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Canonical transformation for 
Moon-Earth-Sun 3-body problem

Charles Delaunay

More than 1800 pages of this, ~20 years of efforts (1846-1867)
↑

How to find useful canonical transformations for more complex systems? 



Canonical transformations and deep learning

Z = 𝒯(X)
𝒯 = 𝒯1 ∘ 𝒯2 ∘ 𝒯3 ∘ ⋯

Compose symplectic blocks to form a deep neural network 
 and learn them either from data or variationally

(∇X Z) ( I
−I ) (∇X Z)T = ( I

−I )
X = (p, q) Z = (P, Q)

symplectic change of variables

physical  
varaibles

latent  
varaibles



Canonical transformation deforms phase space density p(X) = e−βH(X)

Arnold, Mathematical Methods of Classical Mechanics  ’78 

Modern generative models are good at transforming probability densities

Canonical transformations and generative models



Tensor  
Networks

Quantum  
Circuits

G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in
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n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.

21A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996
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Generative models and their physics genes 

+Diffusion models

Deep Unsupervised Learning using Nonequilibrium Thermodynamics
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Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q
⇣
x(0···T )

⌘
. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p
⇣
x(0···T )

⌘
. An identity-covariance

Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, fµ

⇣
x(t), t

⌘
� x(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which
uses a Markov chain which slowly converts one distribu-
tion into another to compute a ratio of normalizing con-
stants. In (Burda et al., 2014) it is shown that AIS can also
be performed using the reverse rather than forward trajec-
tory. Langevin dynamics (Langevin, 1908), which are the
stochastic realization of the Fokker-Planck equation, show
how to define a Gaussian diffusion process which has any
target distribution as its equilibrium. In (Suykens & Vande-
walle, 1995) the Fokker-Planck equation is used to perform
stochastic optimization. Finally, the Kolmogorov forward
and backward equations (Feller, 1949) show that for many
forward diffusion processes, the reverse diffusion processes
can be described using the same functional form.

2. Algorithm
Our goal is to define a forward (or inference) diffusion pro-
cess which converts any complex data distribution into a
simple, tractable, distribution, and then learn a finite-time
reversal of this diffusion process which defines our gener-
ative model distribution (See Figure 1). We first describe
the forward, inference diffusion process. We then show

how the reverse, generative diffusion process can be trained
and used to evaluate probabilities. We also derive entropy
bounds for the reverse process, and show how the learned
distributions can be multiplied by any second distribution
(e.g. as would be done to compute a posterior when in-
painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
�
x(0)

�
. The data distribu-

tion is gradually converted into a well behaved (analyti-
cally tractable) distribution ⇡ (y) by repeated application
of a Markov diffusion kernel T⇡ (y|y0;�) for ⇡ (y), where
� is the diffusion rate,

⇡ (y) =

Z
dy0

T⇡ (y|y0;�)⇡ (y0) (1)

q

⇣
x(t)|x(t�1)

⌘
= T⇡

⇣
x(t)|x(t�1);�t

⌘
. (2)

p(X)

Han et al, PRX ‘18 Liu et al PRA ’18Autoregressive 
model

Flow model 

Generative models and their physics genes



https://blog.openai.com/glow/

Glow 1807.03039

Flow-based generative models

https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/

Parallel WaveNet 1711.10433

https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/


Intuition

If the mapping f is 1-to-1, then the total area (or volume) should

not change after the transformation from x to z .

Figure 1: Mapping from one probability density to another. Source:

Lecture 19 notes

12

Flow model in a nutshell

𝒩(Z)

p(X)

Base  
density

Target 
density

“neural net”  
with 1 neuron

p(X) = 𝒩(Z) det ( ∂Z
∂X )

Review article 1912.02762 



Normalizing flow for physics: an intuition
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Physics intuition of flow models

High-dimensional, nonlinear, learnable, composable diffeomorphism

p(X)
Target  
density

𝒩(Z)

Base  
distribution

Li and LW, PRL ‘18

https://www.pks.mpg.de/machine-learning-for-quantum-many-body-physics



Neural canonical transformations

p

q

Learn the transformation and the latent harmonic frequencies

H(p, q)
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physical phase space latent phase space

Li, Dong, Zhang, LW, PRX ‘20



• Linear transformation: Symplectic Lie group   

• Continuous-time flow: Symplectic generating functions 
via Hamiltonian dynaics 

Sp(2n)

See also Bondesan, Lamacraft, 1906.04645

• Neural point transformations

Symplectic blocks
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P = p (∇Qq)
Q = f(q)

Neural ODE, Chen et al, 1806.07366, Monge-Ampère flow, Zhang et al 1809.10188

arbitrary invertible  
neural net

Li, Dong, Zhang, LW, PRX ‘20



0 6 12 18 24 30
k

100

101

102

!
k

(a)

1 2 3 4 5 6
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

m
ut

ua
l
in

fo
rm

at
io

n

(b) I(Qk : ©)

I(Qk : ™)

Neural canonical transformation identifies nonlinear slow modes

Li, Dong, Zhang, LW, PRX ‘20
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slow motion of the  
two torsion angles

Nonlinear dimension reduction to slow collective variables  
useful for control, prediction, enhanced sampling, cross interpolation…

Φ Ψ

Ramachandran  
plot for table  

conformations

check PRX ’20  for more examples & applications  
On identifibility, related to Gresele et al independent mechanism analysis 2106.05200



Entering the  
quantum world



“Canonical” transformations
classical world  quantum world

Unitary transformationSymplectic transformation
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Point Transformations in Quantum Mechanics
BRYCE SKLIGMAN DEWITT

Ecole d'Etd de Physique Theorigue de L'University de Grenoble, res Homches, Halte Savoie, France
(Received September 14, 1951)

An isomorphism is shown to exist between the group of point transformations in classical mechanics and
a certain subgroup of the group of all unitary transformations in quantum mechanics. This isomorphism is
used to indicate that the quantum analogs of physically signi6cant classical expressions can be constructed
uniquely in any coordinate system. There is no ambiguity in the ordering of noncommuting quantum
operators, and the method of constructing the quantum analogs is covariant under general coordinate
transformations. The method is actually only applicable to systems having Lagrangians which are at most
quadratic in the velocities, but this includes all systems which are presently of interest in physics. The
method is applied to two intrinsically nonlinear examples, one of which is the gravitational field, The correct
Hamiltonian operator for a quantized version of Einstein's gravitational theory is constructed.

&. INTRODUCTION

"/RESENT day methods of formulating quantum
mechanics are based more or less completely on

analogy with classical mechanics. There are certain
well-known rules for passing from the classical theory
to the quantum theory. One replaces ordinary numbers
by operators and Poisson brackets by commutator
brackets. In principle, however, an ambiguity always
presents itself when one is faced with the task of con-
structing the quantum analog of a classica]. expression
which involves the product of two factors whose poisson
bracket does not vanish. One does not know, o priori,
how the corresponding quantum factors should be
ordel ed.
Fortunately, the systems occurring in nature are for

the most part simple enough in their mathematical
description so that one has no trouble in deciding what
the correct order should be. Nevertheless the aforemen-
tioned ambiguity represents a real deficiency in the
present theory, because (1) the simplicity of natural
systems is only apparent and is due to the fact that for
such systems there usua11y exist what may be called
"natural" coordinates in which the dynamical equations
take particularly simple forms, and (2) the trans-
formation theory of dynamics, which plays such an
important role in the quantum theory, owes its validity
to the invariance of classical Hamiltonian systems under
a much wider group of transformations than one has
heretofore been able to incorporate sensibly into the
quantum scheme, owing to said ambiguity.
It is known that a true correspondence between the

classical and quantum theories exists with respect to a
certain subgroup of the group of all canonical trans-
formations, namely the subgroup of all linear inhomo-
geneous canonical transformations. If one restricts
oneself to this subgroup, then an isomorphism can be
set up between classical quantities and their quantum
analogs, when these quantities are at most quadratic
in the canonical variables. A similar isomorphism does
not exist, however, for other classical quantities, even

*Now a Fulbright grantee at the Tata Institute of Fundamental
Research, Bombay, India.

undcx' this I'cstllctcd subgI'oup. Thc qucstloIl thclcfolc
arises: Is it possible, for a given dynamical system, to
choose the canonical variables in such a way that the
important physical quantities, energy, momentum, etc.,
become quadratic in these variables' Unfortunately,
the answer to this question is no in many cases of im-
portance, e.g., interacting 6clds.
Even in the case of interacting systems, however, no

ambiguity in formulating the quantum theory has
arisen in practice, because one has always supposed that
a clear distinction could bc made between the various
systems in interaction, and. one has usually imagined
that it makes sense to talk about "free systems" and to
treat the interactions as perturbations. For the "free
systems" the answer to the above question is in the
afhrmative and a set of "natural" dynamical variables
does exist. But, as we have already remarked, the
existence of "natural" variables is more apparent than
real, and may be more a reflection of the way our minds
work than of the way nature works.
MoI'c pertinent to the plcscnt dlscusslon ls thc fRct

that the linear inhomogeneous subgroup of canonical
transformations is never used, as such, in practice.
Indeed, the restriction to this subgroup is highly arti-
hcial. A type of canonical transformation which has
much more physical content and which is much more
frequently used in solving actual problems is a general
transformation of the coordinate variables, i.e., a
so-called point transformation.
In using point transformations in quantum theory,

one usually 6rst "quantizes" a given system in a set of
"natural" coordinates (e.g., rectilinear coordinates) and
then carries out the coordinate changes afterwards.
However, if we adopt seriously the philosophy of
general relativity, then we should say that one coor-
dinate system is as good as another, and we need not
hRvc felt obllgcd to carry out thc .quantlzRtlon ln R
"natural" coordinate system. Our rules of quantization,
as mell as our quantum-mechanical equations, should bc
' For a full discussion of this point, see L Van Hove, "Sur le

problkme des Relations entre les Transformations Unitaires de la
Mbcanique Quantique et les Transformations Canoniques de la
Mhcanique Classique. " (To be published. )

p''= 2[ax'/»", p 1+ (3 3)

That Eq. (3.3) gives the correct quantum trans-
formation law for the momentum operators may be
shown by making explicit use of expressions (2.24). We
hRve

t9$~ | 8X2
p4 pl+ pf)

8$ 2 Bx

where

formulating the quantum analog of Eq. (3.2). For the
only problem here is that of correctly symmetrizing the
right-hand side of (3.2) so as to make it Hermitian. One
may easily convince oneself that all methods of sym-
metrization lead to the same result, namely, '

5=-', [X'(x), p,],. (3.10)
S is the generator of the infinitesimal point trans-
formation.
The subgroup of unitary transformations in quantum

mechanics which corresponds isomorphically to the
group of all. point transformations in classical mechanics
is given by the set of all unitary operators exp(r5/iA),
where 5 has the form (3.10) and where v is an arbitrary
parameter. Each set of functions A' de6nes a one-
parameter subgroup of the point-transformation group.

4. DYNAMICAL SYSTEMS IN GENERAL COORDINATES

In this section we shall consider the set of all dy-
namical systems which, in the classical theory, have a
Lagrangian function of the form

+
8$ kg Bx~ Bx

(3.5) I= G2,,x-'x'+A, &' V,— (4.1)

which shows that the i:nverse transformation has the
same form as (3.3).
The unitary representations of the point-transforma-

tion group may be obtained by determining the
infinitesimal generators of the group. An in6nitesimal
point transformation may be expressed in the form

x"=*+~~'(x) (3.7)
P''=P.—l~[(a/ax")~'(x), P~]+, (3 g)

where ~ is an infinitesimal constant and A' is a function
of the x's. More generally, every function f of the x's
and p's transforms under (3.7, 8) according to

f'=f+(e/+) Lf, 5] (3 9)

For example, one might expand Bx&'/Bx" in a power series in
the x's. The operator p could then be inserted between the x's
in any symmetrical fashion in each term of the series, The result
of commuting p symmetrica11y to the left and to the right through
the x's is to produce two terms of order 5 which cancel each
other, leaving simply the expression (3.3).

Equation (3.5) is, however, just the usual transforma-
tion law for the contracted Christoffel symbol. Ex-
pressions (2.24) are therefore covariant under point
transformations,
That there exists an isomorphism between the group

of poillt tlRnsfoI'nlatlons ln clRsslcal mechanics Rnd R

corresponding subgroup of the group of all unitary
transformations in quantum mechanics is thus quite
evident. The group property ensures that each point
transformation has an inverse. It is instructive to display
explicitly the inverse of Eq. (3.3).We write
—2[ax'&'/ax', p ]+
=l[a '/a*' [a*"/a*",p],]+
=—,'[[ax'&/»', ax'/ax'&]+, p„]~

+,'[ ax" /ax-&', [pI, ax'&'/ax']]

=-,'[a,j', pI,]+,'~A[ax'/ax", a'x'&/»"ax']= p, , (3.6)

where 6,;, A;, and V are functions of the x's and where
the matrix IIG,,II is symmetric and nonsingular. We
assert that this set includes all systems in nature which
satisfy Bose-Einstein statlstlcs, i.c.

&
for which Poisson

brackets, involving coordinates and momenta singly as
well as multiply, correspond to commutator brackets in
the quantum theory. The case of I'ermi-Dirac systems
will be discussed brieQy in Sec. 7.
There exist, to be sure, Bose-Einstein systems which

have Lagrangians of the form (4.1) but for which the
matrix IIG;, II is singular. The singularity of the matrix,
however, simply implies that the momenta are not all
independent, and the lagrangian for such a system can
always be replaced by a Lagrangian for which IIG
nonsingular, together with a set of supplementary con-
ditions expressing the relations between the momenta.
The existence of such supplementary conditions does
not alter the discussion which follows.
Under general coordinate transformations the quan-

tities V, A;, and G;, transform like a scalar, a covariant
vector, and a covariant tensor respectively. V and A;
have respectively the nature of a scalar and a vector
potential. 6;; can likewise be regarded as a tensor
potential. However, it is a true potential only if it
cannot be "transformed away, " i.e., if there exists no
coordinate system in which it is everywhere constant.
We shall tentatively identify 6;;with the metric tensor
of the manifold of the x's—or rather with some con-
stRnt nlultlplc of lt

~v=~Cv (4.2)
We shall subsequently discuss in fuller detail the
reasons for this identification.
The Hamiltonian function corresponding to the

Lagrangian (4.1) has the form
&=(1/2I )g""(O' A')(P~ A;)+V — (4—3)

where g'~' is the contravariant inverse of the metric
tensor and the momenta are given by

(4 4)

“Quantizating” the point transformation  
provides a unitary transformation  e−iϵG ≡ e− i

2 ϵ[Λ(x), p]+



Quantum relative entropy

Density matrixPhase space density

Kullback-Leibler divergence

𝕂𝕃 (ρ∥
e−βH

Z )

Canonical transformations

S (ρ∥
e−βH

Z )

classical world  quantum world

Unitary transformationSymplectic transformation

∂ρ
∂t

= {G, ρ} ∂ρ
∂t

= − i[G, ρ]



Gibbs–Bogolyubov-Feynman-Delbrück–Molière

F[ρ] = Tr(Hρ) + kBT Tr(ρ ln ρ)min

Difficulties in Applying the Variational 
Principle to Quantum Field Theories1 

Richard P. Feynman 

California Institute of Technology 
Pasadena, California 91125, U.S.A. 

Introduction 
I'd like to talk on some work I did on the variational principle in field theory. At one 
time I thought that the brute force method of doing arithmetic on the machines will 
never get anywhere and we will probably end with something more old-fashioned, 
i.e. some analysis plus the machines to help us with the analytic equations, and 
so I tried to do something along these lines with quantum chromodynamics. So 
I'm talking on the subject of the application of the variational principle to field 
theoretic problems, but in particular to quantum chromodynamics. 

I'm going to give away what I want to say, which is that I didn't get anywhere! 
I got very discouraged and I think I can see why the variational principle is not 
very useful. So I want to take, for the sake of argument, a very strong view -
which is stronger than I really believe - and argue that it is no damn good at all! 

Let us review why the variational principle has gotten a good reputation. Let's 
say you apply it to something like atoms or to simple problems with a small number 
of variables, using the usual analytic methods to get a quantity called the total 
energy, a quantity which is of direct physical significance. The energy levels of 
atoms are very interesting, measurable quantities and they can be calculated with 
accuracy. It was noted that if one had a wave function which had some measure 
of error, say 10 percent, then the error in the energy would be of order 1 percent. 
The error in the energy is quadratic in the error in the wave function. So, by not 
having a perfect wave function, you can still get very good values for the energy 
and that's why the variational method has gotten a good reputation. But it has 
never been a powerful way of getting, with accuracy, the wave function itself. 

Now I want to turn to the other side, the application of the variational principle 
to quantum field theory in a more or less straightforward way. So you write down 
a Hamiltonian in some kind of scheme and then you try to find a wave functional 

1 Transcript of Professor Feynman's talk, taken by the Editors and corrected by the author 
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ρ ?

The variational free energy principle

≥ F

energy variational density matrix  entropy 

Generative  
models !



Many-body “base” states e.g. 
Fermi sea, Hartree-Fock states,  

harmonic crystal, … 

Learnable unitary transformation  
generated by point transformation 

Variational density matrices as generative models

ρ = ∑
n

U |n⟩ pn ⟨n |U†

Learnable probabilistic model  
for ocuupation probability

flow
JML ’22, SciPost Physics’23

VAN
PRL ‘19

See Cranmer et al 1904.05903 
Saleh et al, 2308.16468  

Siciliano et al 2407.03802

Trρ = 1
ρ ≻ 0
ρ† = ρ

S(ρ) = S(pn)
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Z

The physics of    flow

Xie, Zhang, LW, JML ’22, SciPost Physics ’23 

⟨X |U |n⟩ = ⟨Z |n⟩ ⋅ det ( ∂Z
∂X )

1
2

: unitary backflow between particle and quasiparticle coordinates  X ↔ Z



Brown et al, PRL ’13 Restricted PIMC

Benchmarks on uniform electron gas 

rs = 10, T/TF=0.0625, N = 33

Xie, Zhang, LW, SciPost Physics ’23 

metals: 2< rs < 6
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see also Schoof et al PRL ’15, Malone et al PRL ’16 



flow
materializes this dream 



Solid lithium: bcc or fcc?

Light nuclei mass => large amplitude oscillation 
quantum anaharmonicity plays a significant role

bcc fcc

fcc is the groud state, Ackland et al, Science 2017

Li
3



Hutcheon, Needs, PRB 99,014111 (2019)

Experiments: 
Olinger et al Science 1983 

Ackland et al, Science 2017

F = E − TSvib

Vibrational self-consistent field calculation

Temperature driven bcc to fcc transition



Optimization over ~10 million excited states of ~500 atoms

F = 𝔼
n∼pn

[kBT ln pn + ⟨n |U†HU |n⟩]

n = n1, n2, …, n3N−3

Phonon modes

Neural canonical transformation for lattice dynamics

H =
N

∑
i=1

−∇2
i

2M
+ V(X)

 ML PBE interatomic potential  
Zhang et al PRL ’18, Wang et al Nat.Comm ’23 

Classical: Ahmad  2111.01292, Wirnsberger, 2111.08696

U : X ↔ Z
RealNVP flow

pn

VAN/PSA
Dinh et al, 1605.08803Wu et al,  PRL ’19 

Martyn, Swingle, PRA ’19 

Zhang et al, 2412.12451



bcc structure  
is stabilized  
by quantum 

anharmonicity
Zhang et al, 2412.12451

Z

X

N (Z)

p
(X

)



Anharmonic softening of  
phonons in the bcc structure

Zhang et al, 2412.12451

ωn = ⟨n |U†HU |n⟩



Vibrational SCF: 260K 
Hutcheon, Needs, PRB 2019 

AIMD: 190K 
Ackland et al, Science 2017 

DeepMD: 185K 
Wang et al, Nat.Comm 2023 

Experiment: 100-160K 
Ackland et al, Science 2017

Zhang et al, 2412.12451



Solid lithium: the story of Oc88 phase

Gorelli et al PRL ’12Marqués et al, PRL ’11Guillaume et al, Nature physics, ‘11

Happy ending ? 

Missing in static  
lattice calculation 

Experiment  
observation at 70 GPa 

Stable in dynamic  
lattice calculation   
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Cold melting and solid structures of dense lithium
Christophe L. Guillaume1, Eugene Gregoryanz1*, Olga Degtyareva1, Malcolm I. McMahon1,
Michael Hanfland2*, Shaun Evans2, Malcolm Guthrie3, Stanislav V. Sinogeikin4 and H-K. Mao3,4

Recent theoretical and experimental studies have produced
several unusual and interesting results on dense lithium, the
first metal in the periodic table. These include the deviation
from simple metal behaviour, superconductivity at 17K, and
a metal to semiconductor transition1–5. Despite these efforts,
at present there is no agreement on the location of the high-
pressure solid phases and melting curve of Li, and there is no
clear picture of its phase diagram above 50GPa (refs 4–7).
Using powder and single-crystal high-pressure diffraction
techniques, we have mapped out the lithium phase diagram
up to 130GPa over a wide temperature range between 77 and
300K.Whereas the melting temperatures of materials usually
rise under pressure, and even the lightest condensed gases,
hydrogen andhelium,melt at temperatures of the order of 103 K
at 50GPa (refs 8,9), we find that at these pressures lithium
remains a liquid at temperatures as low as 190K, by far the
lowest melting temperature observed for any material at such
pressure. We also find that in its solid state above 60GPa,
lithium adopts three novel and complex crystal structures not
previously observed in any element. Estimates of the zero-
point energy suggest that quantum effects play a significant
role in shaping the lithium phase diagram.

The familiar properties and states of matter can be markedly
modified by applying pressure and temperature. Besides those
encountered in daily life (gas, liquid and solid), some exotic states,
for example superfluids or superconductors, can be observed.
Quantum effects, the energies of which are very small on an
everyday scale, are responsible for the formation of these unusual
forms of matter. To create any of these states, low temperatures
are needed to decrease the energy of the system to the level where
the quantum effects become dominant. Conversely, by applying
pressure, and thereby bringing the atoms closer to each other, it
is possible to increase the kinetic energy (that is, the zero-point
energy) of the system. If the other energy terms that make up
the total energy increase more slowly with pressure than the
zero-point energy, it might be possible to reach a compression at
which the quantum effects play the dominant role10. One of the
obvious consequences of the zero-point energy being comparable
to or in excess of differences in characteristic structural energies
per atom would be melting of the solid under compression
(cold melting)10,11. For light elements, such as hydrogen, melting
influenced by the zero-point energy is expected to happen even at
T =0 (at compressions which are at present beyond the capabilities
of experimental techniques), leading to a metallic liquid ground
state with exotic properties12.

Is it then possible to create a metallic liquid ground state in
systems other than dense hydrogen? Most metallic elements with
strong interatomic interactions are solids under normal conditions,

1SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, EH9 3JZ, UK, 2ESRF, BP
220, Grenoble, France, 3Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015, USA, 4HPCAT, Carnegie Institution of
Washington, Argonne, Illinois 60439, USA. *e-mail: e.gregoryanz@ed.ac.uk; hanfland@esrf.fr.
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Figure 1 | Proposed phase diagram of lithium over a wide
pressure–temperature range. Apart from bcc and fcc, the phases are
labelled with their structural types using the Pearson notation. The solid
coloured symbols show some of the P–T points covered in this study. The
errors on pressure and temperature measurements are±2GPa and±10 K
respectively. The filled black diamonds and stars are from refs 6 and 30.
The location of the hR9 phase is adapted from ref. 31. The superconducting
region is drawn to combine all experimental points from refs 3,16–18.

with melting temperatures Tm ∼ 103 K resulting from their high
cohesive energies (1–10 eV/atom). There is one exception, mercury
(Hg), which is a liquid metal at 1 atm, with Tm = 234K, and a
superconductor, with Tc = 4.2K. Mercury has a lower cohesive
energy than most metals, but its large atomic mass prevents
the zero-point energy from playing any significant role, and its
melting temperature rises quickly under pressure13, a normal
behaviour for most materials on compression. At low compressions
(P ≤ 10GPa) only a few metallic elements are known to show a
negative slope of the melting curves, over a very narrow pressure
range of ∼1GPa (for example, Ga, Bi, Cs; ref. 13). Recently, an
unprecedented decrease in the melting temperature of sodium,
from 1,000 to 300K, over a pressure range of ∼90GPa was
discovered experimentally14. It was suggested that the large number
of well-defined low-symmetry crystalline phases observed around
the melting minimum might be the result of a relatively flat energy
landscape having several shallow minima, the occupation of which
could be influenced by the increased energy of quantumeffects15.

An obvious lighter-mass candidate, where the quantum effects
might play a greater role, is lithium. There are some similarities
between sodium and lithium—both are nearly free-electron metals
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Our calculation does NOT reproduce the 
experimentally observed Oc88 phase, 
which contradicts Gorelli et al PRL ’12 

Guillaume et al, Nature physics, 2011 Zhang et al, 2412.12451

Thermal entropy  
Quantum anharmonicity 
DFT functional   

The story of Oc88 phase



The Oc88 phase is stablized by high-precision density functionals 
NOT thermal effect, NOT nuclear quantum effect  

The story of Oc88 phase
Zhang et al, 2412.12451



Oc88 is a poor metal, which iccurs localization error 

(Sociologically, entropy or nuclear quantum effect sounds fancier 
than changing DFT functional)

Reflections
Why do we need higher-order functional ?

Why not ten years ago ? 

HSE is 100 times more expensive, but Oc88 is large

With neural canonical transformation, we are now 
confident in the Gibbs free energy

Zhang et al, 2412.12451

 (whatever remains when you have eliminated the impossible)



Vibrational spectra of  
molecules and solids 

JCP ’24 and 2412.12451  
 (~500 atoms) 

Harmonic oscillators  
 

Anharmonic crystal
↕

Low-temperature properties  
of Coulomb gas 

JML ’22 and SciPost Physics ’23 
(~50 electrons) 

Ideal Fermi gas  
 

 Fermi liquid
↕

Fermi 
sea

Hartree-Fock states 
 

Interacting electrons
↕

(~50 e-p pairs)

Equation of states of  
dense hydrogen

PRL ’23 and ongoing

Neural canonical transformation for atoms and electrons



Linfeng ZhangHao Xie

Thank you!

Shuo-Hui Li

Neural canonical transformations for identifying slow modes,  
solving interacting electrons and quantum solids, and more!

IOP HKUST→ IOP UZH→ DP/AISI

1910.00024, PRX ’20  
2105.08644, JML ’22 
2201.03156, SciPost ’23 
2412.12451

li012589/neuralCT 
FermiFlow/fermiflow 
FermiFlow/CoulombGas 
zhangqi94/lithium

Qi ZhangRui-Si Wang
IOP IOP

Han Wang
IAPCM


