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Figure 2: Example of Figure 1 represented as a Bayesian network (only two layers are represented).
The bottom nodes are observed. Note that the graph is truncated, as the nodes of �2 must be linked
to the next layer which is not represented, as well as to each other, in the same manner as the two
layers below it.

Figure 3: Stochastic maps involved in the last two steps of the computation of the marginal state
on 3 consecutive output sites. The lines ending abruptly indicates that the corresponding variable
is summed over. The “past” of any region of �0 of size L always involves just 3 sites before level
�[log2(L)].

3 Learning CORA

The causal properties inherent in the definition of MERA/CORA imply that a marginal over any
finite group of L sites can be computed (explicitly, i.e., without sampling) in a time of order
eL log(N). Indeed, due to the particular causal structure of the maps ⇡j , the past of any set of
sites of �j , namely those sites of �j+1 on which their values depend explicitly through ⇡j , always
ends up involving a constant number of sites independent of N (and generally manageably small).
This is illustrated in Figure 3.

In the quantum physical setting for which MERA was introduced, the state that we want to represent
is not defined by samples, but instead by a Hamiltonian, or energy function, that it minimizes,
i.e., the cost function itself. Most often, the Hamiltonians considered are local, which implies that
the evaluation of their expectation only requires the use of marginal states over small clusters of
neighboring sites. Therefore the cost function can be evaluated efficiently and exactly.

Such a procedure can be adapted to a situation where, instead of being handed the Hamiltonian, we
are given samples from the unknown distribution: the training data. In physics, this situation presents
itself when an experimentalists wants to reconstruct a state that he has access to only through exper-
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“An exact mapping between the Variational Renormalization Group 
and Deep Learning”, Mehta and Schwab, 1410.3831  
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FIG. 2. RG and deep learning in the one-dimensional Ising Model. (A) A decimation based renormalization trans-
formation for the ferromagnetic 1-D Ising model. At each step, half the spins are decimated, doubling the effective lattice
spacing. After, n successive decimations, the spins can be described using a new 1-D Ising models with a coupling Jn between
spins. Couplings at a given layer are related to couplings at a previous layer through the square of the hyberbolic tangent
function. (B) Decimation-based renormalization transformations can also be realized using the deep architecture where the
weights between the n + 1 and n-th hidden layer are given by Jn. (C) Visualizing the renormalization group flow of the
couplings for 1-D Ferromagnetic Ising model. Under four successive decimations or equivalently as we move up four layers in
the deep architecture, the couplings (marked by red dots) get smaller. Eventually, the couplings are attracted to stable fixed
point J = 0.

the two approaches employ distinct variational approxi-
mation schemes for coarse graining. Finally, notice that
the correspondence does not rely on the explicit form of
the energy E({hj}, {vj}) and hence holds for any Boltz-
mann Machine.

IV. EXAMPLES

To gain intuition about the mapping between RG
and deep learning, it is helpful to consider some sim-
ple examples in detail. We begin by examining the one-
dimensional nearest-neighbor Ising model where the RG
transformation can be carried out exactly. We then nu-
merically explore the two-dimensional nearest-neighbor
Ising model using an RBM-based deep learning architec-
ture.

A. One dimensional Ising Model

The one-dimensional Ising model describes a collection
of binary spins {vi} organized along a one-dimensional
lattice with lattice spacing a. Such a system is described
by a Hamiltonian of the form

H = −J
∑

i

vivi+1, (23)

where J is a ferromagnetic coupling that energetically
favors configurations where neighboring spins align. To
perform a RG transformation, we decimate (marginalize
over) every other spin. This doubles the lattice spacing
a → 2a and results in a new effective interaction J (1) be-
tween spins (see Figure 2). If we denote the coupling af-
ter performing n successive RG transformations by J (n),

then a standard calculation shows that these coefficients
satisfy the RG equations

tanh [J (n+1)] = tanh2 [J (n)], (24)

where we have defined J (0) = J [14]. This recursion
relationship can be visualized as a one-dimensional flow
in the coupling space J from J = ∞ to J = 0. Thus,
after performing RG the interactions become weaker and
weaker and J → 0 as n → ∞.

This RG transformation also naturally gives rise to the
deep learning architecture shown in Figure 2. The spins
at a given layer of the DNN have a natural interpretation
as the decimated spins when performing the RG trans-
formation in the layer below. Notice that the coupled
spins in the bottom two layers of the DNNs in Fig. 2B
form an “effective” one-dimensional chain isomorphic to
the original spin chain. Thus, marginalizing over spins in
the bottom layer in the DNN is identical to decimating
every other spin in the original spin systems. This im-
plies that the “hidden” spins in the second layer of the
DNN are also described by the RG transformed Hamil-
tonian with a coupling J (1) between neighboring spins.
Repeating this argument for spins coupled between the
second and third layers and so on, one obtains the deep
learning architecture shown in Fig. 2B which implements
decimation.

The advantage of the simple deep architecture pre-
sented here is that it is easy to interpret and requires no
calculations to construct. However, an important short-
coming is that it contains no information about half of
the visible spins, namely the spins that do not couple to
the hidden layer.

“Exact Mapping”

RG Transformation Boltzmann Machine
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More on the DL-RG Connections
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Variational Mean Field

Physics-DL connection is more 
general than we thought

U

Quantum Computing

Tensor Networks

Monte Carlo Methods

G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.

21A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996
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MERA as a quantum circuit

|0⟩ |0⟩|0⟩ |0⟩ |0⟩ |0⟩|0⟩ |0⟩ |0⟩ |0⟩

|0⟩ |0⟩ |0⟩|0⟩ |0⟩

|0⟩

(a)

j1 j2

i2i1

U
j1j2
i1i2

(b)

|0⟩

i1 i2

j
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FIG. 1. (a) Basic construction of a k = 2 MERA (2 sites renormalized to 1). (b) The squares
represent disentanglers: unitary maps that, from the moving-upward perspective, remove entan-
glement between two adjacent sites. (c) The triangles represent isometries: linear maps that, again
from the moving-upward perspective, coarse-grain two sites into one. Moving downward, we may
think of isometries as unitary operators that, in the MERA, map a state in V ⌦ |0i into V ⌦ V .
The i and j labels in (b) and (c) represent the tensor indices of the disentangler and isometry.

attention to the case D = 1 + 1.

The MERA tensor network is shown in Fig. 1. The quantum system being modeled by

the MERA lives at the bottom of the diagram, henceforth “the boundary” in anticipation of

the AdS/MERA connection to be explored later. We can think of the tensor network as a

quantum circuit that either runs from the top down, starting with a simple input state and

constructing the boundary state, or from the bottom up, renormalizing a boundary state via

coarse-graining. One defining parameter of the MERA is the rescaling factor k, defining the

number of sites in a block to be coarse-grained; in Fig. 1 we have portrayed the case k = 2.

The squares and triangles are the tensors: multilinear maps between direct products of vector

spaces. Each line represents an index i of the corresponding tensor, ranging over values from

1 to the “bond dimension” �. The boundary Hilbert space Hboundary = V
⌦Nboundary is given

by a tensor product of Nboundary individual spaces V , each of dimension �. (In principle
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Neural Network Renormalization Group

Shuo-Hui Li1, 2 and Lei Wang1, ⇤
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2University of Chinese Academy of Sciences, Beijing 100049, China

We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det

 
@x
@z

!������ , (1)

where q(x) is the normalized probability density of the phys-

Neural Network Renormalization Group

Physical variables
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structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]
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Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
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To train the neural network, we employ probability density distillation, in which the training loss is a variational
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Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]
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ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
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Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]
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Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]
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The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]
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ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
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To train the neural network, we employ probability density distillation, in which the training loss is a variational
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Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]
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where q(x) is the normalized probability density of the phys-
ical variables and p(z) = N(z; 0, 1) is the prior probability
density of the latent variables chosen to be a fixed normal dis-
tribution. The second term of Eq. (1) is the log-Jacobian de-
terminant of the bijector neural network, which can be easily
computed by collecting the contributions from each bijector.
Since the log-probability can be interpreted as a negative en-
ergy function, Eq. (1) shows that the renormalization of the ef-
fective coupling is provided by the log-Jacobian at each trans-
formation step.

Since di↵eomorphisms form a group, an arbitrary compo-
sition the building blocks is still a bijector. This motivates the
modular design of the network structure shown in Fig. 1(a).
The layers alternate between disentangler blocks and decima-
tor blocks. The disentangler blocks in light gray reduce the
mutual information between the inputs and pass less corre-
lated outputs to the next layer. While the decimator blocks in
dark gray pass only parts of outputs to the next layer and treat
the remaining ones as irrelevant latent variables. The RG flow
corresponds to the inference of the latent variables z = g�1(x)
based on observed physical variables, during which the kept
degrees of freedom emerge as renormalized collective vari-
ables at coarser scales. In the reversed direction, the la-
tent variables are injected into the neural network at di↵erent
depths. And they a↵ect physical variables at di↵erent length
scales.

The bijective property is crucial for learning the RG flow
in a controlled way. No matter how complex is the hierarchi-
cal transformations performed by the neural network, one can
e�ciently compute the normalized probability density q(x)
for any physical configuration x (either generated or given)
by keep tracking the Jacobian determinant at each block lo-
cally. One can share the weights among the blocks in the same
layer due to the translational invariances of the physical prob-
lem. Moreover, one can even share the weights in the depth
direction due to scale invariance emerged at criticality. The
scale-invariant reduces the number of parameters to be inde-
pendent of the system size. In this case, one can iterate the
training process for increasingly larger system size and reuse
the weights from the previous step as the initial value.

The proposed NeuralRG architecture shown in Fig. 1(a) is
largely inspired by the tensor networks [7, 11–16], and in par-
ticular, the multi-scale entanglement renormalization ansatz
(MERA) [6]. Moreover, stacking bijectors to transform the
probability densities is analogous to the philosophy of re-
versible computation using quantum circuits [42]. Exploiting
these analogies provide constructive guidelines to the neural
network architecture design. The neural network nevertheless
has the flexibility that the blocks can be arbitrarily large and
long-range connected. Given the modular design of Fig. 1(a),
arbitrarily complicated NeuralRG architecture can be learned
e�ciently using standard di↵erential approaches o↵ered in
modern deep learning frameworks [43, 44].

Compared to ordinary neural networks used in deep learn-
ing, the architecture shown in Fig 1(a) has strong physical and
information theoretical motivations. To see this, we consider a

Figure 2. (a) A reference neural network architecture with only dis-
entanglers. The physical variables in the two shaded regions are un-
correlated because their causal light cones do not overlap in the latent
variables. (b) Mutual information flow at the decimator block, see
Eq. (2). (c) The arrangement of the bijectors on a two-dimensional
lattice. (d) Each bijector acts on four variables. For the decimators,
only one of the outputs is carried on to the next layer and the others
are directly treated as latent variables.

simpler reference structure shown in Fig. 2(a) where one uses
disentangler blocks at each layer. The resulting structure re-
sembles the structure of a time-evolving block decimation net-
work [45]. Since each disentangler block connects only a few
neighboring variables, the causal light cone of the physical
variables at the bottom can only reach regions proportional to
the depth of the network. Therefore, the correlation length of
the physical variables is limited by the depth of the disentan-
gler layers. This structure is su�cient for physical problems
with finite correlation length, i.e. away from the criticality.

On the other hand, a network with decimators in each
layer is similar to the tree tensor network [46]. As shown in
Fig. 2(b), the mutual information (MI) between the variables
at each decimation step follows

I(A : B) = I(z1 [ a : b [ z4) = I(a : b). (2)

The first equality is due to that the mutual information is
invariant under invertible transformation of variables within
each group. While the second equality is due to the random
variables z1 and z4 are independent of all other variables. Ap-
plying Eq. (2) recursively at each decimation step, one con-
cludes that in a neural net with only decimators the MI be-
tween two sets of variables is limited by the top layer. Such
structure is su�cient to model one dimensional physical sys-
tems with short-range interactions due to that the mutual in-
formation is constant [47]. Although the upper bound of MI
of two continuous variables can be arbitrarily large, in gen-
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where q(x) is the normalized probability density of the phys-
ical variables and p(z) = N(z; 0, 1) is the prior probability
density of the latent variables chosen to be a fixed normal dis-
tribution. The second term of Eq. (1) is the log-Jacobian de-
terminant of the bijector neural network, which can be easily
computed by collecting the contributions from each bijector.
Since the log-probability can be interpreted as a negative en-
ergy function, Eq. (1) shows that the renormalization of the ef-
fective coupling is provided by the log-Jacobian at each trans-
formation step.

Since di↵eomorphisms form a group, an arbitrary compo-
sition the building blocks is still a bijector. This motivates the
modular design of the network structure shown in Fig. 1(a).
The layers alternate between disentangler blocks and decima-
tor blocks. The disentangler blocks in light gray reduce the
mutual information between the inputs and pass less corre-
lated outputs to the next layer. While the decimator blocks in
dark gray pass only parts of outputs to the next layer and treat
the remaining ones as irrelevant latent variables. The RG flow
corresponds to the inference of the latent variables z = g�1(x)
based on observed physical variables, during which the kept
degrees of freedom emerge as renormalized collective vari-
ables at coarser scales. In the reversed direction, the la-
tent variables are injected into the neural network at di↵erent
depths. And they a↵ect physical variables at di↵erent length
scales.

The bijective property is crucial for learning the RG flow
in a controlled way. No matter how complex is the hierarchi-
cal transformations performed by the neural network, one can
e�ciently compute the normalized probability density q(x)
for any physical configuration x (either generated or given)
by keep tracking the Jacobian determinant at each block lo-
cally. One can share the weights among the blocks in the same
layer due to the translational invariances of the physical prob-
lem. Moreover, one can even share the weights in the depth
direction due to scale invariance emerged at criticality. The
scale-invariant reduces the number of parameters to be inde-
pendent of the system size. In this case, one can iterate the
training process for increasingly larger system size and reuse
the weights from the previous step as the initial value.

The proposed NeuralRG architecture shown in Fig. 1(a) is
largely inspired by the tensor networks [7, 11–16], and in par-
ticular, the multi-scale entanglement renormalization ansatz
(MERA) [6]. Moreover, stacking bijectors to transform the
probability densities is analogous to the philosophy of re-
versible computation using quantum circuits [42]. Exploiting
these analogies provide constructive guidelines to the neural
network architecture design. The neural network nevertheless
has the flexibility that the blocks can be arbitrarily large and
long-range connected. Given the modular design of Fig. 1(a),
arbitrarily complicated NeuralRG architecture can be learned
e�ciently using standard di↵erential approaches o↵ered in
modern deep learning frameworks [43, 44].

Compared to ordinary neural networks used in deep learn-
ing, the architecture shown in Fig 1(a) has strong physical and
information theoretical motivations. To see this, we consider a

Figure 2. (a) A reference neural network architecture with only dis-
entanglers. The physical variables in the two shaded regions are un-
correlated because their causal light cones do not overlap in the latent
variables. (b) Mutual information flow at the decimator block, see
Eq. (2). (c) The arrangement of the bijectors on a two-dimensional
lattice. (d) Each bijector acts on four variables. For the decimators,
only one of the outputs is carried on to the next layer and the others
are directly treated as latent variables.

simpler reference structure shown in Fig. 2(a) where one uses
disentangler blocks at each layer. The resulting structure re-
sembles the structure of a time-evolving block decimation net-
work [45]. Since each disentangler block connects only a few
neighboring variables, the causal light cone of the physical
variables at the bottom can only reach regions proportional to
the depth of the network. Therefore, the correlation length of
the physical variables is limited by the depth of the disentan-
gler layers. This structure is su�cient for physical problems
with finite correlation length, i.e. away from the criticality.

On the other hand, a network with decimators in each
layer is similar to the tree tensor network [46]. As shown in
Fig. 2(b), the mutual information (MI) between the variables
at each decimation step follows

I(A : B) = I(z1 [ a : b [ z4) = I(a : b). (2)

The first equality is due to that the mutual information is
invariant under invertible transformation of variables within
each group. While the second equality is due to the random
variables z1 and z4 are independent of all other variables. Ap-
plying Eq. (2) recursively at each decimation step, one con-
cludes that in a neural net with only decimators the MI be-
tween two sets of variables is limited by the top layer. Such
structure is su�cient to model one dimensional physical sys-
tems with short-range interactions due to that the mutual in-
formation is constant [47]. Although the upper bound of MI
of two continuous variables can be arbitrarily large, in gen-
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“Disentangler” only architecture

Correlation length ~ Network depth
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Mutual Information Bottleneck



Probability Density Estimation

Equivalent to reduce the Kullback–Leibler divergence 

However, typical Stat-Mech problem has access only 
to the energy function

Given a dataset, learn its probability density by 
minimizing the negative likelihood 

Network parameters



Probability Density Distillation
Learn from the data generated by the network itself
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Energy Negentropy “Variational  
Free Energy”

Partition function 

Learn from the data generated by the network itself



Probability Density Distillation

The loss function is lower bounded by the  
physical free energy (Gibbs-Bogoliubov-Feynman inequality)

Energy Negentropy “Variational  
Free Energy”

Learn from the data generated by the network itself



“Reparametrization trick”

Sample from the 
prior distribution

Network parameters

End-to-end training using back-propagation

How to compute the gradient w.r.t random sampling ?



Interlude: WaveNet Story

1609.03499 
1711.10433

implemented by simply stacking 4 such networks on top of each other) did improve the quality. Note
that in the final parallel WaveNet architecture, the weights were not shared between the flows.

The first (bottom) network takes as input the white unconditional logistic noise: x0 = z. Thereafter
the output of each network i is passed as input to the next network i + 1 , which again transforms it.

xi = xi�1 · si + µi (3)

Because we use the same ordering in all the flows, the final distribution p(xt|z<t,✓) is logistic with
location µtot and scale stot:

µtot =
NX

i

µi

0

@
NY

j>i

sj

1

A (4)

stot =
NY

i

si (5)

where N is the number of flows and the dependencies on t and z are omitted for simplicity.

4 Probability Density Distillation

Training the parallel WaveNet model directly with maximum likelihood would be impractical, as the
inference procedure required to estimate the log-likelihoods is sequential and slow1. We therefore
introduce a novel form of neural network distillation [11] that uses an already trained WaveNet as a
‘teacher’ from which a parallel WaveNet ‘student’ can efficiently learn. To stress the fact that we are
dealing with normalised density models, we refer to this process as Probability Density Distillation

(in contrast to Probability Density Estimation). The basic idea is for the student to attempt to match
the probability of its own samples under the distribution learned by the teacher.

Given a parallel WaveNet student pS(x) and WaveNet teacher pT (x) which has been trained on a
dataset of audio, we define the Probability Density Distillation loss as follows:

DKL (PS ||PT ) = H(PS , PT ) � H(PS) (6)

where DKL is the Kullback–Leibler divergence, and H(PS , PT ) is the cross-entropy between the
student PS and teacher PT , and H(PS) is the entropy of the student distribution. When the KL
divergence becomes zero, the student distribution has fully recovered the teacher’s distribution. The
entropy term (which is not present in previous distillation objectives [11]) is vital in that it prevents
the student’s distribution from collapsing to the mode of the teacher (which, counter-intuitively,
does not yield a good sample—see Appendix section A.1). Crucially, all the operations required to
estimate derivatives for this loss (sampling from pS(x), evaluating pT (x), and evaluating H(PS))
can be performed efficiently, as we will see.

It is worth noting the parallels to Generative Adversarial Networks (GANs [7]), with the student
playing the role of generator, and the teacher playing the role of discriminator. As opposed to GANs,
however, the student is not attempting to fool the teacher in an adversarial manner; rather it co-
operates by attempting to match the teacher’s probabilities. Furthermore the teacher is held constant,
rather than being trained in tandem with the student, and both models yield tractable normalised
distributions.

Recently [9] has presented a related idea to train feed-forward networks for neural machine translation.
Their method is based on conditioning the feedforward decoder on fertility values, which require
supervision by an external alignment system. The training procedure also involves the creation of an
additional dataset as well as fine-tuning. During inference, their model relies on re-scoring by an
auto-regressive model.

1In this sense the two architectures are dual to one another: slow training and fast generation with parallel
WaveNet versus fast training and slow generation with WaveNet.

4

between them is a new form of neural network distillation [11], which we refer to as Probability

Density Distillation, where a trained WaveNet model is used as a teacher for a feedforward IAF
model.

The next section describes the original WaveNet model, while Sections 3 and 4 define in detail the new,
parallel version of WaveNet and the distillation process used to transfer knowledge between them.
Section 5 then presents experimental results showing no loss in perceived quality for parallel versus
original WaveNet, and continued superiority over previous benchmarks. We also present timings for
sample generation, demonstrating more than 1000⇥ speed-up relative to original WaveNet.

2 WaveNet

Autoregressive networks model the joint distribution of high-dimensional data as a product of
conditional distributions using the probabilistic chain-rule:

p(x) =
Y

t

p(xt|x<t,✓),

where xt is the t-th variable of x and ✓ are the parameters of the autoregressive model. The
conditional distributions are usually modelled with a neural network that receives x<t as input and
outputs a distribution over possible xt.

WaveNet [27] is a convolutional autoregressive model which produces all p(xt|x<t) in one forward
pass, by making use of causal—or masked—convolutions [19, 6]. Every causal convolutional layer
can process its input in parallel, making these architectures very fast to train compared to RNNs [28],
which can only be updated sequentially. At generation time, however, the waveform has to be
synthesised in a sequential fashion as xt must be sampled first in order to obtain x>t. Due to
this nature, real time (or faster) synthesis with a fully autoregressive system is challenging. While
sampling speed is not a significant issue for offline generation, it is essential for real-word applications.
A version of WaveNet that generates in real-time has been developed [20], but it required the use of a
much smaller network, resulting in severely degraded quality.

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 1: Visualisation of a WaveNet stack and its receptive field [27].

Raw audio data is typically very high-dimensional (e.g. 16,000 samples per second for 16kHz
audio), and contains complex, hierarchical structures spanning many thousands of time steps, such as
words in speech or melodies in music. Modelling such long-term dependencies with standard causal
convolution layers would require a very deep network to ensure a sufficiently broad receptive field.
WaveNet avoids this constraint by using dilated causal convolutions, which allow the receptive field
to grow exponentially with depth.

WaveNet uses gated activation functions, together with a simple mechanism introduced in [19] to
condition on extra information such as class labels or linguistic features:

hi = �
�
Wg,i ⇤ xi + V

T
g,ic

�
� tanh

�
Wf,i ⇤ xi + V

T
f,ic

�
, (1)

where ⇤ denotes a convolution operator, and � denotes an element-wise multiplication operator. �(·)
is a logistic sigmoid function. c represents extra conditioning data. i is the layer index. f and g

2

input noise

generated signal

https://deepmind.com/blog/wavenet-generative-model-raw-audio/ 
https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/

https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/
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“Gaussian-Bernoulli Boltzmann Machine”

⇡(s|x) =
Y

i

⇣
1 + e�2si xi

⌘�1

Zhang, Sutton, Storkey, Ghahramani, NIPS 2012

p(s)

s s

x x

Original MRF

[MS10; HKP91] Current Approach

s

x

General A A = ⇤�1/2
V

T A = I

Figure 1: Graphical depiction of the different versions of the Gaussian integral trick. In all of the
models here si 2 {0, 1} while xi 2 R. Notice that when A = I the x have the same dependence
structure as the s did in the original MRF.

3.1 Convexity of Log Density

Because probabilistic inference is NP-hard, it is too much to expect that the continuous transfor-
mation will always help. Sometimes difficult discrete distributions will be converted into difficult
continuous ones. Experimentally we have noticed that highly frustrated systems typically result in
multimodal p(x).

The modes of p(x) are particularly easy to understand if A = ⇤�1/2
V

T , because p(x|s) =
N (x; ⇤1/2

V s; I), that is, the covariance does not depend on W + D. Without loss of general-
ity assume that the diagonal of W is 0. Then write (W + D) = W + cD

0. Interpreting p(x) as a
mixture of Gaussians, one for each assignment s, as c ! 1 the Gaussians become farther apart and
we get 2n modes, one each at ⇤1/2

V s for each assignment to binary vector s. If we take a small
c, however, we can sometimes get fewer modes, and as shown next, we can sometimes even get
log p(x) convex. This is a motivation to make sure that the elements of D are not too large.

In the following proposition we characterize the conditions on p(s) under which the resultant p(x)
is log-concave. For any N ⇥ N matrix M , let �1(M) � . . . � �N (M) denote the eigenvalues of
M . Recall that we have already required that D be chosen so that W + D is positive definite, i.e.,
�N (W + D) > 0. Then
Proposition 1. p(x) is log-concave if and only if W +D has a narrow spectrum, by which we mean
�1(W + D) < 4.

Proof. The Hessian of log p(x) is easy to compute. It is

Hx := r2
x log p(x) = Cx � (W + D)�1 (13)

where Cx is a diagonal matrix with elements cii = �(�ai � xi + di
2 )(1 � �(�ai � xi + di

2 )). We
use the simple eigenvalue inequalities that �1(A) + �N (B)  �1(A + B)  �1(A) + �1(B). If
�1(W + D)  4, then

�1(Hx)  �1(Cx) � [�1(W + D)]�1  0.25 � [�1(W + D)]�1  0.

So p(x) is log-concave. Conversely suppose that p(x) is log-concave. Then

0.25 � [�1(W + D)]�1 = sup
x

�N (Cx) � [�1(W + D)]�1  sup
x

�1(Hx)  0.

So �1(W + D)  4.

3.2 MCMC in the Continuous Relaxation

Now we discuss how to perform inference in the augmented distribution resulting from the trick.
One simple choice is to focus on the joint density p(x, s). It is straightforward to generate samples
from the conditional distributions p(x|s) and p(s|x). Therefore one can sample the joint distribution
p(x, s) in a block Gibbs style that switches sampling between p(x|s) and p(s|x). In spite of the sim-
plicity of this method, it has the potential difficulty that it may generate highly correlated samples,
due to the coupling between discrete and continuous samples.

To overcome the drawbacks of block Gibbs sampling, we propose running MCMC directly on the
marginal p(x). We can efficiently evaluate the unnormalized density of p(x) from (11) up to a
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2.D applications 49

Figure 2.D.3: VAEs can be used for image re-synthesis. In this example by
White [2016], an original image (left) is modified in a latent space in the
direction of a smile vector, producing a range of versions of the original, from
smiling to sadness. Notice how changing the image along a single vector in
latent space, modifies the image in many subtle and less-subtle ways in pixel
space.

of images in latent space along a "smile vector" in order to make them more
happy, or more sad looking. See figure 2.D.3 for an example.

White,1609.04468 implemented using the variational 
autoencoder by Kingma and Welling,1312.6114

Arithmetics of the “smile vector”

Wander in the Latent Space



How is it useful ?

Monte Carlo update proposals 

Automatically derive effective field theory 
(free energy surface)

Automatically identify collective variables 
(metadynamics molecular simulation)



Sampling in the latent space 

Latent space is less correlated,  
therefore, easier to sample 
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Metropolized Independent Sampler

Acceptance rate with detailed balance condition 

Propose  
Ratio

Physical 
Probability

• Unbiased physics even for 
imperfect proposals 

• Proposals are independent 

Li Huang and LW, 1610.02746  
Liu, Qi, Meng, Fu, 1610.03137 

Song, Zhao, Ermon, 1706.07561  
Levy, Hoffman, Sohl-Dickstein, 1711.09268

Surrogate energy function: Trainable transition kernel:



Remarks on TNS Connection

• Deep Learning machinery provides structural 
flexibility, modular abstraction, end-to-end training

• What we had is a classical downgrade of MERA
Probability Density~ Quantum Wavefuntion 
Classical Mutual Information ~ Entanglement Entropy 
“Decorrelator" ~ Disentangler 
Decimator~Isometry 
Bijector~Unitary

• We give back to DL understandings of what are 
they doing (and hopefully, how to do better)

(Bény 2013)



Remarks on DL

Pooling layer in ConvNets 
~ Decimation 

Hidden nodes in RBM/DBN 
~ Renormalized VariablesPublished as a conference paper at ICLR 2017

(a) In this alternating pattern, units which remain identical in one
transformation are modified in the next.

z1 z2

x1 x2 x3 x4

z3

z1 z2 z3 z4

(1) (1)

(2)

f(1)

f(2)

f(3)

h4

h4h3

(b) Factoring out variables.
At each step, half the vari-
ables are directly modeled as
Gaussians, while the other
half undergo further transfor-
mation.

Figure 4: Composition schemes for affine coupling layers.

3.6 Multi-scale architecture

We implement a multi-scale architecture using a squeezing operation: for each channel, it divides the
image into subsquares of shape 2⇥ 2⇥ c, then reshapes them into subsquares of shape 1⇥ 1⇥ 4c.
The squeezing operation transforms an s ⇥ s ⇥ c tensor into an s

2 ⇥ s
2 ⇥ 4c tensor (see Figure 3),

effectively trading spatial size for number of channels.

At each scale, we combine several operations into a sequence: we first apply three coupling layers
with alternating checkerboard masks, then perform a squeezing operation, and finally apply three
more coupling layers with alternating channel-wise masking. The channel-wise masking is chosen so
that the resulting partitioning is not redundant with the previous checkerboard masking (see Figure
3). For the final scale, we only apply four coupling layers with alternating checkerboard masks.

Propagating a D dimensional vector through all the coupling layers would be cumbersome, in terms
of computational and memory cost, and in terms of the number of parameters that would need to be
trained. For this reason we follow the design choice of [57] and factor out half of the dimensions at
regular intervals (see Equation 14). We can define this operation recursively (see Figure 4(b)),

h(0) = x (13)

(z(i+1), h(i+1)) = f (i+1)(h(i)) (14)

z(L) = f (L)(h(L�1)) (15)

z = (z(1), . . . , z(L)). (16)

In our experiments, we use this operation for i < L. The sequence of coupling-squeezing-coupling
operations described above is performed per layer when computing f (i) (Equation 14). At each
layer, as the spatial resolution is reduced, the number of hidden layer features in s and t is doubled.
All variables which have been factored out at different scales are concatenated to obtain the final
transformed output (Equation 16).

As a consequence, the model must Gaussianize units which are factored out at a finer scale (in an
earlier layer) before those which are factored out at a coarser scale (in a later layer). This results in the
definition of intermediary levels of representation [53, 49] corresponding to more local, fine-grained
features as shown in Appendix D.

Moreover, Gaussianizing and factoring out units in earlier layers has the practical benefit of distribut-
ing the loss function throughout the network, following the philosophy similar to guiding intermediate
layers using intermediate classifiers [40]. It also reduces significantly the amount of computation and
memory used by the model, allowing us to train larger models.

6

Neural Machine Translation in Linear Time
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Abstract

We present a novel neural network for process-
ing sequences. The ByteNet is a one-dimensional
convolutional neural network that is composed of
two parts, one to encode the source sequence and
the other to decode the target sequence. The two
network parts are connected by stacking the de-
coder on top of the encoder and preserving the
temporal resolution of the sequences. To ad-
dress the differing lengths of the source and the
target, we introduce an efficient mechanism by
which the decoder is dynamically unfolded over
the representation of the encoder. The ByteNet
uses dilation in the convolutional layers to in-
crease its receptive field. The resulting network
has two core properties: it runs in time that
is linear in the length of the sequences and it
sidesteps the need for excessive memorization.
The ByteNet decoder attains state-of-the-art per-
formance on character-level language modelling
and outperforms the previous best results ob-
tained with recurrent networks. The ByteNet
also achieves state-of-the-art performance on
character-to-character machine translation on the
English-to-German WMT translation task, sur-
passing comparable neural translation models
that are based on recurrent networks with atten-
tional pooling and run in quadratic time. We
find that the latent alignment structure contained
in the representations reflects the expected align-
ment between the tokens.

1. Introduction

In neural language modelling, a neural network estimates
a distribution over sequences of words or characters that
belong to a given language (Bengio et al., 2003). In neu-
ral machine translation, the network estimates a distribu-
tion over sequences in the target language conditioned on
a given sequence in the source language. The network can
be thought of as composed of two parts: a source network
(the encoder) that encodes the source sequence into a rep-
resentation and a target network (the decoder) that uses the

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t11 t12 t13 t14 t15 t16t10

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

t11 t12 t13 t14 t15 t16 t17t10t9t8t7t6t5t4t3t2t1

Figure 1. The architecture of the ByteNet. The target decoder
(blue) is stacked on top of the source encoder (red). The decoder
generates the variable-length target sequence using dynamic un-
folding.

representation of the source encoder to generate the target
sequence (Kalchbrenner & Blunsom, 2013).

Recurrent neural networks (RNN) are powerful sequence
models (Hochreiter & Schmidhuber, 1997) and are widely
used in language modelling (Mikolov et al., 2010), yet they
have a potential drawback. RNNs have an inherently se-
rial structure that prevents them from being run in parallel
along the sequence length during training and evaluation.
Forward and backward signals in a RNN also need to tra-
verse the full distance of the serial path to reach from one
token in the sequence to another. The larger the distance,
the harder it is to learn the dependencies between the tokens
(Hochreiter et al., 2001).

A number of neural architectures have been proposed
for modelling translation, such as encoder-decoder net-
works (Kalchbrenner & Blunsom, 2013; Sutskever et al.,
2014; Cho et al., 2014; Kaiser & Bengio, 2016), networks
with attentional pooling (Bahdanau et al., 2014) and two-
dimensional networks (Kalchbrenner et al., 2016a). De-
spite the generally good performance, the proposed models
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Here we are

Neural Network Renormalization Group

Shuo-Hui Li1, 2 and Lei Wang1, ⇤

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China

We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det

 
@x
@z

!������ , (1)

where q(x) is the normalized probability density of the phys-

Simplified, but not oversimplified model with 
balanced interpretability and expressibility



Remarks on RG
• Conventionally, RG is a semi-group, not a group 

• NeuralRG builds on bijectors, hence a group 
(coarse-graining due to the multiscale structure) 

• Probabilistic (Jona-Lasinio 75’) and Information Theory 
(Apenko 09’) views on RG (same is true for neural & 
tensor networks) 

• Diffeomorphism does not change topology of the 
manifolds, therefore, may be limited.  



The Universe as a Generative Model

Thank you!

RG = Infer the 
Effective Field Theory 


