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Equation of State Calculations by Fast Computing Machines
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AND
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A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION

HE purpose of this paper is to describe a general
method, suitable for fast electronic computing
machines, of calculating the properties of any substance
which may be considered as composed of interacting
individual molecules. Classical statistics 1s assumed,

II. THE GENERAL METHOD FOR AN ARBITRARY
POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for
numerical work, we can, of course, consider only a finite
number of particles. This number NV may be as high as
several hundred. Our system consists of a squaref con-
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fermions
Determinantal Methods

Gull et al, RMP, 83, 349 (2011)
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Diagrammatic determinant QMC
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Diagrammatic determinant QMC
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Diagrammatic determinant QMC
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Rombouts, Heyde and Jachowicz, PRL 1999
¥ lazzi and Troyer, PRB 2015 LW, lazzi, Corboz and Troyer, PRB 2015
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Fidelity susceptibility made simple!
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Worldline Algorithms Stochastic Series Expansion Determinantal Methods
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Observable derivatives

More advantages
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What about the sign problem ?

Sign problem free: Kramers pairs due to the

R
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Hands et al, EPJC, 2000
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What about the sign problem ?

Sign problem free: Kramers pairs due to the

'l
k\’ time-reversal symmetry [M + = M J
W (Ck ) — det MT X det M\L Lang et al, Phys. Rev. C, 1993
Koonin et al, Phys. Rep, 1997
2 Hands et al, EPJC, 2000
— | det MT ‘ 2 O Whu et al, PRB, 2005

¥ Attractive interaction at any filling on any lattice

¥ Repulsive interaction at half-filling on bipartite lattices

¢ And more ...

Topological insulators
Hohenadler, Lang and Assaad, PRL 2011
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Lang, Meng, Muramatsu, Wessel Berg, Metliski and Sachdey, Science 2012
and Assaad, PRL 2013



What about the sign problem ?

Sign problem free: Kramers pairs due to the

'
&v time-reversal symmetry [MT = M J

W (Ck ) — det M/]\ X det M\L Lang et al, Phys. Rev. C, 1993
Koonin et al, Phys. Rep, 1997
2 Hands et al, EPJC, 2000
— | det MT ‘ 2 O Whu et al, PRB, 2005

@ But, how about this ?

spinless fermions H =—t ) (é*éj éTéz) +V Z it
(4,4) (4,4)

w(Ck) — det M

Scalapino et al, PRB 1984 Gubernatis et al, PRB 1985 Meron cluster approach, Chandrasekharan and Wiese, PRL 1999
up to 8*8 square lattice and T>0.3t solves sign problem for V > 2t



Solutions !

PHYSICAL REVIEW B 89, 111101(R) (2014)

Solution to sign problems in half-filled spin-polarized electronic systems

Emilie Fulton Huffman and Shailesh Chandrasekharan
Department of Physics, Duke University, Durham, North Carolina 27708, USA
(Received 19 December 2013; revised manuscript received 14 February 2014; published 12 March 2014)
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1506.05349 Split orthogonal group:
A guiding principle for sign-problem-free fermionic simulations

Lei Wang!, Ye-Hua Liu!, Mauro lazzi', Matthias Troyer! and Gergely Harcos?
Y Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland and
2 Alfréd Rényi Institute of Mathematics, Redltanoda utca 13-15., Budapest H-1053, Hungary



A tale of open science

- Free fermions with an
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dependent Hamiltonian
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A tale of open science

Free fermions with an

— [F T T
w(Cy) ~ det (I + Te Jo drHe,( )) effective imaginary-time

dependent Hamiltonian

4 0 B )
Let real matrices A; = ( BT 0 )
then det (I 1 ediede eAN) > ()
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The conjecture was
proved by Gergely

Harcos and Terence
Tao, with inputs from
others

https://fterrytao.wordpress.com/2015/05/03/

e o ibea Tao and Paul Erdés in 1985



A tale of open science
| News & Comment > News > 2015 > Seplomier 3 Arice 2

Maths whizz solves a master's riddle

Terence Tao successfully attacks the Erdos discrepancy problem by building on an online
collaboration.

Chris Cesare

25 September 2015

'mathoverflow

The conjecture was
proved by Gergely
Harcos and Terence
Tao, with inputs from
others

https://fterrytao.wordpress.com/2015/05/03/

e o ibea Tao and Paul Erdés in 1985
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A new de-sign principle

[£ M*nM =n  where 7 =diag(l,—1I)

Then M € O(n,n)
split orthogonal group
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for each component !
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A new de-sign principle

[£ M*nM =7n  where n=diag(l,—1I)

Te™ fOB drHe,, (1)

/
Then det (I + M)

has a definite sign
for each component !
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spinless fermions split Dirac cone spin nematicity SU(3)

LW, Troyer, PRL 2014 Liu and LW, 1510.00715
LW, Corboz, Troyer, NJP 2014
LW, Iazzi, Corboz, Troyer, PRB, 2015
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A new de-sign principle

[£ M*nM =7n  where n=diag(l,—1I)

Te™ fOB drHe,, (1)

/
Then det (I 4+ M)

has a definite sign
for each component !
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spinless fermions| split Dirac cone | spin nematicity SU(3)

LW, Troyer, PRL 2014 Liu and LW, 1510.00715
LW, Corboz, Troyer, NJP 2014
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Asymmetric Hubbard model
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Realization: mixture of ultracold fermions (e.g. ¢Li and 4°K)

Now, continuously tunable by spin-dependent modulations Jotzuetal, PRL 2015
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Lignier et al, PRL 2007 and many others Dirac fermions with unequal Fermi velocities
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Two limiting cases

Falicov-Kamball Limit

SIMPLE MODEL FOR SEMICONDUCTOR-METAL TRANSITIONS:
SmB, AND TRANSITION-METAL OXIDES

L. M. Falicov*
Department of Physics, University of California, Berkeley, California 94720

and

J. C. Kimballf
Department of Physics, and The James Franck Institute, University of Chicago, Chicago, Illinois 60637
(Received 12 March 1969)

We propose a simple model for a semiconductor-metal transition, based on the exis-
tence of both localized (ionic) and band (Bloch) states. It differs from other theories in
that we assume the one-electron states to be essentially unchanged by the transition.
The electron-hole interaction is responsible for the anomalous temperature dependence

of the number of conduction electrons. For interactions larger than a critical value, a
first-order semiconductor-metal phase transition takes place.

Long-range spin order on bipartite

lattices with infinitesimal repulsion
Kennedy and Lieb 1986

“Fruit fly” of DMFT
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Strong Coupling Limit

Freericks and Zlati¢, RMP, 2003/

XXZ7 model with Ising anisotro
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Phase diagram
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Phase diagram
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Phase diagram
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Phase diagram

XXZ limit

AF-Ising
/

Falicov-Kimball limit U/ts




Phase diagram

AF-Heisenberg
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XXZ limit

AF-Ising
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Phase diagram

Meng et al 2010

Sorella et al 2012

Assaad et al 2013 AF-Heisen berg
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Fermions XXZ limit

AF-Ising
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Falicov-Kimball limit U/ts




Phase diagram

.|<: Meng et al 2010
\_> Sorella et al 2012 )
< Assaad et al 2013 AF-Helsenberg

~ 3.8 /

XXZ limit

AF-Ising
/

Falicov-Kimball limit U/t+

¢ How to connect the phase boundary ?

¢ What is the universality class ?
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Scaling analysis

v = 0. 84(4)
z+mn=1. 395(7)
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Summary

Exciting time tor QMC simulation of lattice fermions
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Thanks to my collaborators!

Mauro Philippe Ye-Hua Jakub Ping Nang Gergely Matthias
lazzi Corboz Liu Imriska Ma Harcos Troyer




