Spinless Fermions on a Honeycomb Lattice

From quantum criticality to topological superconductors

Lei Wang ETH Zurich

LW, Corboz and Troyer,1407.0029 LW and Troyer, 1407.0707 LW and Troyer, to appear Collaborators Philippe Corboz Matthias Troyer

Dirac Fermions

Elementary Particles	Graphene
Image 23 U 127 GeV/f 1307 GeV/f 0 <td>Novoselov et al, Zhang, et al, Nature, 2005</td>	Novoselov et al, Zhang, et al, Nature, 2005
"Artificial graphene"	Many others
Gomes et al, Nature, 2012 Tarruell et al, Nature, 2012	Topological insulator d-wave superconductor

Spinless fermions on a honeycomb lattice

 $\hat{H}_0 = -t \sum \left(\hat{c}_{\mathbf{i}}^{\dagger} \hat{c}_{\mathbf{j}} + \hat{c}_{\mathbf{j}}^{\dagger} \hat{c}_{\mathbf{i}} \right)$ $\langle \mathbf{i}, \mathbf{j} \rangle$ $\hat{H}_1 = V \sum_{\langle \mathbf{i}, \mathbf{j} \rangle} \left(\hat{n}_{\mathbf{i}} - \frac{1}{2} \right) \left(\hat{n}_{\mathbf{j}} - \frac{1}{2} \right)$

Where is the QCP ?
What is the universality class ?
What are the critical exponents ?

cf. Studies of Hubbard model Sorella, et al, EPL, 1992 Paiva, et al, PRB, 2005 Meng, et al, Nature, 2010 Sorella, et al, Sci.Rep., 2012 Assaad, et al, PRX, 2013

Quantum Critical Points

 $H_{\rm TFIM} = -J \sum \sigma_{\mathbf{i}}^{z} \sigma_{\mathbf{j}}^{z} + \Gamma \sum \sigma_{\mathbf{i}}^{x}$ $\langle \mathbf{i}, \mathbf{j} \rangle$ T/Γ PM Scalar ϕ^4 -theory $\mathcal{L}_{\phi} = \frac{1}{2} (\partial \phi)^2 - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4$

 $H = -t \sum_{\langle \mathbf{i}, \mathbf{j} \rangle} \left(\hat{c}_{\mathbf{i}}^{\dagger} \hat{c}_{\mathbf{j}} + \hat{c}_{\mathbf{j}}^{\dagger} \hat{c}_{\mathbf{i}} \right) + V \sum_{\langle \mathbf{i}, \mathbf{i} \rangle} \left(\hat{n}_{\mathbf{i}} - \frac{1}{2} \right) \left(\hat{n}_{\mathbf{j}} - \frac{1}{2} \right)$ T/tSemi-Metal Fermionic QCP

Gross-Neveu-Yukawa theory

 $\mathcal{L} = \mathcal{L}_{\phi} + \mathcal{L}_{\Psi} + g\phi\bar{\Psi}\sigma^{z}\Psi$

Sign problem in auxiliary field QMC

Blankenbecler et al, PRD, 1981 Assaad et al, Lect. Notes Phys. 2008

 $Z = \sum_{\mathcal{C}} w(\mathcal{C})$

No sign problem: attractive Hubbard model with balanced filling

 $w(\mathcal{C}) = \det M_{\uparrow} \times \det M_{\downarrow}$ $= |\det M_{\uparrow}|^2 \ge 0$

How about spinless fermions ?

$$w(\mathcal{C}) = \det M$$

Sign problem in auxiliary field QMC

Blankenbecler et al, PRD, 1981 Assaad et al, Lect. Notes Phys. 2008

 $Z = \sum_{\mathcal{C}} w(\mathcal{C})$

No sign problem: attractive Hubbard model with balanced filling

 $w(\mathcal{C}) = \det M_{\uparrow} \times \det M_{\downarrow}$ $= |\det M_{\uparrow}|^2 \ge 0$

How about spinless fermions ?

$$w(\mathcal{C}) = \det M$$

Sign problem in auxiliary field QMC

Blankenbecler et al, PRD, 1981 Assaad et al, Lect. Notes Phys. 2008

 $Z = \sum_{\mathcal{C}} w(\mathcal{C})$

No sign problem: attractive Hubbard model with balanced filling

$$w(\mathcal{C}) = \det M_{\uparrow} \times \det M_{\downarrow}$$
$$= |\det M_{\uparrow}|^2 \ge 0$$

C

Scalapino et al, PRB, 1984 Gubernatis et al, PRB, 1985

How about spinless fermions ?

$$w(\mathcal{C}) = \det M$$

up to 8×8 square lattice, T=0.3t

$Determinant = Pfaffian^2$

For skew-symmetric matrices Huffman and Cha

Huffman and Chandrasekharan, PRB, 2014

$$\left(M = -M^T\right)$$

$$\det M = (\operatorname{pf} M)^2 \ge 0$$
 Muir, 1882

Named after J. F. Pfaff (1765-1825), a teacher of Gauss

$$pf \begin{pmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{pmatrix} = af - be + cd$$

Johann Friedrich Pfaff

Is M skew-symmetric ?

No

 $w(\mathcal{C}) = \det(\mathbb{I} + B_{N_{\tau}} \dots B_2 B_1)$

Yes

in continuous-time QMC ...

 $w(\mathcal{C}) = (-V)^k \det(G)$ $= (-V)^k \det(D) \det(GD)$ $= V^k \operatorname{pf}(GD)^2 \ge 0$

*half-filling ensures diagonal element vanishes

 ± 1 for A(B) sublattice

$$M_2 = \frac{1}{N^2} \sum_{\mathbf{i},\mathbf{j}} \eta_{\mathbf{i}} \eta_{\mathbf{j}} \left\langle \left(\hat{n}_{\mathbf{i}} - \frac{1}{2} \right) \left(\hat{n}_{\mathbf{j}} - \frac{1}{2} \right) \right\rangle$$

 $M_4 = \frac{1}{N^4} \sum_{\mathbf{i}, \mathbf{j}, \mathbf{k}, \mathbf{l}} \eta_{\mathbf{i}} \eta_{\mathbf{j}} \eta_{\mathbf{k}} \eta_{\mathbf{l}} \left\langle \left(\hat{n}_{\mathbf{i}} - \frac{1}{2} \right) \left(\hat{n}_{\mathbf{j}} - \frac{1}{2} \right) \left(\hat{n}_{\mathbf{k}} - \frac{1}{2} \right) \left(\hat{n}_{\mathbf{l}} - \frac{1}{2} \right) \right\rangle$ $2L^2$ up to 450 sites

 ± 1 for A(B) sublattice

$$\begin{split} M_2 &= \frac{1}{N^2} \sum_{\mathbf{i},\mathbf{j}} \eta_{\mathbf{i}} \eta_{\mathbf{j}} \left\langle \left(\hat{n}_{\mathbf{i}} - \frac{1}{2} \right) \left(\hat{n}_{\mathbf{j}} - \frac{1}{2} \right) \right\rangle \\ M_4 &= \frac{1}{N^4} \sum_{\mathbf{i},\mathbf{j},\mathbf{k},\mathbf{l}} \eta_{\mathbf{i}} \eta_{\mathbf{j}} \eta_{\mathbf{k}} \eta_{\mathbf{l}} \left\langle \left(\hat{n}_{\mathbf{i}} - \frac{1}{2} \right) \left(\hat{n}_{\mathbf{j}} - \frac{1}{2} \right) \left(\hat{n}_{\mathbf{k}} - \frac{1}{2} \right) \left(\hat{n}_{\mathbf{l}} - \frac{1}{2} \right) \\ & 2L^2 \text{ up to 450 sites} \end{split}$$

Scalings ansatz close to the QCP

 $M_{2} = L^{-z-\eta} \mathcal{F}[L^{1/\nu}(V - V_{c}), L^{z}/\beta]$ $M_{4} = L^{-2z-2\eta} \mathcal{G}[L^{1/\nu}(V - V_{c}), L^{z}/\beta]$

 ± 1 for A(B) sublattice

$$M_{2} = \frac{1}{N^{2}} \sum_{\mathbf{i},\mathbf{j}} \eta_{\mathbf{i}} \eta_{\mathbf{j}} \left\langle \left(\hat{n}_{\mathbf{i}} - \frac{1}{2} \right) \left(\hat{n}_{\mathbf{j}} - \frac{1}{2} \right) \right\rangle$$
$$M_{4} = \frac{1}{N^{4}} \sum_{\mathbf{i},\mathbf{j}} \eta_{\mathbf{i}} \eta_{\mathbf{k}} \eta_{\mathbf{i}} \left\langle \left(\hat{n}_{\mathbf{i}} - \frac{1}{2} \right) \left(\hat{n}_{\mathbf{i}} - \frac{1}{2} \right) \left(\hat{n}_{\mathbf{k}} - \frac{1}{2} \right) \right\rangle$$

$$M_{4} = \frac{1}{N^{4}} \sum_{\mathbf{i}, \mathbf{j}, \mathbf{k}, \mathbf{l}} \eta_{\mathbf{i}} \eta_{\mathbf{j}} \eta_{\mathbf{k}} \eta_{\mathbf{l}} \left\langle \left(\hat{n}_{\mathbf{i}} - \frac{1}{2} \right) \left(\hat{n}_{\mathbf{j}} - \frac{1}{2} \right) \left(\hat{n}_{\mathbf{k}} - \frac{1}{2} \right) \left(\hat{n}_{\mathbf{l}} - \frac{1}{2} \right) \right\rangle \right\rangle$$
$$\frac{2L^{2}}{2L^{2}} \text{ up to 450 sites}$$

Scalings ansatz close to the QCP

relativistic invariance

z = 1

$$M_2 = L^{-z-\eta} \mathcal{F}[L^{1/\nu}(V-V_c), L^z/\beta]$$

$$M_4 = L^{-2z-2\eta} \mathcal{G}[L^{1/\nu}(V - V_c), L^z/\beta]$$

 ± 1 for A(B) sublattice

$$M_{2} = \frac{1}{N^{2}} \sum_{\mathbf{i},\mathbf{j}} \eta_{\mathbf{i}} \eta_{\mathbf{j}} \left\langle \left(\hat{n}_{\mathbf{i}} - \frac{1}{2} \right) \left(\hat{n}_{\mathbf{j}} - \frac{1}{2} \right) \right\rangle$$
$$M_{4} = \frac{1}{N^{4}} \sum_{\mathbf{i},\mathbf{j},\mathbf{k},\mathbf{l}} \eta_{\mathbf{i}} \eta_{\mathbf{j}} \eta_{\mathbf{k}} \eta_{\mathbf{l}} \left\langle \left(\hat{n}_{\mathbf{i}} - \frac{1}{2} \right) \left(\hat{n}_{\mathbf{j}} - \frac{1}{2} \right) \left(\hat{n}_{\mathbf{k}} - \frac{1}{2} \right) \left(\hat{n}_{\mathbf{l}} - \frac{1}{2} \right) \right\rangle$$

 $2L^2$ up to 450 sites

relativistic invariance

z = 1

Scalings ansatz close to the QCP

 $\mathbf{i}, \mathbf{j}, \mathbf{k}, \mathbf{l}$

$$M_2 = L^{-z-\eta} \mathcal{F}[L^{1/\nu}(V - V_c), L^z/\beta]$$

$$M_4 = L^{-2z-2\eta} \mathcal{G}[L^{1/\nu}(V - V_c), L^z/\beta]$$

Binder Ratio

Data Collapse

* Errorbar from $\chi^2 + 1$ analysis

Gross-Neveu-Yukawa Theory

$$\nu = 0.797$$
 $\eta = 0.502$

functional renormalization group Rosa et al, PRL,2001 Höfling et al, PRB, 2002

$$\nu = 0.738 \sim 0.927$$
 $\eta = 0.525 \sim 0.635$

Honeycom

$$\nu = 0.80(3)$$

 $\eta = 0.302(7)$

 ν agrees η does not

* Field theory calculations are based on 2-flavors of 2-component Dirac fermions with same chirality

Check-I: π -flux square lattice

also features two Dirac points

 π -flux lattice $V_c/t = 1.304(2)$ $\nu = 0.80(6)$ $\eta = 0.318(8)$

Summary-I

LW, Corboz and Troyer, 1407.0029

Where is the QCP?

What is the universality ?

What are the critical exponents ?

CTQMC $V_c/t = 1.356(1)$ $\nu = 0.80(3)$ $\eta = 0.302(7)$ $\tilde{\beta} = 0.52(3)$

To resolve the discrepancies we need to

Make sure to compare with the right theory
 Bigger systems and more careful data analysis

Where do we go from here ?

Half-filled, nearest-neighbor repulsion

Next-nearest-neighbor repulsion

Where do we go from here ?

Half-filled, nearest-neighbor repulsion

Next-nearest-neighbor repulsion

Where do we go from here ?

Half-filled, nearest-neighbor repulsion

Next-nearest-neighbor repulsion

García-Martínez et al, PRB,2013 Daghofer and Hohenadler, PRB,2014

Pairing Symmetries

D_6	E	C_2	$2C_3$	$2C_6$	$3C'_2$	$3C_{2}''$
A_1	1	1	1	1	1	1
A_2	1	1	1	1	-1	-1
B_1	1	-1	1	-1	1	-1
B_2	1	-1	1	-1	-1	1
E_1	2	-2	-1	1	0	0
E_2	2	2	-1	-1	0	0

1-dim B₁ representation

Ģ

 $\stackrel{\bigcirc}{=}$ 2-dim E₁ representation

Pairing Symmetries

D_6	E	C_2	$2C_3$	$2C_6$	$3C'_2$	$3C_{2}''$
A_1	1	1	1	1	1	1
A_2	1	1	1	1	-1	-1
B_1	1	-1	1	-1	1	-1
B_2	1	-1	1	-1	-1	1
E_1	2	-2	-1	1	0	0
E_2	2	2	-1	-1	0	0

ĕ

 $\stackrel{\diamond}{=}$ 2-dim E₁ representation

Pairing Symmetries

D_6	E	C_2	$2C_3$	$2C_6$	$3C'_2$	$3C_{2}''$
A_1	1	1	1	1	1	1
A_2	1	1	1	1	-1	-1
B_1	1	-1	1	-1	1	-1
B_2	1	-1	1	-1	-1	1
E_1	2	-2	-1	1	0	0
E_2	2	2	-1	-1	0	0

Ģ

 $\stackrel{\scriptstyle{\triangleleft}}{=}$ 2-dim E₁ representation

Read and Green, PRB, 2000

Pairing Susceptibilities

 $\chi_{\Gamma} = \int_{0}^{\beta} d\tau \langle \hat{\Delta}_{\Gamma}(\tau) \hat{\Delta}_{\Gamma}^{\dagger} \rangle$ $\hat{\Delta}_{\Gamma}(\tau) = \frac{1}{L^2} \sum_{\mathbf{i} \in A} \sum_{\delta} \mathcal{F}^{\delta}_{\Gamma} \hat{c}_{\mathbf{i}}(\tau) \hat{c}_{\mathbf{i}+\delta}(\tau)$

 $\mathcal{F}_f = \left(\begin{array}{c} 1\\ 1\\ 1 \end{array}\right)$

 $\mathcal{F}_{p_x + ip_y} = \left(\begin{array}{c} 1\\ e^{i2\pi/3}\\ e^{i4\pi/3} \end{array}\right)$

 $H_{\rm BdG} =$ $\frac{1}{2}\sum_{\mathbf{k}} \begin{pmatrix} \hat{c}_{\mathbf{k}A} \\ \hat{c}_{\mathbf{k}B} \\ \hat{c}_{-\mathbf{k}A}^{\dagger} \\ \hat{c}_{-\mathbf{k}B}^{\dagger} \end{pmatrix} \begin{pmatrix} -\mu & z_{\mathbf{k}} & 0 & \Delta_{\mathbf{k}} \\ z_{\mathbf{k}}^{*} & -\mu & -\Delta_{-\mathbf{k}} & 0 \\ 0 & -\Delta_{-\mathbf{k}}^{*} & \mu & -z_{-\mathbf{k}}^{*} \\ \Delta_{\mathbf{k}}^{*} & 0 & -z_{-\mathbf{k}} & \mu \end{pmatrix} \begin{pmatrix} \hat{c}_{\mathbf{k}A} \\ \hat{c}_{\mathbf{k}B} \\ \hat{c}_{-\mathbf{k}A}^{\dagger} \\ \hat{c}_{-\mathbf{k}B}^{\dagger} \end{pmatrix}$

 $-t(1+e^{-i\mathbf{k}\mathbf{a}_2}+e^{i\mathbf{k}(\mathbf{a}_1-\mathbf{a}_2)})$ $H_{\rm BdG} =$ $\frac{1}{2}\sum_{\mathbf{k}} \begin{pmatrix} \hat{c}_{\mathbf{k}A} \\ \hat{c}_{\mathbf{k}B} \\ \hat{c}_{-\mathbf{k}A}^{\dagger} \\ \hat{c}_{-\mathbf{k}B}^{\dagger} \end{pmatrix} \begin{pmatrix} -\mu & z_{\mathbf{k}} & 0 & \Delta_{\mathbf{k}} \\ z_{\mathbf{k}}^{*} & -\mu & -\Delta_{-\mathbf{k}} & 0 \\ 0 & -\Delta_{-\mathbf{k}}^{*} & \mu & -z_{-\mathbf{k}}^{*} \\ \Delta_{\mathbf{k}}^{*} & 0 & -z_{-\mathbf{k}} & \mu \end{pmatrix} \begin{pmatrix} \hat{c}_{\mathbf{k}A} \\ \hat{c}_{\mathbf{k}B} \\ \hat{c}_{-\mathbf{k}A}^{\dagger} \\ \hat{c}_{-\mathbf{k}B}^{\dagger} \end{pmatrix}$

 $-t(1+e^{-i\mathbf{k}\mathbf{a}_2}+e^{i\mathbf{k}(\mathbf{a}_1-\mathbf{a}_2)})$ $H_{BdG} = \frac{1}{2} \sum_{\mathbf{k}} \begin{pmatrix} \hat{c}_{\mathbf{k}A} \\ \hat{c}_{\mathbf{k}B} \\ \hat{c}_{-\mathbf{k}A}^{\dagger} \\ \hat{c}_{-\mathbf{k}B}^{\dagger} \end{pmatrix} \begin{pmatrix} -\mu & z_{\mathbf{k}} & 0 & \Delta_{\mathbf{k}} \\ z_{\mathbf{k}}^{*} & -\mu & -\Delta_{-\mathbf{k}} & 0 \\ 0 & -\Delta_{-\mathbf{k}}^{*} & \mu & -z_{-\mathbf{k}}^{*} \\ \Delta_{\mathbf{k}}^{*} & 0 & -z_{-\mathbf{k}} & \mu \end{pmatrix} \begin{pmatrix} \hat{c}_{\mathbf{k}A} \\ \hat{c}_{\mathbf{k}B} \\ \hat{c}_{-\mathbf{k}B}^{\dagger} \\ \hat{c}_{-\mathbf{k}B}^{\dagger} \end{pmatrix}$ $H_{\rm BdG} =$

 $-V(\Delta_1 + \Delta_2 e^{-i\mathbf{k}\mathbf{a}_2} + \Delta_3 e^{i\mathbf{k}(\mathbf{a}_1 - \mathbf{a}_2)})$

 $-t(1+e^{-i\mathbf{k}\mathbf{a}_2}+e^{i\mathbf{k}(\mathbf{a}_1-\mathbf{a}_2)})$ $\begin{aligned} H_{\rm BdG} &= \\ \frac{1}{2} \sum_{\mathbf{k}} \begin{pmatrix} \hat{c}_{\mathbf{k}A} \\ \hat{c}_{\mathbf{k}B} \\ \hat{c}_{-\mathbf{k}A}^{\dagger} \\ \hat{c}_{-\mathbf{k}B}^{\dagger} \end{pmatrix}^{\dagger} \begin{pmatrix} -\mu & z_{\mathbf{k}} & 0 & \Delta_{\mathbf{k}} \\ z_{\mathbf{k}}^{*} & -\mu & -\Delta_{-\mathbf{k}} & 0 \\ 0 & -\Delta_{-\mathbf{k}}^{*} & \mu & -z_{-\mathbf{k}}^{*} \\ \Delta_{\mathbf{k}}^{*} & 0 & -z_{-\mathbf{k}} & \mu \end{pmatrix} \begin{pmatrix} \hat{c}_{\mathbf{k}A} \\ \hat{c}_{\mathbf{k}B} \\ \hat{c}_{-\mathbf{k}B}^{\dagger} \end{pmatrix} \end{aligned}$ $H_{\rm BdG} =$

 $-V(\Delta_1 + \Delta_2 e^{-i\mathbf{k}\mathbf{a}_2} + \Delta_3 e^{i\mathbf{k}(\mathbf{a}_1 - \mathbf{a}_2)})$

Start with random guesses, iterate until convergence

BdG phase diagram

*color indicates size of superconducting gap

*color indicates size of superconducting gap

*color indicates size of superconducting gap

Scan density

Topological Phase Transition and Dirac Fermions

Chern number of a Dirac fermion

Oshikawa, PRB,1994 Ludwig et al, PRB,1994

$\Delta C = \#$ of Dirac points

Phase diagram, again

Fermionic Quantum Critical Point

Topological Superconductors

- **Rich physics** in a very simple model
- Hopefully realizable in experiment given its simple form

