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Deep Neural Network and RG
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Goodfellow, Bengio, Courville, http://www.deeplearningbook.org/
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Abstract: Renormalization group methods, which analyze the way in which the effective behavior of a system depends on the
scale at which it is observed, are key to modern condensed-matter theory and particle physics. The aim of this paper is to
compare and contrast the ideas behind the renormalization group (RG) on the one hand and deep machine learning on the
other, where depth and scale play a similar role. In order to illustrate this connection, we review a recent numerical method
based on the RG---the multiscale entanglement renormalization ansatz (MERA)---and show how it can be converted into a
learning algorithm based on a generative hierarchical Bayesian network model. Under the assumption---common in physics---
that the distribution to be learned is fully characterized by local correlations, this algorithm involves only explicit evaluation of
probabilities, hence doing away with sampling.

arxiv:1301.3124
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Review: It seems to me like there could be an interesting connection between approximate inference in graphical models
and the renormalization methods.

There is in fact a long history of interactions between condensed matter physics and graphical models. For example, it is well
known that the loopy belief propagation algorithm for inference minimizes the Bethe free energy (an approximation of the
free energy in which only pairwise interactions are taken into account and high-order interactions are ignored). More
generally, variational methods inspired by statistical physics have been a very popular topic in graphical model inference.

The renormalization methods could be relevant to deep architectures in the sense that the grouping of random variable
resulting from a change of scale could be be made analogous with the pooling and subsampling operations often used in
deep models.

It's an interesting idea, but it will probably take more work (and more tutorial expositions of RG) to catch the attention of this
community.
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A Common Logic to Seeing Cats and Cosmos
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There may be a universal logic to how physicists, computers and brains tease out important features from
among other irrelevant bits of data.

“An exact mapping between the Variational Renormalization Group
and Deep Learning”, Mehta and Schwab, 1410.3831



‘Exact Mapping”

Decimation Deep Architecture
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Harsh comments below the Quanta

Magazine article
Noah sa

I just spend an hour reading Mehta-Schwab paper from the beginning to end. Let me say that “A
Common Logic to Seeing Cats and Cosmos” is a sensationalist article about a trivial paper, which
will have no impact whatsoever. The whole M-S paper is based on the fact that couplings of two
systems appear in more than one context and that distributions can sometimes appear as
marginal distributions on product spaces. There is no one-to-one mappings between
renormalization group (RG) scheme of Kadanoff and Restricted Boltzmann Machines (RBM) in
Deep Neural Networks (DNN) in their paper. What they show is that RBM can be represented as a
RG scheme with a very specific choice of coupling function T in equation (18). Conveniently, this
coupling function depends on the Hamiltonian of the spin system, which it normally should not.
Equivalence in equations (8) and (9) is also not correct. Condition (9) of course implies that the
scheme is exact, but not the other way around, unless the authors make some implicit
assumptions about coupling function T not mentioned in the paper. The paper contains no non-
trivial ideas, it does not “open up a door to something very exciting”, and I will not hold my breath
expecting new breakthroughs because of this connection.

https://www.quantamagazine.org/20141204-a-common-logic-to-seeing-cats-and-cosmos/




Dictionary: RG vs Deep Learning

Property Variational RG Deep Belief
Networks
How input distribution Hamiltonian defining Data samples drawn
IS defined P(v) from P(v)
How interactions are T(v,h) E(v,h)
defined
Exact transformation KL divergence
Tr.e'™M =1 between P(v) and
variational distribution
IS zero
Approximations Minimize or bound Minimize the KL
free energy divergence
differences
Method Analytic (mostly) Numerical
What happens under Relevant operators  New features emerge
coarse-graining grow/irrelevant shrink

From Schwab’s talk at Pl: http://pirsa.org/displayFlash.php?id=16080006
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More on the DL-RG Connections

“Why does deep and cheap learning work so well
Lin, Tegmark, Rolnick, 1608.08225

Comment on the above paper, Schwab and Mehta,
1609.03541

PCA meets RG, Bradde and Bialek, 1610.09733

Mutual information RG, Koch-Jdanusz and Ringel,
1704.06279

Media coverage/blog posts/student term papers etc



Physics-DL connection IS more
general than we thought

Variational Mean Field Tensor Networks

Monte Carlo Methods Quantum Computing

R




Multi-Scale Entanglement
Renormalization Ansatz

Vidal 2006
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Vidal 2006



MERA as a quantum circuit
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Neural Network Renormalization Group

Physical variables
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Neural Network Renormalization Group
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Neural Network Renormalization Group
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Neural Network Renormalization Group
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Bljector Block

Bijective & Differentiable map, i.e., Diffeomorphism
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- Zi[S(Z<)]i Normalizing flow, Rezende et al,1505.05770
Special case: Real NVP, Dinh et al,1605.08803



Bljector Block

Bijective & Differentiable map, i.e., Diffeomorphism

Arbitrary
neural nets
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INnference

Data space gl (x) =12 Latent space

Real NVP, Dinh et al,1605.08803



(Generate

Data space x = g(z) Latent space

Real NVP, Dinh et al,1605.08803



Bijectors form a group

x = g(2)
g:...ogzogl

Modular design Flexible blocks and stacking



‘Disentangler” only architecture
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"‘Decimator” only architecture
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"‘Decimator” only architecture




"‘Decimator” only architecture
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"‘Decimator” only architecture

A B
I(A: B)=1I(a:b) Mutual Information Bottleneck




Probability Density £stimation
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Probability Density Distillation

Learn from the data generated by the network itself

Lo = f dx go(x) [In go(x) — In 7(x)]



Probability Density Distillation

Learn from the data generated by the network itself

Lo = f dx go(x) [In go(x) — In 7(x)]
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Probability Density Distillation

Learn from the data generated by the network itself

Lo = f dx go(x) [In go(x) — In 7(x)]

Negentropy Energy



Probability Density Distillation

Learn from the data generated by the network itself

Lo = f dx go(x) [In go(x) — In 7(x)]

“Variational Negentropy  Energy
Free Energy”



Probability Density Distillation

Learn from the data generated by the network itself

Lo = f dx go(x) [In go(x) — In 7(x)]

“Variational Negentropy  Energy
Free Energy”

Z:fdxn(x) Partition function



Probability Density Distillation

Learn from the data generated by the network itself

Lo = f dx go(x) [In go(x) — In 7 (%))

A

“Variational Negentropy  Energy
Free Energy”

Lo+1nZ = KL(qg(x) 7%")) > ()

The loss function is lower bounded by the
physical free energy (Gibbs-Bogoliubov-Feynman inequality)



"Reparametrization trick”

ow to compute the gradient w.r.t random sampling ?

Ly= E |Ing(ge(z)) — Inn(ge(z))]

z2~p(2) \ A

Sample from the Network parameters
prior distribution

-nd-to-end training using back-propagation



Interlude: WaveNet Story

generated signal

Output
Dilation = 8
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Dilation = 2

Hidden Layer
Dilation = 1

Input

INnput noise

Given a parallel WaveNet student pg(a) and WaveNet teacher p () which has been trained on a
dataset of audio, we define the Probability Density Distillation loss as follows:

Dxv (Ps||Pr) = H(Ps,Pr) — H(Ps) (6)

b D Mind https://deepmind.com/blog/wavenet-generative-model-raw-audio/ 1609.03499
eepiviin https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/ 1711.10433



https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/
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Demo: Ising model
1 T
7(s) :exp(is Ks)

1
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Demo: Ising model
1 T
7(s) :exp(is Ks)

1
decouple oc fdx exp (—ExT (K +al) ' x+ sTx)

4 i )
frace out s m(x) = exp (—ExT (K + cxI)_1 x) l_[ cosh(x;)
\_ i J

x (O _,..\—1 continuous dual
s g m(s|x) = 1_[ (1 Te ) of the Ising model

“Gaussian-Bernoulli Boltzmann Machine” /Zhang, Sutton, Storkey, Ghahramani, NIPS 2012



Generated Samples
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X's are continuous fields dual to Ising spins



Variational Loss
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Variational Loss

Exact lower bound -In(Z)

) (thanks to Onsager)
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Renormalized
Collective Variables

(a) (b) (C)

o e — |

6540321013 543015 4 oo 3
Phvsical
2X2 Ax4 Y
Variables

Also know their effective couplings
=> renormalized energy function



Wander in the Latent Space
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Wander in the Latent Space
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Wander in the Latent Space



Wander in the Latent Space

Arithmetics of the “smile vector”

White, 1609.04468 implemented using the variational
autoencoder by Kingma and Welling,1312.6114



How IS It useful ?

Automatically identify collective variables
(metadynamics molecular simulation)

Automatically derive eftective field theory
(free energy surface)

Monte Carlo update proposals




Sampling in the latent space

Change-of-variables in a learnable way

g ox\|
7 = f dx@(x)]: f dz|m(g(z)) det(—)
A . 0z )|,
Physical Latent variable
Prob. Dist. Prob. Dist.

Latent space Is less correlated,
therefore, easier to sample




Metropolized Independent Sampler

Acceptance rate with detalled balance condition

q(x)| %(x’T]
qx)] | 7x)

A(x — x') = min [1,

* Unbiased physics even for
impertect proposals Propose Physical
* Proposals are independent Ratio Probability
Surrogate energy function: Trainable transition kernel:
Li Huang and LW, 1610.02746 Song, Zhao, Ermon, 1706.07561

Liu, Qi, Meng, Fu, 1610.03137 Levy, Hoffman, Sohl-Dickstein, 1711.09268



Remarks on TNS Connection

 \What we had is a classical downgrade of MERA

(Bény 2013)

Probability Density~ Quantum Wavefuntion

Classical Mutual Information ~ Entanglement Entropy

"‘Decorrelator” ~ Disentangler

Decimator~Isometry

Bijector~Unitary

* Deep Learning machinery provides structural

* \We give back to

they doing (and hopefully, how

DL understanc

flexibility, modular abstraction, end-to-end training

iIngs of what are

0 do better)



Max pooling

Remarks on DL

Old Wisdoms New Insights
Pooling layer in ConvNets Dialed convolution + Factor
~ Decimation out layers = Decimation
Hidden nodes in RBM/DBN Kept latent variables =
~ Renormalized Variables Renormalized Variables

125
to t1 to t3 tg ts tg t7 |ts




Spherical chicken Animals
IN vacuum In the wild

VGG-19 34-layer plain 34-layer residual
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Here we are

i g
<~§<-§

Spherical chicken Animals
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Simplified, but not oversimplified model with
balanced interpretability and expressibility




Remarks on RG

e Convention

ally, RG is a semi-group, not a group

* NeuralRG builds on bijectors, hence a group
(coarse-graining due to the multiscale structure)

e Probabilistic (Jona-Lasinio 75’) anc

(Apenko 09') Views on RG (same
tensor networks)

e Diffeomorp

Information

‘heory

IS true for neu

ral &

nism does not change topology of the

manifolds, -

herefore, may be limited.



The Universe as a Generative Model

RG = Infer the
Effective Field Theory

Thank you!



