quantum Block Intermediate Representation



Demo 2
https://github.com/wangleiphy/YaoTutorial



Write your simulator as a machine learning model 
Isn’t that obvious ? 

Differentiable1 quantum circuits



Differentiable programming tools

HIPS/autograd



Even better: quantum computing is reversible! 
Backpropagation with O(1) memory in classical simulation  

Differentiable1 quantum circuits

Gomez et al, 1707.04585 Chen et al, 1806.07366Reversible training of neural nets
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• Accurate to the machine precision 

• Same computational complexity as the function evaluation: 
Baur-Strassen theorem ’83 

• Supports higher order gradients

Advantages of AD: 
�   accurately to machine precision 
 
�

Accuracy of AD can achieve machine precision�

Usual finite difference has truncation and round-off error. 
However, the accuracy of AD can be up to machine precision.�

Advantages of AD: 
�     AD can evaluate arbitrary order derivatives 

Computational Cost of automatic differentiation�

Advantages of automatic differentiation 



Applications of AD 

Sorella and Capriotti  
J. Chem. Phys. ’10

234111-8 S. Sorella and L. Capriotti J. Chem. Phys. 133, 234111 (2010)

components in a system containing several water molecules,
remains approximately four times larger than the cost to com-
pute only the total energy. This factor 4 is a very small cost,
if we consider that the main adjoint instance has to be eval-
uated twice, one for the local energy and the other for the
WF logarithm, and that, on the other hand, VMC is the fastest
method in QMC. For instance, we can evaluate forces within
LRDMC with only a small overhead, as the cost to gener-
ate a new independent configuration within LRDMC is about
ten times larger than VMC, and therefore, for this more ac-
curate method, the cost to compute all force components will
be essentially negligible. Analogous consideration holds dur-
ing an energy optimization. We have to consider that in this
case AAD can be used to compute not only the force com-
ponents, but also all the energy derivatives with respect to all
variational parameters {ci } of the WF, essentially at the same
computational cost, even when the number p of variational
parameters is extremely large.

Though we have not implemented AAD for this general
task, we expect a further speed up (and simplification) of the
code, once AAD will be fully implemented for all possible en-
ergy derivatives. We believe this will become common prac-
tice for future quantum Monte Carlo packages. At present, in
order to have consistent forces within VMC, all variational
parameters have to be optimized,18 and to this purpose we
have used the standard way to compute energy derivatives.

We have applied the efficient evaluation of the forces for
the structural optimization of the water monomer. We have
used energy-consistent pseudopotentials19 only for the oxy-
gen atom. In the calculation we have adopted a huge basis
set to avoid basis superposition errors. The molecular orbitals
are expanded in a primitive basis containing 24s22p10d6f1g
on the oxygen and 6s5p1d on the hydrogen atom. The ex-
ponents of the Gaussians are optimized by minimizing the
energy of a self-consistent DFT calculation within the LDA
approximation.7 The accuracy in the total DFT energy is well
below 1 mHa for the water dimer, implying that we are es-
sentially working with an almost complete basis set. For the
Jastrow factor we have also used a quite large basis, to achieve
similar accuracy in the total energy, within a VMC calculation
on a WF obtained by optimizing the Jastrow over the LDA
Slater determinant. The final optimized basis for the Jastrow
contains a contracted basis 6s5p2d/3s3p1d on the oxygen and
an uncontracted 1s1p basis on the hydrogen atom.

In the following we describe the first application of this
method for optimizing the structure of simple water com-
pounds. The variational parameters of the WF—molecular
orbitals and Jastrow factor—are optimized, by energy mini-
mization, with the method described in Ref. 6. At each step
of optimization, we compute the ionic forces by AAD, and
we employ a standard steepest descent move of the ions
Ra → R′

a:

R′
a = Ra + !τFa, (23)

where !τ = 1/2 a.u. After several hundred iterations both
the variational parameters and the atomic positions fluctuate
around average values, and we use the last few hundred it-
erations to evaluate the error bars and the mean value of the
atomic positions, as illustrated in Fig. 3.

FIG. 3. Oxygen–oxygen distance as a function of the number of iterations for
determining the equilibrium zero-temperature structure of the water dimer.
All the 18 atomic coordinates, as well as about 1000 variational parameters
of the electronic many-body WF are fully optimized with an iterative scheme
(Refs. 6 and 8).

In Table II we show the optimized structure of the wa-
ter monomer. As it is clearly evident our final atomic po-
sitions are almost indistinguishable from the experimental
ones. Generally speaking our calculation appears more accu-
rate than simple mean field DFT methods, and comparable
with state of the art quantum chemistry techniques, such as
CCSD(T). The accuracy of the VMC method has been also
confirmed recently in another context.20

In the dimer structure the situation is slightly different.
As shown in Table III, the oxygen–oxygen distance is in quite
good agreement with experiments, whereas the OHO angle is
overestimated by few degrees. Probably in this case the quan-
tum corrections should affect the hydrogen position between
the two oxygens, because the dimer bond is very weak. Indeed
we have also checked that, with the more accurate LRDMC
calculation, the equilibrium structure obtained by the VMC
method remains stable as all the force components are well
below 10− 3 a.u. On the other hand LRDMC increases the
binding of the dimer by about 1 kCal/mol, showing that, from
the energetic point of view, the LRDMC calculation may be
important, as also confirmed in previous studies.6, 21 All the
above calculations can be done with a relatively small compu-
tational effort (few hours in a 32 processor parallel computer),
and therefore the same type of calculation, with the same level
of accuracy, can be extended to much larger systems contain-
ing several atoms with modern supercomputers.

Stimulated by the above success we have tested the finite-
temperature molecular dynamics simulation introduced some
time ago,1 using 4 water molecules in a cubic box with
4.93 Å side length, mimicking the density of liquid water at
ambient conditions. Since we are interested in static equilib-
rium properties we have used for the oxygen the same mass
of hydrogen. Though the system is very small we have been

TABLE II. VMC optimized structure of the water monomer.

Exp VMC LDAa BLYPa BPa CCSD(T)b

dO H (A) 0.957c 0.954(1) 0.973 0.973 0.974 0.95829
̸ H O H (deg) 104.5d 104.61(10) 104.4 104.6 104.1 104.454

aFrom Ref. 23
bFrom Ref. 24
cFrom Ref. 25
dFrom Ref. 26

Computing force

Tamayo-Mendoza et al 
ACS Cent. Sci. ’18

Variational Hartree-Fock
LEUNG, ABDELHAFEZ, KOCH, AND SCHUSTER PHYSICAL REVIEW A 95, 042318 (2017)
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FIG. 1. Sample computational graph for automatic differentia-
tion. Automatic differentiation utilizes the decomposition of the
multivariable cost function C(u) into its computational graph of
elementary operations, each of which has a known derivative. In
reverse-accumulation mode, all partial derivatives of C are evaluated
in a recursion from the top level (C) back towards the outermost
branches (variables u).

denote subsequent numerical evaluation of the enclosed term.
(Function arguments are suppressed for brevity.)

Automatic differentiation has become a central tool in
machine learning [75] and equally applies to the problem of
optimal control of quantum systems. In this approach, the
gradient of a set of elementary operations is defined and more
complex functions are built as a graph of these operations. The
value of the function is computed by traversing the graph
from inputs to the output, while the gradient is computed
by traversing the graph in reverse via the gradients. This
methodology gives the same numerical accuracy and stability
of analytic gradients without requiring one to derive and
implement analytical gradients specific to each new trial cost
function.

All cost functions summarized in Table I can be conve-
niently expressed in terms of common linear-algebra opera-
tions. Figure 2 shows the network graph of operations in our
software implementation, realizing quantum optimal control
with reverse-mode automatic differentiation. For simplicity,
the graph only shows the calculation of the cost functions C2
and C5. The cost-function contributions C1,C6, and C7 are
treated in a similar manner. The suppression of large control
amplitudes or rapid variations, achieved by C3 and C4, is
simple to include since the calculation of these cost-function
contributions is based on the control signals themselves and
does not involve the time-evolved state or unitary. The host
of steps for gradient evaluation is based on basic matrix
operations such as summation and multiplication.

Reverse-mode automatic differentiation [19] provides an
efficient way to carry out time evolution and cost-function
evaluation by one forward sweep through the computational
graph, and calculation of the full gradient by one backward
sweep. In contrast to forward accumulation, each derivative is
evaluated only once, thus enhancing computational efficiency.
The idea of backward propagation is directly related to the
GRAPE algorithm for quantum optimal control pioneered by
Khaneja and co-workers [2]; see the Appendix. While the
original GRAPE algorithm bases minimization exclusively on
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FIG. 2. Computational network graph for quantum optimal con-
trol. Circular nodes in the graph depict elementary operations with
known derivatives (matrix multiplication, addition, matrix exponen-
tial, trace, inner product, and squared absolute value). Backward
propagation for matrices proceeds by matrix multiplication or, where
specified, by the Hadamard product ◦. In the forward direction,
starting from a set of control parameters uk,j , the computational
graph effects time evolution of a quantum state or unitary, and the
simultaneous computation of the cost function C. The subsequent
“backward propagation” extracts the gradient ∇uC(u) with respect
to all control fields by reverse-mode automatic differentiation. This
algorithm is directly supported by TensorFlow [72], once such a
computational network is specified.

the fidelity of the final evolved unitary or state, advanced cost
functions (such as C5 through C7) require the summation of
cost contributions from each intermediate step during time
evolution of the system. Such cost functions go beyond
the usual GRAPE algorithm, but can be included in the
more general backward propagation scheme described above.
[The Appendix shows analytical forms for gradients for cost
functions that are based on time evolution ({C1,C2,C5}).]

042318-4
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Quantum optimal control
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Figure 2: Schema of our approach to reparameterizing a structural optimization problem with a
neural network. Each of these steps – the CNN parameterization, the constraint step, and the physics
simulation – is differentiable. We implement the forward pass as a TensorFlow graph and compute
gradients via automatic differentiation.

neural network. We use this approach to solve 116 structural optimization tasks and obtain solutions
that are quantitatively and qualitatively better than the baselines.

2 Methods

While we apply our approach to structural optimization in this paper, we emphasize that it is generally
applicable to a wide range of optimization problems in computational science. The core strategy is to
write the physics model in an automatic differentiation package with support for neural networks,
such as Jax, TensorFlow, or PyTorch. We emphasize that the differentiable physics model need not
be written from scratch: adjoint models, as these are known in the physical sciences, are widely used
[21, 9, 13], and software packages exist for computing them automatically [10].

The full computational graph begins with a neural network forward pass, proceeds to enforcing
constraints and running the physics model, and ends with a scalar loss function (“compliance" in the
context of structural optimization). Figure 2 gives an overview of this process. Once we have created
this graph, we can recover the original optimization problem by performing gradient descent on the
inputs to the constraint step (x̂ in Figure 2). Then we can reparameterize the problem by optimizing
the weights and inputs (✓ and �) of a neural network which outputs x̂.

Structural optimization. We demonstrate our reparameterization approach on the domain of struc-
tural optimization. The goal of structural optimization is to use a physics simulation to design
load-bearing structures, given constraints such as conservation of volume. We focus on the general
case of free-form design without configuration constraints, known as topology optimization [6].

Following the “modified SIMP" approach described by [2], we begin with a discretized domain of
linear finite elements on a regular square grid. The physical density x̃ij at grid element (or pixel)
(i, j) is computed by applying a cone-filter with radius 2 on the input densities xij . Then, letting
K(x̃) be the global stiffness matrix, U(K,F ) the displacement vector, F the vector of applied forces,
and V (x̃) the total volume, we can write the optimization objective as:

min
x

: c(x) = UTKU, such that: KU = F, V (x) = V0, and 0  xij  1 8(i, j). (1)

We implemented this algorithm in NumPy, SciPy and Autograd [19]. The computationally limiting
step is the linear solve U = K�1F , for which we use a sparse Cholesky factorization [7].

One key challenge was enforcing the volume and density constraints of Equation (1). Standard
topology optimization methods satisfy these constraints directly, but only when directly optimizing
the design variables x. Our solution was to enforce the constraints in the forward pass, by mapping
unconstrained logits x̂ into valid densities x with a constrained sigmoid transformation:

xij = 1/(1 + exp[x̂ij � b(x̂, V0)]), such that: V (x) = V0. (2)

where b(x̂, V0) is solved for via binary search on the volume constraint. In the backwards pass, we
differentiate through the transformation at the optimal point using implicit differentiation [14].
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Figure 1: An unrolled simulator as a model for protein structure. NEMO combines a neural
energy function for coarse protein structure, a stochastic simulator based on Langevin dynamics
with learned (amortized) initialization, and an atomic imputation network to build atomic coordinate
output from sequence information. It is trained end-to-end by backpropagating through the unrolled

folding simulation.

protein folding (Dill et al., 2017), in which the folds that natural protein sequences adopt are those
that minimize free energy. Without the availability of external information such as coevolutionary
information (Marks et al., 2012) or homologous structures (Martı́-Renom et al., 2000) to constrain the
energy function, however, contemporary simulations are challenged to generate globally favorable
low-energy structures in available time.

How can we get the representational benefits of energy-based models with the sampling efficiency of
directed models? Here we explore a potential solution of directly training an unrolled simulator of
an energy function as a model for data. By directly training the sampling process, we eschew the
question ‘when has the simulator converged’ and instead demand that it produce a useful answer
in a fixed amount of time. Leveraging this idea, we construct an end-to-end differentiable model
of protein structure that is trained by backpropagtion through folding (Figure 1). NEMO (Neural
energy modeling and optimization) can learn at scale to generate 3D protein structures consisting of
hundreds of points directly from sequence information. Our main contributions are:

• Neural energy simulator model for protein structure that composes a deep energy func-
tion, unrolled Langevin dynamics, and an atomic imputation network for an end-to-end
differentiable model of protein structure given sequence information

• Efficient sampling algorithm that is based on a transform integrator for efficient sampling
in transformed coordinate systems

• Stabilization techniques for long roll-outs of simulators that can exhibit chaotic dynamics
and, in turn, exploding gradients during backpropagation

• Systematic analysis of combinatorial generalization with a new dataset of protein se-
quence and structure

1.1 RELATED WORK

Protein modeling Our model builds on a long history of coarse-grained modeling of protein
structure (Kolinski et al., 1998; Kmiecik et al., 2016). Recently, multiple groups have demonstrated
how to learn full force fields using likelihood-based approaches (Jumper et al., 2018; Krupa et al.,
2017), similar to our maximum likelihood loss (but without backpropagtion through folding for fast
sampling). While this work was in progress, two groups reported neural models of protein structure
(AlQuraishi, 2018; Anand & Huang, 2018), where the former focused on modeling structure in
terms of backbone angles and the latter in terms of residue-residue distances. We show how an
energy function provides a natural framework to integrate both kinds of constraints, which in turn is
important for achieving sample-efficient structural generalization.

Learning to infer or sample Structured prediction includes a long history of casting predictions
in terms of energy minimization (LeCun et al., 2006). Recently, others have built hybrid neural
networks that use differentiable optimization as a building block in neural architectures (Wang et al.,
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Reverse versus forward mode

Reverse mode AD: Vector-Jacobian Product of primitives

• Backtrace the computation graph 
• Needs to store intermediate results 
• Efficient for graphs with large fan-in

∂ℒ
∂θ

=
∂ℒ
∂xn

∂xn

∂xn−1
⋯

∂x2

∂x1

∂x1

∂θ

Backpropagation = Reverse mode AD applied to neural networks

vo (J)o × i



Reverse versus forward mode

Forward mode AD: Jacobian-Vector Product of primitives

• Same order with the function evaluation 
• No storage overhead 
• Efficient for graph with large fan-out

∂ℒ
∂θ

=
∂ℒ
∂xn

∂xn

∂xn−1
⋯

∂x2

∂x1

∂x1

∂θ

Less efficient for scalar output, but useful for higher-order derivatives

(J)o × i vi



Parametrized gate of the form

e− iθ
2 Σ Σ2 = 1 with

eg, X, Y, Z, CNOT, SWAP…
∇⟨H⟩θ = (⟨H⟩θ+π/2 − ⟨H⟩θ−π/2)/2

Unbiased gradient estimator measured on actual quantum circuits

Li et al, PRL ’17, Mitarai et al, PRA  ’18       
Schuld et al, PRA ’19, Nakanishi et al ’19

Differentiable2 quantum circuits
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Variational Quantum Eigensolver with Fewer Qubits, 1902.02663

Learning and Inference on Generative Adversarial Quantum Circuits, 1808.03425
Differentiable Learning of Quantum Circuit Born Machine, 1804.04168 

Solving Quantum Statistical Mechanics with VAN + Quantum Circuits,1912.?????

Quantum machine learning:

Quantum many-body physics: 
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in deep learning, in which deep neural networks can even
reach billions of parameters [33]. In the history of machine
learning, gradient-free algorithms were employed to optimize
small-scale neural networks [34]. However, they failed to
scale up to a larger number of parameters. It is the back-
propagation algorithm [35] which can e�ciently compute the
gradient of the neural network output with respect to the
network parameters enables scalable training of deep neural
nets. It is thus highly demanded to have scalable quantum al-
gorithms for estimating gradients on actual quantum circuits.

Recently, gradient-based learning of quantum circuits has
been devised for quantum control [36] and discriminative
tasks [37, 38]. Although they are still less e�cient compared
to the back-propagation algorithm for neural networks, these
unbiased gradient algorithms can already greatly accelerate
the quantum circuit learning. Unfortunately, direct application
of these gradient algorithms [36–38] to QCBM training is still
non-trivial since the output of the generative model is gen-
uinely bit strings which follow high-dimensional probability
distributions. In fact, it is even an ongoing research topic
in deep learning to perform di↵erentiable learning of implicit
generative model with discrete outputs [24, 39].

In this paper, we develop an e�cient gradient-based learn-
ing algorithm to train the QCBM. In what follows, we first
present a practical quantum-classical hybrid algorithm to train
the quantum circuit as a generative model in Sec. II, thus
realize a Born machine. Then we apply the algorithm on
3 ⇥ 3 Bars-and-Stripes and double Gaussian peaks datasets
in Sec. III. We show that the training is robust to moderate
sampling noise, and is scalable in circuit depth. Increasing
the circuit depth significantly improves the representational
power for generative tasks. Finally, we conclude and discuss
caveats and future research directions about the QCBM in
Sec. IV.

II. MODEL AND LEARNING ALGORITHM

Given a dataset D = {x} containing independent and iden-
tically distributed (i.i.d.) samples from a target distribution
⇡(x), we set up a QCBM to generate samples close to the
unknown target distribution. As shown in Fig. 1, the QCBM
takes the product state |0i as an input and evolves it to a
final state | ✓i by a sequence of unitary gates. Then we can
measure this output state on computation basis to obtain a
sample of bits x ⇠ p✓(x) = |hx| ✓i|2. The goal of the training
is to let the model probability distribution p✓ approach to ⇡.

We employ a classical-quantum hybrid feedback loop as
the training strategy. The setup is similar to the Quantum
Approximate Optimization Algorithm (QAOA) [40–42] and
the Variational Quantum Eigensolver (VQE) [43–45]. By
constructing the circuits and performing measurements re-
peatedly we collect a batch of samples from the QCBM.
Then we introduce two-sample test as a measure of distance
between generated samples and training set, which is used
as our di↵erentiable loss. Using a classical optimizer which
takes the gradient information of the loss function, we can
push the generated sample distribution towards the target

Figure 1. Illustration of the di↵erentiable QCBM training scheme.
Top left is the quantum circuit which produce bit string samples. The
dashed box on the right denotes two-sample test on the generated
samples and training samples, with the loss function (Eq. (1)) and
corresponding gradients (Eq. (2)) as outputs. �✓ is the amount of
updated to be applied to the circuit parameters, which are computed
by a classical optimizer. The outcome of the training is to produce
a quantum circuit which generates samples according to the learned
probability distribution on the computational basis.

distribution.

A. Quantum Circuit Architecture Design

The overall circuit layout is similar to the IBM variational
quantum eigensolver [45], where one interweaves single qubit
rotation layers and entangler layers shown in Fig. 1. The
rotation layers are parameterized by rotation angles ✓ = {✓↵

l
},

where the layer index l runs from 0 to d, with d the maximum
depth of the circuit. ↵ is a combination of qubit index j and
arbitrary rotation gate index, where the arbitrary rotation gate
has the form U(✓ j

l
) = Rz(✓

j,1
l

)Rx(✓ j,2
l

)Rz(✓
j,3
l

) with Rm(✓) ⌘
exp
⇣�i✓�m

2

⌘
. The total number of parameters in this QCBM

is (3d + 1)n, with n the number of qubits [46].
We employ CNOT gates with no learnable parameters for

the entangle layers to induce correlations between qubits. In
light of experimental constraints on the connectivity of the
circuits, we make the connection of the entangle layers to be
sparse by requiring its topology as a tree (i.e. the simplest
connected graph). From the classical probabilistic graph-
ical model’s perspective [13], the tree graph that captures
information content of the dataset most e�ciently is Chow-
Liu tree [47]. Since controlled unitary gates have a close
relation with classical probability graphical models [48], we
employ the same Chow-Liu tree as the topology of CNOT
gates. To construct the Chow-Liu tree we first compute mutual
information between all pairs of the bits for samples in the
training set as weights, and then construct the maximum
spanning tree using, for example, the Kruskal’s algorithm.
The assignment of the control bit and the target bit on a bond
is random, since the Chow-Liu algorithm treated directed

Quantum Circuit Born Machine
With Liu, Zeng, Wu, Hu 

PRA ’18, PRA ’19

Train quantum circuits as probabilistic generative models with implicit density 
Strong expressibility due to quantum sampling complexity
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FIG. 2. DDQCL on the bars and stripes (BAS) data set. The top left corner shows patterns that belong to BAS22 and that
we would like our quantum circuit to generate. For completeness, the top central image shows undesired patterns. On the top
right corner, we show a possible mapping of the 4 pixels to N = 4 qubits, and we show some of the entangling layer topologies
that can be set up in the ion trap (e.g chain, star, and all). The bottom left corner shows results of DDQCL simulations for
shallow circuits with di↵erent topologies. We show the bootstrapped median and 90% confidence interval over the distribution
of medians of the KL divergence as learning progresses for 100 iterations. The mean-field-like circuit L = 1 (green crosses)
severely underperforms. A significant improvement is obtained with L = 2, where most of the angles for XX gates have been
learned to their maximum entangling value. These observations indicate that entanglement is a key resource for learning the
BAS data set. Note that for L = 2 the choice of topology becomes a key factor for improving the performance. The chain
topology (purple squares) performs slightly better than the star topology (red stars) even though they have the same number
of parameters. The all-to-all topology (orange circles) significantly outperform all the others as it has more expressive power.
The bottom central image extends the previous analysis to deeper circuits with L = 4 and approximatively twice the number
of parameters. All the topologies achieve a lower median KL divergence and the confidence intervals shrink. The bottom right
corner shows the bootstrapped mean qBAS22 and 95% confidence interval for simulations (green bars) and experiments on the
ion trap quantum computer hosted at University of Maryland (pink bars).

depth, gate fidelities, and any other architectural design
aspects such as its qubit-qubit connectivity, in addition
to the native set of single and two-qubit gates available
in hardware.

When framed in the context of information retrieval,
the qBASnm score can be seen as an instantiation of
the widely used F1 score. To score high, it is insu�-
cient to simply retrieve states, which belong to BASnm.
This quantity alone corresponds to the so called precision
(denoted here as p), and it determines the ratio between
the number of measurements belonging to BASnm di-
vided by the total number of measurements [46]. One
also needs to score high in the so called recall (denoted
here by r) which determines the capacity of the circuit
model to retrieve the whole spectrum of patterns belong-

ing to the BASnm. In our context, it is a measure of
“fair sampling”, or the capacity to uniformly retrieve
all the states from BASnm. Within the F1 score, re-
call is a general quantity that can always be computed
as the number of di↵erent BASnm patterns appearing in
the Nreads measurements divided by the total number of
states NBASnm that belong to the data set. If we denote
the number of di↵erent patterns that were measured as
d(Nreads), then r = d(Nreads)/NBASnm. The F1 score is
defined as the harmonic mean of the precision and the re-
call, i.e., F1 = 2pr/(p + r), and to score high (F1 ⇡ 1.0)
it is required to have both a high precision (p ⇡ 1.0)
and high recall in retrieving of all the NBASnm patterns
(r ⇡ 1.0). The F1 score is a useful measure for the qual-
ity of information retrieval and classification algorithms,

Experiments:
1801.07686 
1812.08862 
1811.09905 
 1901.08047 
1904.02214



What we want to solve What current technology offers

to infinity and beyond

However, there is a HUGE GAP in the qubit number

Variational quantum eigensolver with fewer qubits
Jin-Guo Liu, Yi-Hong Zhang, Yuan Wan, LW, 1902.02663

a handful of qubits
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Tensor network inspired quantum circuit architecture

A qubit efficient variational circuit
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Q-PEPS
LIU, ZHANG, WAN, AND WANG PHYSICAL REVIEW RESEARCH 1, 023025 (2019)

FIG. 7. A projected pair of states inspired a variational quantum circuit ansatz with a 4 × 4 square lattice layout. Yellow squares with the
symbol ! are measure (on basis α = X,Y, Z) and reset operations. The other yellow squares are measurements without reset.

the QMPS structure alleviates the gradient vanishing problem
at least for the problem under consideration. We attribute this
to the fact that the low-entropy variational ansatz captures the
right inductive bias for the ground state of the target problem.

Next, for an N = 20 Heisenberg chain, we examine the
scaling of the gradient variance with the number of virtual
qubits V . Again, we see that using symmetry greatly enhances
the gradient in Fig. 6(b). We observe an exponential decrease
of the gradient in the regime V ≪ N , while the gradient
increases with V for V " N . Their values are still much
smaller than the values in the small-V limit, which shows that
the QMPSs are easier to train compared to an unstructured
quantum circuit of a generic structure.

An exponentially decreasing gradient with respect to V
also warns us that it is not possible to get something for
nothing. Although a quantum circuit is able to represent an
MPS with exponentially large bond dimension, the number
of parameters in the ansatz should also scale exponentially in
order to compensate for the vanishing gradient. What is worse,
the sampling error can smear out too-small gradient signals.
To really make the ansatz scalable for a highly entangled two-
dimensional system, we need a parameter efficient design.

B. PEPS-inspired ansatz

The PEPS is much more parameter efficient for represent-
ing the ground states of a two-dimensional (2D) quantum
lattice Hamiltonians. It is able to represent many area law
entangled high-dimensional states with a polynomial number
of parameters with respect to the system size. However, there
is no polynomial time algorithm to contract a PEPS exactly
for energy expectation values. Moreover, there is no efficient
scheme to prepare a QPEPS on a quantum circuit. This task
is probably impossible due to the computational complexity
argument [67]; otherwise, a quantum computer would be able
to solve the #P-hard problems [68– 70]. Nevertheless, it is pos-
sible to design a variational ansatz that shares the appealing
properties of PEPSs, such as the 2D area law entanglement
entropy.

The SU(2) symmetric QPEPS ansatz for a 4 × 4 square
lattice is shown in Fig. 7. The entanglement in this ansatz
satisfies the two-dimensional area law, which can be seen

from the red dashed box enclosing a 2 × 2 region, where the
number of bonds crossing the boundary is proportional to the
circumference of the box. In the entangle layer enclosed in the
black dashed box, we first entangle each physical qubit with
its own virtual qubit(s), then neighboring (periodic boundary
condition) physical qubits, and finally neighboring virtual
qubits. This completes a single entangle layer. We repeat
this layer for d times to increase the number of trainable
parameters. Unlike the case in QMPSs, where we do not
distinguish between virtual qubits, here we assign a constant
number of virtual qubits for each physical qubit so that V/R
stays as a constant as the system size grows. These physical
qubits can be measured in parallel instead of one by one.

The simulation results reported in Fig. 8 demonstrate the
scalability of this structure on a 2D lattice. In the simulation,
we fix the ratio V/R to 1 and depth d to 5. So the number
of parameters contained in a 4 × 4 QPEPS is 180, which is
the same as that in a depth d = 3 QMPS. The comparative
study of two models in Fig. 8(a) shows a similar (or slightly
better) performance. However, when we scale up the lattice
size to 6 × 6, the ground-state energy obtained by the QPEPS
is much lower, indicating better scalability in solving two-
dimensional lattice Hamiltonians. One should note that by
increasing the lattice size from 4 × 4 to 6 × 6, the size of the
full Hilbert space is increased by a factor of 220.

The batch size in the above simulation is B = 1024; as
it grows, the standard deviation of measured gradients σs
will decrease as ∼1/

√
B. We can also define the variance of

FIG. 8. Energy as a function of training steps, with training
parameters listed in Table I.
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How to prepare quantum  
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Wu & Hsieh, 1811.11756 Motta et al, 1901.07653 
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“β”-VQE

A classical mixture of  quantum states parametrizes density matrices
Verdon et al, 1910.02071

Uθpϕ

Martyn & Swingle, 1812.01015



ℒ = βTr(ρH) + Tr(ρ ln ρ) ≥ − ln Z

Study quantum thermodynamics with classical & quantum flows
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julia> using Yao 

Yao offers you freedom no one else can offer 

Make your own innovation in quantum algorithms design!



Thank You!
Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang, Lei Wang, 1912.10877

Yao.jl: Extensible, Efficient Framework for Quantum Algorithm Design
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