Neural Canonical Transformations

Lei Wang (王磊) <u>https://wangleiphy.github.io</u> Institute of Physics, CAS

"A Hamiltonian Extravaganza"

Sep 26 *Symplectic ODE-Net,* 1909.12077

Sep 27 Hamiltonian Graph Networks with ODE Integrators, 1909.12790

Sep 29 Symplectic RNN, 1909.13334

Sep 30 Equivariant Hamiltonian Flows, 1909.13739

Hamiltonian Generative Network, 1909.13789

Neural Canonical Transformation with Symplectic Flows, 1910.00024 🐼

—Danilo J. Rezende@DeepMind

http://tiny.cc/hqn

Hamiltonian equations

$$\begin{cases} \dot{p} = -\frac{\partial H}{\partial q} \\ \dot{q} = +\frac{\partial H}{\partial p} \end{cases}$$

Hamiltonian equations

 $\begin{cases} \dot{p} = -\frac{\partial H}{\partial q} \\ \dot{q} = +\frac{\partial H}{\partial p} \end{cases}$

 $J = \left(\right)$

- Phase space variables
 - $\boldsymbol{x} = (p, q)$
 - Symplectic metric

Hamiltonian equations

 $\dot{p} = -\frac{\partial H}{\partial q}$ $\dot{q} = +\frac{\partial H}{\partial p}$

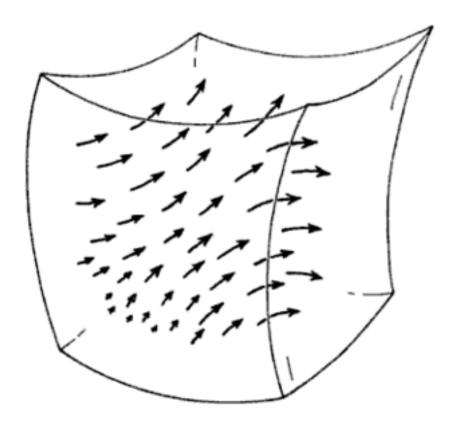
Phase space variables

Symplectic gradient flow

 $\mathbf{x} = (p, q)$

Symplectic metric

 $J = \begin{pmatrix} I \\ I \end{pmatrix}$



 $\dot{\mathbf{x}} = \nabla_{\mathbf{x}} H(\mathbf{x}) J$

Hamiltonian equa

Graduate Texts in Mathematics

V.I. Arnold

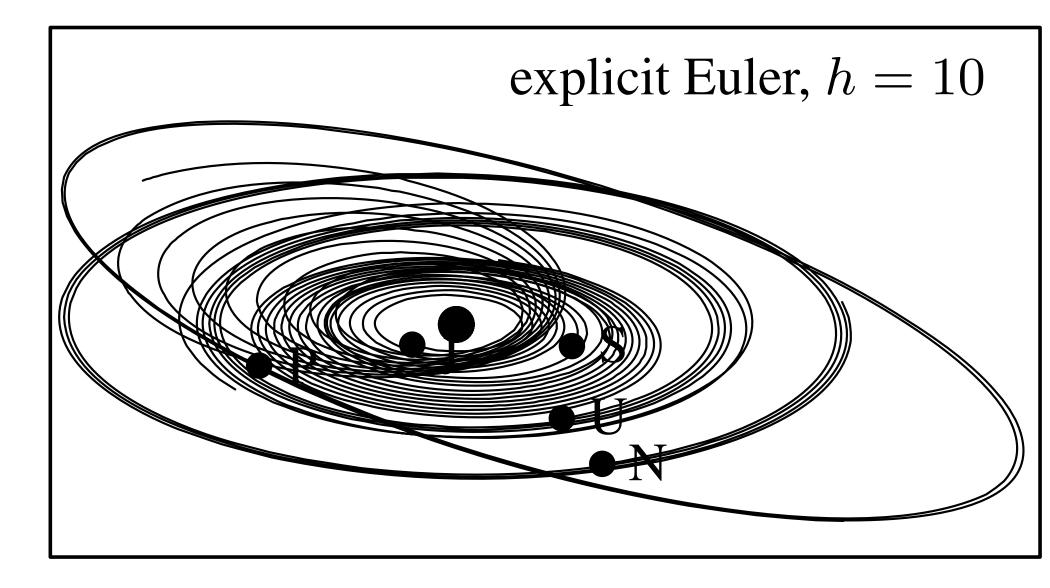
Mathematical Methods of Classical Mechanics

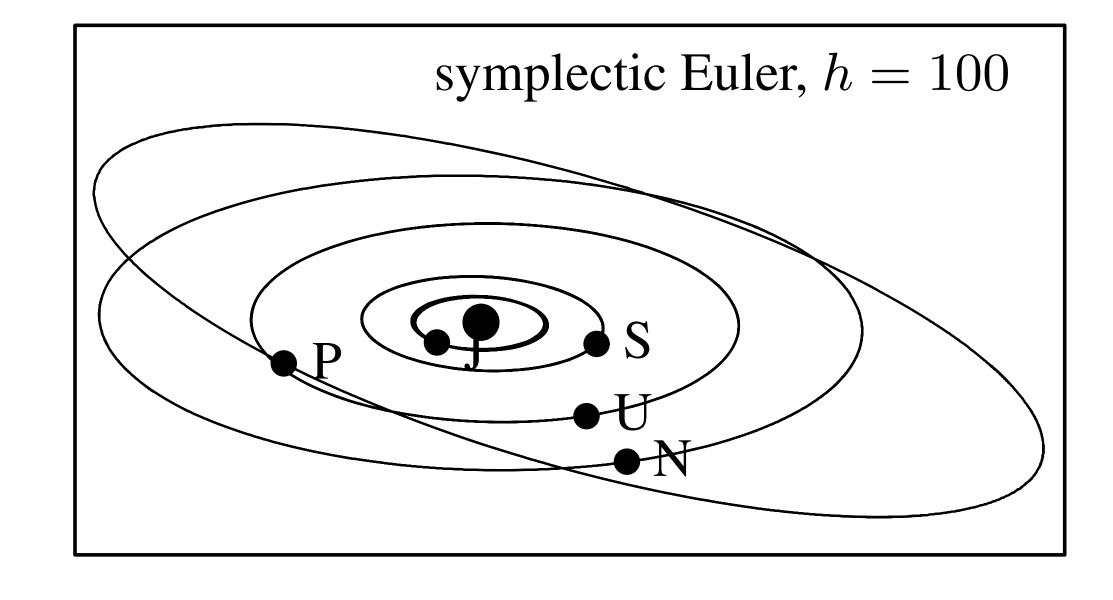
Second Edition

$$\begin{cases} \dot{p} = -\frac{\partial H}{\partial q} \\ \dot{q} = +\frac{\partial H}{\partial p} \end{cases}$$

ice v	amilto	存 $f^*\omega = \omega$ 家 $\omega = \sum dp_i \wedge dq^i$ 氏 病 $\omega = \sum dp_i \wedge dq^i$	tic gradient f
(p, c	lan	い 「 「 「 「 「 「 「 「 「 「 「 「 「	$= \nabla_{x} H(x) J$
ctic r	Feng Kang Qin Mengzhao	异的 家的 法	
-I	浙江科学技术出版社		
	术出版社		

Symplectic Integrators



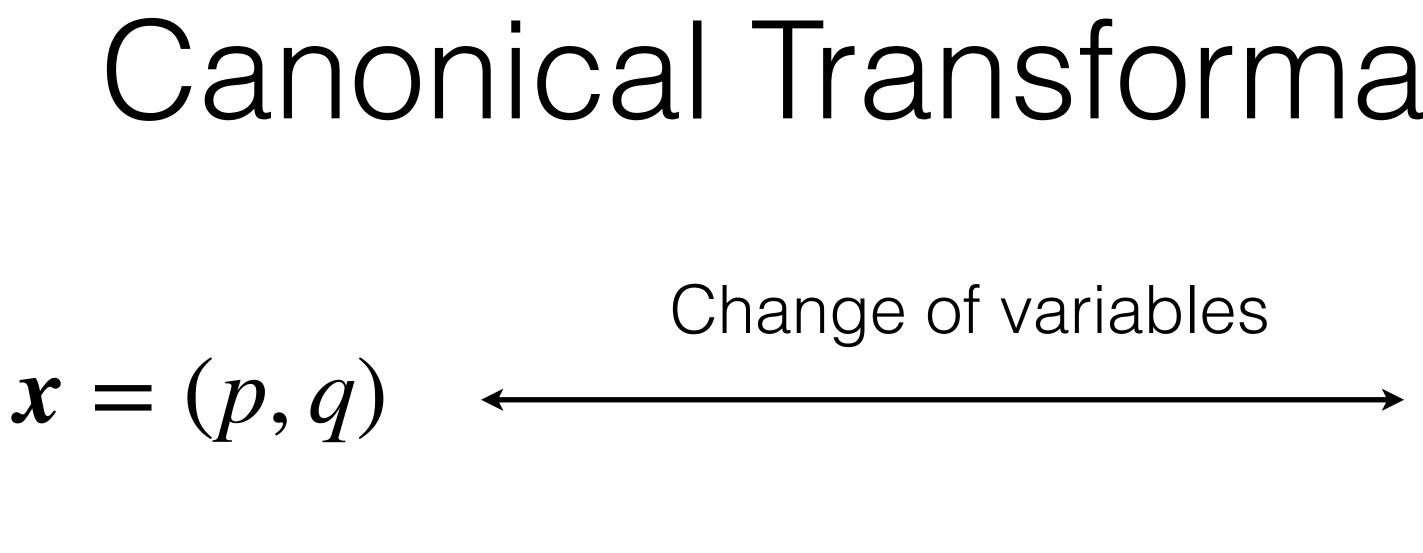


from Hairer et al, Geometric Numerical Integration

Canonical Transformations Change of variables $\boldsymbol{x} = (p,q) \quad \boldsymbol{\leftarrow} \quad \boldsymbol{z} = (P,Q)$

$$(\nabla_x z)^T = J$$

symplectic condition



which satisfies $\left(\nabla_x z\right) J\left($

one has

Preserves Hamiltonian dynamics in the "latent phase space"

Canonical Transformations

Change of variables z = (P, Q)

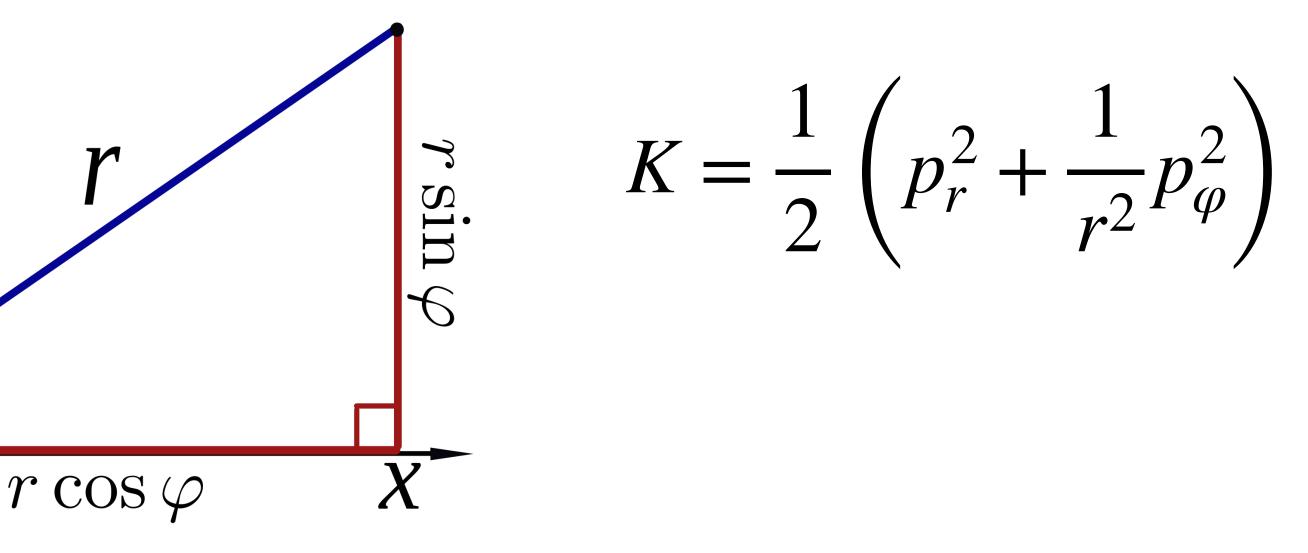
$$\left(\nabla_{\mathbf{x}} z\right)^T = J$$

symplectic condition

$\dot{z} = \nabla_{\tau} K(z) J$ where $K(z) = H \circ x(z)$

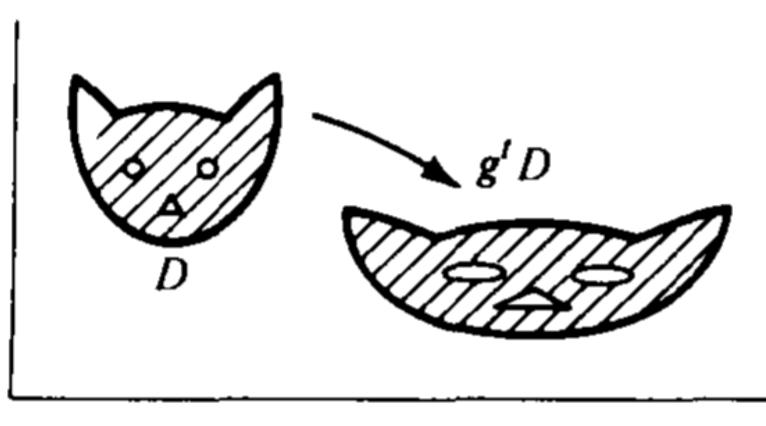
Example: Cartesian <---> Polar

 $H = \frac{1}{2} \left(p_x^2 + p_y^2 \right)$



Phase space perspective

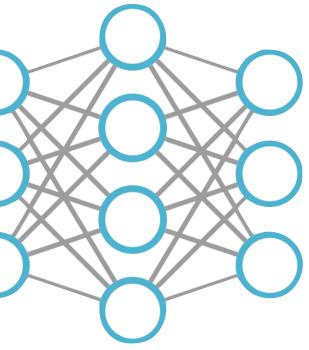
- Canonical transformation deforms phase space density $\rho(\mathbf{x}) = e^{-\beta H(\mathbf{x})}$
- Symplectic condition => Jacobian determinant = 1
- Liouville theorem: incompressible flow in phase space



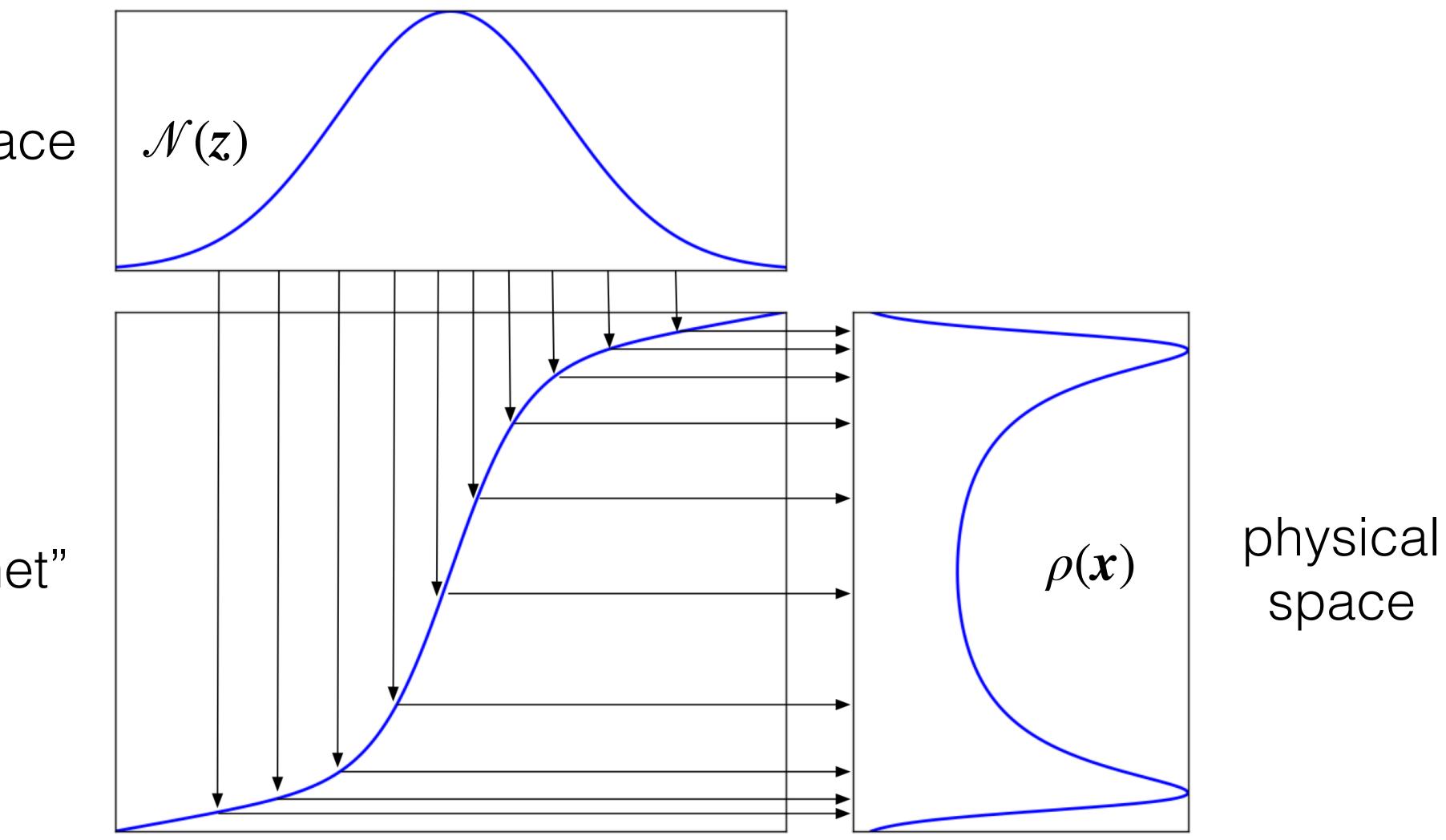
How to design useful canonical transformations?

C C C

Neural Canonical Transformations



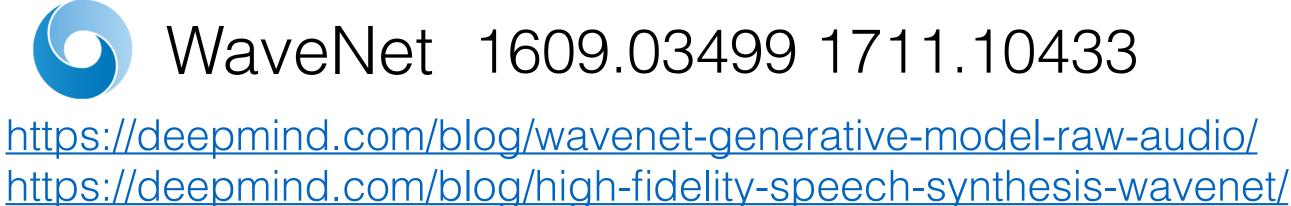
Neural transformation in 1d

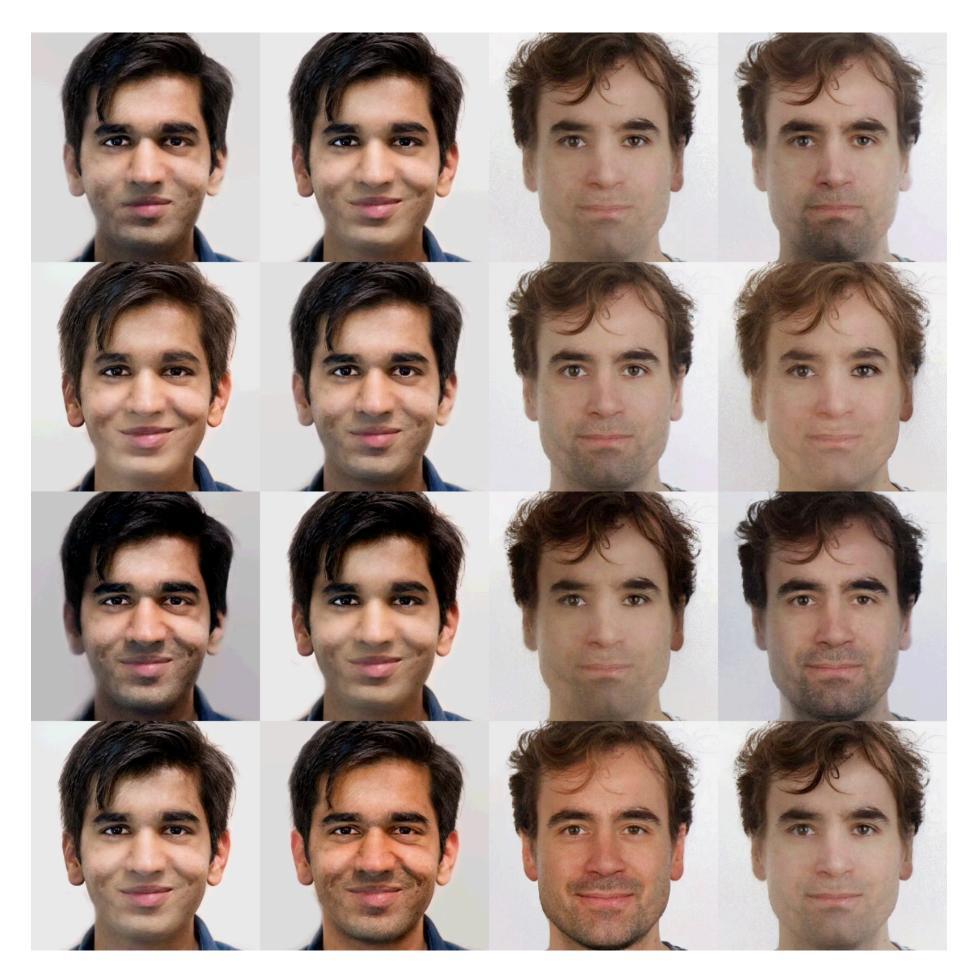


latent space

"neural net"

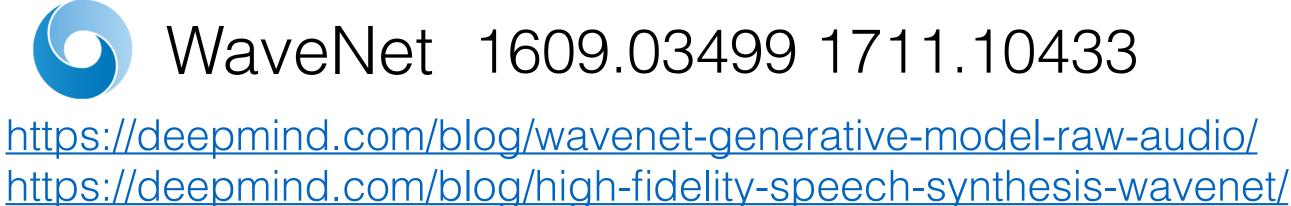
Neural transformations in higher dims

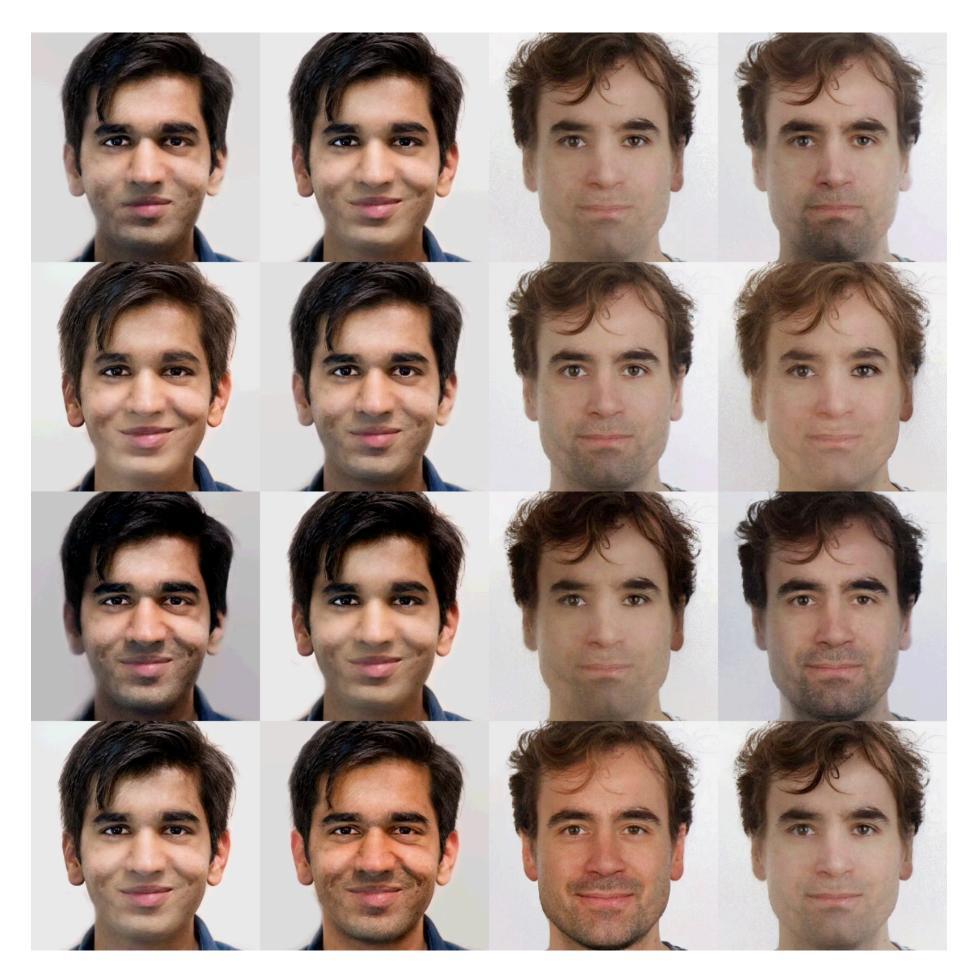




https://blog.openai.com/glow/

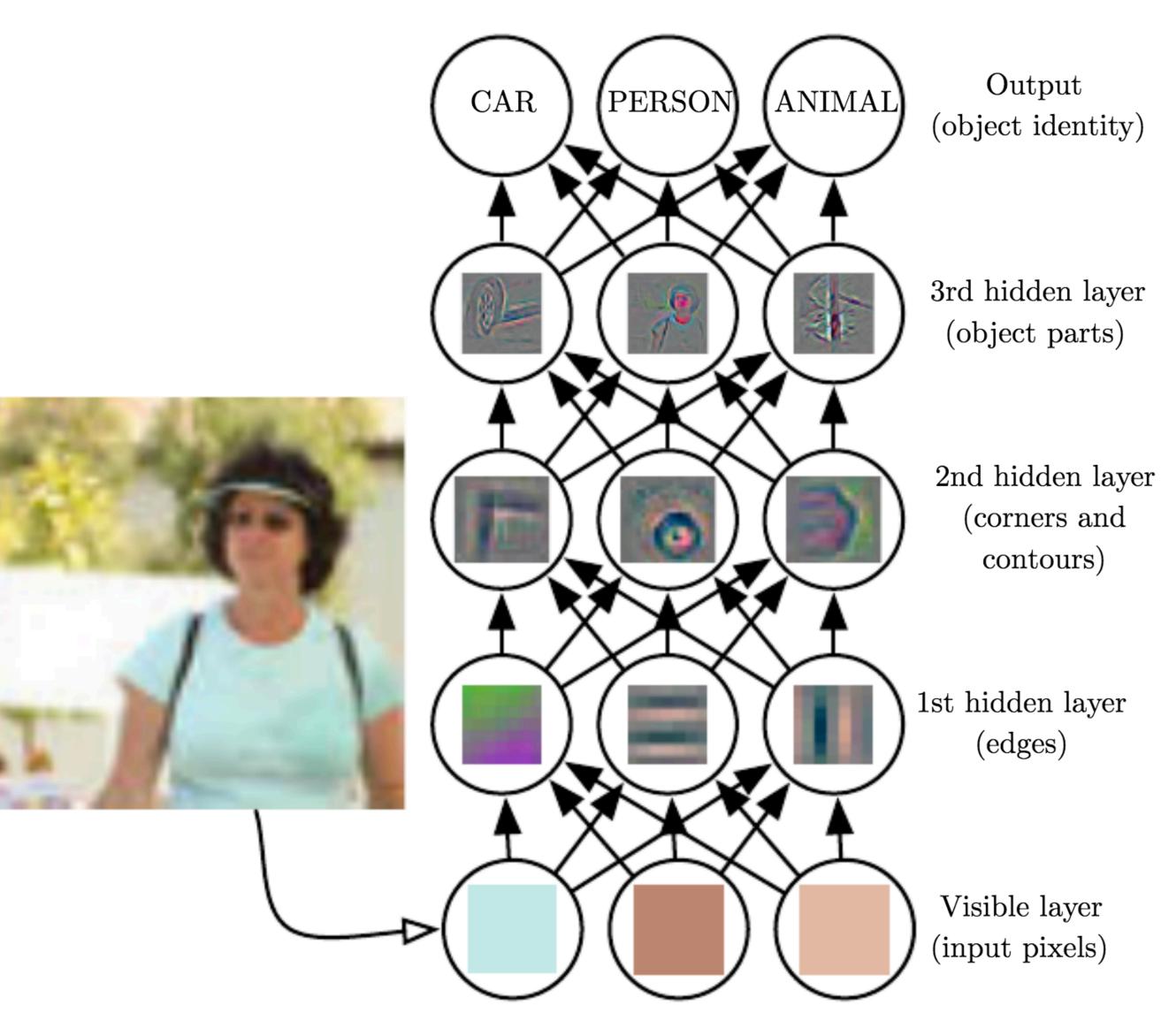
Neural transformations in higher dims





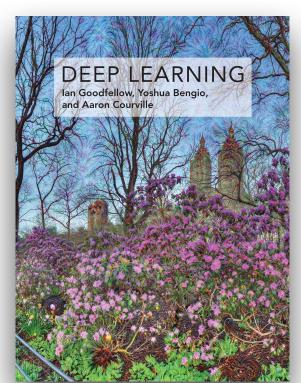
https://blog.openai.com/glow/

Representation Learning

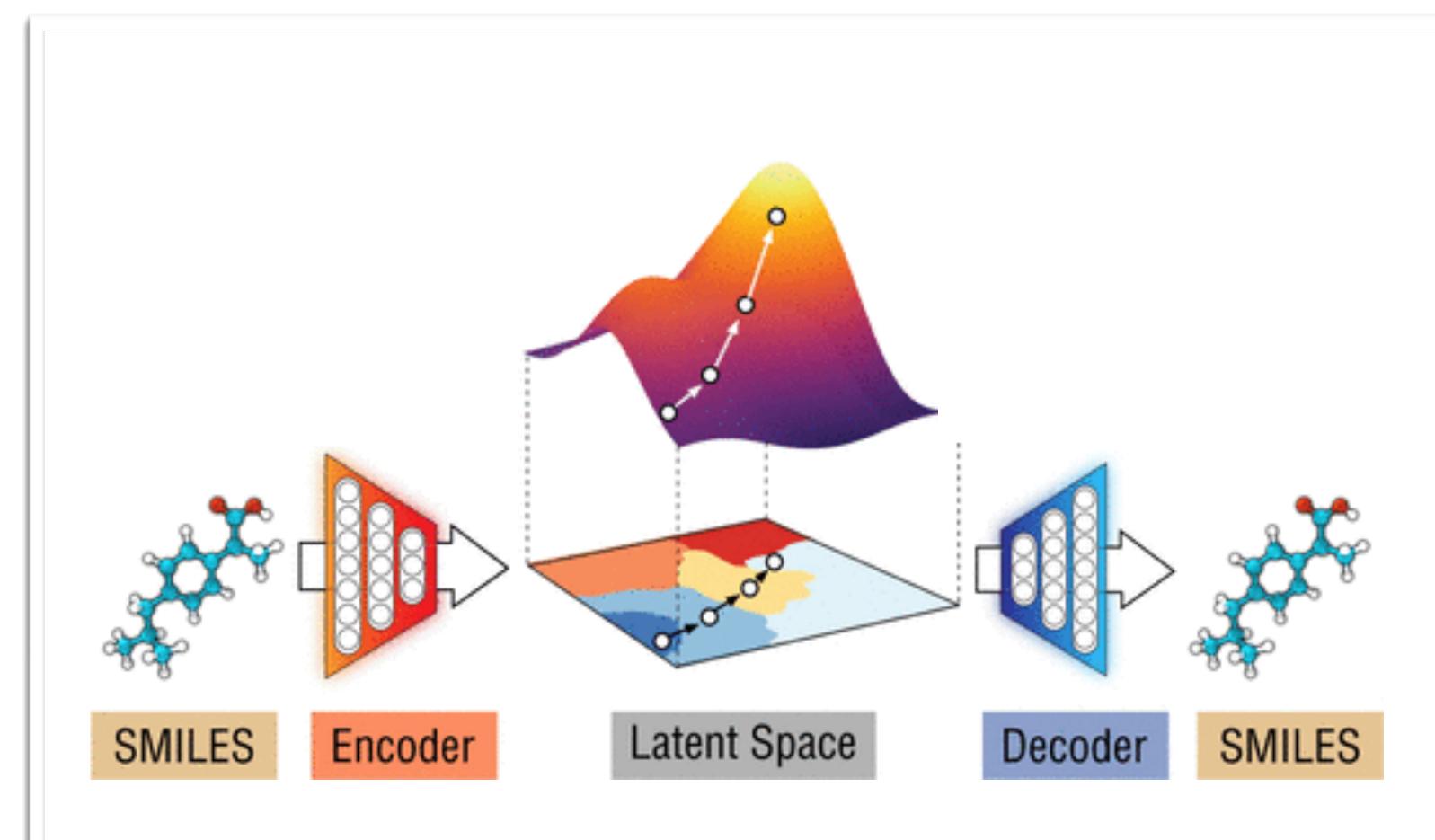


Goodfellow, Bengio, Courville, http://www.deeplearningbook.org/

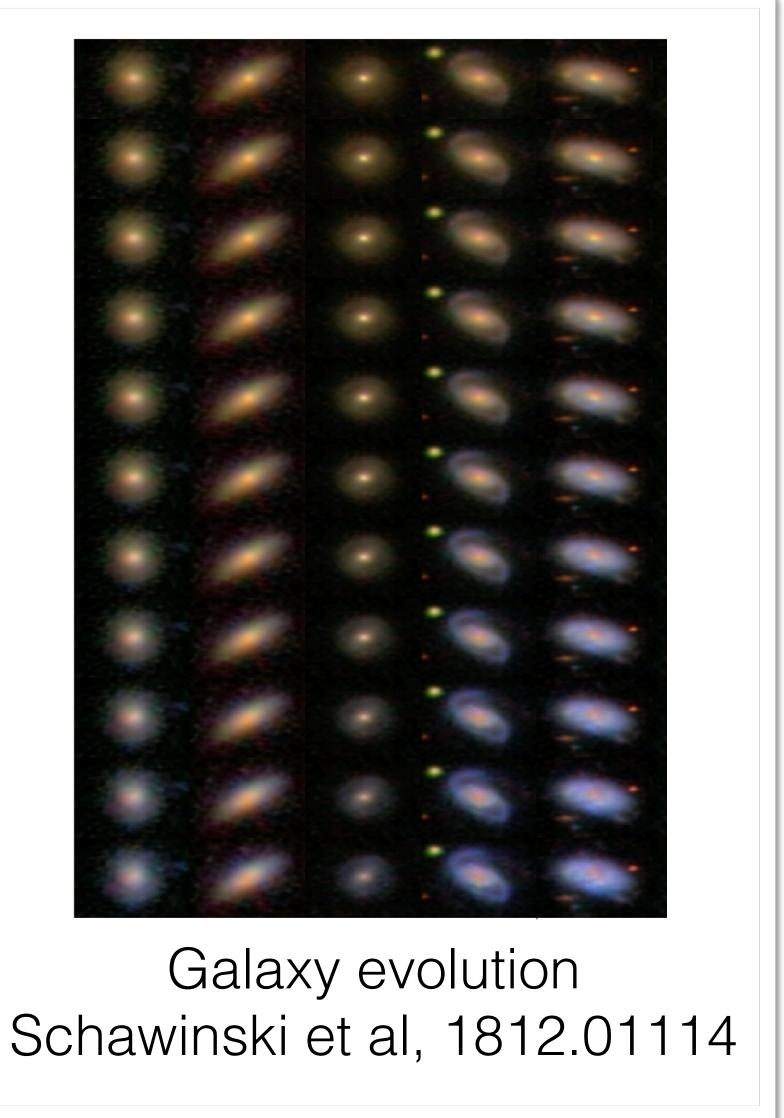
Page 6 Figure 1.2



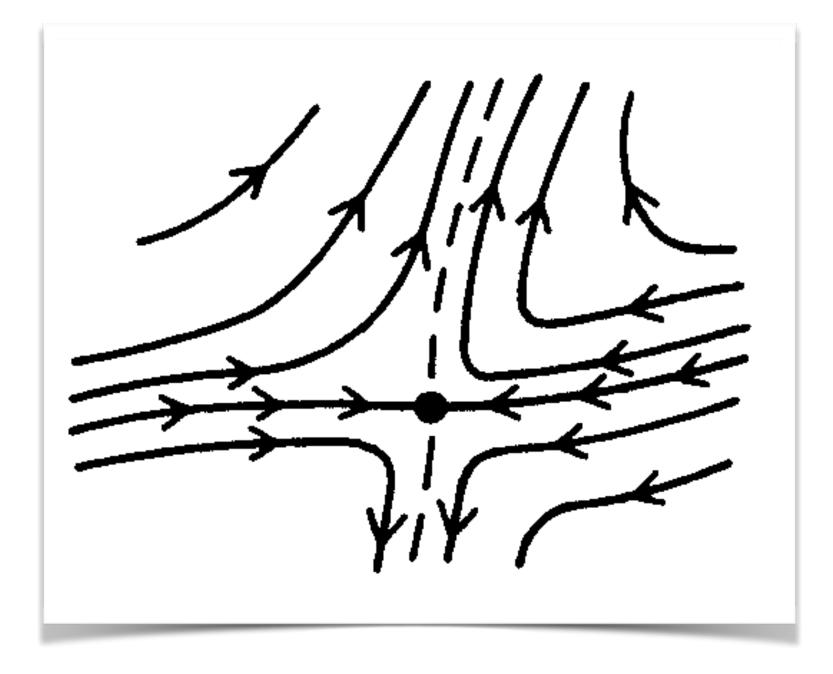
Learning representation for science



Automatic chemical design Gomez-Bombarelli et al, 1610.02415

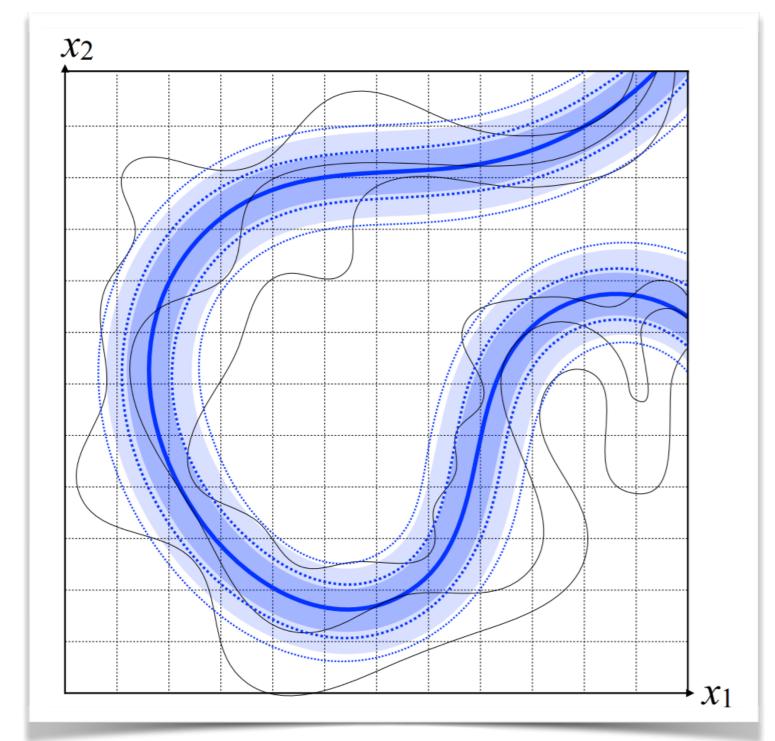


Representation learning in physics



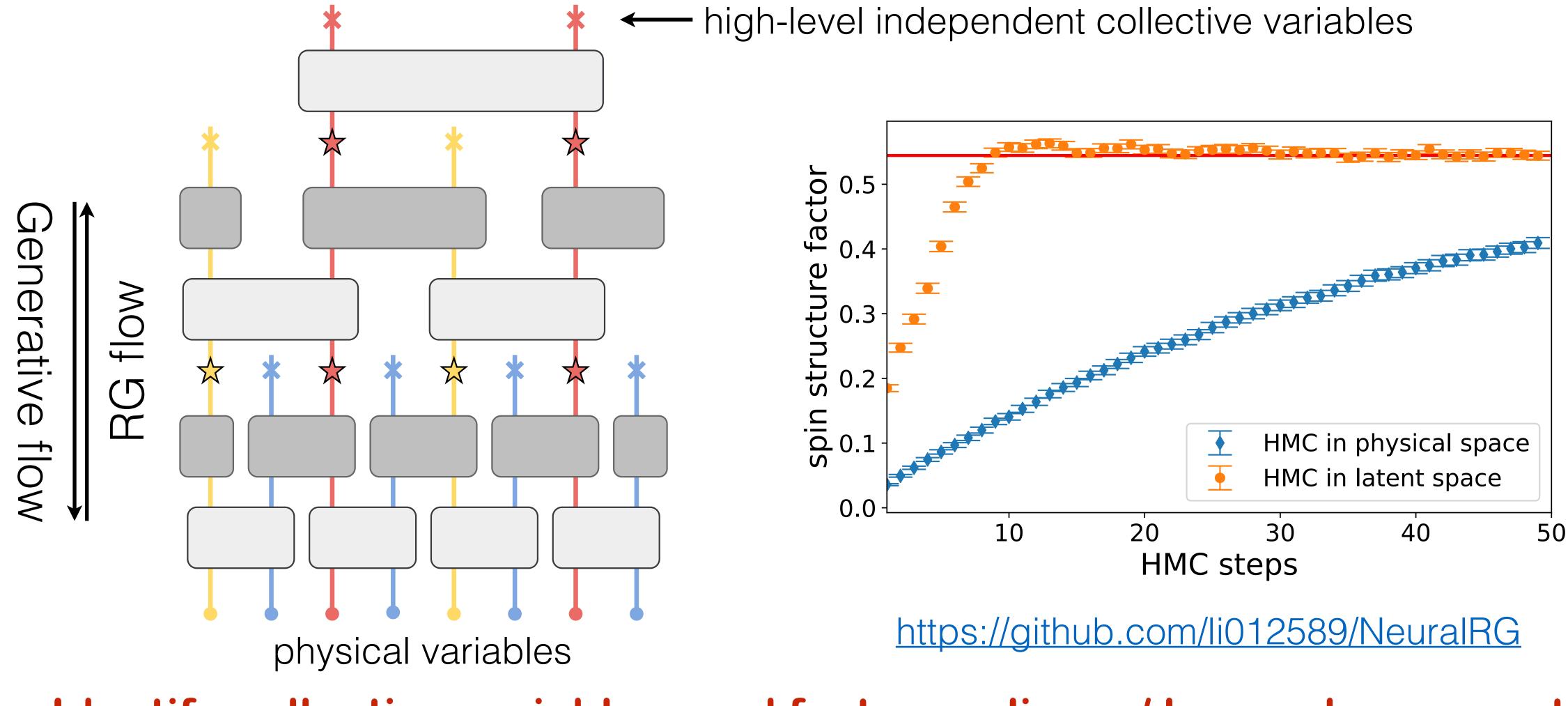
Effective theory emerges upon transformation to the variables

Monte Carlo update



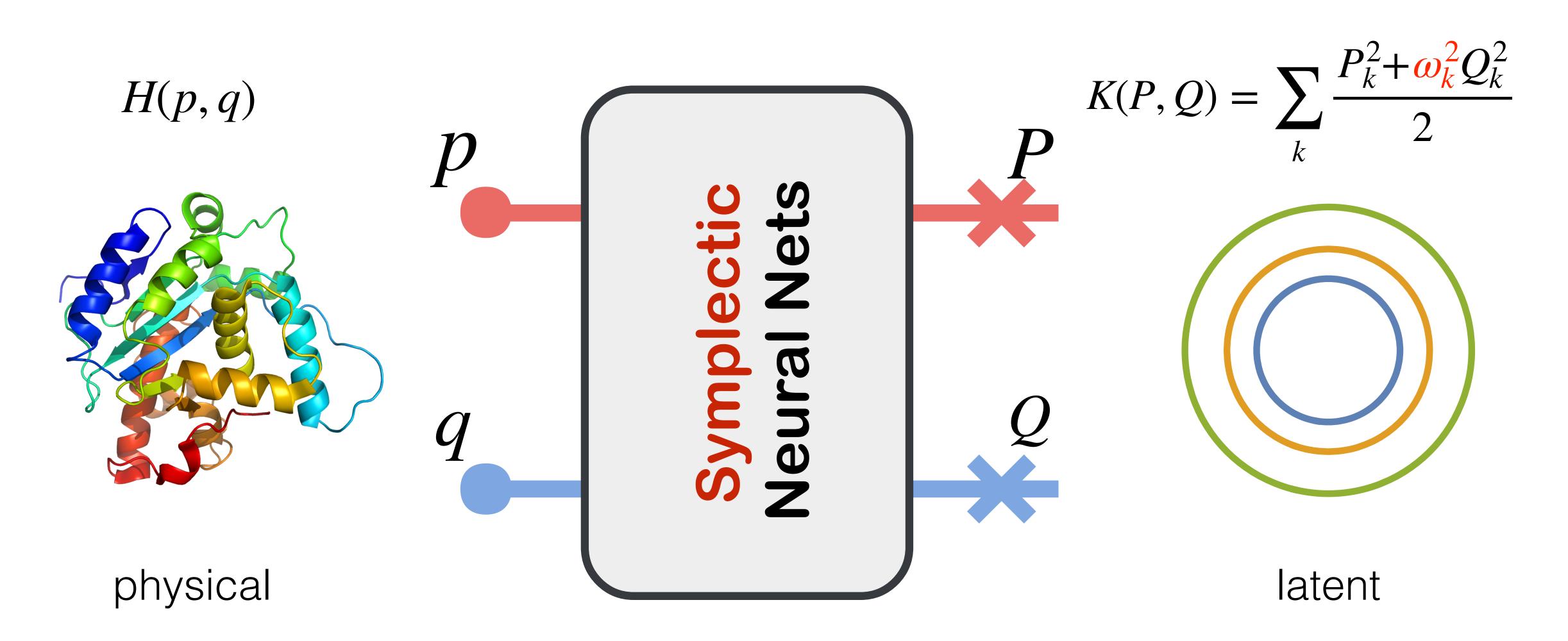
Physics happens on a manifold Learning unfolds that manifold

Neural Renormalization Group Multi-scale invertible neural network Li and LW, PRL '18



Identify collective variables; and fast sampling w/ learned representation

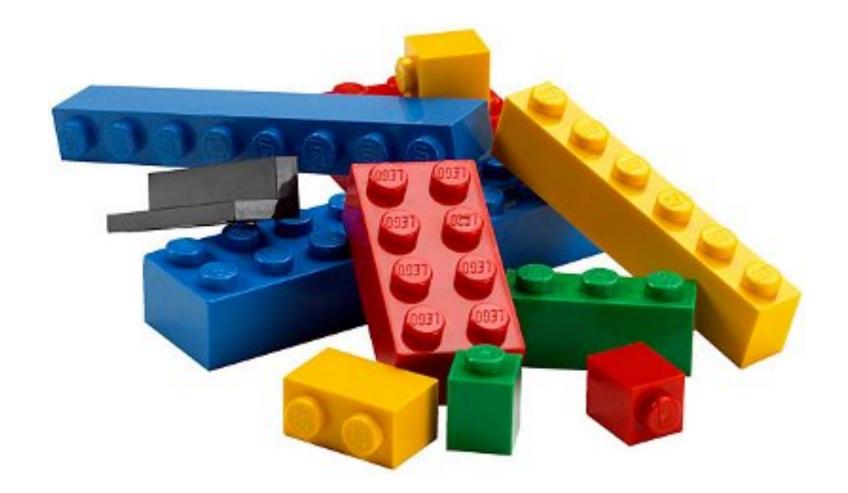
Neural Canonical Transformations



Learn the network and the latent harmonic frequency together

Modular design of the symplectic network

 $z = \mathcal{T}(x)$ $\mathcal{T} = \mathcal{T}_1 \circ \mathcal{T}_2 \circ \mathcal{T}_3 \circ \cdots$



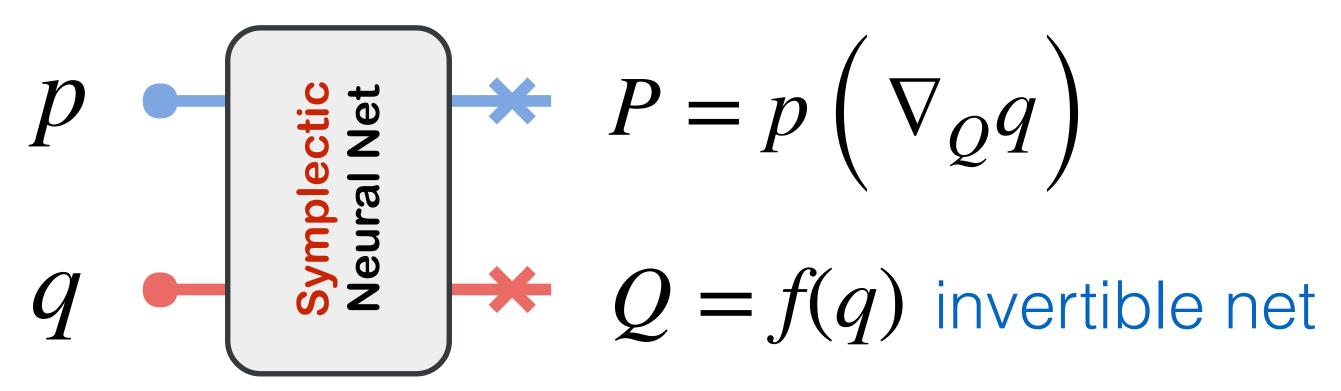
Compose symplectic primitives to a deep neural network

$$\left(\nabla_{\boldsymbol{x}} \boldsymbol{z}\right) J \left(\nabla_{\boldsymbol{x}} \boldsymbol{z}\right)^{T} = J$$

symplectic group

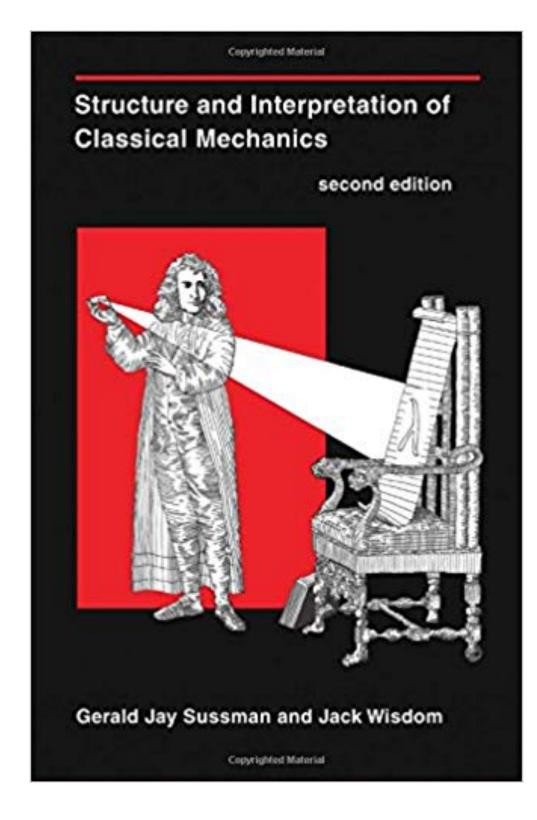
Neural symplectic primitives

Neural coordinate transformation



- Linear transformation: Symplectic Lie algebra
- Continuous-time flow: Symplectic generating functions See also Bondesan, Lamacraft, 1906.04645 Neural ODE, Chen et al, 1806.07366, Monge-Ampere flow, Zhang et al 1809.10188

$$\left(\nabla_Q q\right)$$



A digression on invertible neural networks

ICML

Workshop on Invertible Neural Nets and **Normalizing Flows**

Home

Schedule

Call for Papers

Author Instructions

Accepted Papers

Invited Speakers

Overview

Research on invertible neural networks has recently seen a significant resurgence of interest in the ICML community. Invertible transformations offer two key benefits: • They allow exact reconstruction of inputs and hence obviate the need to store hidden activations in memory for backpropagation

- normalizing flows)

Like autoregressive models, normalizing flows can be powerful generative models that allow exact likelihood computations. With the right architecture, they can also generate data much faster than autoregressive models. As such, normalizing flows have been particularly successful in density estimation and variational inference.

• They can be designed to track the changes in the probability density of the inputs that the transformation induces (in which case they are known as

Normalizing

Ivan Kobyzev Simon Prince Marcus A. Brubaker

Survey paper 1908.09257

Eric Jang @Google Brain

Saturday, July 6, 2019

🌠 Eric Jang: Normalizing Flows in imes 🕂

🦲 😑 😑

 $(\leftarrow) \rightarrow \mathbf{G}$

Normalizing Flows in 10

JAX is a great linear algebra + autom teaching machine learning. Here is a implement Real-NVP.

This post is based off of a tutorial on Nets and Normalizing Flows. I've alread using TensorFlow Probability's Bijecto implement Real-NVP a different way.

By the end of this tutorial you'll be al from a 2D Normal distribution to sam lot of flow-based architectures (as of 2019), so this is a good template to start learning from.

Normalizing Flows: In	ntroduction and Ideas
obyzev	IVAN.KOBYZEV@BOREALISAI.COM
Prince	SIMON.PRINCE@BOREALISAI.COM
A. Brubaker	MARCUS.BRUBAKER@BOREALISAI.COM
	"Be still like a mountain and flow like a great river."
	Lao Tzu
lizing Flows in 100 Lines o	of JAX
•	iation library for fast experimentation with and example, in just 75 lines of JAX, of how to
lormalizing Flows. I've already written a	flows I gave at the ICML workshop on Invertible Neural bout how to implement your own flows in TensorFlow nake things interesting I wanted to show how to
Normal distribution to samples from the	uce this figure of a normalizing flow "bending" samples e "Two Moons" dataset. Real-NVP forms the basis of a

The essence of flows

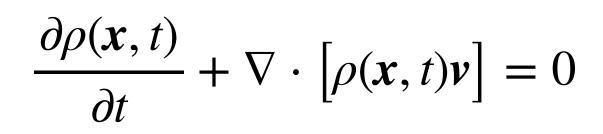
 $p(\boldsymbol{x}) = p(\boldsymbol{z})$

Design principle: Efficient Jabobian and inverse

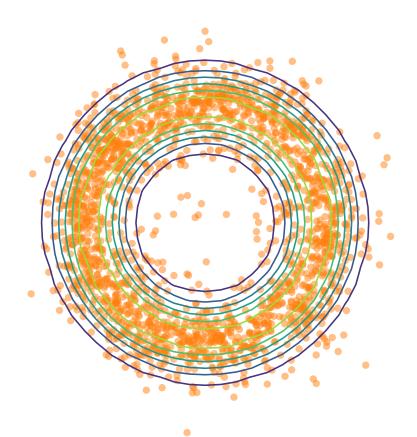


Change of variables $x \leftrightarrow z$

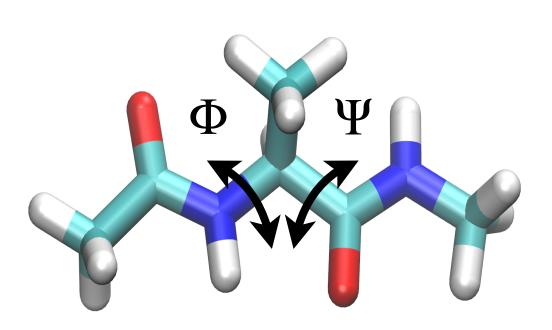
z)
$$\det\left(\frac{\partial z}{\partial x}\right)$$

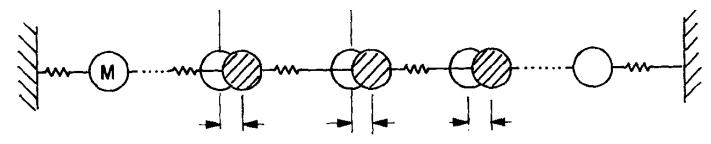


Continuous-time flow

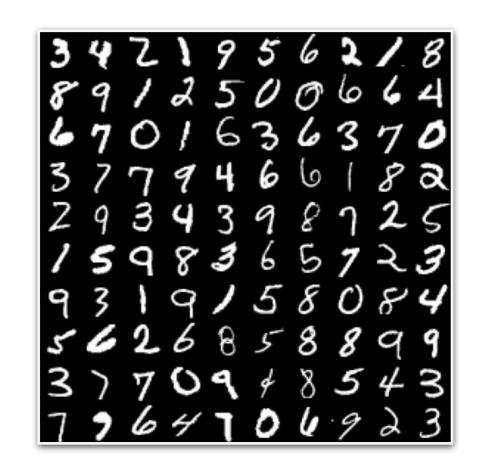


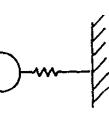
Let's play with examples!





How is this going to be useful?



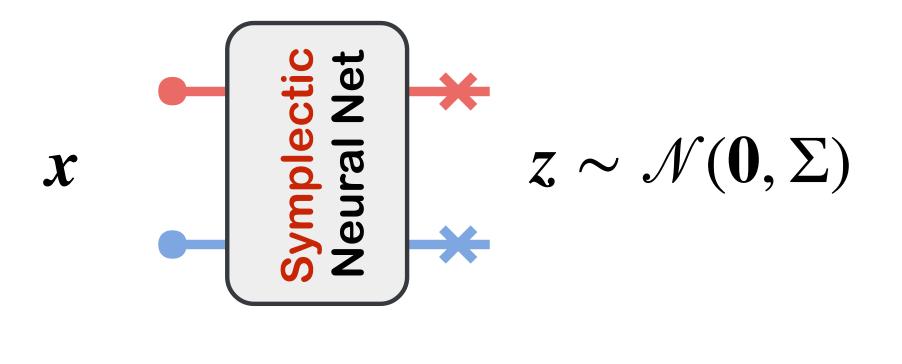


Training approaches

Variational calculation

"learn from Hamiltonian"

$$\mathscr{L} = \int d\mathbf{x} \,\rho(\mathbf{x}) \left[\ln \rho(\mathbf{x}) + \beta H(\mathbf{x}) \right]$$

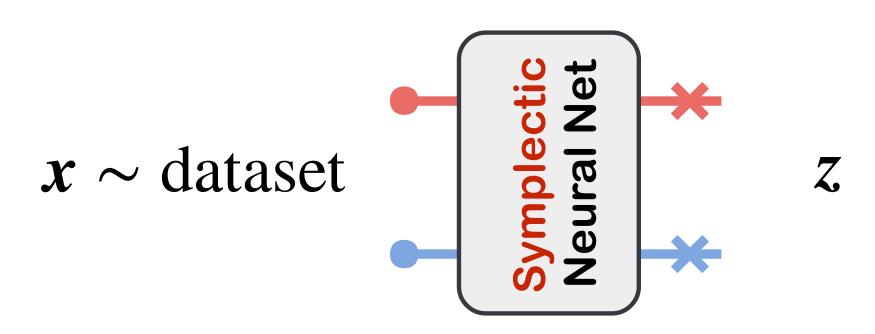


Sample in the latent space

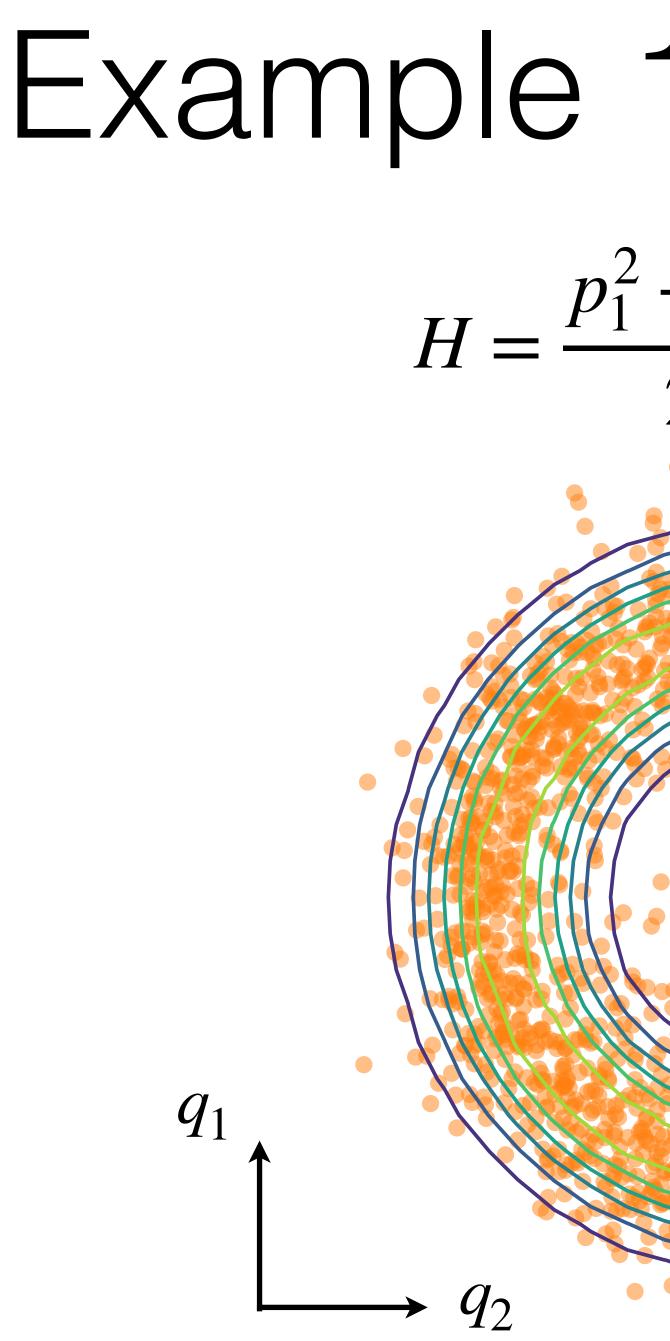
Density estimation

"learn from data"

 $\mathscr{L} = -\mathbb{E}_{\mathbf{x} \sim \text{dataset}} \left[\ln \rho(\mathbf{x}) \right]$



Sample from dataset in the physical space

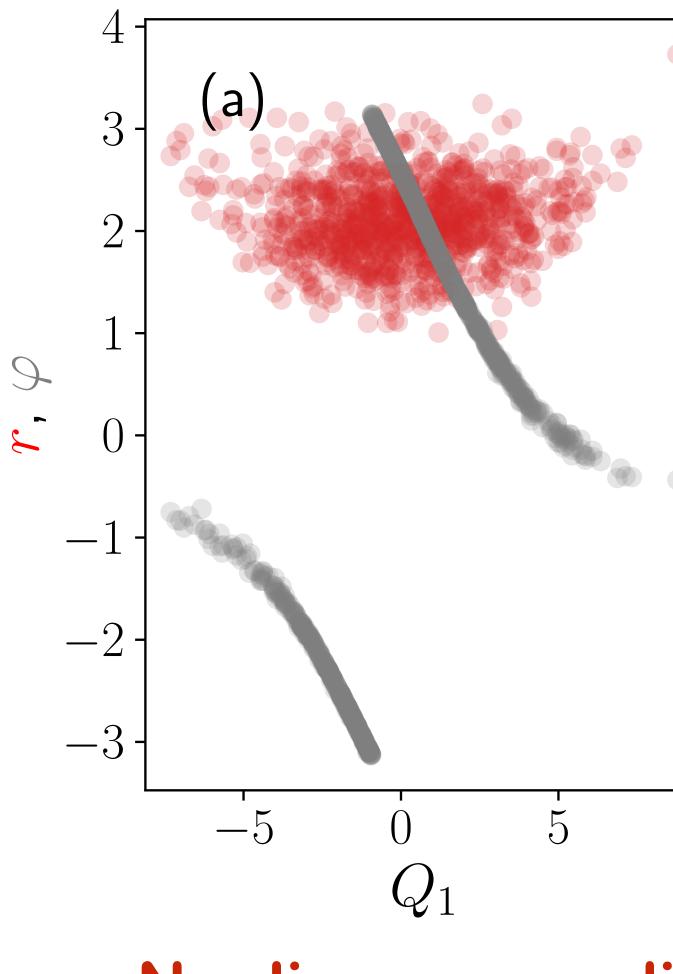


Example 1: Ringworld

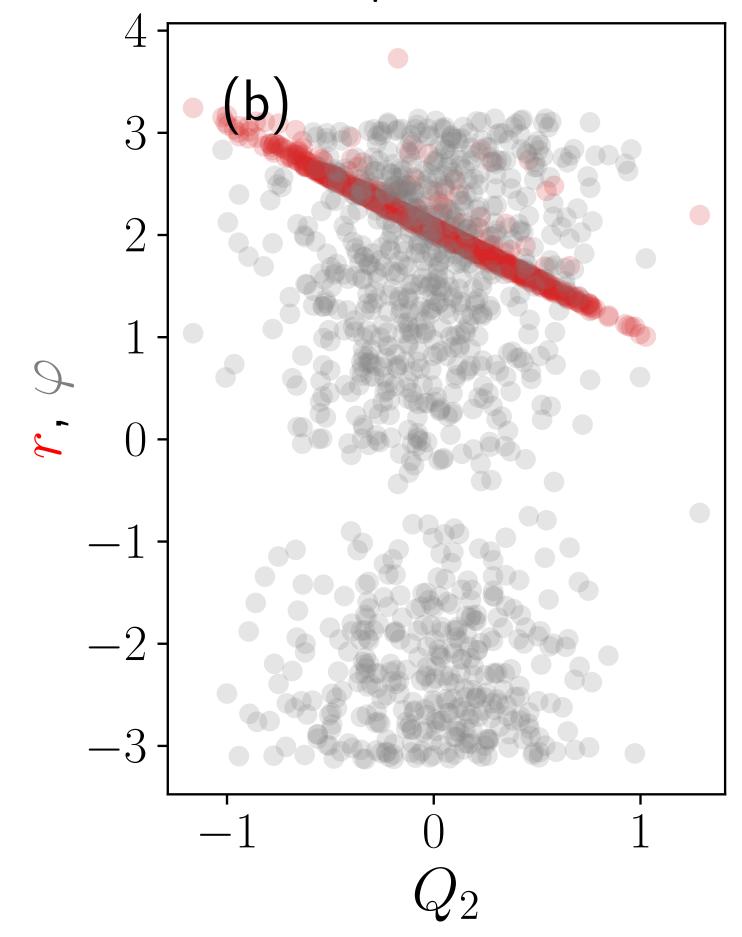
 $H = \frac{p_1^2 + p_2^2}{2} + V(q_1, q_2)$

Learning the polar coordinates

 $\varphi = \arctan(q_2/q_1)$

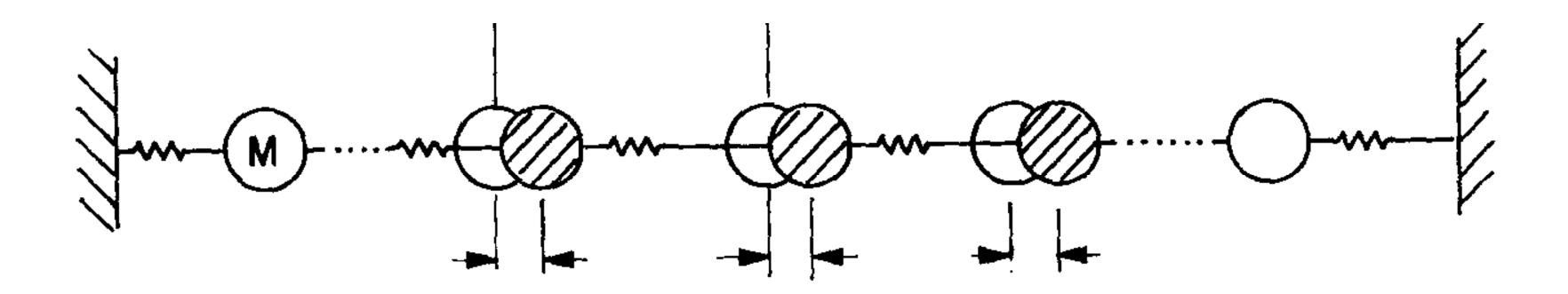


 $r = \sqrt{q_1^2 + q_2^2}$



Nonlinear coordinate transformation in 2d

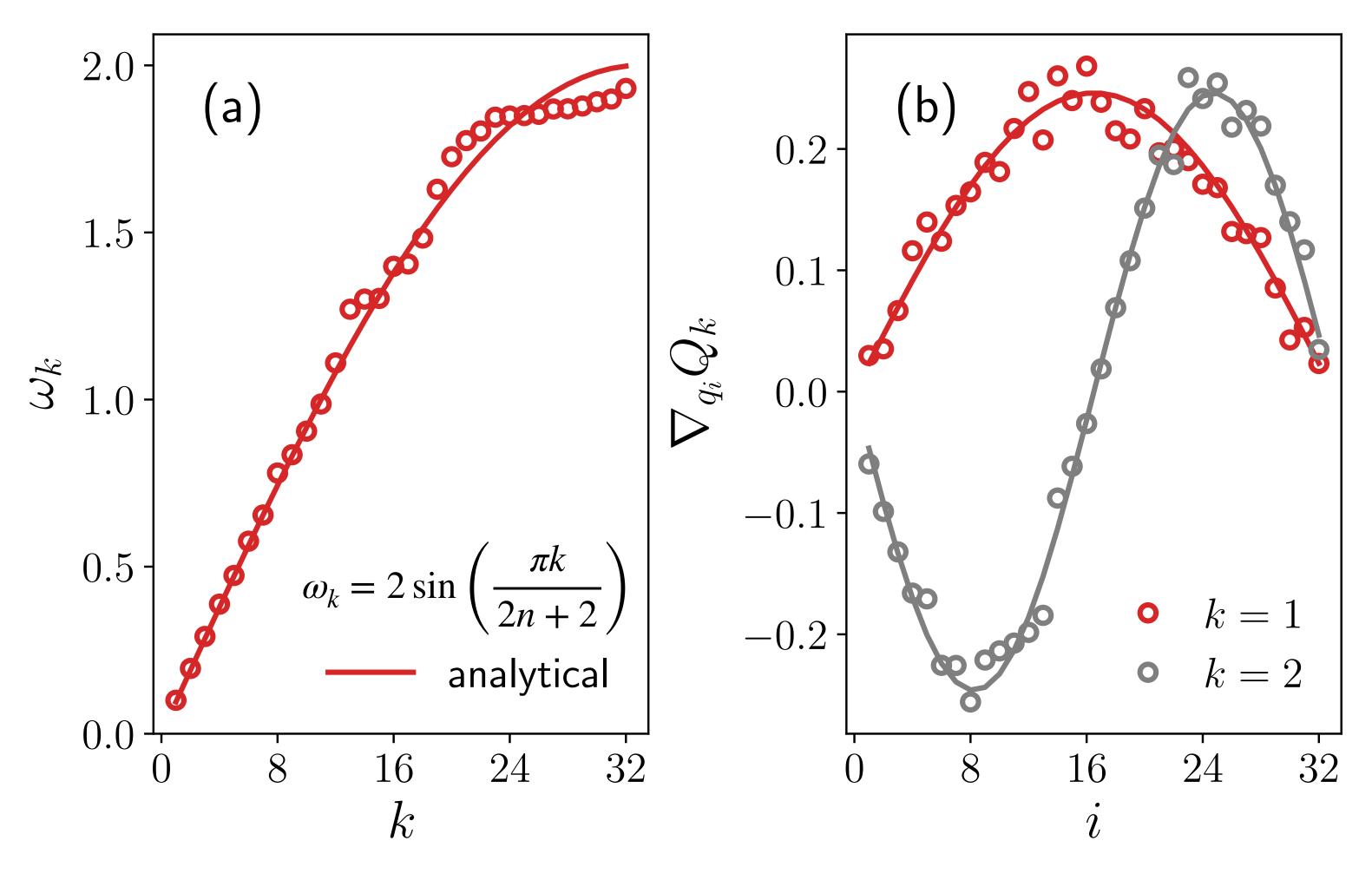
 $H = \frac{1}{2} \sum_{i=1}^{n} \left[p_i^2 + (q_i - q_{i-1})^2 \right]$



Example 2: Harmonic Chain

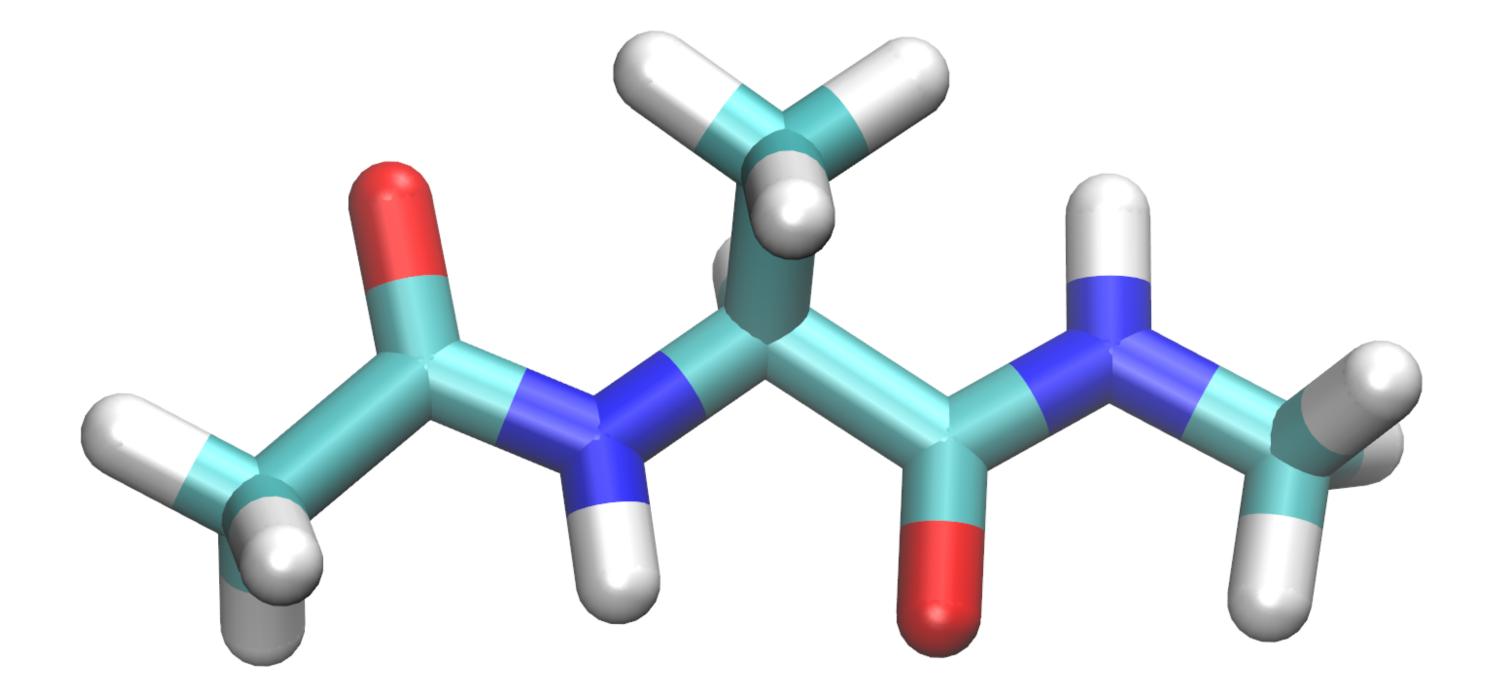
Fermi–Pasta–Ulam–Tsingou problem w/o nonlinearity

Learning normal modes

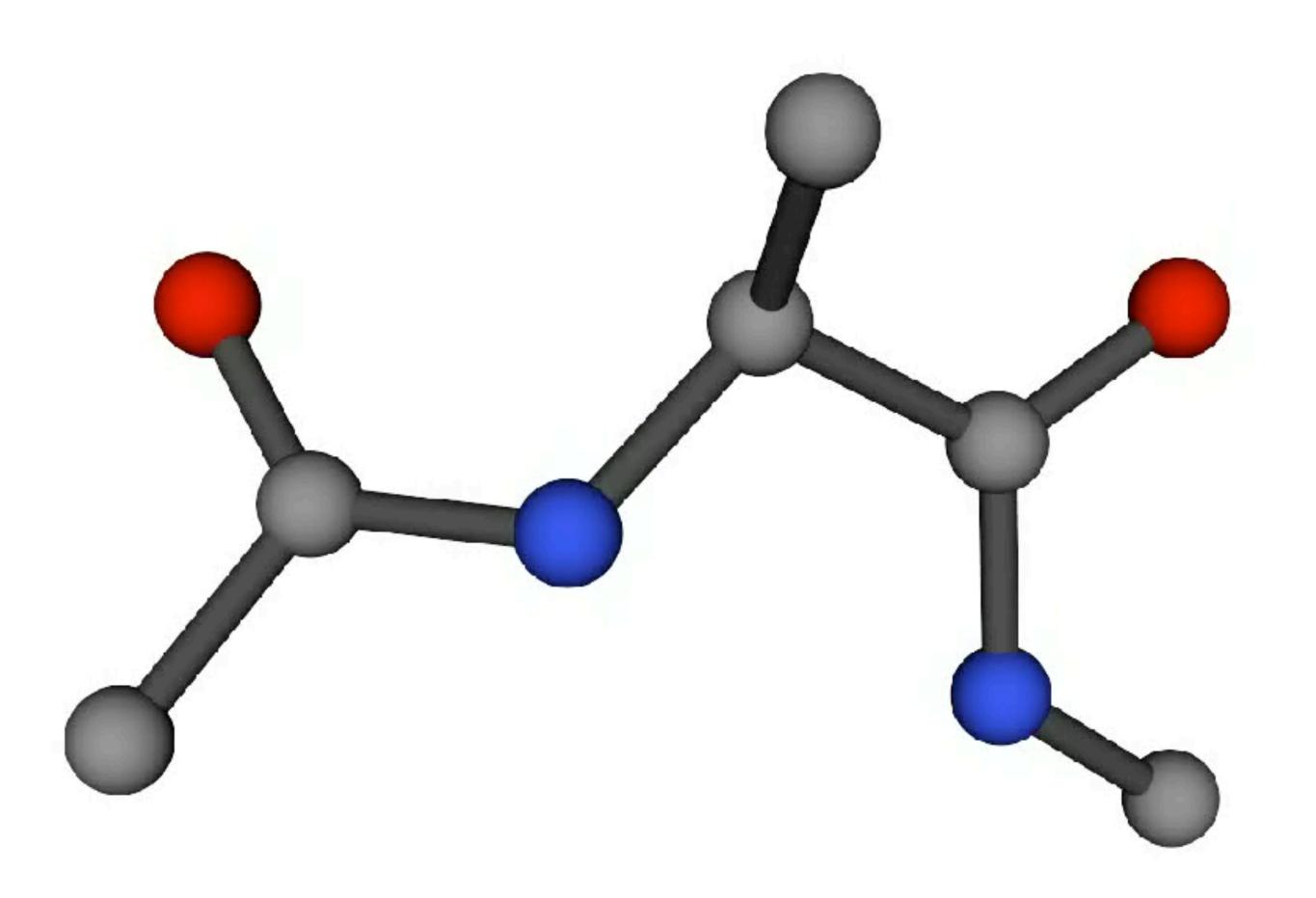


Linear coordinate transformation in high dim

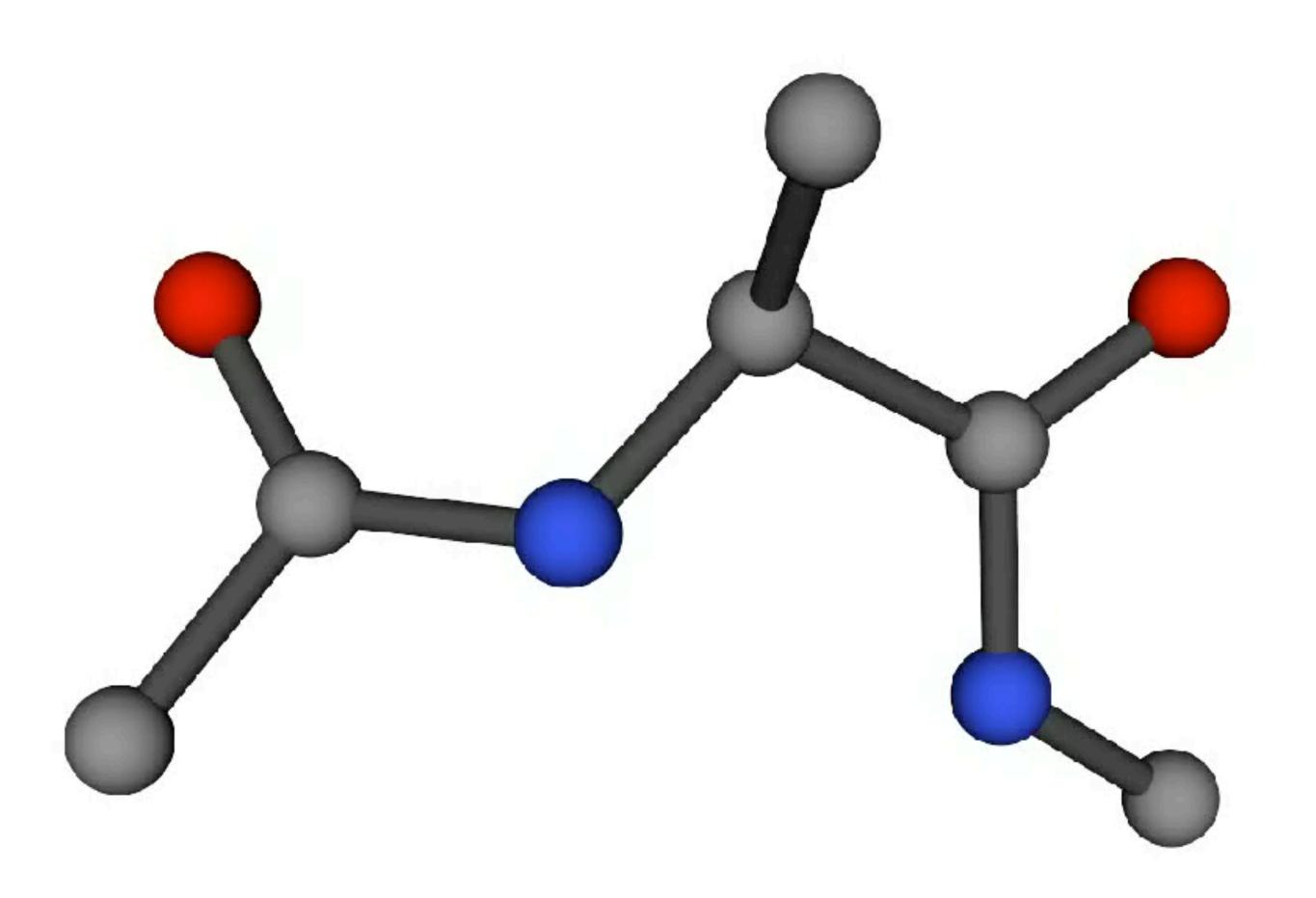
Example 3: Alanine Dipeptide



250 ns molecular dynamics simulation data at 300 K https://markovmodel.github.io/mdshare/ALA2/#alanine-dipeptide

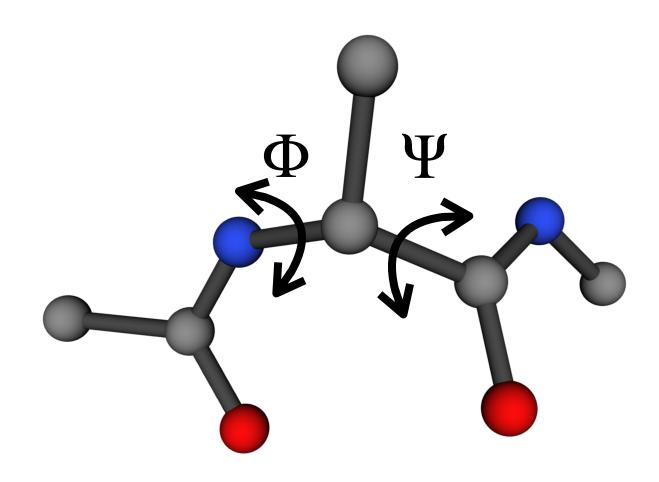


More than 3 hours of video ...

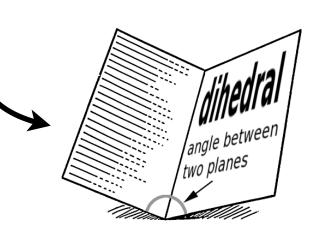


More than 3 hours of video ...

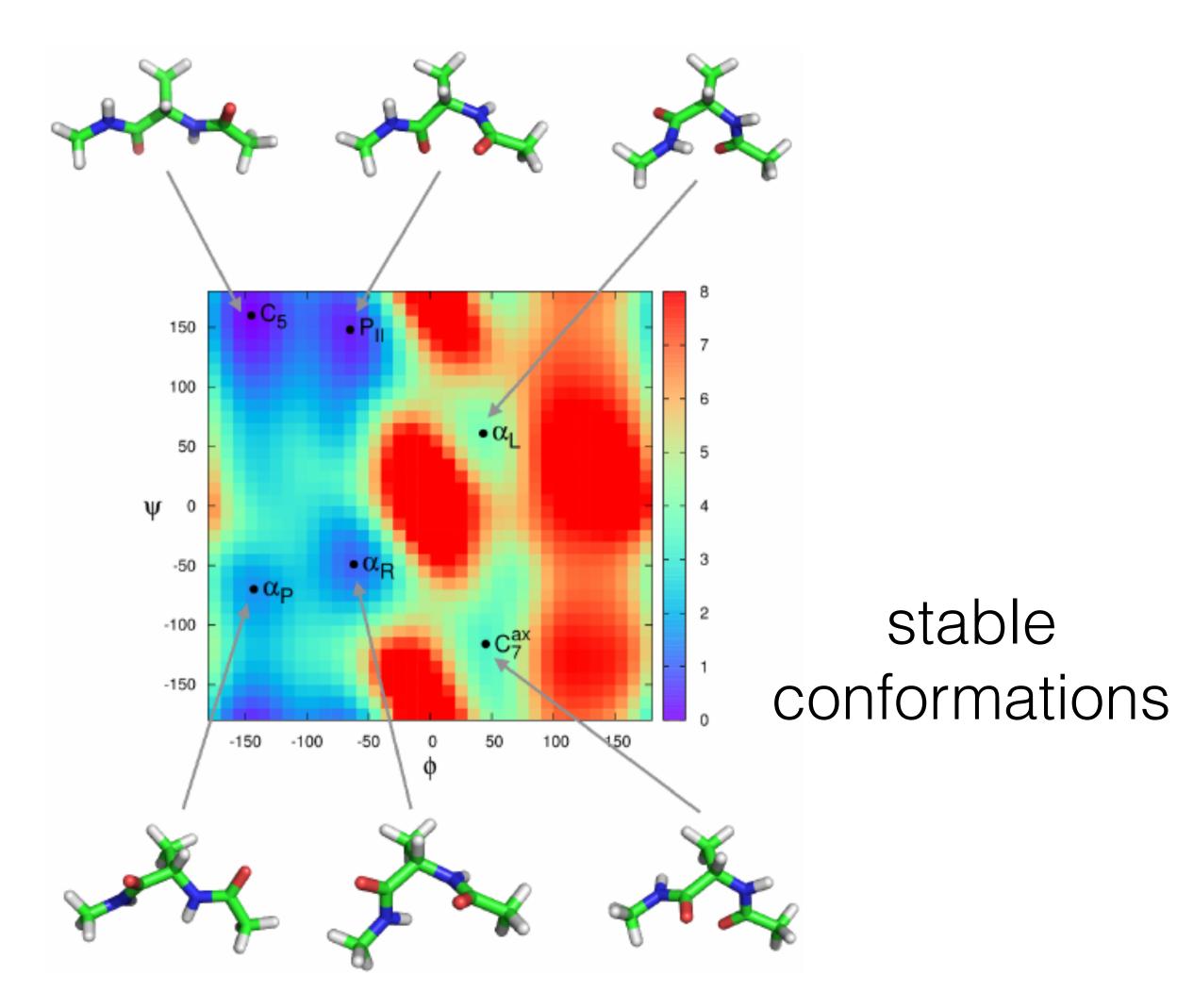
What do biologists see ?



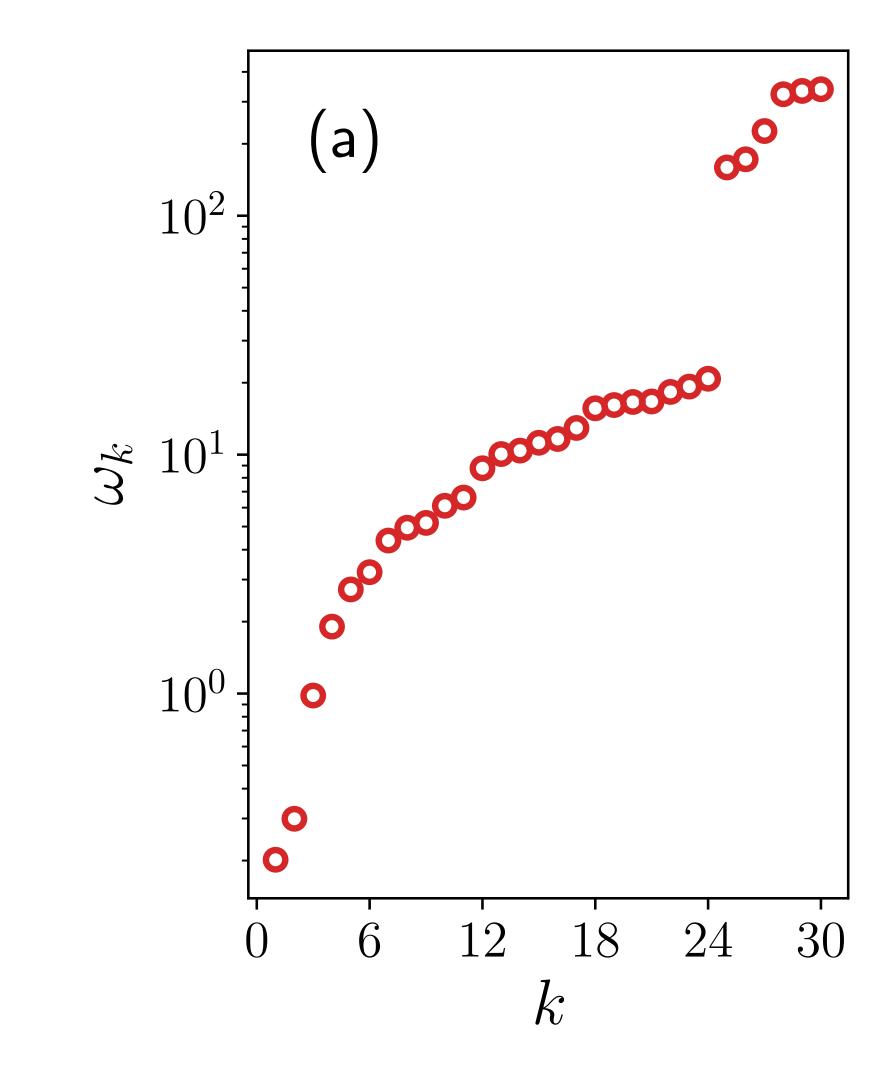
slow motion of the two torsion angles

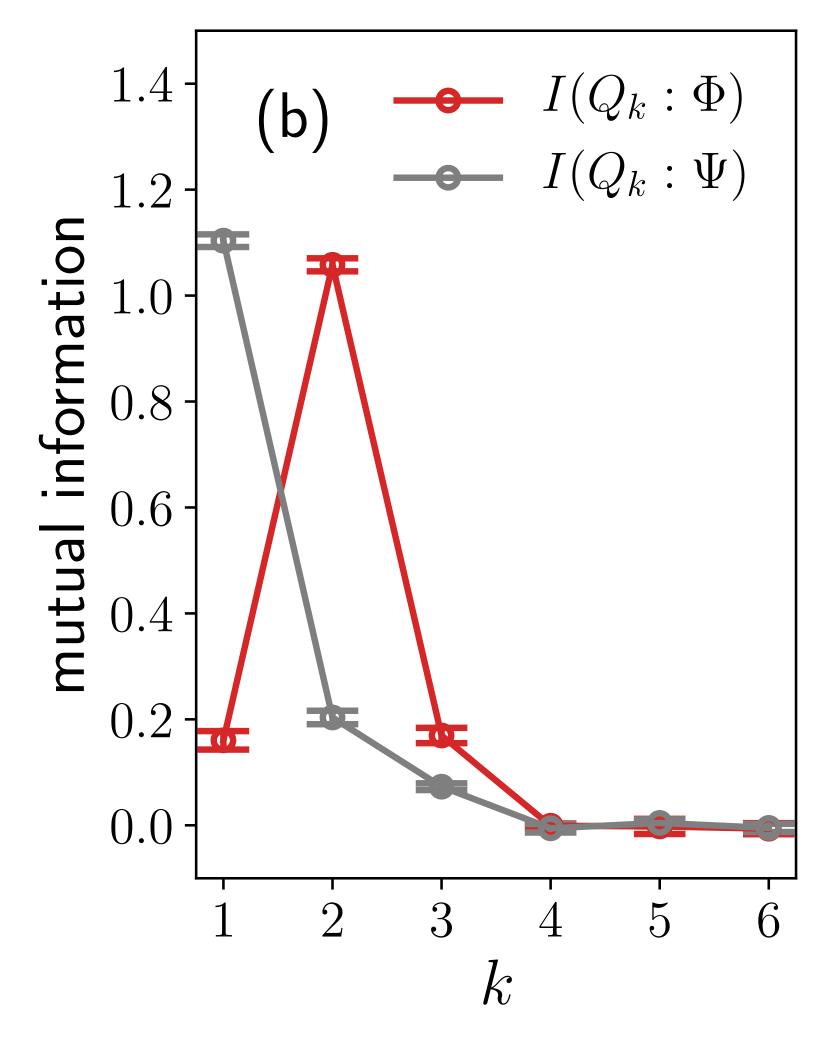


"Dimensional reduction" to manually designed collective variables



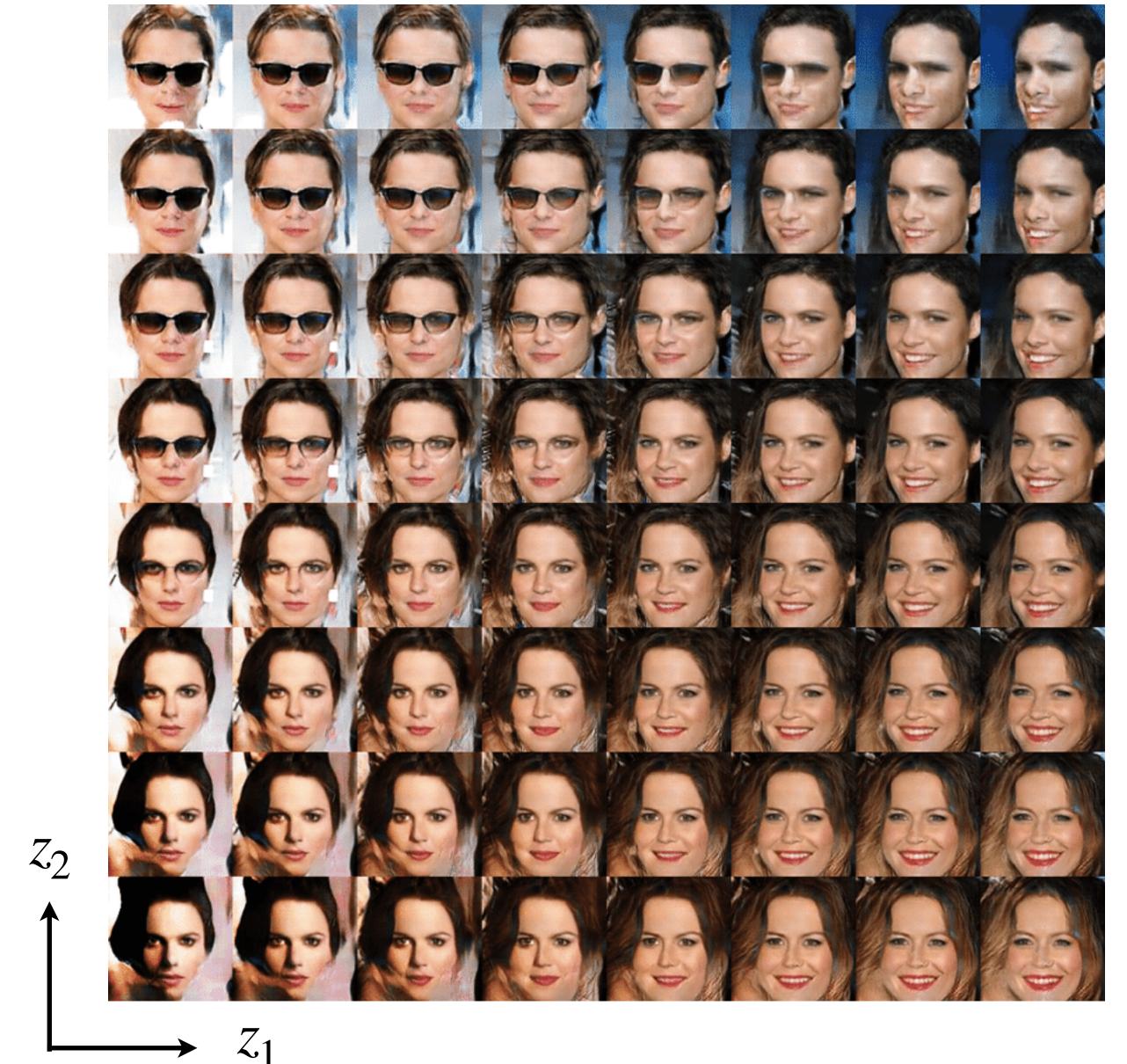
What does the neural net see ?



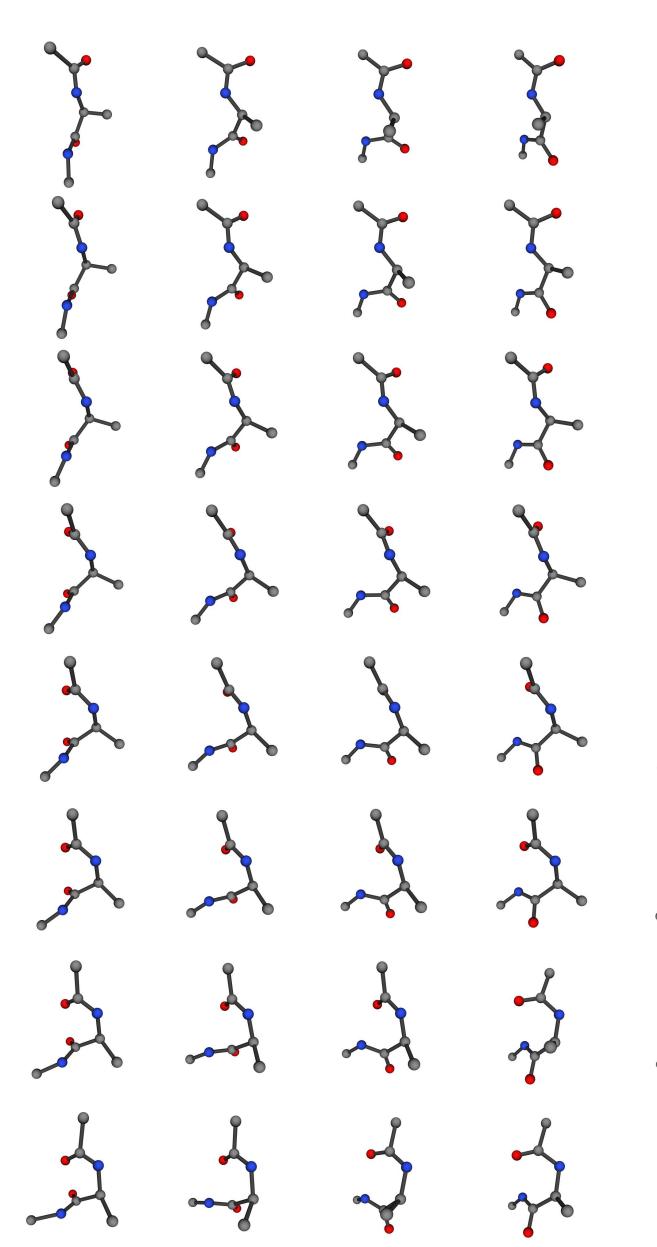


Unsupervised learning of slow & nonlinear collective variables from data

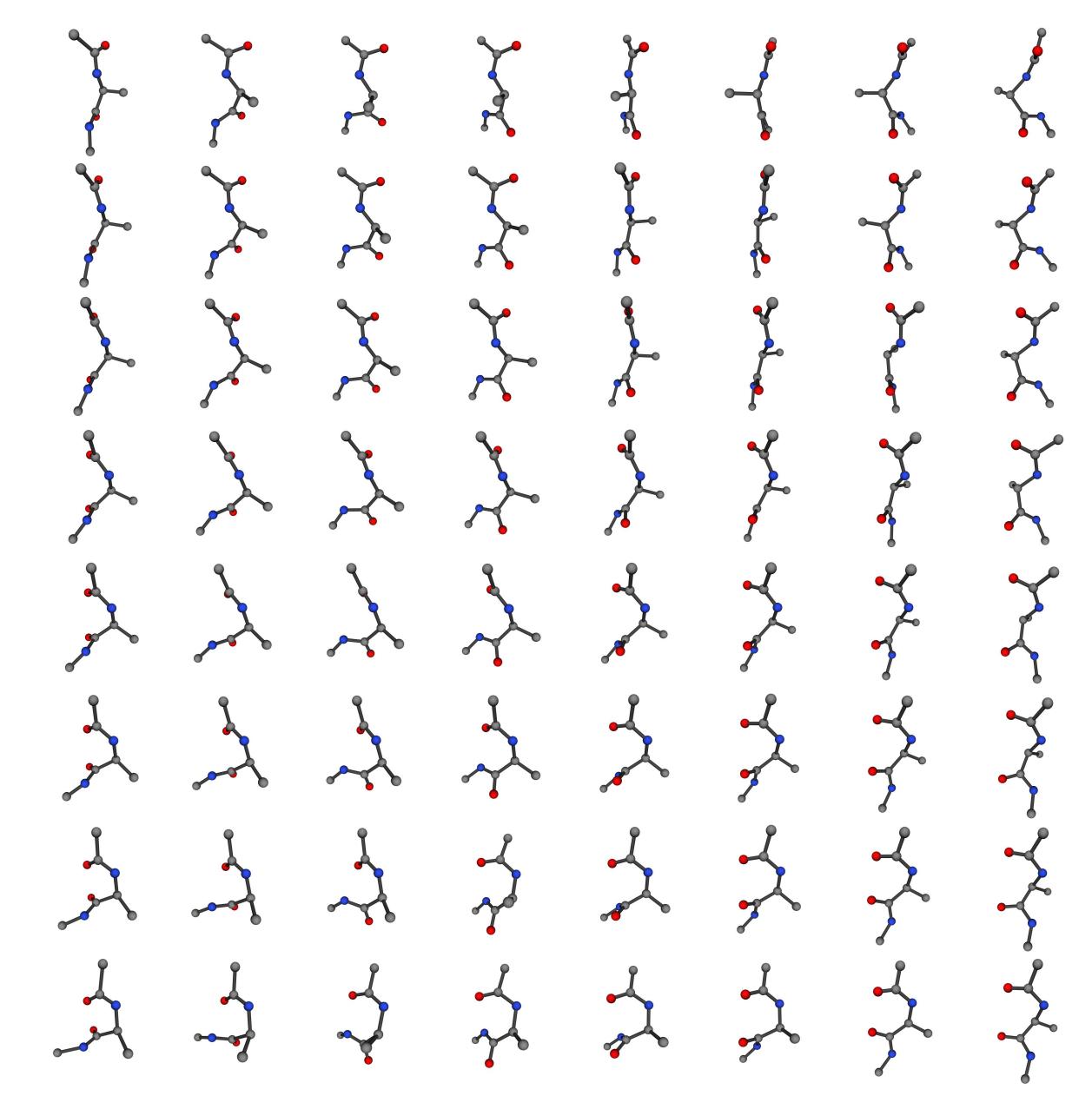
Latent space interpolation



Latent space interpolation



 $Q_2 \approx \Phi$ → $Q_1 \approx \Psi$



21956218 12500 9 636370 Į 6 6 187 39 4 57 6 8 O 3770948543796923

Example 4: MNIST

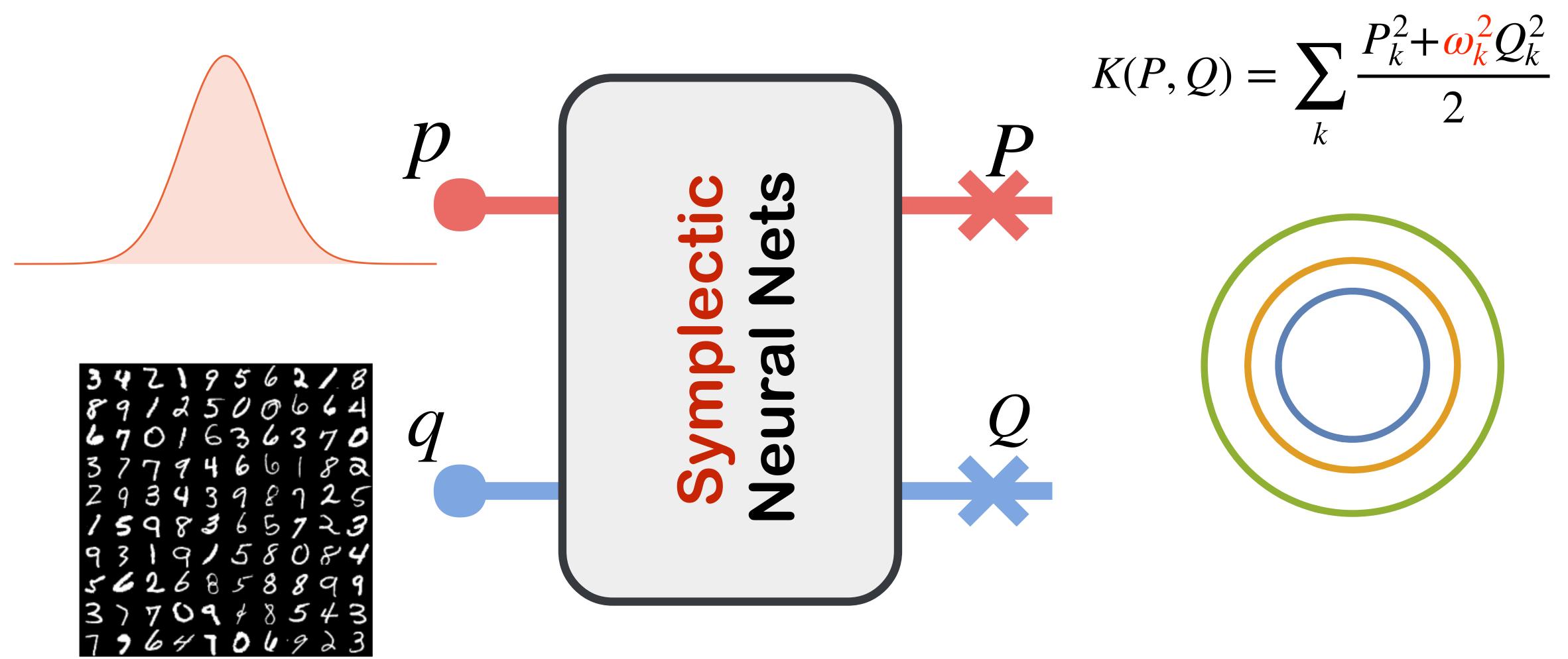
Data scientists:

"50,000 grayscale images with 28x28 pixels"

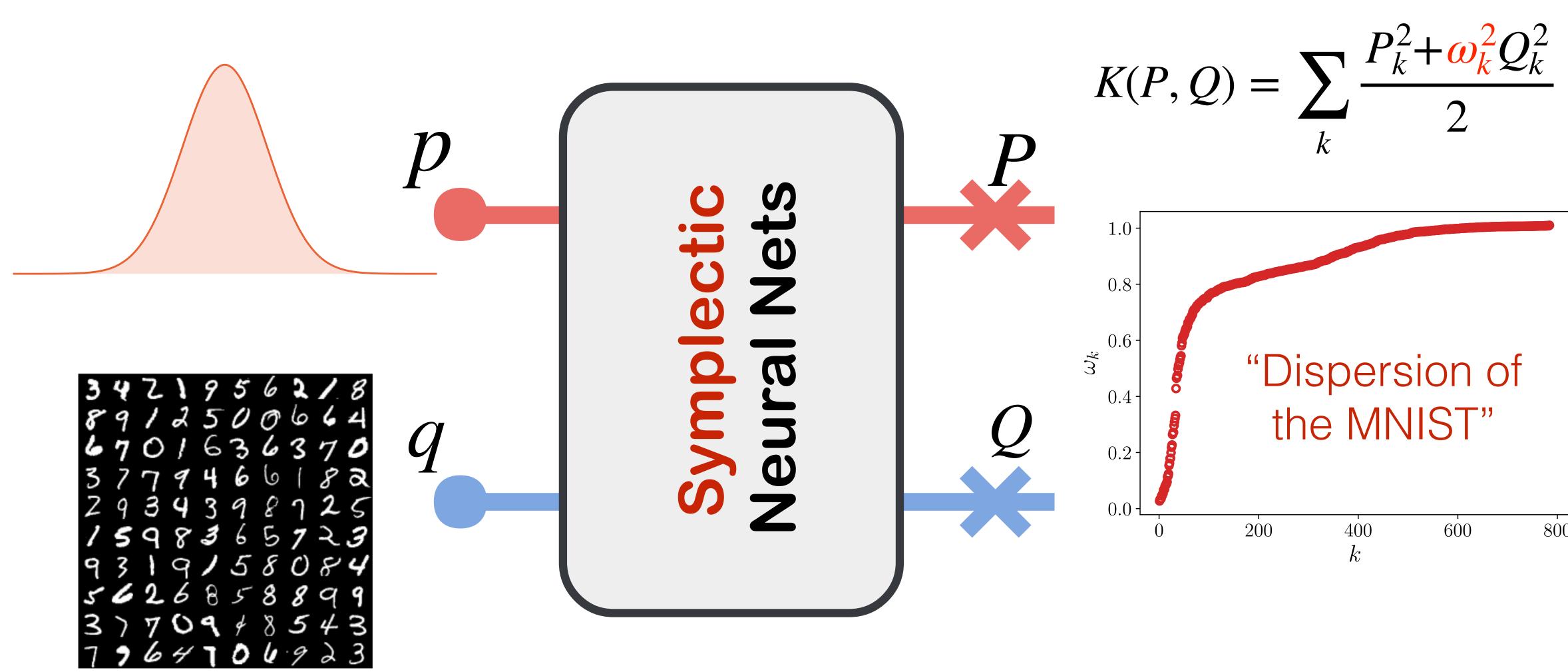
Physical Chemists:

"Stable conformations of a molecule with 784 degrees of freedom"

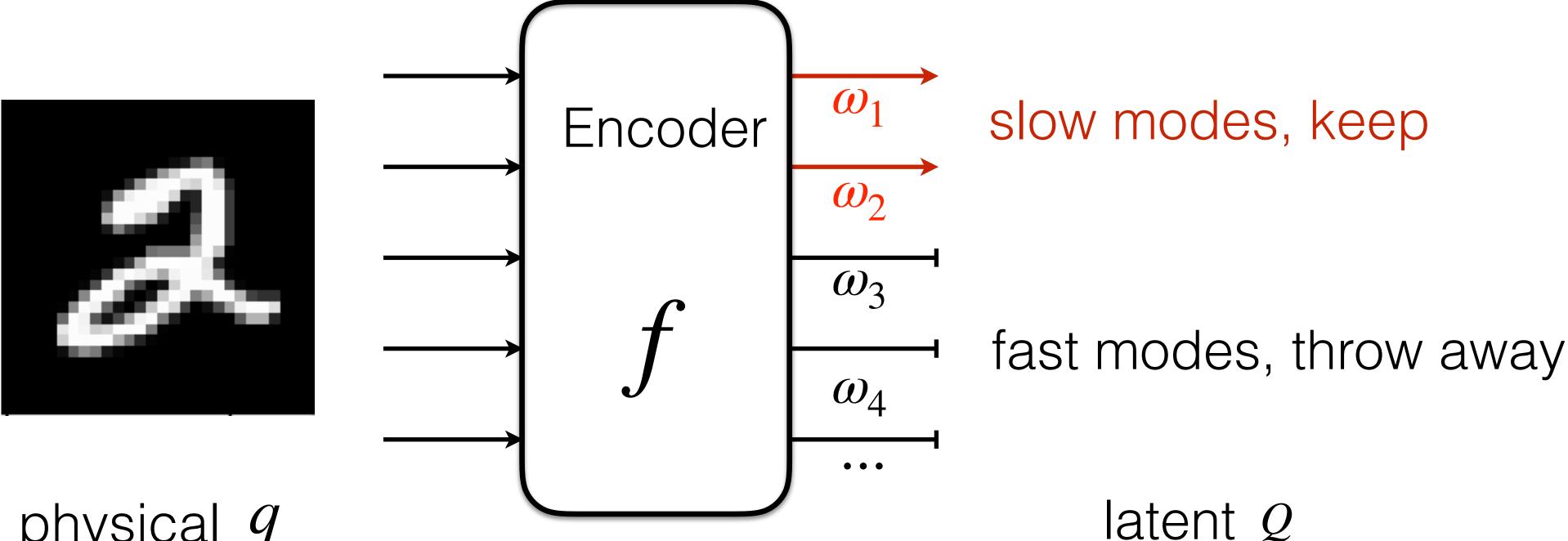
Learning slow variables of MNIST



Learning slow variables of MNIST



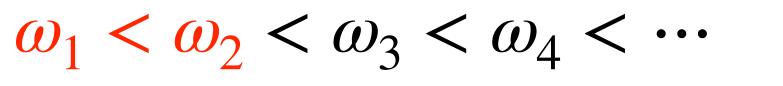
Conceptual Compression



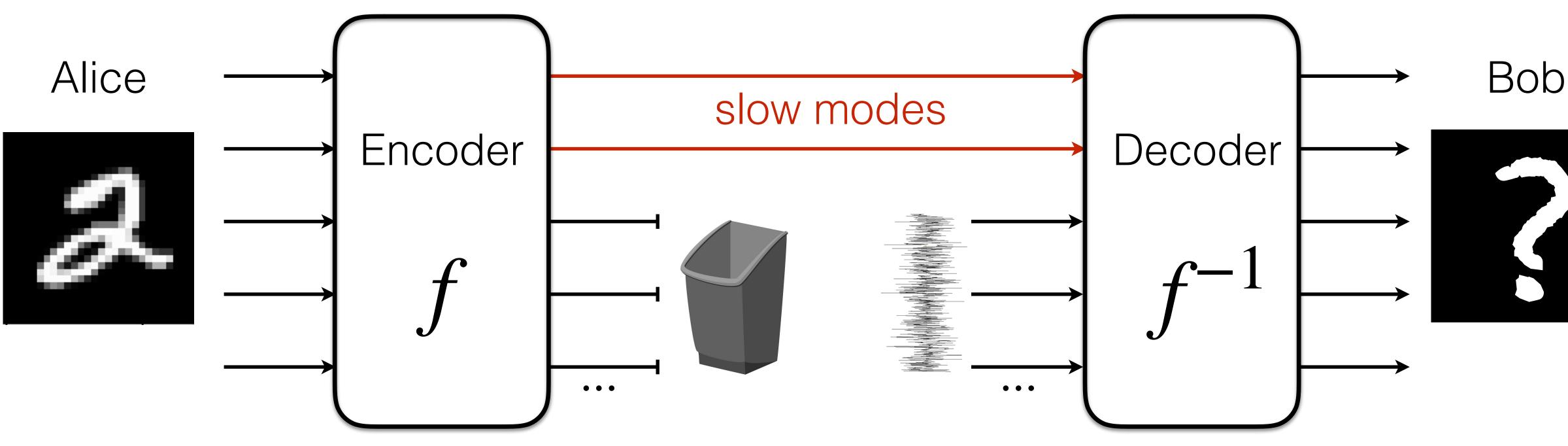
physical q

Compress by keeping slow collective variables

Kingma et al, 1312.6114 Gregor et al, 1604.08772 Dinh et al, 1605.08803 autoencoders/hierarchical network architecture/hyperbolic latent space...



Neural Alice-Bob game



throw away

random noises

Original

2	33	J	17	O	2	ζ	3	C	3
Ŋ	9	3	f a	23	3	9	5	Z	
5	2	4	Y.	K	3	3	7	0	5
2	5	5	2	3	9	Ş	\mathcal{X}	1	1
7	\hat{S}	5	ŝ	5	2	9	a.		57
8	3	4	9	(A)	3	2		2	$\langle U_{2}^{k} \rangle$
3	2	10	1	S	13	3	5	7	6
5	4	3	Ą	1	7	3	14	2	
14	1	4	A)	4	15	G	5	5	3
l_i	3	4	6	3	Ð	$\langle S \rangle$	3	ŝ	1

Original

Original

3	9	6	4	1	5	4		X	
E(9	0	3).		85	9	5	
3	3	G		9	3	Ø	5	1	5
9	6	10	3	3	5	g	4	5	9
4	30	2	3	9	3	a.	\overline{T}	5	17
6	0,	5	9	3	0	7	5	4	1
6	3	3	3	4	1.5	G	õ	3	Ġ
3	C.	7	5	-	B	2	1	6-3	?
3	9	0	F	7	C	4	3	5	1
3	B		3	3	1	2	3	3	57

Original

Original

Original

6	-1	E	ų	5	4	3	9	Ý	7
З	9	C	3	E	ŝ	4	31	7	Ŧ
3	0	XA	C,	4	ŝ	Ø	53	i))	5
5	4	1	9	Ö	4	Ś	1	53	9
4	2	3	C	9	3		9	5	10
1	1	g	5	ર્સ	9	7	2	2	5
0	0	3	8	9	8	6	S	3	6
3	3	9	3		4	2	2		7
6	9	8	4	No.	75	4	7	8	Q
8		6	5	2	5	1	G	5	7

Original

Original

To do list

- Even better understandings of the approach
- solitons, synchronization phenomena ...
- More suggestions ?

• Actual applications to molecular dynamics and machine learning: Effective theory of slow modes, enhanced sampling, prediction...

Applications to (near) integrable systems, nonlinear lattices with

Shuo-Hui Li 李烁辉 IOP CAS

Chen-Xiao Dong 董陈潇 Linfeng Zhang 张林峰 IOP CAS Princeton

Thank You!

