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What is the killer app of a 
near-term quantum computer ?

In about next 3 years

Small: O(10)-O(103) qubits
Shallow: O(102)-O(104)  gates
Noisy: no error correction



• Shor algorithm needs 4000 qubits with error correction and O(109) 
gates to crack 2048-bits RSA key (Proos and Zalka, quant-ph/0301141) 

• BTW, it is not a long-term application either. One can switch to 
post-quantum cryptography algorithms even now

We need a more profitable application

4951760154835678088235319297 = 2147483647 x 2305843009213693951

Factoring ?



Accelerated linear algebra solver ?

• The “infamous” HHL algorithm with exponential speedup (Harrow et al, PRL ’09) 

• Was the core subroutine behind a large wave of quantum machine learning 
papers 

• Requires quantum RAM which we do not know how to build yet. Has 
several other caveats (Aaronson, Nat. Phys. ’15) 

• By far, no clear signature of surpassing (quantum-inspired) classical 
algorithms  (Tang, STOC ’19)

|x⟩ = |b⟩A



Liu, LW, PRA ’18 
Cheng, Chen, LW, Entropy ’18 
Han, Wang, Fan, LW, Zhang, PRX ’18 

• Extremely overloaded term: HHL—> optimization —> classifier… 

• Need to identify the true difficulty of classical machine learning  

• Learn, sample and inference of intractable probability distributions 
“Born Machines” 

JQI+IonQ+UCL 
1801.07686, 1812.08862
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FIG. 2. DDQCL on the bars and stripes (BAS) data set. The top left corner shows patterns that belong to BAS22 and that
we would like our quantum circuit to generate. For completeness, the top central image shows undesired patterns. On the top
right corner, we show a possible mapping of the 4 pixels to N = 4 qubits, and we show some of the entangling layer topologies
that can be set up in the ion trap (e.g chain, star, and all). The bottom left corner shows results of DDQCL simulations for
shallow circuits with di↵erent topologies. We show the bootstrapped median and 90% confidence interval over the distribution
of medians of the KL divergence as learning progresses for 100 iterations. The mean-field-like circuit L = 1 (green crosses)
severely underperforms. A significant improvement is obtained with L = 2, where most of the angles for XX gates have been
learned to their maximum entangling value. These observations indicate that entanglement is a key resource for learning the
BAS data set. Note that for L = 2 the choice of topology becomes a key factor for improving the performance. The chain
topology (purple squares) performs slightly better than the star topology (red stars) even though they have the same number
of parameters. The all-to-all topology (orange circles) significantly outperform all the others as it has more expressive power.
The bottom central image extends the previous analysis to deeper circuits with L = 4 and approximatively twice the number
of parameters. All the topologies achieve a lower median KL divergence and the confidence intervals shrink. The bottom right
corner shows the bootstrapped mean qBAS22 and 95% confidence interval for simulations (green bars) and experiments on the
ion trap quantum computer hosted at University of Maryland (pink bars).

depth, gate fidelities, and any other architectural design
aspects such as its qubit-qubit connectivity, in addition
to the native set of single and two-qubit gates available
in hardware.

When framed in the context of information retrieval,
the qBASnm score can be seen as an instantiation of
the widely used F1 score. To score high, it is insu�-
cient to simply retrieve states, which belong to BASnm.
This quantity alone corresponds to the so called precision
(denoted here as p), and it determines the ratio between
the number of measurements belonging to BASnm di-
vided by the total number of measurements [46]. One
also needs to score high in the so called recall (denoted
here by r) which determines the capacity of the circuit
model to retrieve the whole spectrum of patterns belong-

ing to the BASnm. In our context, it is a measure of
“fair sampling”, or the capacity to uniformly retrieve
all the states from BASnm. Within the F1 score, re-
call is a general quantity that can always be computed
as the number of di↵erent BASnm patterns appearing in
the Nreads measurements divided by the total number of
states NBASnm that belong to the data set. If we denote
the number of di↵erent patterns that were measured as
d(Nreads), then r = d(Nreads)/NBASnm. The F1 score is
defined as the harmonic mean of the precision and the re-
call, i.e., F1 = 2pr/(p + r), and to score high (F1 ⇡ 1.0)
it is required to have both a high precision (p ⇡ 1.0)
and high recall in retrieving of all the NBASnm patterns
(r ⇡ 1.0). The F1 score is a useful measure for the qual-
ity of information retrieval and classification algorithms,

Quantum machine learning ?

Regetti
1901.08047, 1904.02214  

Oak Ridge 
1811.09905 Experiments:



Quantum annealing and optimization ? 

• No clear signature of being useful, even with 2000 noisy qubits 
(Rønnow et al, Science ’14)  

• Pivoting to a quantum sampling machine (quantum Boltzmann Machine, 
Amin et al PRX ’18). Or, a programmable quantum spin simulator (Harris 
et al, Science ’18, King et al, Nature ’18) 

• Gate model version: Quantum Approximate Optimization Algorithm 
(Farhi et al ’14) is essentially variational optimization with a quantum 
circuit probabilistic model 
Promising, but still looking for the right optimization problem  

with O(103) variables where quantum really helps

Evidence for quantum annealing with more than
one hundred qubits

Supplementary material for “Evidence for quantum annealing with more than one
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I. OVERVIEW

Here we provide additional details in support of the
main text. Section II shows details of the chimera graph
used in our study and the choice of graphs for our simula-
tions. Section III expands upon the algorithms employed
in our study. Section IV presents additional success prob-
ability histograms for different numbers of qubits and for
instances with magnetic fields, explains the origin of easy
and hard instances, and explains how the final state can
be improved via a simple error reduction scheme. Section
V presents further correlation plots and provide more
details on gauge averaging. Section VI gives details on
how we determined the scaling plots and how quantum
speedup can be detected on future devices. Finally, sec-
tion VII explains how the spectral gaps were calculated
by quantum Monte Carlo (QMC) simulations.

II. THE CHIMERA GRAPH OF THE D-WAVE
DEVICE.

The qubits and couplers in the D-Wave device can be
thought of as the vertices and edges, respectively, of a
bipartite graph, called the “chimera graph”, as shown in
figure 1. This graph is built from unit cells containing
eight qubits each. Within each unit cell the qubits and
couplers realise a complete bipartite graph K4,4 where
each of the four qubits on the left is coupled to all of the
four on the right and vice versa. Each qubit on the left
is furthermore coupled to the corresponding qubit in the
unit cell above and below, while each of the ones on the
right is horizontally coupled to the corresponding qubits
in the unit cells to the left and right (with appropriate
modifications for the boundary qubits). Of the 128 qubits
in the device, the 108 working qubits used in our tests of
the device are shown in green, and the couplers between
them are marked as black lines.

For our scaling analysis we follow the standard pro-
cedure for scaling of finite dimensional models by con-
sidering the chimera graph as an L × L square lattice
with an eight-site unit cell and open boundary condi-
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FIG. 1: Qubits and couplers in the D-Wave device.
The D-Wave One Rainer chip consists of 4 × 4 unit cells of
eight qubits, connected by programmable inductive couplers
as shown by lines.

tions. The sizes we typically used in our numerical sim-
ulations are L = 1, . . . , 8 corresponding to N = 8L2 =
8, 32, 72, 128, 200, 288, 392 or 512 spins. For the simu-
lated annealers and exact solvers on sizes of 128 and
above we used a perfect chimera graph. For sizes below
128 where we compare to the device we use the working
qubits within selections of L×L eight-site unit cells from
the graph shown in figure 1.

In references [1, 2] it was shown that an optimisation
problem on a complete graph with

√
N vertices can be

mapped to an equivalent problem on a chimera graph
with N vertices through minor-embedding. The tree
width of

√
N mentioned in the main text arises from this

mapping. See Section VIA for additional details about
the tree width and tree decomposition of a graph.
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unit cell above and below, while each of the ones on the
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the device are shown in green, and the couplers between
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FIG. 1: Qubits and couplers in the D-Wave device.
The D-Wave One Rainer chip consists of 4 × 4 unit cells of
eight qubits, connected by programmable inductive couplers
as shown by lines.

tions. The sizes we typically used in our numerical sim-
ulations are L = 1, . . . , 8 corresponding to N = 8L2 =
8, 32, 72, 128, 200, 288, 392 or 512 spins. For the simu-
lated annealers and exact solvers on sizes of 128 and
above we used a perfect chimera graph. For sizes below
128 where we compare to the device we use the working
qubits within selections of L×L eight-site unit cells from
the graph shown in figure 1.

In references [1, 2] it was shown that an optimisation
problem on a complete graph with

√
N vertices can be

mapped to an equivalent problem on a chimera graph
with N vertices through minor-embedding. The tree
width of

√
N mentioned in the main text arises from this

mapping. See Section VIA for additional details about
the tree width and tree decomposition of a graph.
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Simulating quantum dynamics ?

• Closer to Feynman’s original proposal. Native application of 
quantum computers  

• However, no fundamental difference with, say ultracold atoms, 
quantum simulators 

• Again, need to ask useful questions involving O(10)-O(103) qubits 
(thermalization ? quantum chaos ? Kibble-Zurek mechanism ?)

Does not seem to live up to billion $ investment 

Quantum versus classical simulation 
Trotzky et al, Nat. Phys. ‘12



Quantum chemistry and electronic structures ?

• Not as native as dynamics. But can be extremely useful  

• Quantum phase estimation solves the eigen-problem via unitary 
time-evolution (Kitaev, ’95) 

• However, it requires error-correcting qubits with long coherence 
time 

• Hybrid quantum-classical algorithm is more feasible in near-term

Biological nitrogen fixation 
Reiher et al, PNAS ’17  

Fig. 1. (Left) X-ray crystal structure 4WES (21) of the nitrogenase MoFe protein from Clostridium pasteurianum taken from the protein database (the
backbone is colored in green, and hydrogen atoms are not shown), (Middle) the close protein environment of the FeMoco, and (Right) the structural model
of FeMoco considered in this work (C, gray; O, red; H, white; S, yellow; N, blue; Fe, brown; and Mo, cyan).

from air accessible to plants, the mechanism of nitrogen fixation
at FeMoco is not known. Experiments have not yet been able to
provide sufficient details on the chemical mechanism, and theo-
retical attempts are hampered by intrinsic methodological limi-
tations of traditional quantum chemical methods.

Quantum Chemical Methods for Mechanistic Studies
At the heart of any chemical process is its mechanism, the elucida-
tion of which requires the identification of all relevant stable inter-
mediates and transition states. In general, a multitude of charge
and spin states need to be explicitly calculated in search of the rel-
evant ones that make the whole chemical process viable. Such a
mechanistic exploration can lead to thousands of elementary reac-
tion steps (25) whose reaction energies must be reliably calculated.
In the case of nitrogenase, numerous protonated intermediates
of dinitrogen-coordinating FeMoco and subsequently reduced
intermediates in different charge and spin states are feasible and
must be assessed with respect to their relative energy. Especially,
kinetic modelingposes tight limitson the accuracyofactivationen-
ergies entering the argument of exponentials in rate expressions.

For nitrogenase, an electrostatic quantum mechanical/molecu-
lar mechanical (QM/MM) model (26) that captures the embed-
ding of FeMoco into the protein pocket of nitrogenase can prop-

chemically ac!ve species
embedded in proper environment

structure
genera!on

kine!c modeling of 
reac!on mechanism

structure
op!miza!on

temperature and
entropic corrections

Classical computer Quantum computer

compute
correlated

energy

CAS-QFCI

orbital op!miza!on
for ac!ve space

4-index integral
transforma!on

Fig. 2. Generic flowchart of a computational reaction mechanism elucidation with a quantum computer part that delivers a quantum full configuration
interaction (QFCI) energy in a (restricted) complete active orbital space (CAS). Once a structural model of the active chemical species (here FeMoco, top right)
embedded in a suitable environment (the metalloprotein, top left) is chosen, structures of potential intermediates can be set up and optimized. Molecular
orbitals are then optimized for a suitably chosen Fock operator. A four-index transformation from the atomic orbital to the molecular basis produces all
integrals required for the second-quantized Hamiltonian. Once the quantum computer produces the (ground state) energy of this Hamiltonian, this energy
can be supplemented by corrections that consider nuclear motion effects to yield enthalpic and entropic quantities at a given temperature according to
standard protocols (e.g., from DFT calculations). The temperature-corrected energy differences between stable intermediates and transition structures then
enter rate expressions for kinetic modeling. For complex chemical mechanisms, this modeling might point to the exploration of additional structures.

erly account for the protein environment. Accordingly, we con-
sider a structural model for the active site of nitrogenase (Fig.
1, Right) carrying only models of the anchoring groups of the
protein, which represents a suitable QM part in such calcula-
tions. To study this bare model is no limitation, as it does not at
all affect our feasibility analysis (because electrostatic QM/MM
embedding will not change the number of orbitals considered for
the wave function construction). We carried out (full) molecu-
lar structure optimizations with DFT methods of this FeMoco
model in different charge and spin states to avoid basing our
analysis on a single electronic structure. Although our FeMoco
model is taken from the resting state, binding of a small molecule
such as dinitrogen, dihydrogen, diazene, or ammonia will not
decisively change the complexity of its electronic structure.

The Born–Oppenheimer approximation assigns an electronic
energy to every molecular structure. The accurate calculation of
this energy is the pivotal challenge, here considered by quantum
computing. Characteristic molecular structures are optimized to
provide local minimum structures indicating stable intermedi-
ates and first-order saddle points representing transition struc-
tures. The electronic energy differences for elementary steps
that connect two minima through a transition structure enter
expressions for rate constants by virtue of Eyring’s absolute

7556 | www.pnas.org/cgi/doi/10.1073/pnas.1619152114 Reiher et al.



Variational Quantum Eigensolver 4

FIG. 1. Illustration of the three common steps of hybrid quantum-classical algorithms. These steps have

to be repeated until convergence or when a su�ciently good quality of the solution is reached. 1) State

preparation involving the quantum hardware capable of tunable gates characterized by parameters “n (blue),

2) measurement of the quantum state and evaluation of the objective function (red), 3) iteration of the

optimization method to determine promising changes in the state preparation (green). Notice that a single

parameter “n may characterize more than one gate, for example see “1 and “6 in the blue box. In practice,

many state preparations and measurements are necessary before proceeding with a single update of the

parameters.

quantum state, records the outcomes and analyze them to obtain the value of the objective function

corresponding to the prepared state. The third step is the classical optimization iteration that,

based on previous results, suggests new parameter values to improve the quality of the state. We

pictorially illustrate these three parts and their interplay in Fig. 1.

As mentioned, the goal of variational algorithms is to find an approximate solution to certain

problems. The quality of such approximation is given by the value of the objective function that one

desires to maximize (or minimize). The objective function is expressed as a quantum observable,

noted here with Ĉ, of the qubit register. It can be a genuinely quantum quantity, as is the case

for the energy of molecular systems, or classical in nature, for example when it is associated to

combinatorial optimization, scheduling problems or financial modeling. Given the quantum register

in state |„Í, the objective function is given by the expectation value È„| Ĉ |„Í.

⟨H⟩θ

Peruzzo et al, Nat. Comm. ’13

Quantum circuit as a variational ansatz 
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H2 molecule with 2 qubits 

one measures the phase Ent and collapses the system
register to the state jni with probability janj2.
Our PEA implementation is based on a modification of

Kitaev’s iterative phase estimation algorithm [8,35]. The
circuit we use is shown in Fig. 4 and detailed descriptions
of the subroutines we use to control UTrotð2kt0Þ on an
ancilla are shown in Appendix C. The rotation ZΦðkÞ in
Fig. 4 feeds back classical information from the prior k − 1
measurements using phase kickback as

ΦðkÞ ¼ π
Xk−1

l¼0

jl
2l−kþ1

: ð7Þ

With iterative phase estimation, one measures the phase
accumulated on the system one bit at a time. Even when a0
is very small, one can use iterative phase estimation to
measure eigenvalues if the system register remains coherent
throughout the entire phase determination. Since the
Hartree-Fock state has strong overlap with the ground state
of molecular hydrogen (i.e., jh0jϕij2 > 0.5), we are able to
measure each bit independently with a majority-voting
scheme, reducing coherence requirements. For b bits,
the ground-state energy is digitally computed as a binary
expansion of the measurement outcomes,

Eb
0 ¼ −

π
t0

Xb−1

k¼0

jk
2kþ1

: ð8Þ

Experimentally computed energies are plotted alongside
VQE results in Fig. 3(a). Because energies are measured

digitally in iterative phase estimation, the experimentally
determined PEA energies in Fig. 3(a) agree exactly with
theoretical simulations of Fig. 4, which differ from the exact
energies due to the approximation of Eq. (5). The primary
difficulty of the PEA experiment is that the controlled
application of UTrotð2kt0Þ requires complex quantum
circuitry and long coherent evolutions. Accordingly, we
approximate the propagator in Eq. (5) using a single
Trotter step (ρ ¼ 1), which is not sufficient for chemical
accuracy. Our PEA experiment shows an error in the
dissociation energy of ð1% 1Þ × 10−2 hartree.
In addition to taking only one Trotter step, we perform

classical simulations of the error in Eq. (5) under different
orderings of the Hγ in order to find the optimal Trotter
sequences at each value ofR. The Trotter sequences we use
in our experiment as well as parameters such as t0 are
reported in Appendix C. Since this optimization is intrac-
table for larger molecules, our PEA protocol benefits from
inefficient classical preprocessing (unlike our VQE imple-
mentation). Nevertheless, this is the first time the canonical
quantum algorithm for chemistry has been executed in its
entirety and, as such, represents a significant step towards
scalable implementations.

IV. EXPERIMENTAL METHODS

Both algorithms are implemented with a superconduct-
ing quantum system based on the Xmon [48], a variant of
the planar transmon qubit [49], in a dilution refrigerator
with a base temperature of 20 mK. Each qubit consists
of a superconducting quantum interference device

(a) (b)

FIG. 3. Computed H2 energy curve and errors. (a) Energy surface of molecular hydrogen as determined by both VQE and PEA. VQE
approach shows dissociation energy error of ð8% 5Þ × 10−4 hartree (error bars on VQE data are smaller than markers). PEA approach
shows dissociation energy error of ð1% 1Þ × 10−2 hartree. (b) Errors in VQE energy surface. Red dots show error in the experimentally
determined energies. Green diamonds show the error in the energies that would have been obtained experimentally by running the circuit
at the theoretically optimal θ instead of the experimentally optimal θ. The discrepancy between blue and red dots provides experimental
evidence for the robustness of VQE, which could not have been anticipated via numerical simulations. The gray band encloses the
chemically accurate region relative to the experimental energy of the atomized molecule. The dissociation energy is relative to the
equilibrium geometry, which falls within this envelope.

SCALABLE QUANTUM SIMULATION OF MOLECULAR ENERGIES PHYS. REV. X 6, 031007 (2016)

031007-5

jφð~θÞi≡Uð~θÞjϕi. Even if jϕi is a simple product state and
Uð~θÞ is a very shallow circuit, jφð~θÞi can contain complex
many-body correlations and span an exponential number of
standard basis states.
We can express the mapping Uð~θÞ as a concatenation

of parametrized quantum gates, U1ðθ1ÞU2ðθ2Þ…UnðθnÞ.
In this work, we parametrize our circuit according to
unitary coupled cluster theory [20,22,23]. As described
in Appendix D, unitary coupled cluster theory predicts that
the ground state of Eq. (1) can be expressed as

jφðθÞi ¼ e−iθX0Y1 j01i; ð3Þ

where jϕi ¼ j01i is the Hartree-Fock (mean-field) state
of molecular hydrogen in the representation of Eq. (1).
As discussed in Appendix D, unitary coupled cluster
theory is widely believed to be classically intractable and
is known to be strictly more powerful than the “gold
standard” of classical electronic structure theory, coupled
cluster theory [43–46]. The gate model circuit that
performs this unitary mapping is shown in the software
section of Fig. 1.
VQE solves for the parameter vector ~θ with a classical

optimization routine. One first prepares an initial ansatz
jφð~θ0Þi and then estimates the ansatz energy E ð~θ0Þ by
measuring the expectation values of each term in Eq. (1)
and summing these values together as

E ð~θÞ ¼
X

γ

gγhφð~θÞjHγjφð~θÞi; ð4Þ

where the gγ are scalars and the Hγ are local Hamiltonians

as in Eq. (1). The initial guess ~θ0 and the corresponding
objective value E ð~θ0Þ are then fed to a classical greedy
minimization routine (e.g., gradient descent), which then
suggests a new setting of the parameters ~θ1. The energy
E ð~θ1Þ is then measured and returned to the classical outer
loop. This continues for m iterations until the energy
converges to a minimum value E ð~θmÞ, which represents
the VQE approximation to E 0.
Because our experiment requires only a single varia-

tional parameter, as in Eq. (3), we elect to scan 1000
different values of θ ∈ ½−π; πÞ in order to obtain expect-
ation values that define the entire potential energy curve.
We do this to simplify the classical feedback routine but at
the cost of needing slightly more experimental trials. These
expectation values are shown in Fig. 2(a) and the corre-
sponding energy surfaces at different bond lengths are
shown in Fig. 2(b). The energy surface in Fig. 2(b) is
locally optimized at each bond length to emulate an on-the-
fly implementation.
Figure 3(a) shows the exact and experimentally deter-

mined energies of molecular hydrogen at different bond
lengths. The minimum energy bond length (R¼ 0.72 Å)
corresponds to the equilibrium bond length, whereas the
asymptote on the right-hand part of the curve corresponds
to dissociation into two hydrogen atoms. The energy
difference between these points is the dissociation energy,
and the exponential of this quantity determines the chemi-
cal dissociation rate. Our VQE experiment correctly pre-
dicts this quantity with an error of ð8% 5Þ × 10−4 hartree,
which is below the chemical accuracy threshold. Error bars

FIG. 1. Hardware and software schematic of the variational quantum eigensolver. (Hardware) micrograph shows two Xmon transmon
qubits and microwave pulse sequences to perform single-qubit rotations (thick lines), dc pulses for two-qubit entangling gates (dashed
lines), and microwave spectroscopy tones for qubit measurements (thin lines). (Software) quantum circuit diagram shows preparation of
the Hartree-Fock state, followed by application of the unitary coupled cluster ansatz in Eq. (3) and efficient partial tomography (Rt) to
measure the expectation values in Eq. (1). Finally, the total energy is computed according to Eq. (4) and provided to a classical optimizer
which suggests new parameters.
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the case of H2, remove two qubits associated with the spin–parity 
 symmetries, reducing the Hamiltonian to a six-qubit problem that 
encodes eight spin orbitals. A similar approach is used to map LiH 
onto four qubits. The Hamiltonians for H2, LiH and BeH2 at their 
 lowest-energy interatomic distances (bond distance) are given  explicitly 
in Supplementary Information.

The results from an optimization procedure are illustrated in Fig. 2, 
using the Hamiltonian for BeH2 at the interatomic distance of 1.7 Å. 
Although using a large number of entanglers UENT helps to achieve 
better energy estimates in the absence of noise, the combined effect 
of decoherence and finite sampling sets the optimal depth for opti-
mizations on our quantum hardware to 0–2 entanglers. The results 
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Figure 2 | Experimental implementation of six-qubit optimization. The 
minimum energy of the six-qubit Hamiltonian describing BeH2 with an 
interatomic distance of l =  1.7 Å (data points) is plotted along with the 
exact value (black dashed line). For each iteration k, the gradient at each 
control θk is approximated using 1,000 samples for energy estimation  
at θ+k  (blue) and θ−k  (red), which are perturbations to θk along opposite 
directions of a random axis in parameter space. The error bars correspond 
to the standard error of the mean. The inset shows the simultaneous 

optimization of 30 Euler angles that control the trial state preparation. 
Each colour refers to a particular qubit (Q1–Q6; q =  1, 2, …), following the 
colour scheme in Fig. 1. The final energy estimate (green dashed line) is 
obtained using the average angle over the last 25 angle updates (indicated 
by the green dotted arrow), to mitigate the effect of stochastic fluctuations, 
and with a higher number of samples (100,000), to obtain a more accurate 
energy estimation.
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Figure 3 | Application to quantum chemistry. a–c, Experimental results 
(black filled circles), exact energy surfaces (dotted lines) and density plots 
(shading; see colour scales) of outcomes from numerical simulations, 
for several interatomic distances for H2 (a), LiH (b) and BeH2 (c). The 
experimental and numerical results presented are for circuits of depth 
d =  1. The error bars on the experimental data are smaller than the 
size of the markers. The density plots are obtained from 100 numerical 

outcomes at each interatomic distance. The top insets in each panel 
highlight the qubits used for the experiment and the cross-resonance 
gates (arrows, labelled CRc–t; where ‘c’ denotes the control qubit and ‘t’ the 
target qubit) that constitute UENT. The bottom insets are representations 
of the molecular geometry (not to scale). For all the three molecules, 
the deviation of the experimental results from the exact curves is well 
explained by the stochastic simulations.
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the state | 00…0〉 , applying d entanglers UENT that  alternate with N Euler 
rotations, giving
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Because the qubits are all initialized in their ground state | 0〉 , the first 
set of Z rotations of Uq,0(θ) is not implemented, resulting in a total of 
p =  N(3d +  2) independent angles. In the experiment, the evolution 
time τ and the individual couplings in H0 can be controlled. However, 
numerical simulations indicate that accurate optimizations are 
obtained for fixed-phase entanglers UENT, leaving the p control angles 
as  variational parameters. Our hardware-efficient approach does not 
rely on the accurate implementation of specific two-qubit gates and can 
be used with any UENT that generates sufficient entanglement. This is 
in  contrast to unitary coupled-cluster trial states, which require high- 
fidelity  quantum gates that approximate a unitary operator tailored on 
the basis of a theoretical ansatz. For the experiments considered here, 
the entanglers UENT are composed of a sequence of two-qubit cross- 
resonance gates23. Simulations as a function of entangler phase show 
plateaus of minimal energy error around gate phases that correspond 
to the maximal pairwise concurrence; see Supplementary Information. 
We therefore set the entangler evolution time τ at the beginning of such 
plateaus, to reduce decoherence effects.

In our experiments, the Z rotations are implemented as frame 
changes in the control software24, whereas the X rotations are imple-
mented by appropriately scaling the amplitude of calibrated Xπ pulses, 
using a fixed total time of 100 ns for every single-qubit rotation. The 
cross-resonance gates that compose UENT are implemented by driving 
a control qubit Qc with a microwave pulse that is resonant with a target 
qubit Qt. We use Hamiltonian tomography of these gates to determine 
the strengths of the various interaction terms, and the gate time for 

maximal entanglement23. We set our two-qubit gate times at 150 ns, to 
try to minimize the effect of decoherence without compromising the 
accuracy of the optimization outcome; see Supplementary Information.

After each trial state is prepared, we estimate the associated energy 
by measuring the expectation values of the individual Pauli terms in 
the Hamiltonian. These estimates are affected by stochastic fluctua-
tions due to finite sampling. Different post-rotations are applied after 
trial-state preparation for sampling different Pauli operators (Fig. 1c, d). 
We group the Pauli operators into tensor product basis sets that require 
the same post-rotations. We numerically show that such grouping 
reduces the energy fluctuations, while keeping the same total number 
of samples, thereby reducing the time overhead for energy estimation; 
see Supplementary Information. The energy estimates are then used 
in a gradient descent algorithm that relies on a simultaneous perturba-
tion stochastic approximation (SPSA) to update the control parameters. 
The SPSA algorithm approximates the gradient using only two energy 
measurements, regardless of the dimensions of the parameter space p, 
achieving a level of accuracy comparable to that of standard gradient 
descent methods, in the presence of stochastic fluctuations10. This is 
crucial for optimizing over many qubits and long depths for trial-state 
preparation, enabling us to optimize over a number of parameters as 
large as p =  30.

To address molecular problems on our quantum processor, we rely on 
a compact encoding of the second-quantized fermionic Hamiltonians 
onto qubits. The Hamiltonian for molecular H2 has four spin orbitals, 
representing the spin-degenerate 1s orbitals of the two hydrogen atoms. 
We use a binary tree encoding11 to map the Hamiltonian to a four-
qubit system, and remove the two qubits that are associated with the 
spin parities of the system9. The Hamiltonian for BeH2 is defined on 
the basis of the 1s, 2s and 2px orbitals that are associated with Be, and 
the 1s orbital that is associated with each H atom, for a total of ten spin 
orbitals. We then assume perfect filling of the innermost two 1s spin 
orbitals of Be, after shifting their energies by diagonalizing the non- 
interacting part of the fermionic Hamiltonian. We map the eight- 
spin-orbital Hamiltonian of BeH2 using parity mapping and, as in 
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Figure 1 | Quantum chemistry on a superconducting quantum 
processor. Solving electronic-structure problems on a quantum computer 
relies on mappings between fermionic and qubit operators. a, Parity 
mapping of eight spin orbitals (drawn in blue and red, not to scale) onto 
eight qubits, which are then reduced to six qubits owing to fermionic 
spin and parity symmetries. The length of the bars indicate the parity of 
the spin orbitals that are encoded in each qubit. b, False-coloured optical 
micrograph of the superconducting quantum processor with seven 
transmon qubits. These qubits are coupled via two coplanar waveguide 
resonators (violet) and have individual coplanar waveguide resonators 

for control and read-out. c, Hardware-efficient quantum circuit for trial-
state preparation and energy estimation, shown here for six qubits. For 
each iteration k, the circuit is composed of a sequence of interleaved 
single-qubit rotations Uq,d(θk) and entangling unitary operations UENT 
that entangle all of the qubits in the circuit. A final set of post-rotations 
(I, X− π/2 or Yπ/2) before the qubits are read out is used to measure the 
expectation values of the individual Pauli terms in the Hamiltonian and to 
estimate the energy of the trial state. d, An example of the pulse sequence 
for the preparation of a six-qubit trial state, in which UENT is implemented 
as a sequence of two-qubit cross-resonance gates.
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the case of H2, remove two qubits associated with the spin–parity 
 symmetries, reducing the Hamiltonian to a six-qubit problem that 
encodes eight spin orbitals. A similar approach is used to map LiH 
onto four qubits. The Hamiltonians for H2, LiH and BeH2 at their 
 lowest-energy interatomic distances (bond distance) are given  explicitly 
in Supplementary Information.

The results from an optimization procedure are illustrated in Fig. 2, 
using the Hamiltonian for BeH2 at the interatomic distance of 1.7 Å. 
Although using a large number of entanglers UENT helps to achieve 
better energy estimates in the absence of noise, the combined effect 
of decoherence and finite sampling sets the optimal depth for opti-
mizations on our quantum hardware to 0–2 entanglers. The results 
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Figure 2 | Experimental implementation of six-qubit optimization. The 
minimum energy of the six-qubit Hamiltonian describing BeH2 with an 
interatomic distance of l =  1.7 Å (data points) is plotted along with the 
exact value (black dashed line). For each iteration k, the gradient at each 
control θk is approximated using 1,000 samples for energy estimation  
at θ+k  (blue) and θ−k  (red), which are perturbations to θk along opposite 
directions of a random axis in parameter space. The error bars correspond 
to the standard error of the mean. The inset shows the simultaneous 

optimization of 30 Euler angles that control the trial state preparation. 
Each colour refers to a particular qubit (Q1–Q6; q =  1, 2, …), following the 
colour scheme in Fig. 1. The final energy estimate (green dashed line) is 
obtained using the average angle over the last 25 angle updates (indicated 
by the green dotted arrow), to mitigate the effect of stochastic fluctuations, 
and with a higher number of samples (100,000), to obtain a more accurate 
energy estimation.
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Figure 3 | Application to quantum chemistry. a–c, Experimental results 
(black filled circles), exact energy surfaces (dotted lines) and density plots 
(shading; see colour scales) of outcomes from numerical simulations, 
for several interatomic distances for H2 (a), LiH (b) and BeH2 (c). The 
experimental and numerical results presented are for circuits of depth 
d =  1. The error bars on the experimental data are smaller than the 
size of the markers. The density plots are obtained from 100 numerical 

outcomes at each interatomic distance. The top insets in each panel 
highlight the qubits used for the experiment and the cross-resonance 
gates (arrows, labelled CRc–t; where ‘c’ denotes the control qubit and ‘t’ the 
target qubit) that constitute UENT. The bottom insets are representations 
of the molecular geometry (not to scale). For all the three molecules, 
the deviation of the experimental results from the exact curves is well 
explained by the stochastic simulations.
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The ECT thesis also motivates our focus on quantum mechanics, as 
opposed to hard-to-simulate classical systems such as fluid dynamics or 
protein folding. With these examples the difficulties arise ‘merely’ from 
issues such as separations of scales in time or space, and these in prin-
ciple could be simulated with effort linear in the energy and space-time 
volume of the system. This means that a protein-folding problem which 
would require 1050 steps for a naive simulation is not an instance of a 
family that includes problems requiring 10100 or 101,000 steps. In con-
trast, a quantum-supremacy experiment that barely surpasses our existing  
classical computers would be important in part because it would imply 
that vastly greater separations in computational power are likely to soon 
follow, as we will explore further in the next section.

Complexity-theoretic basis for quantum supremacy
Because quantum supremacy is ultimately about comparison between 
quantum and classical computers, demonstrating it will require some 
computational assumption about the limits to the power of classical 

computers. At a minimum, we need to assume that quantum mecha-
nical systems cannot be simulated efficiently (that is, with polynomial 
overhead) by classical computers. But just as cryptography always needs 
assumptions stronger than P ≠ NP (these classes are defined in Box 3), 
each quantum-supremacy proposal needs its own assumption. Although 
such assumptions must ultimately be at least as strong as the lack of 
efficient classical simulation of quantum computers, we may hope for 
them to be based on different principles and to be believable in their 
own right.

As discussed above, if we use the quantum computer for factoring or 
simulation, then our assumption should simply be that those problems 
are hard for classical computers. Our belief that factoring is hard is 
based on many mathematician-hours put into solving it; on the other 
hand, the best known algorithms are only from about 1990 and are 
substantially faster than brute-force search, so further improvements 
may well exist.

The complexity of quantum simulation is much murkier. One differ-
ence is the great diversity of quantum systems and of methods for treating 
them, which are often adapted to specific features of the system. Another 
is that the complexity of a simulation can also vary with parameters such 
as temperature and coupling strengths in non-obvious ways. Finally, when 
analogue quantum simulators cannot address individual qubits, this limits  
their ability to encode a wide range of problem instances, and makes the 
complexity of the problems they do solve even less clear. Quantum simu-
lators can certainly yield answers about physics that we do not know how 
to find classically; however, our confidence that they cannot be classically 
simulated is rather weak.

We now turn to the modern quantum-supremacy proposals. These are 
often based around sampling problems13 rather than decision problems; 
in the former, the task is to output samples from a desired distribution; 
in the latter, the task is to output a deterministic answer. The strength of 
sampling problems is that, despite working with a restricted model of 
quantum computing (such as boson sampling and low-depth circuits), 
they do not need to assume that this specific model is hard to simulate. 
Indeed, the complexity assumption can be expressed in terms of concepts 
that have been studied since the 1970s and are thought to be hard for 
reasons that do not rely on any beliefs about quantum mechanics. One 
assumption that will work is known as the ‘non-collapse of the polynomial 
hierarchy’, which we explain in Box 3. Another possible assumption is 
that exact counting of exponentially large sets is harder than approximate 
counting. Stronger assumptions are also possible, and these can be used 
to rule out larger classes of classical simulations or in some cases to enable 
more efficient verification of the quantum device.

Why are these complexity assumptions relevant to simulating quantum 
computers? The main idea is to use a technique called ‘post-selection’, 
which refers to the following scenario. A computation, which could be 
either classical or quantum, takes input string x and outputs strings y 
and z. The string y is used to represent the output, and we condition 
(‘post-select’) on the string z taking some fixed value, say 00…0. Many 
experiments post-select in practice (for example, on coincident detection 
events) but usually on events whose probability is not too small. We will 
allow post-selection even on exponentially unlikely outcomes, which 
will make the ability to post-select extremely powerful. The purpose of 
post-selection is twofold. First, an efficient classical simulation of a quan-
tum computation implies that a classical computer with post-selection can 
efficiently simulate a quantum computer with post-selection. However, 
this simulation would contradict our assumption that the polynomial 
hierarchy doesn’t collapse, as we will explain in Box 3. Second, many 
non-universal models of quantum computation become universal once 
post-selection is allowed. Thus even an efficient classical simulation of 
one of these restricted models of quantum computing would lead to the 
same contradictions.

In Box 4 we describe a somewhat indirect argument, which implies 
that an efficient exact classical simulation (we discuss approximate simu-
lations below) of any of these restricted models of quantum computing 
would lead to several surprises, including the collapse of the poly nomial 

BOX 1
Boson sampling
Boson sampling9 is a formalization of the problem of simulating non-
interacting photons in linear optics; see Box 1 Figure below. n coincident 
photons are input into a linear-optical network on m ≫ n modes (usually 
generated at random), with detectors positioned at the output of the 
network. The challenge is to sample from the distribution on detection 
outcomes. Following the initial theoretical proposal of Aaronson and 
Arkhipov9, several experimental groups quickly demonstrated small-scale 
examples of boson sampling experiments, with up to four coincident 
photons in up to six modes46–49. Subsequent work has experimentally 
validated boson sampling, in the sense of implementing statistical tests 
that distinguish the boson sampling distribution from other particular 
distributions34,50. The current records for implementation of arbitrary 
linear-optical transformations are six modes with up to six photons51 or 
nine modes with up to five photons34,50,52.

Initial boson-sampling experiments used single-photon sources based 
on spontaneous parametric downconversion. This is a randomized 
process that has inherently poor scaling with the number of photons, 
requiring exponential time in the number of photons for each valid 
experimental run. A variant of boson sampling known as ‘scattershot’ 
boson sampling has therefore been proposed. This uses many sources, 
each of which produces a photon with some small probability, and it 
is known in which modes a photon has been produced. Scattershot 
boson sampling has been implemented with 6 sources and 13 modes53. 
An alternative approach is to use a high-performance quantum dot 
source52. Challenges faced by experimental implementations of boson 
sampling include handling realistic levels of loss in the network, and 
the possibility of the development of more efficient classical sampling 
techniques.

Box 1 Figure | Diagram of a boson sampling experiment. Photons 
(red waveforms) are injected on the left-hand side into a network of 
beamsplitters (shown black) that is set up to generate a random unitary 
transformation. Photons are detected on the right-hand side according 
to a probability distribution conjectured to be hard to sample from 
classically. Photonic modes are represented by lines, and beamsplitters 
are represented by two lines coming together, corresponding to 
directional couplers in an integrated photonic circuit.
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However, TNS calculations are a two-step process,
where the wave function is obtained first and then used
to calculate physical expectation values. This latter step
requires projection onto a 1D MPS basis, whose dimension
for convergence is found to scale approximately as Dmps ≈
4D2. Once D≳ 15, the evaluation step becomes the more
computationally intensive problem, and here we implement
new methodology (outlined in Sec. SII [20]) by which we
extend the accessible D range.
We begin by presenting results from the 3-site-simplex

(3-PESS) ansatz for all accessible D values. The ground-
state energy, E0ðDÞ, of the nearest-neighbor KHAF is
shown in Fig. 1(a). At large D, our estimate lies below
those obtained from all known techniques other than
DMRG studies of specific clusters, which are not an upper
bound. We remark that our E0ðDÞ values are significantly
lower than those of an SU(2)-invariant TNS analysis [19].
We find that E0ðDÞ converges algebraically with D, as on
the Husimi lattice [57], indicating a gapless ground state
[58]. The power-law form E0ðDÞ ¼ e0 þ aD−α, shown in
Fig. 1(b), delivers our best estimate of the ground-state
energy, e0 ¼ −0.43752ð6ÞJ. Figure 1(c) illustrates the
convergence of E0ðDmpsÞ for selected values of D; we
note that this part of the process is not variational and
comment in detail in Sec. SII of the SM [20]. Optimized fits

to a regime of exponential convergence in Dmps were used
to extrapolate towards the values of E0ðDÞ shown in
Figs. 1(a) and 1(b), and to determine the associated error
bars, on the basis of which we limit our claims of reliability
to D ≤ 25.
One key qualitative property of our PESS wave function

is a finite 120° magnetic order at all finite D values, as
shown in Figs. 2(a) and 2(b). The order parameter, MðDÞ,
varies algebraically with 1=D over the available D range,
tending to zero as D → ∞, as required of a spin liquid.
Figure 2(c) illustrates the convergence of MðDmpsÞ for
D ¼ 15 and 20, where an algebraic form was deduced from
the truncation error, and reliable extrapolations to large
Dmps were obtained only for D ≤ 20.
The Husimi lattice provides essential confirmation of our

results. It possesses the same local physics as the kagome
lattice, but less frustration from longer paths, and it allows
PESS calculations up to D ¼ 260, yielding accurate
extrapolations to the large-D limit [57]. It confirms the
crucial qualitative statement that magnetically ordered
states have the lowest energies for spatially infinite systems

FIG. 1. Ground-state energy of the KHAF. (a) E0 as a function
of D, shown for the 3-PESS and simple-update method up to
D ¼ 25, 3-PESS by full update to D ¼ 13, and 9-PESS with
simple update to D ¼ 15. Shown for comparison are results from
other numerical studies. (b) E0ðDÞ for the 3-PESS ansatz, shown
as a function of 1=D and compared with results obtained for the
Husimi lattice [57]. (c) Convergence of E0ðDÞ as a function of
Dmps, shown for several values of D.

(a)

(b)

(c)

FIG. 2. Staggered magnetization of the KHAF at finiteD. (a)M
as a function of D, shown for the 3-PESS and simple-update
method up to D ¼ 20, 3-PESS by full update to D ¼ 13, and
9-PESS with simple update to D ¼ 15. Shown for comparison
are results obtained for the Husimi lattice [57]. (b) M as a
function of 1=D0.588, the power-law form obtained for the Husimi
lattice. (c) Convergence ofMðDÞ as a function ofDmps, shown for
D ¼ 15 and D ¼ 20.
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The ECT thesis also motivates our focus on quantum mechanics, as 
opposed to hard-to-simulate classical systems such as fluid dynamics or 
protein folding. With these examples the difficulties arise ‘merely’ from 
issues such as separations of scales in time or space, and these in prin-
ciple could be simulated with effort linear in the energy and space-time 
volume of the system. This means that a protein-folding problem which 
would require 1050 steps for a naive simulation is not an instance of a 
family that includes problems requiring 10100 or 101,000 steps. In con-
trast, a quantum-supremacy experiment that barely surpasses our existing  
classical computers would be important in part because it would imply 
that vastly greater separations in computational power are likely to soon 
follow, as we will explore further in the next section.

Complexity-theoretic basis for quantum supremacy
Because quantum supremacy is ultimately about comparison between 
quantum and classical computers, demonstrating it will require some 
computational assumption about the limits to the power of classical 

computers. At a minimum, we need to assume that quantum mecha-
nical systems cannot be simulated efficiently (that is, with polynomial 
overhead) by classical computers. But just as cryptography always needs 
assumptions stronger than P ≠ NP (these classes are defined in Box 3), 
each quantum-supremacy proposal needs its own assumption. Although 
such assumptions must ultimately be at least as strong as the lack of 
efficient classical simulation of quantum computers, we may hope for 
them to be based on different principles and to be believable in their 
own right.

As discussed above, if we use the quantum computer for factoring or 
simulation, then our assumption should simply be that those problems 
are hard for classical computers. Our belief that factoring is hard is 
based on many mathematician-hours put into solving it; on the other 
hand, the best known algorithms are only from about 1990 and are 
substantially faster than brute-force search, so further improvements 
may well exist.

The complexity of quantum simulation is much murkier. One differ-
ence is the great diversity of quantum systems and of methods for treating 
them, which are often adapted to specific features of the system. Another 
is that the complexity of a simulation can also vary with parameters such 
as temperature and coupling strengths in non-obvious ways. Finally, when 
analogue quantum simulators cannot address individual qubits, this limits  
their ability to encode a wide range of problem instances, and makes the 
complexity of the problems they do solve even less clear. Quantum simu-
lators can certainly yield answers about physics that we do not know how 
to find classically; however, our confidence that they cannot be classically 
simulated is rather weak.

We now turn to the modern quantum-supremacy proposals. These are 
often based around sampling problems13 rather than decision problems; 
in the former, the task is to output samples from a desired distribution; 
in the latter, the task is to output a deterministic answer. The strength of 
sampling problems is that, despite working with a restricted model of 
quantum computing (such as boson sampling and low-depth circuits), 
they do not need to assume that this specific model is hard to simulate. 
Indeed, the complexity assumption can be expressed in terms of concepts 
that have been studied since the 1970s and are thought to be hard for 
reasons that do not rely on any beliefs about quantum mechanics. One 
assumption that will work is known as the ‘non-collapse of the polynomial 
hierarchy’, which we explain in Box 3. Another possible assumption is 
that exact counting of exponentially large sets is harder than approximate 
counting. Stronger assumptions are also possible, and these can be used 
to rule out larger classes of classical simulations or in some cases to enable 
more efficient verification of the quantum device.

Why are these complexity assumptions relevant to simulating quantum 
computers? The main idea is to use a technique called ‘post-selection’, 
which refers to the following scenario. A computation, which could be 
either classical or quantum, takes input string x and outputs strings y 
and z. The string y is used to represent the output, and we condition 
(‘post-select’) on the string z taking some fixed value, say 00…0. Many 
experiments post-select in practice (for example, on coincident detection 
events) but usually on events whose probability is not too small. We will 
allow post-selection even on exponentially unlikely outcomes, which 
will make the ability to post-select extremely powerful. The purpose of 
post-selection is twofold. First, an efficient classical simulation of a quan-
tum computation implies that a classical computer with post-selection can 
efficiently simulate a quantum computer with post-selection. However, 
this simulation would contradict our assumption that the polynomial 
hierarchy doesn’t collapse, as we will explain in Box 3. Second, many 
non-universal models of quantum computation become universal once 
post-selection is allowed. Thus even an efficient classical simulation of 
one of these restricted models of quantum computing would lead to the 
same contradictions.

In Box 4 we describe a somewhat indirect argument, which implies 
that an efficient exact classical simulation (we discuss approximate simu-
lations below) of any of these restricted models of quantum computing 
would lead to several surprises, including the collapse of the poly nomial 

BOX 1
Boson sampling
Boson sampling9 is a formalization of the problem of simulating non-
interacting photons in linear optics; see Box 1 Figure below. n coincident 
photons are input into a linear-optical network on m ≫ n modes (usually 
generated at random), with detectors positioned at the output of the 
network. The challenge is to sample from the distribution on detection 
outcomes. Following the initial theoretical proposal of Aaronson and 
Arkhipov9, several experimental groups quickly demonstrated small-scale 
examples of boson sampling experiments, with up to four coincident 
photons in up to six modes46–49. Subsequent work has experimentally 
validated boson sampling, in the sense of implementing statistical tests 
that distinguish the boson sampling distribution from other particular 
distributions34,50. The current records for implementation of arbitrary 
linear-optical transformations are six modes with up to six photons51 or 
nine modes with up to five photons34,50,52.

Initial boson-sampling experiments used single-photon sources based 
on spontaneous parametric downconversion. This is a randomized 
process that has inherently poor scaling with the number of photons, 
requiring exponential time in the number of photons for each valid 
experimental run. A variant of boson sampling known as ‘scattershot’ 
boson sampling has therefore been proposed. This uses many sources, 
each of which produces a photon with some small probability, and it 
is known in which modes a photon has been produced. Scattershot 
boson sampling has been implemented with 6 sources and 13 modes53. 
An alternative approach is to use a high-performance quantum dot 
source52. Challenges faced by experimental implementations of boson 
sampling include handling realistic levels of loss in the network, and 
the possibility of the development of more efficient classical sampling 
techniques.

Box 1 Figure | Diagram of a boson sampling experiment. Photons 
(red waveforms) are injected on the left-hand side into a network of 
beamsplitters (shown black) that is set up to generate a random unitary 
transformation. Photons are detected on the right-hand side according 
to a probability distribution conjectured to be hard to sample from 
classically. Photonic modes are represented by lines, and beamsplitters 
are represented by two lines coming together, corresponding to 
directional couplers in an integrated photonic circuit.
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1. O(N4) Hamiltonian terms 
2. Overhead in mapping fermions to quantum spins 
3. Chemists care more about excitations than we do

We will see this in quantum magnets before quantum chemistry

1. Identify some tasks, useful or not (random circuits, boson sampling…) 
2. Invent a quantum algorithm 
3. Prove there is no classical approach which can match the performance

Quantum supremacy (theoretical computer scientists approach)

However, TNS calculations are a two-step process,
where the wave function is obtained first and then used
to calculate physical expectation values. This latter step
requires projection onto a 1D MPS basis, whose dimension
for convergence is found to scale approximately as Dmps ≈
4D2. Once D≳ 15, the evaluation step becomes the more
computationally intensive problem, and here we implement
new methodology (outlined in Sec. SII [20]) by which we
extend the accessible D range.
We begin by presenting results from the 3-site-simplex

(3-PESS) ansatz for all accessible D values. The ground-
state energy, E0ðDÞ, of the nearest-neighbor KHAF is
shown in Fig. 1(a). At large D, our estimate lies below
those obtained from all known techniques other than
DMRG studies of specific clusters, which are not an upper
bound. We remark that our E0ðDÞ values are significantly
lower than those of an SU(2)-invariant TNS analysis [19].
We find that E0ðDÞ converges algebraically with D, as on
the Husimi lattice [57], indicating a gapless ground state
[58]. The power-law form E0ðDÞ ¼ e0 þ aD−α, shown in
Fig. 1(b), delivers our best estimate of the ground-state
energy, e0 ¼ −0.43752ð6ÞJ. Figure 1(c) illustrates the
convergence of E0ðDmpsÞ for selected values of D; we
note that this part of the process is not variational and
comment in detail in Sec. SII of the SM [20]. Optimized fits

to a regime of exponential convergence in Dmps were used
to extrapolate towards the values of E0ðDÞ shown in
Figs. 1(a) and 1(b), and to determine the associated error
bars, on the basis of which we limit our claims of reliability
to D ≤ 25.
One key qualitative property of our PESS wave function

is a finite 120° magnetic order at all finite D values, as
shown in Figs. 2(a) and 2(b). The order parameter, MðDÞ,
varies algebraically with 1=D over the available D range,
tending to zero as D → ∞, as required of a spin liquid.
Figure 2(c) illustrates the convergence of MðDmpsÞ for
D ¼ 15 and 20, where an algebraic form was deduced from
the truncation error, and reliable extrapolations to large
Dmps were obtained only for D ≤ 20.
The Husimi lattice provides essential confirmation of our

results. It possesses the same local physics as the kagome
lattice, but less frustration from longer paths, and it allows
PESS calculations up to D ¼ 260, yielding accurate
extrapolations to the large-D limit [57]. It confirms the
crucial qualitative statement that magnetically ordered
states have the lowest energies for spatially infinite systems

FIG. 1. Ground-state energy of the KHAF. (a) E0 as a function
of D, shown for the 3-PESS and simple-update method up to
D ¼ 25, 3-PESS by full update to D ¼ 13, and 9-PESS with
simple update to D ¼ 15. Shown for comparison are results from
other numerical studies. (b) E0ðDÞ for the 3-PESS ansatz, shown
as a function of 1=D and compared with results obtained for the
Husimi lattice [57]. (c) Convergence of E0ðDÞ as a function of
Dmps, shown for several values of D.

(a)

(b)

(c)

FIG. 2. Staggered magnetization of the KHAF at finiteD. (a)M
as a function of D, shown for the 3-PESS and simple-update
method up to D ¼ 20, 3-PESS by full update to D ¼ 13, and
9-PESS with simple update to D ¼ 15. Shown for comparison
are results obtained for the Husimi lattice [57]. (b) M as a
function of 1=D0.588, the power-law form obtained for the Husimi
lattice. (c) Convergence ofMðDÞ as a function ofDmps, shown for
D ¼ 15 and D ¼ 20.
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The ECT thesis also motivates our focus on quantum mechanics, as 
opposed to hard-to-simulate classical systems such as fluid dynamics or 
protein folding. With these examples the difficulties arise ‘merely’ from 
issues such as separations of scales in time or space, and these in prin-
ciple could be simulated with effort linear in the energy and space-time 
volume of the system. This means that a protein-folding problem which 
would require 1050 steps for a naive simulation is not an instance of a 
family that includes problems requiring 10100 or 101,000 steps. In con-
trast, a quantum-supremacy experiment that barely surpasses our existing  
classical computers would be important in part because it would imply 
that vastly greater separations in computational power are likely to soon 
follow, as we will explore further in the next section.

Complexity-theoretic basis for quantum supremacy
Because quantum supremacy is ultimately about comparison between 
quantum and classical computers, demonstrating it will require some 
computational assumption about the limits to the power of classical 

computers. At a minimum, we need to assume that quantum mecha-
nical systems cannot be simulated efficiently (that is, with polynomial 
overhead) by classical computers. But just as cryptography always needs 
assumptions stronger than P ≠ NP (these classes are defined in Box 3), 
each quantum-supremacy proposal needs its own assumption. Although 
such assumptions must ultimately be at least as strong as the lack of 
efficient classical simulation of quantum computers, we may hope for 
them to be based on different principles and to be believable in their 
own right.

As discussed above, if we use the quantum computer for factoring or 
simulation, then our assumption should simply be that those problems 
are hard for classical computers. Our belief that factoring is hard is 
based on many mathematician-hours put into solving it; on the other 
hand, the best known algorithms are only from about 1990 and are 
substantially faster than brute-force search, so further improvements 
may well exist.

The complexity of quantum simulation is much murkier. One differ-
ence is the great diversity of quantum systems and of methods for treating 
them, which are often adapted to specific features of the system. Another 
is that the complexity of a simulation can also vary with parameters such 
as temperature and coupling strengths in non-obvious ways. Finally, when 
analogue quantum simulators cannot address individual qubits, this limits  
their ability to encode a wide range of problem instances, and makes the 
complexity of the problems they do solve even less clear. Quantum simu-
lators can certainly yield answers about physics that we do not know how 
to find classically; however, our confidence that they cannot be classically 
simulated is rather weak.

We now turn to the modern quantum-supremacy proposals. These are 
often based around sampling problems13 rather than decision problems; 
in the former, the task is to output samples from a desired distribution; 
in the latter, the task is to output a deterministic answer. The strength of 
sampling problems is that, despite working with a restricted model of 
quantum computing (such as boson sampling and low-depth circuits), 
they do not need to assume that this specific model is hard to simulate. 
Indeed, the complexity assumption can be expressed in terms of concepts 
that have been studied since the 1970s and are thought to be hard for 
reasons that do not rely on any beliefs about quantum mechanics. One 
assumption that will work is known as the ‘non-collapse of the polynomial 
hierarchy’, which we explain in Box 3. Another possible assumption is 
that exact counting of exponentially large sets is harder than approximate 
counting. Stronger assumptions are also possible, and these can be used 
to rule out larger classes of classical simulations or in some cases to enable 
more efficient verification of the quantum device.

Why are these complexity assumptions relevant to simulating quantum 
computers? The main idea is to use a technique called ‘post-selection’, 
which refers to the following scenario. A computation, which could be 
either classical or quantum, takes input string x and outputs strings y 
and z. The string y is used to represent the output, and we condition 
(‘post-select’) on the string z taking some fixed value, say 00…0. Many 
experiments post-select in practice (for example, on coincident detection 
events) but usually on events whose probability is not too small. We will 
allow post-selection even on exponentially unlikely outcomes, which 
will make the ability to post-select extremely powerful. The purpose of 
post-selection is twofold. First, an efficient classical simulation of a quan-
tum computation implies that a classical computer with post-selection can 
efficiently simulate a quantum computer with post-selection. However, 
this simulation would contradict our assumption that the polynomial 
hierarchy doesn’t collapse, as we will explain in Box 3. Second, many 
non-universal models of quantum computation become universal once 
post-selection is allowed. Thus even an efficient classical simulation of 
one of these restricted models of quantum computing would lead to the 
same contradictions.

In Box 4 we describe a somewhat indirect argument, which implies 
that an efficient exact classical simulation (we discuss approximate simu-
lations below) of any of these restricted models of quantum computing 
would lead to several surprises, including the collapse of the poly nomial 

BOX 1
Boson sampling
Boson sampling9 is a formalization of the problem of simulating non-
interacting photons in linear optics; see Box 1 Figure below. n coincident 
photons are input into a linear-optical network on m ≫ n modes (usually 
generated at random), with detectors positioned at the output of the 
network. The challenge is to sample from the distribution on detection 
outcomes. Following the initial theoretical proposal of Aaronson and 
Arkhipov9, several experimental groups quickly demonstrated small-scale 
examples of boson sampling experiments, with up to four coincident 
photons in up to six modes46–49. Subsequent work has experimentally 
validated boson sampling, in the sense of implementing statistical tests 
that distinguish the boson sampling distribution from other particular 
distributions34,50. The current records for implementation of arbitrary 
linear-optical transformations are six modes with up to six photons51 or 
nine modes with up to five photons34,50,52.

Initial boson-sampling experiments used single-photon sources based 
on spontaneous parametric downconversion. This is a randomized 
process that has inherently poor scaling with the number of photons, 
requiring exponential time in the number of photons for each valid 
experimental run. A variant of boson sampling known as ‘scattershot’ 
boson sampling has therefore been proposed. This uses many sources, 
each of which produces a photon with some small probability, and it 
is known in which modes a photon has been produced. Scattershot 
boson sampling has been implemented with 6 sources and 13 modes53. 
An alternative approach is to use a high-performance quantum dot 
source52. Challenges faced by experimental implementations of boson 
sampling include handling realistic levels of loss in the network, and 
the possibility of the development of more efficient classical sampling 
techniques.

Box 1 Figure | Diagram of a boson sampling experiment. Photons 
(red waveforms) are injected on the left-hand side into a network of 
beamsplitters (shown black) that is set up to generate a random unitary 
transformation. Photons are detected on the right-hand side according 
to a probability distribution conjectured to be hard to sample from 
classically. Photonic modes are represented by lines, and beamsplitters 
are represented by two lines coming together, corresponding to 
directional couplers in an integrated photonic circuit.
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Bonus: a positive feedback loop

Quantum spin models 
e.g. Kitaev materials

Better quantum computer 
with fault tolerant qubits 

Studying quantum magnets with quantum computer  
helps building a better quantum computer



What we want to solve What current technology offers

to infinity and beyond

However, there is a HUGE GAP in the qubit number

Variational quantum eigensolver with fewer qubits
Jin-Guo Liu, Yi-Hong Zhang, Yuan Wan, LW, 1902.02663

a handful of qubits



Initial  
state
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qubits

\Huggins, Patel, Whaley, Stoudenmire, 1803.11537
see also Cramer et al, Nat. Comm. ’10

Tensor network inspired quantum circuit architecture

A qubit efficient variational circuit
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Matrix Product State with exponentially large bond dimensions
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Matrix Product State with exponentially large bond dimensions
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A concrete example

Prepare a 5-qubit cluster state using only 2 qubits

Any measurement outcome is identical on these two circuits

Key fact: the target state has low quantum entanglement

Barrett et al, PRL ’13, Eichler et al, PRX ‘15

Cavity QED produces continuous MPS of  photons

The calculation of two-point correlation functions requires
the use of numerical methods such as the quantum
Monte Carlo method or DMRG [10]. The fact that this
model is well understood makes it an ideal test case to
benchmark the as yet unexplored quantum variational
algorithm recently proposed by Barrett et al. [12].
In the experiments presented here, we prepare continu-

ous matrix product states jϕðλÞi [10,12] as microwave
radiation fields propagating along a one-dimensional
transmission line; see Fig. 1(b). The radiation fields are
generated by an ancillary quantum system—in our case a
tunable circuit QED system [24]—which is coupled with
rate κ to the transmission line. Notably, any radiation field
generated in this way is described by a continuous matrix
product state [12] with a bond dimension equal to the
number of energy levels participating in the dynamics of

the ancillary quantum system [9]. We vary the quantum
state jϕðλÞi by tuning a set of two external variational
parameters λ ¼ ðα;ΩÞ. Here, Ω is the drive rate of a
coherent field applied resonantly to the upper eigenmode
of the coupled system and α is the effective anharmonicity
of the driven mode. Tunability of the effective anharmo-
nicity α is experimentally achieved by employing a qubit
of which both the frequency and its coupling to the cavity
are adjustable in situ during the experiment [25]; see
Appendix A 5 for details.
The variational ground state of the Lieb-Liniger

Hamiltonian Ĥ is found by evaluating the expectation
value Eλ ¼ hϕðλÞjĤjϕðλÞi ¼ hN̂iþ hT̂iþ hŴi and mini-
mizing Eλ with respect to the variational states jϕðλÞi
created and characterized in our experiments. The con-
trolled cavity QED system is thus used solely to create
characteristic variational states jϕðλÞi, while the expect-
ation value of the simulated Hamiltonian is determined by
the measured correlation functions of the created states
jϕðλÞi, as discussed below. Any model of which the
corresponding expectation values can be measured is
therefore accessible with this approach. For example,
simulated Hamiltonians could include terms with finite-
range interactions

R
dxwðx − yÞψ̂†

xψ̂
†
yψ̂yψ̂x, symmetry-

breaking terms ∼ðψ̂2
x þ H:c:Þ [26], or terms composed of

multiple coupled fields [27]. Multibody interactions could
be incorporated by measuring higher-order correlation
functions of the created variational states. In general, the
controlled quantum system then needs to become suffi-
ciently complex and flexible in order to be capable of
generating states capturing the relevant ground-state
physics.
Given the photonic realization of jϕðλÞi, the measure-

ment of Eλ translates into the measurement of photon
correlation functions. Spatial correlations in the field ψ̂x are
mapped onto time correlations in the cavity output field
âoutðtÞ by identifying ψ̂x ¼ âoutðt ¼ x=sÞ=

ffiffiffi
s

p
, where the

scale parameter s ¼ x=t acts as an additional variational
parameter [12]. Entanglement in the matrix product states
thus corresponds to entanglement between photons emitted
from the cavity at different times. According to this
correspondence, Eλ for the Lieb-Liniger Hamiltonian
can be calculated from the measured first- and second-
order correlation functions Gð1ÞðτÞ≡ hâ†outðτÞâoutð0Þi and
Gð2ÞðτÞ≡ hâ†outð0Þâ†outðτÞâoutðτÞâoutð0Þi [28], which can be
determined experimentally by measuring the cavity output
fields. More specifically, the average kinetic energy
hT̂i ¼ s−3

R
dωω2 ~Gð1ÞðωÞ is calculated from the Fourier

transform of the first-order correlation function ~Gð1ÞðωÞ,
the interaction energy is hŴi ¼ s−2vGð2Þð0Þ, and the
potential energy is given by the average photon flux
hN̂i ¼ −s−1μGð1Þð0Þ.
The presented variational approach thus crucially relies

on the ability to generate and probe a wide range of

FIG. 1. Schematic of the interacting Bose gas and the principle
of the quantum variational algorithm. (a) Bosonic particles with
kinetic energy T̂ are propagating in one dimension along the x
axis. Repulsion between particles mediates an interaction energy
Ŵ. The particle density ρ of the gas is controlled by the chemical
potential μ. (b) We experimentally simulate the ground state of Ĥ
by employing a variational minimization procedure. A tunable
cavity QED system is used to generate radiation fields emulating
continuous matrix product states jϕðλÞi in a 1D transmission line.
The average energy Eλ ¼ hϕðλÞjĤjϕðλÞi of the simulated
Hamiltonian is experimentally determined from measured corre-
lation functions. External control fields λ are used as variational
parameters. (c),(d) Examples of first-order Gð1ÞðτÞ and second-
order gð2ÞðτÞ correlation functions measured (dots) in super-
conducting circuits and simulated (solid lines) using a master
equation approach for the indicated drive rates Ω, effective
anharmonicity α=2π ¼ 5.2 MHz, and cavity decay rate
κ=2π ¼ 2.2 MHz.

C. EICHLER et al. PHYS. REV. X 5, 041044 (2015)
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Quantum circuit variational ansatz 

• Variational ansatz given by circuit 
architecture design 

• Imposing physical U(1) and SU(2) 
symmetries is straightforward  

• A variational family of resonating-
valanced-bond states (Liang et al ’88) 
which is hard to sample classically
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One can actually perform the experiment with 6 qubits  
The ansatz is an MPS with bond dimension 25 

There are 17 qubits in this circuit

The RVB quantum circuit in the expanded view



97% ground state fidelity for 4x4 frustrated Heisenberg model with only 6 qubits 

Simulation results



Spin-spin correlations

Read out the physics of  a 4x4=16 quantum spins using only 6 qubits
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How to optimize the 
quantum circuit ?



How did they optimize the 
quantum circuit ?

Scan 1000 values of the single  
variational parameter

Stochastic gradient descend  
with random perturbation

are computed with Gaussian process regression [47], which
interpolates the energy surface based on local errors from
the shot-noise-limited expectation value measurements in
Fig. 2(a).
Errors in our simulation as a function of R are shown in

Fig. 3(b). The curve in Fig. 3(b) becomes nearly flat past
R ¼ 2.5 Å because the same angle is experimentally
chosen for each R past this point. Note that the exper-
imental energies are always greater than or equal
to the exact energies due to the variational principle.
Figure 3(b) shows that VQE has substantial robustness to
systematic errors. While this possibility had been pre-
viously hypothesized [23], we report the first experimen-
tal signature of robustness and show that it allows for a
successful computation of the dissociation energy. By
performing (inefficient) classical simulations of the circuit
in Fig. 1, we identify the theoretically optimal value of θ at
each R . In fact, for this system, at every value of R there
exists θ such that E ðθÞ ¼ E 0. However, due to experi-
mental error, the theoretically optimal value of θ differs
substantially from the experimentally optimal value of θ.
This can be seen in Fig. 3(b) from the large discrepancy
between the green diamonds (experimental energy errors
at theoretically optimal θ) and the red dots (experimental
energy errors at experimentally optimal θ). The exper-
imental energy curve at theoretically optimal θ shows an
error in the dissociation energy of 1.1 × 10−2 hartree,
which is more than an order of magnitude worse. One
could anticipate this discrepancy by looking at the raw
data in Fig. 2(a), which shows that the experimentally
measured expectation values deviate considerably from
the predictions of theory. In a sense, the green diamonds
in Fig. 3(b) show the performance of a nonvariational

algorithm, which in theory gives the exact answer, but in
practice fails due to systematic errors.

III. PHASE ESTIMATION ALGORITHM

We also report an experimental demonstration of the
original quantum algorithm for chemistry [2]. Similar to
VQE, the first step of this algorithm is to prepare the system
register in a state having good overlap with the ground state
of the Hamiltonian H. In our case, we begin with the
Hartree-Fock state jϕi. We then evolve this state under H
using a Trotterized approximation to the time-evolution
operator. The execution of this unitary is controlled on an
ancilla initialized in the superposition state ðj0iþ j1iÞ=

ffiffiffi
2

p
.

The time-evolution operator can be approximated using
Trotterization [34] as

e−iHt ¼ e−it
P

γ
gγHγ ≈UTrotðtÞ≡

"Y
γ
e−igγHγ t=ρ

#
ρ
; ð5Þ

where the Hγ are local Hamiltonians as in Eq. (1) and the
error in this approximation depends linearly on the time
step ρ−1 [34]. Application of the propagator induces a
phase on the system register so that

e−iHtjϕi ¼
"X

n

e−iE ntjnihnj
#
jϕi ¼

X

n

ane−iE ntjni; ð6Þ

where jni are eigenstates of the Hamiltonian such that
Hjni ¼ E njni and an ¼ hnjϕi. By controlling this evolu-
tion on the ancilla superposition state, one entangles the
system register with the ancilla. Accordingly, by measuring
the phase between the j0i state and j1i state of the ancilla,

FIG. 2. Variational quantum eigensolver: raw data and computed energy surface. (a) Data showing the expectation values of terms in
Eq. (1) as a function of θ, as in Eq. (3). Black lines nearest to the data show the theoretical values. While such systematic phase errors
would prove disastrous for PEA, our VQE experiment is robust to this effect. (b) Experimentally measured energies (in hartree) as a
function of θ and R . This surface is computed from (a) according to Eq. (4). The white curve traces the theoretical minimum energy; the
values of theoretical and experimental minima at each R are plotted in Fig. 3(a). Errors in this surface are given in Fig. 6.
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the case of H2, remove two qubits associated with the spin–parity 
 symmetries, reducing the Hamiltonian to a six-qubit problem that 
encodes eight spin orbitals. A similar approach is used to map LiH 
onto four qubits. The Hamiltonians for H2, LiH and BeH2 at their 
 lowest-energy interatomic distances (bond distance) are given  explicitly 
in Supplementary Information.

The results from an optimization procedure are illustrated in Fig. 2, 
using the Hamiltonian for BeH2 at the interatomic distance of 1.7 Å. 
Although using a large number of entanglers UENT helps to achieve 
better energy estimates in the absence of noise, the combined effect 
of decoherence and finite sampling sets the optimal depth for opti-
mizations on our quantum hardware to 0–2 entanglers. The results 
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Figure 2 | Experimental implementation of six-qubit optimization. The 
minimum energy of the six-qubit Hamiltonian describing BeH2 with an 
interatomic distance of l =  1.7 Å (data points) is plotted along with the 
exact value (black dashed line). For each iteration k, the gradient at each 
control θk is approximated using 1,000 samples for energy estimation  
at θ+k  (blue) and θ−k  (red), which are perturbations to θk along opposite 
directions of a random axis in parameter space. The error bars correspond 
to the standard error of the mean. The inset shows the simultaneous 

optimization of 30 Euler angles that control the trial state preparation. 
Each colour refers to a particular qubit (Q1–Q6; q =  1, 2, …), following the 
colour scheme in Fig. 1. The final energy estimate (green dashed line) is 
obtained using the average angle over the last 25 angle updates (indicated 
by the green dotted arrow), to mitigate the effect of stochastic fluctuations, 
and with a higher number of samples (100,000), to obtain a more accurate 
energy estimation.
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Figure 3 | Application to quantum chemistry. a–c, Experimental results 
(black filled circles), exact energy surfaces (dotted lines) and density plots 
(shading; see colour scales) of outcomes from numerical simulations, 
for several interatomic distances for H2 (a), LiH (b) and BeH2 (c). The 
experimental and numerical results presented are for circuits of depth 
d =  1. The error bars on the experimental data are smaller than the 
size of the markers. The density plots are obtained from 100 numerical 

outcomes at each interatomic distance. The top insets in each panel 
highlight the qubits used for the experiment and the cross-resonance 
gates (arrows, labelled CRc–t; where ‘c’ denotes the control qubit and ‘t’ the 
target qubit) that constitute UENT. The bottom insets are representations 
of the molecular geometry (not to scale). For all the three molecules, 
the deviation of the experimental results from the exact curves is well 
explained by the stochastic simulations.
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Differentiable programing is the engine of  deep learning 
So it will be for variational quantum circuit optimization

Scales to >1 billion parameters

The lesson from deep learning



Parametrized gate of the form

e− iθ
2 Σ Σ2 = 1 with

eg, X, Y, Z, CNOT, SWAP…
∇⟨H⟩θ = (⟨H⟩θ+π/2 − ⟨H⟩θ−π/2)/2

Differentiable quantum circuits

Unbiased gradient estimator measured on the quantum circuit

Li et al, PRL ’17, Mitarai et al, PRA  ’18       
J.-G.Liu, LW, PRA ’18, Xanadu, PRA ‘19



Optimization with noisy gradient

VQE encounters the same type of  stochastic optimization in deep learning
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VQE encounters the same type of  stochastic optimization in deep learning
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Writing software 2.0 by gradient search in the program space 
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https://medium.com/@karpathy/software-2-0-a64152b37c35• Computationally homogeneous

Benefits of Software 2.0 

• Simple to bake into silicon

• Constant running time

• Constant memory usage

• Highly portable & agile

• Modules can meld into an optimal whole

• Better than humans 

Andrej Karpathy
Director of AI at Tesla. Previously Research Scientist at OpenAI and PhD student 
at Stanford. I like to train deep neural nets on large datasets.
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A method to study strongly interacting quantum many-body systems at and away from criticality
is proposed. The method is based on a MERA-like tensor network that can be e�ciently and reliably
contracted on a noisy quantum computer using a number of qubits that is much smaller than the
system size. We prove that the outcome of the contraction is stable to noise and that the estimated
energy upper bounds the ground state energy. The stability, which we numerically substantiate,
follows from the positivity of operator scaling dimensions under renormalization group flow. The
variational upper bound follows from a particular assignment of physical qubits to di↵erent locations
of the tensor network plus the assumption that the noise model is local. We postulate a scaling
law for how well the tensor network can approximate ground states of lattice regulated conformal
field theories in d spatial dimensions and provide evidence for the postulate. Under this postulate,
a O(logd(1/�))-qubit quantum computer can prepare a valid quantum-mechanical state with energy
density � above the ground state. In the presence of noise, � = O(✏ logd+1(1/✏)) can be achieved,
where ✏ is the noise strength.

I. INTRODUCTION

Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.

Quantum
Processor

Classical
Optimizer

Energy
Lowered

Energy
Measured

FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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A method to study strongly interacting quantum many-body systems at and away from criticality
is proposed. The method is based on a MERA-like tensor network that can be e�ciently and reliably
contracted on a noisy quantum computer using a number of qubits that is much smaller than the
system size. We prove that the outcome of the contraction is stable to noise and that the estimated
energy upper bounds the ground state energy. The stability, which we numerically substantiate,
follows from the positivity of operator scaling dimensions under renormalization group flow. The
variational upper bound follows from a particular assignment of physical qubits to di↵erent locations
of the tensor network plus the assumption that the noise model is local. We postulate a scaling
law for how well the tensor network can approximate ground states of lattice regulated conformal
field theories in d spatial dimensions and provide evidence for the postulate. Under this postulate,
a O(logd(1/�))-qubit quantum computer can prepare a valid quantum-mechanical state with energy
density � above the ground state. In the presence of noise, � = O(✏ logd+1(1/✏)) can be achieved,
where ✏ is the noise strength.

I. INTRODUCTION

Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.
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FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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A method to study strongly interacting quantum many-body systems at and away from criticality
is proposed. The method is based on a MERA-like tensor network that can be e�ciently and reliably
contracted on a noisy quantum computer using a number of qubits that is much smaller than the
system size. We prove that the outcome of the contraction is stable to noise and that the estimated
energy upper bounds the ground state energy. The stability, which we numerically substantiate,
follows from the positivity of operator scaling dimensions under renormalization group flow. The
variational upper bound follows from a particular assignment of physical qubits to di↵erent locations
of the tensor network plus the assumption that the noise model is local. We postulate a scaling
law for how well the tensor network can approximate ground states of lattice regulated conformal
field theories in d spatial dimensions and provide evidence for the postulate. Under this postulate,
a O(logd(1/�))-qubit quantum computer can prepare a valid quantum-mechanical state with energy
density � above the ground state. In the presence of noise, � = O(✏ logd+1(1/✏)) can be achieved,
where ✏ is the noise strength.
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Recently, there has been an impressive amount of
growth in quantum technology. Planar superconducting
qubit architectures with error rates below the fault tol-
erance threshold [1] have been reported [2, 3]. Ion traps
have demonstrated an error rate that is even an order of
magnitude lower [4]. Qubits based on topologically pro-
tected Majorana fermions have been reported as well [5].
If these devices can be scaled up while maintaining er-
ror rates below the fault tolerance threshold, it would be
possible to construct a large-scale fault tolerant quantum
computer.

These are encouraging developments, but we should
be mindful of the remaining challenges. In order to per-
form fault tolerant quantum computation, one necessar-
ily needs to incur a rather large error correction over-
head. In the the leading surface code architecture [1],
the overhead scales polylogarithmically with the size of
the computation. This amounts to a modest increase in
the number of requisite physical qubits, in the asymptotic
limit in which the size of the computation becomes large.
However, for solving practical problems of interest, the
estimated number of extra qubits usually is a few orders
of magnitude larger than the number of requisite logi-
cal qubits. For example, in order to break the existing
RSA-2048 cryptosystem, assuming a physical noise rate
of 10�3, one would need roughly 103 physical qubits per
logical qubit [6]. This is likely to pose a practical chal-
lenge in implementing large-scale quantum algorithms in
the near term.

Until we overcome these challenges, we will be left with
devices that are too large to classically simulate, yet not
large enough to implement full-scale fault tolerant quan-

tum computation. Can we use nevertheless these devices
to solve any outstanding problems in physics?
We believe there are numerous opportunities in this di-

rection, especially for studying strongly interacting quan-
tum many-body systems at low energy. Specifically, we
would like to argue that such a noisy quantum device
can be used as a highly e�cient machine for computing
the energy in variational calculations; see FIG. 1. In this
paradigm, we view the quantum device as an abstract
machine from which expectation values of various observ-
ables, e.g., energy or magnetization, can be measured.
The measured energy is fed into a classical optimizer.
The optimizer updates the parameters of the quantum
device to lower the energy. This process is repeated until
convergence.
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FIG. 1. Energy estimated from a quantum processor is fed
into a classical computer. Based on the measured values of
energy at previous iterations, the classical computer updates
the parameter of the quantum processor.

This paradigm originated from the quantum chemistry
community [7]; see also Ref. [8] for a related work on the
Hubbard model. In their context, a quantum processor
consisting of n qubits represents a state of a molecule con-
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Be prepared for Quantum Software 2.0
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刘⾦金金国 Jin-Guo Liu: NJU—>IOP—> ???

https://github.com/QuantumBFS/Yao.jl

• Strong focus on variational quantum algorithms 
• Differentiable programming of quantum circuits 
• Batch parallelization with GPU acceleration

Features:
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Jin-Guo Liu, Yi-Hong Zhang, Yuan Wan, LW, 1902.02663

Variational quantum eigensolver with fewer qubits


