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Fig. 18.2. Schematic representation of the Hamiltonian matrix of the Hubbard model with
L = 4, N↑ = 3, N↓ = 2, and periodic boundary conditions

constructed using the projector

Pk =
1
L

L−1∑

j=0

e2πijk/LT j . (18.14)

Clearly, for a given (unsymmetrized) state |n⟩, the state Pk|n⟩ is an eigenstate of T ,

TPk|n⟩ =
1
L

L−1∑

j=0

e2πijk/LT j+1|n⟩ = e−2πik/LPk|n⟩ , (18.15)

where the corresponding eigenvalue is exp(−2πik/L) and 2πk/L is the discrete
lattice momentum. Here we made use of the fact that T L = 1 (on a ring with L
sites, L translations by one site let you return to the origin). This property also
implies exp(−2πik) = 1, hence k has to be an integer. Due to the periodicity of the
exponential, we can restrict ourselves to k = 0, 1, . . . , (L − 1).

The normalization of the state Pk|n⟩ requires some care. We find

P †
k =

1
L

L−1∑

j=0

e−2πijk/LT−j =
1
L

L−1∑

j′=0

e2πij′k/LT j′ = Pk

P 2
k =

1
L2

L−1∑

i,j=0

e2πi(i−j)k/LT i−j =
1
L

L−1∑

j′=0

e2πij′k/LT j′ = Pk , (18.16)

as we expect for a projector. Hence, ⟨n|P †
kPk|n⟩ = ⟨n|P 2

k |n⟩ = ⟨n|Pk|n⟩. For
most |n⟩ the states T j|n⟩ with j = 0, 1, . . . , (L − 1) will differ from each other,
therefore ⟨n|Pk|n⟩ = 1/L. However, some states are mapped onto themselves by a
translation T νn with νn < L, i.e., T νn |n⟩ = eiφn |n⟩ with a phase φn (usually 0 or
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FIDELITY APPROACH TO QUANTUM

PHASE TRANSITIONS

SHI-JIAN GU

Department of Physics and ITP,

The Chinese University of Hong Kong, Hong Kong, China

sjgu@phy.cuhk.edu.hk

Received 20 August 2010

We review the quantum fidelity approach to quantum phase transitions in a pedagogical
manner. We try to relate all established but scattered results on the leading term of
the fidelity into a systematic theoretical framework, which might provide an alternative
paradigm for understanding quantum critical phenomena. The definition of the fidelity
and the scaling behavior of its leading term, as well as their explicit applications to
the one-dimensional transverse-field Ising model and the Lipkin–Meshkov–Glick model,
are introduced at the graduate-student level. Besides, we survey also other types of
fidelity approach, such as the fidelity per site, reduced fidelity, thermal-state fidelity,
operator fidelity, etc; as well as relevant works on the fidelity approach to quantum
phase transitions occurring in various many-body systems.

Keywords: Fidelity; fidelity susceptibility; quantum phase transitions.

1. Introduction

1.1. Overview: quantum phase transitions

Quantum phase transitions1 of a quantum many-body system are characterized by
the change in the ground-state properties caused by modifications in the interactions
among the system’s constituents. Contrary to thermal phase transitions2 where the
temperature plays a crucial role, quantum phase transitions are completely driven
by quantum fluctuations. Mathematically, they are incarnated via the non-analytic
behavior of the ground-state properties as the system’s Hamiltonian H(λ) varies
across a transition point λc.

From the point of view of eigenenergy, quantum phase transitions are caused by
the reconstruction of the Hamiltonian’s energy spectra, especially of the low-lying
excitation spectra.3 More precisely, the low-energy spectra can be reconstructed in
two qualitatively different ways around the critical point λc, and hence the physical
quantities show different behaviors. The first one is the ground-state level-crossing
in which the first derivative of the ground-state energy with respect to λ is usually
discontinuous at the transition point. Such a transition is called the first-order phase
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Fidelity susceptibility and long-range correlation in the Kitaev honeycomb model
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2Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100080, China

!Received 27 March 2008; published 2 July 2008"

We study exactly both the ground-state fidelity susceptibility and bond-bond correlation function in the
Kitaev honeycomb model. Our results show that the fidelity susceptibility can be used to identify the topo-
logical phase transition from a gapped A phase with Abelian anyon excitations to a gapless B phase with
non-Abelian anyon excitations. We also find that the bond-bond correlation function decays exponentially in
the gapped phase, but algebraically in the gapless phase. For the former case, the correlation length is found to
be 1 /!=2 sinh−1#$2Jz−1 / !1−Jz"%, which diverges around the critical point Jz= !1 /2"+.

DOI: 10.1103/PhysRevA.78.012304 PACS number!s": 03.67."a, 64.60."i, 05.30.Pr, 75.10.Jm

I. INTRODUCTION

Quite recently, a great deal of effort #1–16% has been de-
voted to the role of fidelity, a concept borrowed from
quantum-information theory #17%, in quantum phase transi-
tions !QPTs" #18%. The motivation is quite obvious. Since the
fidelity is a measure of similarity between two states, the
change of the ground-state structure around the quantum
critical point should result in a dramatic change in the fidel-
ity across the critical point. Such a fascinating prospect has
been demonstrated in many correlated systems. For example,
in the one-dimensional XY model, the fidelity shows a nar-
row trough at the phase transition point #2%. Similar proper-
ties were also found in fermionic #3% and bosonic systems
#4%. The advantage of the fidelity is that, since the fidelity is
a space geometrical quantity, no a priori knowledge of the
order parameter and symmetry breaking is required in stud-
ies of QPTs.

Nevertheless, the properties of the fidelity are mainly de-
termined by its leading term #7,8%, i.e., its second derivative
with respect to the driving parameter !or the so-called fidelity
susceptibility #8%". According to the standard perturbation
method, it has been shown that the fidelity susceptibility ac-
tually is equivalent to the structure factor !fluctuation" of the
driving term in the Hamiltonian #8%. For example, if we fo-
cus on thermal phase transitions and choose the temperature
as the driving parameter, the fidelity susceptibility, extracted
from the mixed-state fidelity between two thermal states #6%,
is simply the specific heat #7,8%. From this point of view, the
fidelity approach to QPTs seems still to be within the frame-
work of the correlation function approach, which is intrinsi-
cally related to the local order parameter.

However, some systems cannot be described in a frame-
work built on the local order parameter. This might be due to
the absence of preexisting symmetry in the Hamiltonian,
such as topological phase transitions #19% and Kosterlitz-
Thouless phase transitions #20%. For the latter, since the tran-
sition is of infinite order, it has already been pointed out that
the fidelity might fail to identify the phase transition point

#8,11%. Therefore, it is an interesting issue to address the role
of fidelity in studying topological phase transitions.

The Kitaev honeycomb model was first introduced by Ki-
taev in search of topological order and anyonic statistics. The
model is associated with a system of 1/2 spins which are
located at the vertices of a honeycomb lattice. Each spin
interacts with three nearest-neighbor spins through three
types of bonds, called x !y , z" bonds depending on their
direction. The model Hamiltonian #21% is as follows:

H = − Jx &
x bonds

# j
x#k

x − Jy &
y bonds

# j
y#k

y − Jz &
z bonds

# j
z#k

z

= − JxHx − JyHy − JzHz, !1"

where j ,k denote the two ends of the corresponding bond,
and Ja and #a !a=x ,y ,z" are dimensionless coupling con-
stants and Pauli matrices, respectively. Such a model is
rather artificial. However, its potential application in topo-
logical quantum computation has made it a focus of research
in recent years #21–32%.

The ground state of the Kitaev honeycomb model consists
of two phases, i.e., a gapped A phase with Abelian anyon
excitations and a gapless B phase with non-Abelian anyon
excitations. The transition has been studied by various ap-
proaches. For example, it has been shown that a kind of
long-range order exists in the dual space #26%, such that basic
concepts of Landau’s theory of continuous phase transitions
might still be applied. In real space, however, the spin-spin
correlation functions vanish rapidly with increasing distance
between two spins. Therefore, the transition between the two
phases is believed to be of topological type due to the ab-
sence of a local order parameter in real space #21%.

In this work, we first try to investigate the topological
QPT occurring in the ground state of the Kitaev honeycomb
model in terms of the fidelity susceptibility. We find that the
fidelity susceptibility can be used to identify the topological
phase transition from a gapped phase with Abelian anyon
excitations to gapless phase with non-Abelian anyon excita-
tions. Various scaling and critical exponents of the fidelity
susceptibility around the critical points are obtained through
a standard finite-size scaling analysis. These observations
from the fidelity approach are a little surprising. Our earlier
thought was that the fidelity susceptibility, which is a kind of*sjgu@phy.cuhk.edu.hk
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!!0" = #
q

Cq,2
† !0" = #

q

1
$2
%$"q

2 + #q
2

#q + i"q
a−q,1 + a−q,2&!0" ,

'14(

with the ground-state energy

E0 = − )
q

$"q
2 + #q

2 . '15(

The fidelity of the two ground states at $ and $! can be
obtained as

F2 = #
q

1
2
%1 +

#q#q! + "q"q!

EqEq!
& = #

q
cos2'%q − %q!( '16(

with

cos'2%q( =
"q

Eq
, sin'2%q( =

#q

Eq
,

cos'2%q!( =
"q!

Eq!
, sin'2%q!( =

#q!

Eq!
. '17(

The Riemann metric tensor can be expressed as

gab = )
q
% !%q

!Ja
&% !%q

!Jb
& , '18(

where

!'2%q(
!Jx

=
Jz sin qx + Jy sin'qx − qy(

"q
2 + #q

2

#q

!#q!
,

!'2%q(
!Jy

= −
Jx sin'qx − qy( − Jz sin qy

"q
2 + #q

2

#q

!#q!
,

!'2%q(
!Jz

= −
Jx sin qx + Jy sin qy

"q
2 + #q

2

#q

!#q!
. '19(

Clearly, with these equations, we can in principle calculate
the fidelity susceptibility along any direction in the param-
eter space according to Eq. '4(. Here, we would like to point
out that the same results can be obtained from the general-
ized Jordan-Wigner transformation used first by Feng,
Zhang, and Xiang *26+.

Following Kitaev *21+, we restrict our studies to the plane
Jx+Jy +Jz=1 'see the large triangle in Fig. 1(. According to
his results, the plane consists of two phases, i.e., a gapped A
phase with Abelian anyon excitations and a gapless B phase
with non-Abelian excitations. The two phases are separated
by three transition lines, i.e., Jx=1 /2, Jy =1 /2, and Jz=1 /2,
which form a small triangle in the B phase.

Generally, we can define an arbitrary evolution line on the
plane. Without loss of generality, we first choose the line as
Jx=Jy 'see the dashed line in the triangle of Fig. 1(. Then the
fidelity susceptibility along this line can be simplified as

&F =
1
16)

q
% sin qx + sin qy

"q
2 + #q

2 &2

. '20(

The numerical results of different system sizes are shown in
Fig. 1. First of all, the fidelity susceptibility per site, i.e.,
&F /N, diverges quickly with increasing system size around
the critical point Jz=1 /2. This property is similar to the fi-
delity susceptibility in other systems, such as the one-
dimensional Ising chain *2+ and the asymmetric Hubbard
model *12+. Second, &F /N is an intensive quantity in the A
phase 'Jz'1 /2(, while in the B phase, the fidelity suscepti-
bility also diverges with increasing system size. Third, the
fidelity susceptibility shows many peaks in the B phase; the
number of peaks increases linearly with the system size L
'see the left upper inset of Fig. 1(. The phenomena of fidelity
susceptibility per site in the B phase have not been found in
other systems previously, to our knowledge, so that they are
rather impressive.

To study the scaling behavior of the fidelity susceptibility
around the critical point, we perform a finite-size scaling
analysis. Since the fidelity susceptibility in the A phase is an
intensive quantity, the fidelity susceptibility in the thermody-
namic limit scales as *12+
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with *=0.507+0.0001 'see the inset of Fig. 2(. According
to the scaling ansatz, the rescaled fidelity susceptibility
around its maximum point at Jz

max is just a simple function of
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Exactly solvable model

A simple analytical 
formula for !F
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obtained as
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Clearly, with these equations, we can in principle calculate
the fidelity susceptibility along any direction in the param-
eter space according to Eq. '4(. Here, we would like to point
out that the same results can be obtained from the general-
ized Jordan-Wigner transformation used first by Feng,
Zhang, and Xiang *26+.
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number of peaks increases linearly with the system size L
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other systems previously, to our knowledge, so that they are
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To study the scaling behavior of the fidelity susceptibility
around the critical point, we perform a finite-size scaling
analysis. Since the fidelity susceptibility in the A phase is an
intensive quantity, the fidelity susceptibility in the thermody-
namic limit scales as *12+

&F

N
(

1

!Jz − Jz
c!)

'21(

around Jz
c=1 /2. Meanwhile, the maximum point of &F at Jz

=Jz
max for a finite sample behaves as

&F

N
( L*, '22(

with *=0.507+0.0001 'see the inset of Fig. 2(. According
to the scaling ansatz, the rescaled fidelity susceptibility
around its maximum point at Jz

max is just a simple function of
the rescaled driving parameter, i.e.,

0.30 0.32 0.34 0.360.5

1.0

1.5

0.48 0.49 0.50 0.51 0.520

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0

-4

-2

0

2

4

6
ln
(χ
F/N
)

Jz

ln
(χ
F/N
)

Jz

1xJ = 1yJ =

1zJ =

1xJ = 1yJ =

1zJ =

L=101
L=303
L=909

ln
(χ
F/N
)

Jz

FIG. 1. 'Color online( Fidelity susceptibility as a function of Jz
along the dashed line shown in the triangle for various system sizes
L=101,303,909. Both upper insets correspond to enlarged pictures
of two small portions.

FIDELITY SUSCEPTIBILITY AND LONG-RANGE… PHYSICAL REVIEW A 78, 012304 '2008(

012304-3



Exact diagonalization 
on small clusters

Fidelity and superconductivity in two-dimensional t-J models

Marcos Rigol
Department of Physics, Georgetown University, Washington, DC 20057, USA

B. Sriram Shastry
Department of Physics, University of California, Santa Cruz, California 95064, USA

Stephan Haas
Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA

!Received 29 June 2009; revised manuscript received 25 August 2009; published 29 September 2009"

We compute the ground-state fidelity and various correlations to gauge the competition between different
orders in two-dimensional t-J-type models. Using exact numerical diagonalization techniques, these quantities
are examined for !i" the plain t-J and t-t!-J models, !ii" for the t-J model perturbed by infinite-range d-wave
or extended-s-wave superconductivity inducing terms, and !iii" the t-J model, plain and with a d-wave pertur-
bation, in the presence of nonmagnetic quenched disorder. Various properties at low hole doping are contrasted
with those at low electron filling. In the clean case, our results are consistent with previous work that concluded
that the plain t-J model supports d-wave superconductivity. As a consequence of the strong correlations present
in the low hole doping regime, we find that the magnitude of the d-wave condensate occupation is small even
in the presence of large d-wave superconductivity inducing terms. In the dirty case, we show the robustness of
the ground state in the strongly correlated regime against disorder.
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I. INTRODUCTION

Understanding the mechanism of high-temperature super-
conductivity has remained a subject of much interest since its
experimental discovery in the cuprates in 1986.1 More re-
cently, this subject has received renewed attention following
the emergence of the first iron based !pnictide" high-
temperature superconductor.2 It is generally believed that
high-temperature superconductivity has its roots in the inter-
play of strong correlations and reduced dimensionality.3–5

However, a full theoretical understanding of this phenom-
enon has proven challenging, and consensus regarding its
microscopic origin has not yet been reached.6–9

A further complication arises from experimental findings
that the doped cuprates are highly inhomogeneous.10 This
feature has been the subject of numerous recent experimental
studies using local probes such as scanning tunneling spec-
troscopy !STS".11–16 Theoretical studies of correlations and
disorder in superconducting lattice models have, in general,
either focused on d-wave BCS phenomenology in the pres-
ence of impurities17–19 or on microscopic disordered t-J and
Hubbard type models, sometimes with the addition of short-
ranged terms that favor superconductivity. One basic result
of BCS phenomenology is that nonmagnetic impurities sup-
press superconductivity more strongly in nodal systems, i.e.,
d-wave superconductors, than in conventional s-wave
superconductors.17–20 This raises the question why supercon-
ductivity in the high-temperature cuprates appears to be
rather resistant to impurity disorder, although they have a
d-wave superconducting order parameter. A large part of the
answer presumably involves the short coherence length,
which is of the order of a few lattice constants in these sys-
tems, as opposed to the enormous values attained in conven-
tional superconductors. Another problem within the standard
BCS phenomenology appears to be that the only way corre-

lations enter is through superconducting pairing channels,
neglecting potentially important effects due to the presence
of fluctuations toward other competing instabilities. The ro-
bustness of high-temperature superconductivity and its den-
sity of states against disorder has been recently studied in the
framework of Hubbard and t-J models using Bogoliubov–de
Gennes21,22 and Gutzwiller mean-field theories,21 and exact
diagonalization.23

In a spirit similar to previous studies,3,23 in this work we
use numerical diagonalization of finite clusters to examine
the effects of doping a strongly correlated Mott insulator
within the t-J model. The t-J model can be justified micro-
scopically either by a large U / t expansion of the one-band
Hubbard model3,5 or by a reduction of the three-band copper
oxide model to an effective single-band model.24,25 The latter
approach provides greater freedom for the allowed parameter
ratio of J / #t#. Following Ref. 23, we also consider the t-J
model with the addition of an infinite-range superconducting
term. This term is tunable, and structured to induce either
d-wave or extended-s-wave superconductivity. Furthermore,
we analyze the effects of quenched disorder in the ground
state of these systems.

In this work, we focus on three key observables that pro-
vide unique insights into the properties of the t-J model. The
first of these observables is the ground-state fidelity metric g,
defined below in Eq. !10". This quantity is related to the rate
of change of the overlap between the ground states of two
Hamiltonians induced by a small change of a control param-
eter. The ground-state fidelity, originally studied in the con-
text of quantum information theory, has been shown to be a
sensitive indicator of changes in the ground state of many-
body systems, as they occur in quantum phase
transitions.26–34 The other two observables of interest we will
study are the d-wave and extended-s-wave superconductivity
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B. Observables

The first observable of interest is related to the fidelity F,
which is defined as follows. Assume a general Hamiltonian
of the form

Ĥ!!" = Ĥ0 + !Ĥ1,

where Ĥ1 is taken to be the driving term. In the next sec-
tions, we will consider Ĥ1 to be either the Heisenberg inter-
action term in Eq. !1", the superconducting terms given by
Eqs. !4" and !5", or the disorder term in Eq. !6". Let #"0!!"$
be the !normalized" ground state of Ĥ!!" and #"0!!+#!"$ be
the !normalized" ground state of Ĥ!!+#!". The fidelity is
then defined as the overlap between #"0!!"$ and #"0!!
+#!"$, i.e.,

F!!,#!" = #%"0!!"#"0!! + #!"$# . !7"

If the ground state is nondegenerate, and if #! is suffi-
ciently small, one can compute #"0!!+#!"$ up to second
order in perturbation theory. The only two terms of the !nor-
malized" second order expansion that have a nonvanishing
overlap !n.o." with #"0!!"$ are

#"0!! + #!"$n.o. = #"0!!"$

$ &1 −
#!2

2 '
%!0

#%"%!!"#Ĥ1#"0!!"$#2

(E0!!" − E%!!")2 * ,

!8"

where #"%!!"$ are the eigenstates of the Hamiltonian with
eigenenergies E%!!", i.e., Ĥ!!"#"%!!"$=E%!!"#"%!!"$.

This means that up to the lowest order in #!, one can
write the fidelity in the form

F!!,#!" = 1 −
#!2

2 '
%!0

#%"%!!"#Ĥ1#"0!!"$#2

(E0!!" − E%!!")2 . !9"

Since the sum on the rhs is in most cases an extensive quan-
tity !see, e.g., Refs. 28, 31, and 32; for counterexamples see,
e.g., Ref. 34", one can define the fidelity metric as

g!!,#!" +
2
L

1 − F!!,#!"
#!2

lim
#!→0

g!!,#!" =
1
L '

%!0

#%"%!!"#Ĥ1#"0!!"$#2

(E0!!" − E%!!")2 . !10"

In the following, we refer to lim#!→0 g!! ,#!" as g!!" or
simply as g. From its definition, the fidelity metric g is di-
mensionless, positive and !in most cases" intensive, i.e., of
O!1". This is one of the main quantities that we will examine
in the following sections. F!! ,#!" will be computed using
Lanczos diagonalization, choosing a value of #! that is suf-
ficiently small so that it does not affect the result of the ratio
in Eq. !10", i.e., giving effectively the value in the
lim#!→0 g!! ,#!". The above is of course true provided one
does not encounter a level crossing. At a crossing, we com-

pute g on either side of its jump by the above limiting pro-
cess.

The other two quantities of interest are the d-wave and
extended-s-wave superconductivity condensate occupations.
Given the d-wave pair density matrix

Pij
d = %"0#P̂D̂i

†D̂ jP̂#"0$ , !11"

and the extended-s-wave pair density matrix

Pij
s = %"0#P̂Ŝi

†Ŝ jP̂#"0$ , !12"

the d-wave !&1
d" and extended-s-wave !&1

s" condensate occu-
pations are defined as the largest eigenvalues of Pij

d and Pij
s .54

The corresponding eigenvectors of the density matrices are
known as the “natural orbitals,” and those with the largest
eigenvalues are referred to as the “lowest natural orbitals.55”
If a condensate of pairs with a particular symmetry occurs in
the system, the corresponding condensate occupation will
scale linearly with the total number of fermions, as the sys-
tem size L is increased while keeping the density constant.54

This in turn is equivalent to stating that Pij
d and Pij

s exhibit
off-diagonal long-range order.56 Condensation also implies
that all other eigenvalues are &%

d,s,O!1".57 An advantage of
using these definitions is that they are valid independently of
whether the system is translationally invariant or not, i.e.,
they work the same in clean systems and in the presence of
disorder. In the particular case of translationally invariant
systems, the eigenvalues Pij

d and Pij
s are occupations in mo-

mentum space.
Since we will be dealing here with systems with different

densities and finite sizes, in many cases we find it useful to
monitor the ratios Rd=&1

d /&2
d and Rs=&1

s /&2
s between the

largest eigenvalues !&1
d ,&1

s" and the second largest eigenval-
ues !&2

d ,&2
s" of the density matrices. These ratios were first

introduced in our earlier work,23 and here we briefly reiterate
the motivation behind this construction. If condensation oc-
curs, i.e., symmetry is broken in the thermodynamic limit,
these are equivalent to studying &1

d and &1
s because the next

eigenvalue is small, i.e., &2
d,s,O!1". However, computing

Rd and Rs has the added benefit of eliminating uninteresting
normalization effects related to the change in the particle
density, etc. It also has some advantages when trying to un-
derstand the effects of changing a Hamiltonian parameter for
a system with a fixed size, where we find cases with &1 and
R behaving differently.

III. PLAIN t-J MODEL

As a first step, in this section we study how the observ-
ables of interest behave within the plain t-J model. We begin
with the effect of the antiferromagnetic Heisenberg coupling
on the ground state of this system. Within many mean-field
theories, finite values of J favor superconducting ground
states close to half-filling.42–44 The energy scale is set by the
hopping parameter t=1. We further study the ground state of
the t-J model for values of J between 0 and 1. While this
rather large range is not achievable within the large U / t ex-
pansion of the one-band Hubbard model !where J, t2 /U", it
should rather be regarded as a “Gedanken range,” intended
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IV. SUPERCONDUCTIVITY INDUCING TERMS

A. d-wave term

Let us first consider a total Hamiltonian that is the sum of
Eq. !1" and the d-wave-superconductivity inducing term in
Eq. !4", and study the ground state of this model as a func-
tion of increasing the parameter !d. In the following, we fix
the Heisenberg coupling to be J=0.3, which is a value com-
monly used in the t-J model literature. From the analysis in
the previous section, we know that, at least for the finite
clusters considered here, no further qualitative changes occur
in the observables of interest for larger values of J.

Recall from previous work,23 that the added d-wave term
Eq. !4", being of infinite range, must certainly precipitate
superconductivity in the d-wave channel. This is because
mean-field theory becomes exact in the thermodynamic limit
for an infinite-range model of this type. !The same argument,
of course, also works in the presence of an extended-s-wave
term." While this argument is true for very large systems, for
finite systems one may need a finite !d#O!1" to achieve
superconductivity.62 Therefore, we expect that in some cases
the fidelity metric should show an enhancement as a function
of !d at some characteristic value !d

!. A small value of !d
!,

consistent with !d
!#0, may be taken as an indicator of the

incipient order of the !d=0 model !the plain t-J model".
In Fig. 6, we show the fidelity metric as a function of the

driving parameter !d. In our calculations, we have taken
"!d=10−5, which is sufficiently small to ensure results con-
sistent with the limit "!d→0.

Results for low electron fillings are shown in Fig. 6!a" and
its inset. In all cases one can see that there is almost no

response in g when !d is small and that a strong response
occurs for !d

!#1, indicative of a phase transition for a finite
value of !d. These results are consistent with the behavior of
the ratios Rd and Rs, which are depicted in Figs. 7!a", 7!b",
7!d", and 7!e". For most low fillings, both ratios change very
little for small values of !d. Around !d#1, they either jump
abruptly !cluster with L=18" or increase rapidly !cluster with
L=20". Notice that for large !d there is almost one order of
magnitude difference between the ratios seen for the occupa-
tion of the d-wave related natural orbitals and the
extended-s-wave related orbitals. This is expected since the
driving term has d-wave symmetry and hence d-wave super-
conductivity should be stabilized for large values of !d.

The results for low hole doping !two and four holes" are
in contrast with those of low electron filling. Figure 6!b"
shows that in the former case g exhibits a large response for
very small values of !d. The behavior of g in this case is
consistent with a phase transition at !d#0. The situation is
similar to that of g in the one-dimensional Hubbard model as
one tunes the onsite repulsion parameter U,32 where the Mott
phase transition occurs at U=0. In addition, as shown in Fig.
7!c" and 7!f", the response of g for small values of !d is
accompanied by a continuous increase of Rd and a continu-
ous decrease of Rs for small values of !d.

Comparing the results in this subsection with Sec. III, we
find support for the view that in the thermodynamic limit, the
plain t-J model is superconducting !with d-wave symmetry,
for finite values of J", without the need of introducing !d.
Finite values of !d certainly enhance the superconducting
features of the t-J model in finite clusters but may not be
needed for larger system sizes. Earlier evidence in this direc-
tion comes from high temperature expansion studies,63 and
exact diagonalization studies of the plain t-J model.3,45–47

We should stress that the magnitudes of the ratios Rd in
Fig. 7!c", reveals a very important characteristic of the
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The behavior of the ground-state fidelity susceptibility in the vicinity of a quantum critical point is investi-
gated. We derive scaling relations describing its singular behavior in the quantum critical regime. Unlike in
previous studies, these relations are solely expressed in terms of conventional critical exponents. We also
describe in detail a quantum Monte Carlo scheme that allows for the evaluation of the fidelity susceptibility for
a large class of many-body systems and apply it in the study of the quantum phase transition for the transverse-
field Ising model on the square lattice. Finite-size analysis applied to the so-obtained numerical results con-
firms the validity of our scaling relations. Furthermore, we analyze the properties of a closely related quantity,
the ground-state energy’s second derivative, which can be numerically evaluated in a particularly efficient way.
The usefulness of both quantities as alternative indicators of quantum criticality is examined.
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I. INTRODUCTION

The quantity known as fidelity naturally appears in the
field of quantum information science as a way of determin-
ing the reliability of a given protocol for quantum informa-
tion transfer: the similarity between input #"in$ and output
#"out$ states can be quantified by simply computing the ab-
solute value of the overlap between them, F= #%"in #"out$#.
Recently, after the pioneering work1 of Zanardi and Paunk-
ović, and following the broader trend of cross fertilization
between the fields of quantum information science and
condensed-matter physics,2 a number of studies have ex-
tended the scope of applicability of the concept of fidelity to
the study of quantum critical phenomena !for a review, see
Ref. 3".

The basic idea behind this so-called fidelity approach is
simple. We consider a general many-body Hamiltonian,

H!g" = H0 + gH1, !1"

with ground-state #"0!g"$, H!g"#"0!g"$=E0!g"#"0!g"$.
Since #"0!g"$ undergoes major changes in the vicinity of a
quantum critical point !QCP" gc, we expect a sharp drop in
the fidelity,

F!g,dg" = #%"0!g + dg"#"0!g"$# , !2"

for small !dg→0" variations in g close to gc. Therefore, by
investigating the behavior of F!g ,dg" when couplings in the
Hamiltonian are varied, one should be able to detect quan-
tum criticality. This approach is purely quantum geometrical4

and therefore has the appeal that no a priori identification of
order parameters is required.

The concept of fidelity susceptibility5 #F!g" naturally ap-
pears as the fidelity’s leading term in the limit dg→0,

F!g,dg → 0" & 1 −
1
2

#F!g"dg2.

'The linear term in dg in the above expansion vanishes due
to normalization of the wave function—alternatively it can
be seen to arise from the fact that F!g ,dg" is maximum at
dg=0 for any value of g.( The aforementioned drop in

F!g ,dg" close to a QCP is thus associated to a divergence in
#F, and the latter quantity may also be employed in the study
of quantum phase transitions. The situation here is reminis-
cent of the use of the specific heat to detect thermal phase
transitions: while the presence of singularities in the specific
heat for varying temperatures signals the location of finite-
temperature critical points, #F!g" is a system’s response to
changes in the coupling constant g, whose divergencies are
associated to the occurrence of quantum phase transitions.

Although obviously some information is lost in going
from F!g ,dg" to #F!g", and for instance it is currently not
clear whether transitions of order higher than second can be
detected by studying the latter, focusing on #F!g" has up to
now proved to be a fruitful strategy. The main reason behind
this is that it is possible to show5–7 that #F!g" is closely
related to more conventional physical quantities, such as
imaginary-time dynamical responses. This is particularly ad-
vantageous since it allows one to rely on well-established
concepts and techniques from theoretical condensed-matter
physics in order to draw conclusions on the properties of
#F!g". We follow this line of reasoning in this paper in a
twofold way.

First, we present the details of a recently introduced8

quantum Monte Carlo !QMC" scheme that allows for the
evaluation of #F for a large class of sign-problem-free mod-
els. This constitutes an important advance as the group of
problems that can be studied within the fidelity approach is
considerably enlarged, and additionally one benefits from the
computational power of QMC methods. In particular, high-
precision scaling analysis for models in dimensions higher
than one is now possible: previous computations of #F for
two-dimensional systems have relied on exact diagonaliza-
tion !ED" techniques and were restricted to small system
sizes, something that precludes a precise determination of
scaling dimensions in the vicinity of a QCP.

Second, by building upon the aforementioned relationship
between #F and response functions, we determine the scaling
behavior of the fidelity susceptibility close to a QCP. The
divergence of #F!g" at gc is shown to be related to the critical
exponent $ describing the divergence of the correlation
length. In this way, and supported by the results obtained
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so obtained results are shown in Fig. 5. From the scaling
relations derived in Sec. II C, L−d!F!L"2/"#−d and L−d!E
!L"2/"#−"d+z# $Eqs. "21# and "22#; d=2 and z=1%, we expect a
linear dependence for the logarithm of the peaks’ height on
ln L. This is confirmed by the results shown in Figs. 5"a# and
5"c#. By applying linear regression to the points associated to
the three largest values of L in each plot we obtain our first
estimates for correlation length’s exponent: "=0.623"8# $!F,
Fig. 5"a#% and "=0.615"1# $!E, Fig. 5"c#%. While the former
estimate is in good agreement with the result for the univer-
sality class of the three-dimensional classical Ising model
$"=0.6301"8#, Ref. 37%, the latter clearly underestimates ".
This is likely to be explained by the weak divergence dis-
played by !E, implying that regular subleading corrections
are important in accounting for the behavior in system sizes
as the ones considered here: indeed we notice that the data
points corresponding to the smallest system sizes clearly de-
viate from the linear fit obtained for the points for the three
largest L in Fig. 5"c#.

In Figs. 5"b# and 5"d# we plot the peaks’ location versus
inverse system size 1 /L for !F and !E, respectively. We ex-
pect "see for instance the related discussion in Ref. 38# the
following expression to hold for the scaling of the peak po-
sitions for hc"L# with system size L,

hc"L# = hc
# +

$

L1/" , "32#

where hc
# is the result for L→#. Data fits give the following

estimates: hc
#=3.0442"4# and "=0.625"7# $!F, Fig. 5"b#% and

hc
#=3.0442"7# and "=0.63"1# $!E, Fig. 5"d#%. We remark that

our estimates for the location of the QCP are in very good
agreement with the result from Ref. 31 and, although quality
is lesser in this case, our results for " are consistent with the
value "=0.6301"8# found in Ref. 37.

Finally, from the finite-size scaling analysis performed in
Sec. II C we expect the following relation to describe the
behavior of !F on finite systems in the neighborhood of the
QCP

L−d!F"h,L# = L"2/"#−df!F
"L1/"&h − hc&# , "33#

and similarly for !E

L−d!E"h,L# = L"2/"#−"d+z#f!E
"L1/"&h − hc&# . "34#
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FIG. 4. "Color online# "a# Fidelity susceptibility density L−2!F
and "b# ground-state energy’s second derivative per site
L−2!2E0"g# /!g2=−L−2!E"g# for the TIM on the square lattice, as a
function of h /J and for indicated system sizes L "temperatures are
set to %=2L#. Data have been obtained by applying the SSE-QMC
procedure detailed in Sec. III.
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FIG. 5. "Color online# Finite size scaling analysis for the loca-
tion and height of the peaks in "a# and "b# !F and "c# and "d# !E,
obtained from the QMC data shown in Fig. 4. In panels "a# and "c#,
the logarithm of the maxima in L−2!F and L−2!E, respectively, are
plotted as function of ln L. Linear regression "lines# is applied to the
three rightmost data points in each case, yielding the estimates "a#
"=0.623"8# and "c# "=0.615"1# for the correlation length’s critical
exponent. In "b# and "d#, the peaks’ location hc"L# for, respectively,
L−2!F and L−2!E is plotted against inverse system size 1 /L. Fits
"curves# for these results by using Eq. "32# yield the estimates: "b#
hc

#=3.0442"4# and "=0.625"7# and "d# hc
#=3.0442"7# and "

=0.63"1# "the extrapolated values hc
# are indicated by the horizontal

dashed lines#. See main text for details.
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The behavior of the ground-state fidelity susceptibility in the vicinity of a quantum critical point is investi-
gated. We derive scaling relations describing its singular behavior in the quantum critical regime. Unlike in
previous studies, these relations are solely expressed in terms of conventional critical exponents. We also
describe in detail a quantum Monte Carlo scheme that allows for the evaluation of the fidelity susceptibility for
a large class of many-body systems and apply it in the study of the quantum phase transition for the transverse-
field Ising model on the square lattice. Finite-size analysis applied to the so-obtained numerical results con-
firms the validity of our scaling relations. Furthermore, we analyze the properties of a closely related quantity,
the ground-state energy’s second derivative, which can be numerically evaluated in a particularly efficient way.
The usefulness of both quantities as alternative indicators of quantum criticality is examined.
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I. INTRODUCTION

The quantity known as fidelity naturally appears in the
field of quantum information science as a way of determin-
ing the reliability of a given protocol for quantum informa-
tion transfer: the similarity between input #"in$ and output
#"out$ states can be quantified by simply computing the ab-
solute value of the overlap between them, F= #%"in #"out$#.
Recently, after the pioneering work1 of Zanardi and Paunk-
ović, and following the broader trend of cross fertilization
between the fields of quantum information science and
condensed-matter physics,2 a number of studies have ex-
tended the scope of applicability of the concept of fidelity to
the study of quantum critical phenomena !for a review, see
Ref. 3".

The basic idea behind this so-called fidelity approach is
simple. We consider a general many-body Hamiltonian,

H!g" = H0 + gH1, !1"

with ground-state #"0!g"$, H!g"#"0!g"$=E0!g"#"0!g"$.
Since #"0!g"$ undergoes major changes in the vicinity of a
quantum critical point !QCP" gc, we expect a sharp drop in
the fidelity,

F!g,dg" = #%"0!g + dg"#"0!g"$# , !2"

for small !dg→0" variations in g close to gc. Therefore, by
investigating the behavior of F!g ,dg" when couplings in the
Hamiltonian are varied, one should be able to detect quan-
tum criticality. This approach is purely quantum geometrical4

and therefore has the appeal that no a priori identification of
order parameters is required.

The concept of fidelity susceptibility5 #F!g" naturally ap-
pears as the fidelity’s leading term in the limit dg→0,

F!g,dg → 0" & 1 −
1
2

#F!g"dg2.

'The linear term in dg in the above expansion vanishes due
to normalization of the wave function—alternatively it can
be seen to arise from the fact that F!g ,dg" is maximum at
dg=0 for any value of g.( The aforementioned drop in

F!g ,dg" close to a QCP is thus associated to a divergence in
#F, and the latter quantity may also be employed in the study
of quantum phase transitions. The situation here is reminis-
cent of the use of the specific heat to detect thermal phase
transitions: while the presence of singularities in the specific
heat for varying temperatures signals the location of finite-
temperature critical points, #F!g" is a system’s response to
changes in the coupling constant g, whose divergencies are
associated to the occurrence of quantum phase transitions.

Although obviously some information is lost in going
from F!g ,dg" to #F!g", and for instance it is currently not
clear whether transitions of order higher than second can be
detected by studying the latter, focusing on #F!g" has up to
now proved to be a fruitful strategy. The main reason behind
this is that it is possible to show5–7 that #F!g" is closely
related to more conventional physical quantities, such as
imaginary-time dynamical responses. This is particularly ad-
vantageous since it allows one to rely on well-established
concepts and techniques from theoretical condensed-matter
physics in order to draw conclusions on the properties of
#F!g". We follow this line of reasoning in this paper in a
twofold way.

First, we present the details of a recently introduced8

quantum Monte Carlo !QMC" scheme that allows for the
evaluation of #F for a large class of sign-problem-free mod-
els. This constitutes an important advance as the group of
problems that can be studied within the fidelity approach is
considerably enlarged, and additionally one benefits from the
computational power of QMC methods. In particular, high-
precision scaling analysis for models in dimensions higher
than one is now possible: previous computations of #F for
two-dimensional systems have relied on exact diagonaliza-
tion !ED" techniques and were restricted to small system
sizes, something that precludes a precise determination of
scaling dimensions in the vicinity of a QCP.

Second, by building upon the aforementioned relationship
between #F and response functions, we determine the scaling
behavior of the fidelity susceptibility close to a QCP. The
divergence of #F!g" at gc is shown to be related to the critical
exponent $ describing the divergence of the correlation
length. In this way, and supported by the results obtained
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so obtained results are shown in Fig. 5. From the scaling
relations derived in Sec. II C, L−d!F!L"2/"#−d and L−d!E
!L"2/"#−"d+z# $Eqs. "21# and "22#; d=2 and z=1%, we expect a
linear dependence for the logarithm of the peaks’ height on
ln L. This is confirmed by the results shown in Figs. 5"a# and
5"c#. By applying linear regression to the points associated to
the three largest values of L in each plot we obtain our first
estimates for correlation length’s exponent: "=0.623"8# $!F,
Fig. 5"a#% and "=0.615"1# $!E, Fig. 5"c#%. While the former
estimate is in good agreement with the result for the univer-
sality class of the three-dimensional classical Ising model
$"=0.6301"8#, Ref. 37%, the latter clearly underestimates ".
This is likely to be explained by the weak divergence dis-
played by !E, implying that regular subleading corrections
are important in accounting for the behavior in system sizes
as the ones considered here: indeed we notice that the data
points corresponding to the smallest system sizes clearly de-
viate from the linear fit obtained for the points for the three
largest L in Fig. 5"c#.

In Figs. 5"b# and 5"d# we plot the peaks’ location versus
inverse system size 1 /L for !F and !E, respectively. We ex-
pect "see for instance the related discussion in Ref. 38# the
following expression to hold for the scaling of the peak po-
sitions for hc"L# with system size L,

hc"L# = hc
# +

$

L1/" , "32#

where hc
# is the result for L→#. Data fits give the following

estimates: hc
#=3.0442"4# and "=0.625"7# $!F, Fig. 5"b#% and

hc
#=3.0442"7# and "=0.63"1# $!E, Fig. 5"d#%. We remark that

our estimates for the location of the QCP are in very good
agreement with the result from Ref. 31 and, although quality
is lesser in this case, our results for " are consistent with the
value "=0.6301"8# found in Ref. 37.

Finally, from the finite-size scaling analysis performed in
Sec. II C we expect the following relation to describe the
behavior of !F on finite systems in the neighborhood of the
QCP

L−d!F"h,L# = L"2/"#−df!F
"L1/"&h − hc&# , "33#

and similarly for !E

L−d!E"h,L# = L"2/"#−"d+z#f!E
"L1/"&h − hc&# . "34#
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FIG. 4. "Color online# "a# Fidelity susceptibility density L−2!F
and "b# ground-state energy’s second derivative per site
L−2!2E0"g# /!g2=−L−2!E"g# for the TIM on the square lattice, as a
function of h /J and for indicated system sizes L "temperatures are
set to %=2L#. Data have been obtained by applying the SSE-QMC
procedure detailed in Sec. III.
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FIG. 5. "Color online# Finite size scaling analysis for the loca-
tion and height of the peaks in "a# and "b# !F and "c# and "d# !E,
obtained from the QMC data shown in Fig. 4. In panels "a# and "c#,
the logarithm of the maxima in L−2!F and L−2!E, respectively, are
plotted as function of ln L. Linear regression "lines# is applied to the
three rightmost data points in each case, yielding the estimates "a#
"=0.623"8# and "c# "=0.615"1# for the correlation length’s critical
exponent. In "b# and "d#, the peaks’ location hc"L# for, respectively,
L−2!F and L−2!E is plotted against inverse system size 1 /L. Fits
"curves# for these results by using Eq. "32# yield the estimates: "b#
hc

#=3.0442"4# and "=0.625"7# and "d# hc
#=3.0442"7# and "

=0.63"1# "the extrapolated values hc
# are indicated by the horizontal

dashed lines#. See main text for details.
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Z = Tr!e−!H" = #
n=0

"

#
#

#
Sn

!n

n!
$#%&

i=1

n

H!bi"%#' . !23"

Here (%#') is any suitable basis and the system’s Hamiltonian
is typically a sum over local operators: H=#bH!b", with b
labeling different local terms. For instance, b may denote
operators acting on different bonds of the lattice and/or di-
agonal versus nondiagonal operators. For our current pur-
poses, it is convenient to choose a decomposition that re-
spects the bipartition of Eq. !1", such that all terms appearing
in H0 are labeled by b0 and those appearing in gH1 by b1 and
we have b! (b0 ,b1). SSE configurations !# ,Sn", with opera-
tor strings

Sn = &
i=1

n

H!bi" , !24"

are then sampled, according to the statistical weight

W!#,Sn" =
!n

n!
$#%&

i=1

n

H!bi"%#' .

Efficient update schemes such as the directed loop
algorithm21,23 render the SSE technique one of the most ef-
ficient QMC methods for quantum lattice models.

The general procedure for obtaining thermal averages
within the SSE framework is discussed in detail by Sandvik
in Ref. 24. The basic idea, supposing we are interested in an
observable O, is to determine an estimator O!# ,Sn" such that

$O'W =
1
Z#

n
#

!#,Sn"
O!#,Sn"W!#,Sn" .

In what follows, we show how estimators for the fidelity
susceptibility $F!g ,!" *Eq. !11"+ and $E!g ,!" *Eq. !10"+ can
be obtained from SSE-QMC simulations.

A. Fidelity susceptibility

First, we need to evaluate imaginary-time operator prod-
ucts of the form $H1!%"H1!0"' appearing in the integrand of
Eq. !11" *cf. Eq. !5"+. These operators being part of the
Hamiltonian, one trick consists in reinterpreting two of the
elements with label b1 of the string *Eq. !24"+ as the opera-
tors to be measured. Following Ref. 24, we arrive at

g2$H1!%"H1!0"'

= #
m=0

n−2 !n − 1"!
!n − m − 2"!m!

!−n!! − %"n−m−2%m$NgH1
!m"'W.

!25"

Here, n is the length of the operator string Sn *Eq. !24"+ and
NgH1

!m" the number of times any two operators comprising
gH1 appear in the strings Sn separated by m positions. We
discuss below how NgH1

!m" can be measured.
The second term in Eq. !5" is obtained by a simpler

procedure24 and is given by

$H1'2 =
1

g2!2 $NgH1
'W

2 , !26"

where NgH1
is the total number of gH1 operators in Sn.

Inserting the results Eqs. !25" and !26" into Eq. !11" and
integrating from %=0 to ! /2 !taking into account the impor-
tant multiplicative factor of % in the integrand", we finally
arrive at the result

$F!g,!" =
1
g2 #

m=0

n−2

*A!m,n"$NgH1
!m"'W+ −

$NgH1
'W

2

8g2 , !27"

with the coefficient

A!m,n" =
!n − 1"!

!n − m − 2"!m!
,

0

1/2

d%%m+1!1 − %"n−m−2. !28"

We show in Appendix how this coefficient can be approxi-
mated very accurately by an analytical expression in the limit
of n&1.

NgH1
!m" is conveniently extracted from the simulations in

two steps. Firstly, the string *Eq. !24"+ is traversed !for in-
stance when performing diagonal updates; see Ref. 19" and
the positions i where a local Hamiltonian H!bi" appears with
a label bi=b1 are recorded !there are in total NgH1

such op-
erators". Secondly, the histogram NgH1

!m" is generated by
computing all distances m between all previously recorded
positions i. This step is the most demanding as it requires
NgH1

!NgH1
−1" /2 operations. Note finally that the prefactor

1 /g2 arises from the definition of the fidelity susceptibility
*Eq. !3"+ which does not include the coupling constant g,
whereas the SSE decomposition used in Eq. !23" typically
does.

B. Ground-state energy’s second derivative

The results *Eqs. !25" and !26"+ can also be used in order
to directly evaluate the ground-state energy’s second deriva-
tive, relying on Eq. !10" and extrapolating to the limit !
→". The absence of the factor % in Eq. !9" considerably
simplifies the situation since the integration over % can now
always be performed exactly. In this way, we arrive at the
simple result

$E!g,!" =
1

g2!
*$NgH1

2 'W − $NgH1
'W − $NgH1

'W
2 + . !29"

We stress that the computational cost for evaluating $E!g ,!"
is much lower than the one required to obtain $F!g ,!": the
estimator for the former quantity in Eq. !29" simply requires
counting the number of times the operators contained in the
“driving term” gH1 occur in the operator strings Sn. This is to
be contrasted with the computationally heavy task, specially
in the limit of large lattice sizes and low temperatures, of
computing the histogram NgH1

!m" necessary in evaluating
$F!g ,!" *cf. Eqs. !27" and !28"+.
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Monte Carlo simulation

F
ig

.
1
.1

0
B

u
ff
on

’s
ex

p
er

im
en

t
w

it
h

20
00

n
ee

d
le

s
(a

=
b)

.

1.1 Popular games in Monaco 9

are well behaved. Many successful Monte Carlo algorithms contain exact
sampling as a key ingredient.

Markov-chain sampling, on the other hand, forces us to be much more
careful with all aspects of our calculation. The critical issue here is the
correlation time, during which the pebble keeps a memory of the starting
configuration, the clubhouse. This time can become astronomical. In the
usual applications, one is often satisfied with a handful of independent
samples, obtained through week-long calculations, but it can require
much thought and experience to ensure that even this modest goal is
achieved. We shall continue our discussion of Markov-chain Monte Carlo
methods in Subsection 1.1.4, but want to first take a brief look at the
history of stochastic computing.

1.1.3 Historical origins

The idea of direct sampling was introduced into modern science in the
late 1940s by the mathematician Ulam, not without pride, as one can
find out from his autobiography Adventures of a Mathematician (Ulam
(1991)). Much earlier, in 1777, the French naturalist Buffon (1707–1788)
imagined a legendary needle-throwing experiment, and analyzed it com-
pletely. All through the eighteenth and nineteenth centuries, royal courts
and learned circles were intrigued by this game, and the theory was de-
veloped further. After a basic treatment of the Buffon needle problem,
we shall describe the particularly brilliant idea of Barbier (1860), which
foreshadows modern techniques of variance reduction.

Fig. 1.6 Georges Louis Leclerc, Count
of Buffon (1707–1788), performing the
first recorded Monte Carlo simulation,
in 1777. (Published with permission of
Le Monde.)

The Count is shown in Fig. 1.6 randomly throwing needles of length
a onto a wooden floor with cracks a distance b apart. We introduce

φ

xcenter0 b 2b 3b 4b

rcenter

Fig. 1.7 Variables xcenter and φ in Buffon’s needle experiment. The nee-
dles are of length a.

coordinates rcenter and φ as in Fig. 1.7, and assume that the needles’
centers rcenter are uniformly distributed on an infinite floor. The needles
do not roll into cracks, as they do in real life, nor do they interact with
each other. Furthermore, the angle φ is uniformly distributed between 0
and 2 . This is the mathematical model for Buffon’s experiment.

All the cracks in the floor are equivalent, and there are symmetries
xcenter ↔ b − xcenter and φ ↔ −φ. The variable y is irrelevant to the

Buffon 1777
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instead, only water molecules with different amounts of 
excitation energy. These may follow any of three paths: 

(a) The excitation energy is lost without dissociation 
into radicals (by collision, or possibly radiation, as in 
aromatic hydrocarbons). 

(b) The molecules dissociate, but the resulting radi-
cals recombine without escaping from the liquid cage. 

(c) The molecules dissociate and escape from the 
cage. In this case we would not expect them to move 
more than a few molecular diameters through the dense 
medium before being thermalized. 

In accordance with the notation introduced by 
Burton, Magee, and Samuel,22 the molecules following 

22 Burton, Magee, and Samuel, J. Chern. Phys. 20, 760 (1952). 
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paths (a) and (b) can be designated H 20* and those 
following path (c) can be designated H 20t. It seems 
reasonable to assume for the purpose of these calcula-
tions that the ionized H 20 molecules will become the 
H 20t molecules, but this is not likely to be a complete 
correspondence. 

In conclusion we would like to emphasize that the 
qualitative result of this section is not critically de-
pendent on the exact values of the physical parameters 
used. However, this treatment is classical, and a correct 
treatment must be wave mechanical; therefore the 
result of this section cannot be taken as an a priori 
theoretical prediction. The success of the radical diffu-
sion model given above lends some plausibility to the 
occurrence of electron capture as described by this 
crude calculation. Further work is clearly needed. 
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to the free volume equation of state and to a four-term virial coefficient expansion. 

I. INTRODUCTION 

T HE purpose of this paper is to describe a general 
method, suitable for fast electronic computing 

machines, of calculating the properties of any substance 
which may be considered as composed of interacting 
individual molecules. Classical statistics is assumed, 
only two-body forces are considered, and the potential 
field of a molecule is assumed spherically symmetric. 
These are the usual assumptions made in theories of 
liquids. Subject to the above assumptions, the method 
is not restricted to any range of temperature or density. 
This paper will also present results of a preliminary two-
dimensional calculation for the rigid-sphere system. 
Work on the two-dimensional case with a Lennard-
Jones potential is in progress and will be reported in a 
later paper. Also, the problem in three dimensions is 
being investigated. 

* Now at the Radiation Laboratory of the University of Cali-
fornia, Livermore, California. 

II. THE GENERAL METHOD FOR AN ARBITRARY 
POTENTIAL BETWEEN THE PARTICLES 

In order to reduce the problem to a feasible size for 
numerical work, we can, of course, consider only a finite 
number of particles. This number N may be as high as 
several hundred. Our system consists of a squaret con-
taining N particles. In order to minimize the surface 
effects we suppose the complete substance to be periodic, 
consisting of many such squares, each square contain-
ing N particles in the same configuration. Thus we 
define dAB, the minimum distance between particles A 
and B, as the shortest distance between A and any of 
the particles B, of which there is one in each of the 
squares which comprise the complete substance. If we 
have a potential which falls off rapidly with distance, 
there will be at most one of the distances AB which 
can make a substantial contribution; hence we need 
consider only the minimum distance dAB. 

t We will use two-dimensional nomenclature here since it 
is easier to visualize. The extension to three dimensions is obvious. 
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suppose that below the critical density only liquid-like configurations ex-
ist, and above the transition only solid ones. This first guess is wrong at
low density because a crystalline configuration at high density obviously
also exists at low density; it suffices to reduce the disk radii. Disordered
configurations (configurations without long-range positional or orienta-
tional order) also exist right through the transition and up to the high-
est densities; they can be constructed from large, randomly arranged,
patches of ordered disks. Liquid-like, disordered configurations and solid
configurations of disks thus do not disappear as we pass through the
liquid–solid phase transition density one way or the other; it is only the
balance of statistical weights which is tipped in favor of crystalline con-
figurations at high densities, and in favor of liquid configurations at low
densities.

The Markov-chain hard-disk algorithm is indeed very powerful, be-
cause it allows us to sample configurations at densities and particle
numbers that are far out of reach for direct-sampling methods. How-
ever, it slows down considerably upon entering the solid phase. To see
this in a concrete example, we set up a particular tilted initial condition
for a long simulation with Alg. 2.9 (markov-disks) (see Fig. 2.26). Even
25 billion moves later, that is, one hundred million sweeps (attempted
moves per disk), the initial configuration still shows through in the state
of the system. A configuration independent of the initial configuration
has not yet been sampled.

We can explain—but should not excuse—the slow convergence of the
hard-disk Monte Carlo algorithm at high density by the slow motion
of single particles (in the long simulation of Fig. 2.26, the disk k has
only moved across one-quarter of the box). However, an equilibrium
Monte Carlo algorithm is not meant to simulate time evolution, but
to generate, as quickly as possible, configurations a with probability
π(a) for all a making up the configuration space. Clearly, at a density
η = 0.72, Alg. 2.9 (markov-disks) fails at this task, and Markov-chain
sampling slows down dangerously.
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instead, only water molecules with different amounts of 
excitation energy. These may follow any of three paths: 

(a) The excitation energy is lost without dissociation 
into radicals (by collision, or possibly radiation, as in 
aromatic hydrocarbons). 

(b) The molecules dissociate, but the resulting radi-
cals recombine without escaping from the liquid cage. 

(c) The molecules dissociate and escape from the 
cage. In this case we would not expect them to move 
more than a few molecular diameters through the dense 
medium before being thermalized. 

In accordance with the notation introduced by 
Burton, Magee, and Samuel,22 the molecules following 

22 Burton, Magee, and Samuel, J. Chern. Phys. 20, 760 (1952). 
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paths (a) and (b) can be designated H 20* and those 
following path (c) can be designated H 20t. It seems 
reasonable to assume for the purpose of these calcula-
tions that the ionized H 20 molecules will become the 
H 20t molecules, but this is not likely to be a complete 
correspondence. 

In conclusion we would like to emphasize that the 
qualitative result of this section is not critically de-
pendent on the exact values of the physical parameters 
used. However, this treatment is classical, and a correct 
treatment must be wave mechanical; therefore the 
result of this section cannot be taken as an a priori 
theoretical prediction. The success of the radical diffu-
sion model given above lends some plausibility to the 
occurrence of electron capture as described by this 
crude calculation. Further work is clearly needed. 
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suppose that below the critical density only liquid-like configurations ex-
ist, and above the transition only solid ones. This first guess is wrong at
low density because a crystalline configuration at high density obviously
also exists at low density; it suffices to reduce the disk radii. Disordered
configurations (configurations without long-range positional or orienta-
tional order) also exist right through the transition and up to the high-
est densities; they can be constructed from large, randomly arranged,
patches of ordered disks. Liquid-like, disordered configurations and solid
configurations of disks thus do not disappear as we pass through the
liquid–solid phase transition density one way or the other; it is only the
balance of statistical weights which is tipped in favor of crystalline con-
figurations at high densities, and in favor of liquid configurations at low
densities.

The Markov-chain hard-disk algorithm is indeed very powerful, be-
cause it allows us to sample configurations at densities and particle
numbers that are far out of reach for direct-sampling methods. How-
ever, it slows down considerably upon entering the solid phase. To see
this in a concrete example, we set up a particular tilted initial condition
for a long simulation with Alg. 2.9 (markov-disks) (see Fig. 2.26). Even
25 billion moves later, that is, one hundred million sweeps (attempted
moves per disk), the initial configuration still shows through in the state
of the system. A configuration independent of the initial configuration
has not yet been sampled.

We can explain—but should not excuse—the slow convergence of the
hard-disk Monte Carlo algorithm at high density by the slow motion
of single particles (in the long simulation of Fig. 2.26, the disk k has
only moved across one-quarter of the box). However, an equilibrium
Monte Carlo algorithm is not meant to simulate time evolution, but
to generate, as quickly as possible, configurations a with probability
π(a) for all a making up the configuration space. Clearly, at a density
η = 0.72, Alg. 2.9 (markov-disks) fails at this task, and Markov-chain
sampling slows down dangerously.

102 Hard disks and spheres

η = 0.48 η = 0.72

Fig. 2.25 Snapshots of 256 hard disks in a box of size 1 ×
√

3/2 with
periodic boundary conditions (from Alg. 2.9 (markov-disks)).

suppose that below the critical density only liquid-like configurations ex-
ist, and above the transition only solid ones. This first guess is wrong at
low density because a crystalline configuration at high density obviously
also exists at low density; it suffices to reduce the disk radii. Disordered
configurations (configurations without long-range positional or orienta-
tional order) also exist right through the transition and up to the high-
est densities; they can be constructed from large, randomly arranged,
patches of ordered disks. Liquid-like, disordered configurations and solid
configurations of disks thus do not disappear as we pass through the
liquid–solid phase transition density one way or the other; it is only the
balance of statistical weights which is tipped in favor of crystalline con-
figurations at high densities, and in favor of liquid configurations at low
densities.

The Markov-chain hard-disk algorithm is indeed very powerful, be-
cause it allows us to sample configurations at densities and particle
numbers that are far out of reach for direct-sampling methods. How-
ever, it slows down considerably upon entering the solid phase. To see
this in a concrete example, we set up a particular tilted initial condition
for a long simulation with Alg. 2.9 (markov-disks) (see Fig. 2.26). Even
25 billion moves later, that is, one hundred million sweeps (attempted
moves per disk), the initial configuration still shows through in the state
of the system. A configuration independent of the initial configuration
has not yet been sampled.

We can explain—but should not excuse—the slow convergence of the
hard-disk Monte Carlo algorithm at high density by the slow motion
of single particles (in the long simulation of Fig. 2.26, the disk k has
only moved across one-quarter of the box). However, an equilibrium
Monte Carlo algorithm is not meant to simulate time evolution, but
to generate, as quickly as possible, configurations a with probability
π(a) for all a making up the configuration space. Clearly, at a density
η = 0.72, Alg. 2.9 (markov-disks) fails at this task, and Markov-chain
sampling slows down dangerously.



Quantum to classical mapping

Z = Tr
⇣
e��Ĥ
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Fidelity susceptibility made simple!

�F =
hkLkRi � hkLi hkRi

2�2
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Bose-Hubbard Model

Mott 
Insulator Superfluid

Divergence of fidelity susceptibility 

correctly single out the quantum critical point

lows efficient sampling of the single-particle Green function.
Precise data for the Green function enable us to carefully
trace out the critical behavior of the system and resolve the
phase diagram in the region of small insulating gaps, !"J.
We also present data for the effective mass of particle and
hole excitations inside the insulating phase. Effective masses
characterize the phase transition away from the tip of the
lobe. Here the transition is described by the physics of the
weakly interacting Bose gas in the limit of vanishing density
!10".

In order to completely characterize the system the full
phase diagram in the parameter space ## /U ,J /U ,T /J$,
where T is the temperature, is needed. Here we limit our-
selves to studying ground state properties and calculating the
critical temperature for the SF-normal transition at unity fill-
ing factor. An exhaustive finite temperature study of the sys-
tem is in progress in another group !12".

We now turn to the presentation of our results. The pro-
cedure used to determine the ground state phase diagram and
extract effective masses of particle and hole excitations from
the Green function was discussed in detail in Ref. !13". In
Fig. 1 we present results for the ground state phase diagram
corresponding to unity filling. The inset shows the region
around the tip. Circles represent the simulation data while
dashed lines are obtained from the finite size scaling
analysis. Simulations were done for linear system sizes
L=10,20,40,80 #all lengths are measured in units of lattice
step$. We do not see any significant size effect up to J /U
%0.057. In order to extract the position of the critical point
at the tip of the lobe and determine the extension of the
critical region, the standard finite size scaling argument was
used #see Ref. !13"$, with the critical exponent for the corre-
lation length $=0.6715. The finite size scaling of the energy
gap is presented in Fig. 2. One can directly read the position
of the critical point from the intersection of the curves:

#J/U$c = 0.05974#3$ #n = 1$ . #3$

Equation #3$ and Fig. 1 constitute the most precise quantum
Monte Carlo simulation for the Hamiltonian #1$, which is in

perfect agreement with the result of Ref. !1", where the au-
thors carried out a strong coupling expansion up to 13th
order. Note that the critical region in Fig. 1 is resolved with
accuracy "J, i.e., for gaps !%J, which is crucial for studies
of the emerging relativistic physics at the lobe tip.

In Fig. 3 we plot effective masses for particle #circles$ and
hole #squares$ excitations. Dispersion relations were fitted by
a parabola, with the exception of J /U=0.059 where we used
a relativistic dispersion relation. Close to the tip of the dia-
gram, the action is isotropic in space and imaginary time,
giving rise to a relativistic behavior !10". In the limit
J /U→0, where one can calculate effective masses perturba-
tively, our data converge to the analytical result #dashed
lines$. To the first order, the perturbative expansions are
given by #we set the Planck’s constant equal to unity$:
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FIG. 1. #Color online$ Phase diagram of the first MI-SF lobe.
Solid circles are numerical data, with error bars shown but barely
visible. The inset is a blowup of the region close to the tip. Dashed
lines represent the critical region as calculated from finite size
scaling.

20

18

16

14

12

10
0.06000.05980.05960.05940.0592

L=10
L=20
L=40
L=80

∆L/J

J/U

FIG. 2. #Color online$ Finite size scaling of the energy gap at
the tip of the lobe. Lines represent linear fits used to extract the
critical point. The critical point can be directly read from the inter-
section of the curves: #J /U$c=0.05974#3$.
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FIG. 3. #Color online$ Effective mass for particle #circles$ and
hole #squares$ excitations as a function of J /U. The exact results at
J /U=0 are m+=0.25 /J and m−=0.5 /J. By dashed lines we show
the lowest order in J /U correction to the effective masses. Close to
the critical point the two curves overlap, directly demonstrating the
emergence of the particle-hole symmetry. At J /U=0.059, the sound
velocity is c /J=4.8&0.2.
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Honeycomb Hubbard Model

H~{t
X

i,jh i,a
(c{iacjazc{jacia)zU

X

i

ni:ni;

where c{ia and cia respectively denote the creation and annihilation
operators for spin-up (a 5 ") and spin-down (a 5 #) fermions on

lattice site i, nia 5 c{iacia, t denotes the nearest-neighbour hopping
amplitude and U $ 0 denotes the strength of the on-site repulsion.
The first summation runs over all nearest-neighbour pairs, as
denoted by Æi, jæ (and both spins). Our notation for points and vectors
in real and momentum space is shown in the inset of Fig. 1. At U 5 0,
the tight-binding Hamiltonian has a linear dispersion near the Dirac
points (K and K9; see inset of Fig. 1), where the conduction and
valence bands touch at half-filling, corresponding to a densityP

aÆniaæ 5 1. At half-filling, the finite-U region can be studied using
projective QMC to obtain ground-state expectation values of any
physical observable (see Methods for details). The phases described
in the following correspond to extrapolations to the TDL. For that
purpose, we study lattices of N 5 2L2 sites with periodic boundary
conditions, and linear sizes up to L 5 18.

To monitor the electronic properties of the system on increasing
U, we extracted the single-particle excitation gap, Dsp(k), from the
imaginary-time displaced Green’s function (see Supplementary
Information for details). This is the minimum energy necessary to
extract one fermion from the system, and corresponds to the gap that
can be observed in photoemission experiments. As shown in Fig. 1,
Dsp(K) 5 0 for values of U/t below about 3.5, as expected for a semi-
metal. For larger values of U/t, the system enters an insulating phase
as a result of interactions. The values of the gap are obtained by
extrapolation of the QMC data to the TDL as shown in Fig. 2a.

From previous analysis of the model, long-range antiferromag-
netic correlations are expected when the Mott insulator appears.
We therefore measured the antiferromagnetic spin structure factor,
SAF (Supplementary Information), which indicates long-range anti-
ferromagnetic order if m2

s 5 limNR‘(SAF/N) . 0. Figure 2b shows
the QMC results together with a finite-size extrapolation. The results
of this extrapolation are also presented in the phase diagram in Fig. 1.
Antiferromagnetic order appears for U/t . 4.3, a value that is con-
sistent with previous estimates for the onset of long-range antiferro-
magnetic order26,27. This leaves an extended window, 3.5 , U/t , 4.3,
within which the system is neither a semimetal nor an antiferromag-
netic Mott insulator.

Further details on the nature of this intermediate region are
obtained by examining the spin excitation gap, which is extracted from
the long-time behaviour of the imaginary-time displaced spin–spin

SM SL AFMI
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Figure 1 | Phase diagram for the Hubbard model on the honeycomb lattice
at half-filling. The semimetal (SM) and the antiferromagnetic Mott
insulator (AFMI) are separated by a gapped spin-liquid (SL) phase in an
intermediate-coupling regime. Dsp(K) denotes the single-particle gap and Ds

denotes the spin gap; ms denotes the staggered magnetization, whose
saturation value is 1/2. Error bars, s.e.m. Inset, the honeycomb lattice with
primitive vectors a1 and a2, and the reciprocal lattice with primitive vectors
b1 and b2. Open and filled sites respectively indicate two different sublattices.
The Dirac points K and K9 and the M and C points are marked.
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Figure 2 | Finite-size extrapolations of the excitation gaps and the
antiferromagnetic structure factor. a, The single-particle gap at the Dirac
point, Dsp(K), shown here for different values of U/t, is linear in 1/L. Dsp(K) is
obtained by fitting the tail of the Green’s function, G(K, t) (inset), to the
form e{tDsp(K). b, Antiferromagnetic structure factor, SAF, for various values
of U/t, fitted using third-order polynomials in 1/L. Antiferromagnetic order
appears for U/t . 4.3, as seen in the histogram P(SAF/N) from a Monte Carlo
bootstrapping analysis (inset). a.u., arbitrary units. c, Spin gap, Ds, for
different values of U/t, fitted using second-order polynomials in 1/L. Inset,
Ds for L 5 6, 9, 12 and 15, and the extrapolated values (TDL), as functions of
U/t. Error bars, s.e.m.
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the operator Ô is then obtained by adopting the limit of t R ‘ andDt
R 0 for O(t), where Dt is the short time discretization of t. This
approximation – the so called Trotter approximation – is necessary

to introduce the auxiliary fields13 and implies a systematic error,
negligible for small Dt (see Supplementary information).

First, we study both the spin structure factor SAF~
1
N

X
r Sr ,Að

hD

{Sr ,BÞ#2i and the spin-spin correlations Cs(R) 5 ÆSr,A?Sr1R,Aæ at the
maximum distance jRj5 Lmax of each cluster for U/t 5 4, where the
strongest evidence of a spin liquid behavior was found in Ref. 2. Here
Sr,A (Sr,B) is the spin operator at unit cell r on A (B) sublattice. As
shown in Fig. 2b, our results show consistently a finite value of the
antiferromagnetic order parameter m2

s ~SAF=N~C Lmaxð Þ for L R
‘, in sharp contrast to the existence of a spin liquid, i.e., spin dis-
ordered, ground state reported in Ref. 2.

By doing similar calculations for several U/t values (see Fig. 2 and
Supplementary information), we find in Fig. 3 that ms approximately
scales linearly with respect to U/t, i.e., ms / jU2Ucjb, with a critical
exponent b^0:8, which is similar to the critical behavior (b 5 1)
predicted by the HF theory12. Although corrections to this almost
linear critical behavior are obviously expected, they do not change
much the critical value Uc at which the antiferromagnetic order
melts, as clearly shown in Fig. 3. Our best estimate of the critical
value is Uc/t 5 3.8696 0.013, which is much smaller than the one (<
4.3) reported in Ref. 2. Note, however, that the critical exponent b
may be different from the present estimate if the critical region is very
close to Uc. In such case the accurate determination of b obviously
requires much larger clusters which are not feasible at present.

Let us now evaluate the spin gap Ds. In order to avoid possible
errors in extrapolating the imaginary time displaced spin-spin cor-
relation functions, here we calculate directly the total energies in the
singlet and the triplet sectors, with improved estimators, which dra-
matically reduce their statistical errors20 (also see Supplementary
information). We can see clearly in Fig. 4a that the extrapolated spin
gaps for different U/t values are always zero within statistical errors
(e.g., the statistical error as small as 0.004t for U/t 5 4).

Next, we investigate whether the system is metallic or insulating,
namely, whether there exists a zero or a finite charge gap. For this
purpose, it is enough to simply study the long distance behavior of
charge-charge correlations, r(R) 5 Ænr,Anr1R,Aæ 2 Ænr,AæÆnr1R,Aæ.

Figure 3 | The ground state phase diagram for the half-filled Hubbard
model on the honeycomb lattice. Antiferromagnetic order parameter ms

(open squares) as a function of U/t. The error, due to the finite Dt in the
evaluation of SAF, is removed by quadratic extrapolations for Dtt 5 0.1,
Dtt 5 0.2, and Dtt 5 0.4 (see Supplementary information for details). The
antiferromagnetic order parameter ms is obtained by finite-size
extrapolating the square root of SAF/N, ms~limL??

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SAF=N

p
, as shown in

Fig. 2. For comparison, ms estimated by finite-size extrapolating SAF forDtt
5 0.1 without the Dt correction is also plotted (solid circles). SM and
AFMI stand for semi-metal and antiferromagnetic insulator, respectively.
Solid lines are fit of ms with the critical behavior ms 5 (Uc 2 U)b, for
selected critical exponents b. b 5 1 for the HF theory12, b 5 0.3362 for the
classical critical theory of quantum magnets19, and b 5 0.80 6 0.04 is the
best fit of our data. In any case, the critical Uc ranges from Uc/t 5 3.8 (b 5
1) to Uc/t 5 3.9 (b 5 0.3362). Our best estimate is Uc/t 5 3.869 6 0.013.

Figure 4 | Finite size scaling of spin gap and charge-charge correlation functions for the Hubbard model on the honeycomb lattice at half-filling.
(a) Spin gap Ds 5 E(S 5 1) 2 E(S 5 0) for various U/t, where E(S) is the lowest energy for a given spin S. Solid curves are fits of data by quadratic
polynomials in 1/L. The extrapolated values are also indicated at 1/L 5 0. Error bars of the extrapolated values are computed with the resampling
technique. In the semi-metallic region, the spin gap scales to zero with increasing the resolution in momentum space, namely as 1/L. In the
antiferromagnetic region, the spin gap should instead vanish as 1/L2. This explains why for U/t 5 4.3 the gap extrapolates to negative values, as we are well
inside the antiferromagnetic phase (see Fig. 3). In any case, a sizable spin gap is not found for any value of U/t. (b) Charge-charge correlation function
r(R) 5 Ænr, Anr1R,Aæ 2 Ænr,AæÆnr1R,Aæ at the maximum distance | R | 5 Lmax for several values of U/t. In the semi-metallic phase, r(R) , 1/R4 and L4r(Lmax)
should converge to a finite value for L R ‘. Instead, when a charge gap opens, the charge-charge correlations should decay exponentially and L4r(Lmax)
converges to zero in this limit. Indeed, a quadratic extrapolation to L R ‘ of this quantity, which is clearly appropriate in the semi-metallic phase, appears
to vanish in the interval between U/t 5 3.8 and U/t 5 3.9, in remarkable agreement with the critical value Uc 5 3.869 6 0.013 estimated for the
antiferromagnetic transition (see Fig. 3). Obviously, a polynomial fit is not consistent in the insulating region and this explains why the extrapolated value
to 1/L 5 0 seems slightly positive in this case. For the spin gap and the charge-charge correlation functions, the Trotter Dt error is negligible, and all data
shown here refers to Dtt 5 0.14 and 0.1, respectively.
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There is only one peak !
Suggesting a single phase transition, 

i.e. no intermediate phase 

Calculated using LCT-INT

cf. LW, Iazzi, Corboz, Troyer PRB 2015
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How to experimentally measure !F ?



How to experimentally measure !F ?

Excitations after an 
adiabatic ramp

Dynamical response 
functions

Kolodrubetz, et al PRB 2013

De Grandi, et al PRB 2010
Gu, et al EPL 2014

Polkovnikov  et al RMP 2011

Hauke, et al Nat. Phys. 2016

Measure fidelity by interferencing 
two copies of many-body system ?

Islam et al, Nature 2015



!F in AdS-CFT

Don’t ask me what’s on the right ➔
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We study a quantum information metric (or fidelity susceptibility) in conformal field theories with
respect to a small perturbation by a primary operator. We argue that its gravity dual is approximately given
by a volume of maximal time slice in an anti–de Sitter spacetime when the perturbation is exactly marginal.
We confirm our claim in several examples.
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The microscopic understanding of black hole entropy in
string theory by Strominger and Vafa [1] implies that
quantum information plays a crucial role in understanding
gravitational aspects of string theory. Indeed, quantum
information theoretic considerations have provided various
useful viewpoints in studies of AdS=CFT [2] or more
generally holography [3]. Especially, the idea of quantum
entanglement has turned out to be crucially involved in
geometries of holographic spacetimes, as is typical in the
nontrivial topology of eternal black holes [4]. To quantify
quantum entanglement we can study the holographic
entanglement entropy [5], which is given by the area of
codimension two extremal surfaces. In AdS=CFT, this area
is equal to the entanglement entropy in conformal field
theories (CFTs).
It is natural to wonder if there might be some other

information theoretic quantities that are useful to develop
studies of holography. As pointed out by Susskind in [6]
(see also [7]), it is also intriguing to find a quantity in CFTs
which is dual to a volume of a codimension one time slice
in anti–de Sitter (AdS). The time slice can connect two
boundaries dual to the thermofield doubled CFTs, through
the Einstein-Rosen bridge (see Fig. 1). In [6], it is
conjectured that this quantity is related to a measure of
complexity.
The main purpose of this Letter is to point out a quantum

information theoretic quantity that is related to the volume
of a time slice. This quantity is called quantum information
metric or Bures metric (see e.g.[8]), which we will simply
call the information metric. Here we mainly consider the
information metric for pure states, though it can be defined
for mixed states. Consider one parameter family of quan-
tum states jΨðλÞi and perturb λ infinitesimally as
λ → λþ δλ. Then Gλλ is simply defined from the inner
product between them as follows:

jhΨðλÞjΨðλþ δλÞij ¼ 1 −GλλðδλÞ2 þO(ðδλÞ3): ð1Þ

This metric measures the distance between two
infinitesimally different quantum states. Since the

left-hand side of (1) is called the fidelity, Gλλ is also called
the fidelity susceptibility. This quantity gets divergent at
quantum critical points and thus can be used as an order
parameter of quantum phase transitions (see e.g. the
review [9]).
We will argue that Gλλ when a dþ 1 dimensional CFT is

deformed by an exactly marginal perturbation, parame-
trized by λ, is holographically estimated by

Gλλ ¼ nd
VolðΣmaxÞ

Rdþ1
; ð2Þ

where nd is an Oð1Þ constant and R is the AdS radius. The
dþ 1 dimensional spacelike surface Σmax is the time
slice with the maximal volume in the AdS that ends on
the time slice at the AdS boundary(boundaries). See also
[10] for other holographic interpretations of information
metric.
Now we introduce the information metric for

quantum states in CFTs on Rdþ1, whose Euclidean time
and space coordinates are denoted by τ and x. We consider
the inner product hΩ1jΩ2i between two states jΩ1i and
jΩ2i. jΩiiði ¼ 1; 2Þ are ground states for the two
Hamiltonians Hiði ¼ 1; 2Þ. We define their Euclidean
Lagrangians by Liði ¼ 1; 2Þ and their partition functions
by Ziði ¼ 1; 2Þ. The inner product is described by the path
integral:

FIG. 1. A time slice in the Penrose diagram of eternal AdS
black hole which connects the two boundaries dual to the
thermofield doubled CFTs.
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Monte Carlo simulations 
can be painfully slow





Recommender engine for QMC

1. Collect configuration data

2. Train a classical Stat-Mech model

3. Use it as a recommender engine! 
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