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Exact Diagonalization

DMRG

H| i = E| i

• Extremely powerful in 1D 

• Higher dimension generalization is possible but expansive  

• Give exact results 

• Limited to small systems

• 25 site Fermi-Hubbard model with 12 atoms 
on the Earth Simulator in 2006
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Fig. 18.2. Schematic representation of the Hamiltonian matrix of the Hubbard model with
L = 4, N↑ = 3, N↓ = 2, and periodic boundary conditions

constructed using the projector

Pk =
1
L

L−1∑

j=0

e2πijk/LT j . (18.14)

Clearly, for a given (unsymmetrized) state |n⟩, the state Pk|n⟩ is an eigenstate of T ,

TPk|n⟩ =
1
L

L−1∑

j=0

e2πijk/LT j+1|n⟩ = e−2πik/LPk|n⟩ , (18.15)

where the corresponding eigenvalue is exp(−2πik/L) and 2πk/L is the discrete
lattice momentum. Here we made use of the fact that T L = 1 (on a ring with L
sites, L translations by one site let you return to the origin). This property also
implies exp(−2πik) = 1, hence k has to be an integer. Due to the periodicity of the
exponential, we can restrict ourselves to k = 0, 1, . . . , (L − 1).

The normalization of the state Pk|n⟩ requires some care. We find

P †
k =

1
L

L−1∑

j=0

e−2πijk/LT−j =
1
L

L−1∑

j′=0

e2πij′k/LT j′ = Pk

P 2
k =

1
L2

L−1∑

i,j=0

e2πi(i−j)k/LT i−j =
1
L

L−1∑

j′=0

e2πij′k/LT j′ = Pk , (18.16)

as we expect for a projector. Hence, ⟨n|P †
kPk|n⟩ = ⟨n|P 2

k |n⟩ = ⟨n|Pk|n⟩. For
most |n⟩ the states T j|n⟩ with j = 0, 1, . . . , (L − 1) will differ from each other,
therefore ⟨n|Pk|n⟩ = 1/L. However, some states are mapped onto themselves by a
translation T νn with νn < L, i.e., T νn |n⟩ = eiφn |n⟩ with a phase φn (usually 0 or
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above, there is no longer a phase transition. In a
mean-field approximation, a ferromagnetic phase
would appear at all temperatures but for increasing
values of koFa. Our observations may imply that
the interaction energy saturates around koFa ≈ 5.

The spin-polarized ferromagnetic state should
not suffer from inelastic collisions. However,
typical lifetimes were 10 to 20 ms, which were
probably related to a small domain size and three-
body recombination at domain walls.

We were unsuccessful in imaging ferromag-
netic domains using differential in situ phase-
contrast imaging (28). A signal-to-noise level of
~ 10 suggests that there were at least 100 do-
mains in a volume given by our spatial resolution
of ~3 mm and by the radial size of the cloud. This
implies that the maximum volume of the spin do-
mains is ~5 mm3, containing ~50 spin-polarized
atoms. We suspect that the short lifetime prevented
the domains from growing to a larger size and
eventually adopting the equilibrium texture of the
ground state, which has been predicted to have
the spins pointing radially outward, like a hedgehog
(20, 22). All our measurements are sensitive only
to local spin polarization and are independent of
domain structure and texture.

The only difference between our experiment
and the ideal Stoner model is a molecular ad-
mixture of 25% (Fig. 4). The molecular fraction
was constant for koFa > 1.8 for all temperatures and
therefore cannot be responsible for the sudden
change of behavior of the gas at koFa ≅ 2.2 at the
coldest temperature T/TF = 0.12. This prediction
was confirmed by repeating the kinetic energy
measurements with amolecular admixture of 60%.
The minimum in the kinetic energy occurred at the
same value of koFa within experimental accuracy.

For a comparison of the observed phase tran-
sition at koFa ≅ 2.2 to the theoretical predictions, the
ideal gas koF has to be replaced by the value for the
interacting gas, which is smaller by ~15% because
of the expansion of the cloud (Fig. 4), resulting in a
critical value for kFa≅ 1.9 T 0.2. At T/TF = 0.12, the
finite temperature correction in the critical value for
kFa is predicted to be less than 5% (19). The
observed value for kFa is larger than both themean-
field prediction of p/2 and the second-order pre-
diction of 1.054 at zero temperature (19). Depend-
ing on the theoretical approach, the phase transition
has been predicted to be first or second order. This
could not been discerned in our experiment because
of the inhomogeneous density of the cloud.

It has been speculated (19) that earlier experi-
ments on the measurement of the interaction ener-
gy (29) and radio frequency spectroscopy of Fermi
gases (30) showed evidence for the transition to a
ferromagnetic state at or below kFa = 1. This inter-
pretation seems to be ruled out by our experiment.

Our work demonstrates a remarkable asym-
metry between positive and negative scattering
length. Early work (15) predicted that for kF|a| =
p/2, both an attractive and a repulsive Fermi gas
become mechanically unstable (against collapse
and phase separation, respectively). In an attract-
ive Fermi gas, however, the mechanical in-
stability does not occur [due to pairing (31)], in
contrast to our observations in a repulsive Fermi
gas. This suggests that the maximum total re-
pulsive energy [in units of 3/5(2Vn)EF] is larger
than the maximum attractive energy |b| of 0.59
(32) that is realized for infinite a (23).

The interpretation of our results in terms of
a phase transition to itinerant ferromagnetism
is based on the agreement with the prediction
of simplified models [Fig. 1, (15–22)]. Future

Fig. 2. Atom loss rate as a probe
for local spin polarization, for
different temperatures. T/TF = 0.55
(triangles, dashed curve), T/TF =
0.22 (open circles, dotted curve),
and T/TF = 0.12 (solid circles, solid
black curve). The curves are guides
to the eye, based on the assump-
tion of a loss rate that saturates for
increasing a in the normal state. The
shaded area around the phase
transition at T/TF = 0.12 highlights
the same region as in Figs. 3 and 4.

Fig. 3. Kinetic energy of
a repulsively interacting
Fermi gas determined for
different interaction pa-
rameters koFa and tem-
peratures. The measured
kinetic energy is normal-
ized by the Fermi energy
EoF of the noninteracting
Fermi gas at T = 0, cal-
culated at the trap center
with the same number of
atoms per spin state. Each
data point represents the
average of three or four
measurements.
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Creating, moving and merging Dirac points with a
Fermi gas in a tunable honeycomb lattice
Leticia Tarruell1, Daniel Greif1, Thomas Uehlinger1, Gregor Jotzu1 & Tilman Esslinger1

Dirac points are central to many phenomena in condensed-matter
physics, from massless electrons in graphene to the emergence of
conducting edge states in topological insulators1,2. At a Dirac
point, two energy bands intersect linearly and the electrons behave
as relativistic Dirac fermions. In solids, the rigid structure of the
material determines the mass and velocity of the electrons, as well
as their interactions. A different, highly flexible means of studying
condensed-matter phenomena is to create model systems using
ultracold atoms trapped in the periodic potential of interfering
laser beams3,4. Here we report the creation of Dirac points with
adjustable properties in a tunable honeycomb optical lattice. Using
momentum-resolved interband transitions, we observe aminimum
bandgap inside the Brillouin zone at the positions of the two Dirac
points. We exploit the unique tunability of our lattice potential to
adjust the effective mass of the Dirac fermions by breaking inver-
sion symmetry.Moreover, changing the lattice anisotropy allows us
to change the positions of theDirac points inside theBrillouin zone.
When the anisotropy exceeds a critical limit, the two Dirac points
merge and annihilate each other—a situation that has recently
attracted considerable theoretical interest5–9 but that is extremely
challenging to observe in solids10. We map out this topological
transition in lattice parameter space and find excellent agreement
with ab initio calculations. Our results not only pave the way to
model materials in which the topology of the band structure is
crucial, but also provide an avenue to exploring many-body phases
resulting from the interplay of complex lattice geometries with
interactions11–13.
Ultracold gases in optical lattices have become a versatile tool with

which to simulate a wide range of condensed-matter phenomena3,4.
For example, the control of interactions has led to the observation of
Mott insulating phases14–16. In fermionic systems, this provides new
access to the physics of strongly correlated materials. However, the
topology of the band structure is equally important for the properties of
a solid. A prime example is the honeycomb lattice of graphene, where
the presence of topological defects in momentum space—the Dirac
points—leads to remarkable transport properties, even in the absence
of interactions1. In quantum gases, a honeycomb lattice has recently
been realized and investigated using a Bose–Einstein condensate17,18,
but no signatures of Dirac points were observed. Here we study an
ultracold Fermi gas of 40K atoms in a two-dimensional, tunable optical
lattice, which can be continuously adjusted to create square, triangular,
dimer and honeycomb structures. In the honeycomb lattice, we
identify the presence ofDirac points in the band structure by observing
a minimum bandgap inside the Brillouin zone using interband transi-
tions. Our method is closely related to a technique recently used with
bosonic atoms to characterize the linear crossing of two high-energy
bands in a one-dimensional, bichromatic lattice19, but also provides
momentum resolution.
To create and manipulate Dirac points, we have developed a two-

dimensional optical lattice of adjustable geometry. It is formed by three
retro-reflected laser beams of wavelength l5 1,064 nm, arranged as
depicted in Fig. 1a. The interference of two perpendicular beams, X

and Y, gives rise to a chequerboard lattice of spacing l=
ffiffiffi
2

p
. A third

beam, !X, collinear with X but detuned by a frequency d, creates an
additional standing wave with a spacing of l/2. This yields a potential
of the form

1Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland.
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Figure 1 | Optical lattice with adjustable geometry. a, Three retro-reflected
laser beams of wavelength l5 1,064 nm create the two-dimensional lattice
potential of equation (1). Beams X andY interfere and produce a chequerboard
pattern, and beam !X creates an independent standing wave. Their relative
position is controlled by the detuning d. b, Top: different lattice potentials can
be realized depending on the intensities of the lattice beams. White regions
correspond to lower potential energies and blue regions to higher potential
energies. Bottom: diagram showing the accessible lattice geometries as a
function of the lattice depthsV!X andVX. The transition between triangular (T)
and dimer (D) lattices is indicated by a dotted line. When crossing the dashed
line into the honeycomb (Hc) regime, Dirac points appear. The limit V!X?VX,
V!X?VY corresponds toweakly coupled, one-dimensional chains (1D c). c, The
real-space potential of the honeycomb lattice has a two-site unit cell (sitesA and
B) and the primitive lattice vectors are perpendicular. d, Left: sketch of the first
and second Brillouin zones (BZs) of the honeycomb lattice, indicating the
positions of the Dirac points. Right: three-dimensional view of the energy
spectrum showing the linear intersection of the bands at the two Dirac points.
The colour scale illustrates lines of constant energy. We denote the full
bandwidth,W; the minimum energy gap at the edges of the Brillouin zone, EG;
and the Bloch wavevector, qB5 2p/l.
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above, there is no longer a phase transition. In a
mean-field approximation, a ferromagnetic phase
would appear at all temperatures but for increasing
values of koFa. Our observations may imply that
the interaction energy saturates around koFa ≈ 5.

The spin-polarized ferromagnetic state should
not suffer from inelastic collisions. However,
typical lifetimes were 10 to 20 ms, which were
probably related to a small domain size and three-
body recombination at domain walls.

We were unsuccessful in imaging ferromag-
netic domains using differential in situ phase-
contrast imaging (28). A signal-to-noise level of
~ 10 suggests that there were at least 100 do-
mains in a volume given by our spatial resolution
of ~3 mm and by the radial size of the cloud. This
implies that the maximum volume of the spin do-
mains is ~5 mm3, containing ~50 spin-polarized
atoms. We suspect that the short lifetime prevented
the domains from growing to a larger size and
eventually adopting the equilibrium texture of the
ground state, which has been predicted to have
the spins pointing radially outward, like a hedgehog
(20, 22). All our measurements are sensitive only
to local spin polarization and are independent of
domain structure and texture.

The only difference between our experiment
and the ideal Stoner model is a molecular ad-
mixture of 25% (Fig. 4). The molecular fraction
was constant for koFa > 1.8 for all temperatures and
therefore cannot be responsible for the sudden
change of behavior of the gas at koFa ≅ 2.2 at the
coldest temperature T/TF = 0.12. This prediction
was confirmed by repeating the kinetic energy
measurements with amolecular admixture of 60%.
The minimum in the kinetic energy occurred at the
same value of koFa within experimental accuracy.

For a comparison of the observed phase tran-
sition at koFa ≅ 2.2 to the theoretical predictions, the
ideal gas koF has to be replaced by the value for the
interacting gas, which is smaller by ~15% because
of the expansion of the cloud (Fig. 4), resulting in a
critical value for kFa≅ 1.9 T 0.2. At T/TF = 0.12, the
finite temperature correction in the critical value for
kFa is predicted to be less than 5% (19). The
observed value for kFa is larger than both themean-
field prediction of p/2 and the second-order pre-
diction of 1.054 at zero temperature (19). Depend-
ing on the theoretical approach, the phase transition
has been predicted to be first or second order. This
could not been discerned in our experiment because
of the inhomogeneous density of the cloud.

It has been speculated (19) that earlier experi-
ments on the measurement of the interaction ener-
gy (29) and radio frequency spectroscopy of Fermi
gases (30) showed evidence for the transition to a
ferromagnetic state at or below kFa = 1. This inter-
pretation seems to be ruled out by our experiment.

Our work demonstrates a remarkable asym-
metry between positive and negative scattering
length. Early work (15) predicted that for kF|a| =
p/2, both an attractive and a repulsive Fermi gas
become mechanically unstable (against collapse
and phase separation, respectively). In an attract-
ive Fermi gas, however, the mechanical in-
stability does not occur [due to pairing (31)], in
contrast to our observations in a repulsive Fermi
gas. This suggests that the maximum total re-
pulsive energy [in units of 3/5(2Vn)EF] is larger
than the maximum attractive energy |b| of 0.59
(32) that is realized for infinite a (23).

The interpretation of our results in terms of
a phase transition to itinerant ferromagnetism
is based on the agreement with the prediction
of simplified models [Fig. 1, (15–22)]. Future

Fig. 2. Atom loss rate as a probe
for local spin polarization, for
different temperatures. T/TF = 0.55
(triangles, dashed curve), T/TF =
0.22 (open circles, dotted curve),
and T/TF = 0.12 (solid circles, solid
black curve). The curves are guides
to the eye, based on the assump-
tion of a loss rate that saturates for
increasing a in the normal state. The
shaded area around the phase
transition at T/TF = 0.12 highlights
the same region as in Figs. 3 and 4.

Fig. 3. Kinetic energy of
a repulsively interacting
Fermi gas determined for
different interaction pa-
rameters koFa and tem-
peratures. The measured
kinetic energy is normal-
ized by the Fermi energy
EoF of the noninteracting
Fermi gas at T = 0, cal-
culated at the trap center
with the same number of
atoms per spin state. Each
data point represents the
average of three or four
measurements.
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Dirac points are central to many phenomena in condensed-matter
physics, from massless electrons in graphene to the emergence of
conducting edge states in topological insulators1,2. At a Dirac
point, two energy bands intersect linearly and the electrons behave
as relativistic Dirac fermions. In solids, the rigid structure of the
material determines the mass and velocity of the electrons, as well
as their interactions. A different, highly flexible means of studying
condensed-matter phenomena is to create model systems using
ultracold atoms trapped in the periodic potential of interfering
laser beams3,4. Here we report the creation of Dirac points with
adjustable properties in a tunable honeycomb optical lattice. Using
momentum-resolved interband transitions, we observe aminimum
bandgap inside the Brillouin zone at the positions of the two Dirac
points. We exploit the unique tunability of our lattice potential to
adjust the effective mass of the Dirac fermions by breaking inver-
sion symmetry.Moreover, changing the lattice anisotropy allows us
to change the positions of theDirac points inside theBrillouin zone.
When the anisotropy exceeds a critical limit, the two Dirac points
merge and annihilate each other—a situation that has recently
attracted considerable theoretical interest5–9 but that is extremely
challenging to observe in solids10. We map out this topological
transition in lattice parameter space and find excellent agreement
with ab initio calculations. Our results not only pave the way to
model materials in which the topology of the band structure is
crucial, but also provide an avenue to exploring many-body phases
resulting from the interplay of complex lattice geometries with
interactions11–13.
Ultracold gases in optical lattices have become a versatile tool with

which to simulate a wide range of condensed-matter phenomena3,4.
For example, the control of interactions has led to the observation of
Mott insulating phases14–16. In fermionic systems, this provides new
access to the physics of strongly correlated materials. However, the
topology of the band structure is equally important for the properties of
a solid. A prime example is the honeycomb lattice of graphene, where
the presence of topological defects in momentum space—the Dirac
points—leads to remarkable transport properties, even in the absence
of interactions1. In quantum gases, a honeycomb lattice has recently
been realized and investigated using a Bose–Einstein condensate17,18,
but no signatures of Dirac points were observed. Here we study an
ultracold Fermi gas of 40K atoms in a two-dimensional, tunable optical
lattice, which can be continuously adjusted to create square, triangular,
dimer and honeycomb structures. In the honeycomb lattice, we
identify the presence ofDirac points in the band structure by observing
a minimum bandgap inside the Brillouin zone using interband transi-
tions. Our method is closely related to a technique recently used with
bosonic atoms to characterize the linear crossing of two high-energy
bands in a one-dimensional, bichromatic lattice19, but also provides
momentum resolution.
To create and manipulate Dirac points, we have developed a two-

dimensional optical lattice of adjustable geometry. It is formed by three
retro-reflected laser beams of wavelength l5 1,064 nm, arranged as
depicted in Fig. 1a. The interference of two perpendicular beams, X
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Figure 1 | Optical lattice with adjustable geometry. a, Three retro-reflected
laser beams of wavelength l5 1,064 nm create the two-dimensional lattice
potential of equation (1). Beams X andY interfere and produce a chequerboard
pattern, and beam !X creates an independent standing wave. Their relative
position is controlled by the detuning d. b, Top: different lattice potentials can
be realized depending on the intensities of the lattice beams. White regions
correspond to lower potential energies and blue regions to higher potential
energies. Bottom: diagram showing the accessible lattice geometries as a
function of the lattice depthsV!X andVX. The transition between triangular (T)
and dimer (D) lattices is indicated by a dotted line. When crossing the dashed
line into the honeycomb (Hc) regime, Dirac points appear. The limit V!X?VX,
V!X?VY corresponds toweakly coupled, one-dimensional chains (1D c). c, The
real-space potential of the honeycomb lattice has a two-site unit cell (sitesA and
B) and the primitive lattice vectors are perpendicular. d, Left: sketch of the first
and second Brillouin zones (BZs) of the honeycomb lattice, indicating the
positions of the Dirac points. Right: three-dimensional view of the energy
spectrum showing the linear intersection of the bands at the two Dirac points.
The colour scale illustrates lines of constant energy. We denote the full
bandwidth,W; the minimum energy gap at the edges of the Brillouin zone, EG;
and the Bloch wavevector, qB5 2p/l.
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above, there is no longer a phase transition. In a
mean-field approximation, a ferromagnetic phase
would appear at all temperatures but for increasing
values of koFa. Our observations may imply that
the interaction energy saturates around koFa ≈ 5.

The spin-polarized ferromagnetic state should
not suffer from inelastic collisions. However,
typical lifetimes were 10 to 20 ms, which were
probably related to a small domain size and three-
body recombination at domain walls.

We were unsuccessful in imaging ferromag-
netic domains using differential in situ phase-
contrast imaging (28). A signal-to-noise level of
~ 10 suggests that there were at least 100 do-
mains in a volume given by our spatial resolution
of ~3 mm and by the radial size of the cloud. This
implies that the maximum volume of the spin do-
mains is ~5 mm3, containing ~50 spin-polarized
atoms. We suspect that the short lifetime prevented
the domains from growing to a larger size and
eventually adopting the equilibrium texture of the
ground state, which has been predicted to have
the spins pointing radially outward, like a hedgehog
(20, 22). All our measurements are sensitive only
to local spin polarization and are independent of
domain structure and texture.

The only difference between our experiment
and the ideal Stoner model is a molecular ad-
mixture of 25% (Fig. 4). The molecular fraction
was constant for koFa > 1.8 for all temperatures and
therefore cannot be responsible for the sudden
change of behavior of the gas at koFa ≅ 2.2 at the
coldest temperature T/TF = 0.12. This prediction
was confirmed by repeating the kinetic energy
measurements with amolecular admixture of 60%.
The minimum in the kinetic energy occurred at the
same value of koFa within experimental accuracy.

For a comparison of the observed phase tran-
sition at koFa ≅ 2.2 to the theoretical predictions, the
ideal gas koF has to be replaced by the value for the
interacting gas, which is smaller by ~15% because
of the expansion of the cloud (Fig. 4), resulting in a
critical value for kFa≅ 1.9 T 0.2. At T/TF = 0.12, the
finite temperature correction in the critical value for
kFa is predicted to be less than 5% (19). The
observed value for kFa is larger than both themean-
field prediction of p/2 and the second-order pre-
diction of 1.054 at zero temperature (19). Depend-
ing on the theoretical approach, the phase transition
has been predicted to be first or second order. This
could not been discerned in our experiment because
of the inhomogeneous density of the cloud.

It has been speculated (19) that earlier experi-
ments on the measurement of the interaction ener-
gy (29) and radio frequency spectroscopy of Fermi
gases (30) showed evidence for the transition to a
ferromagnetic state at or below kFa = 1. This inter-
pretation seems to be ruled out by our experiment.

Our work demonstrates a remarkable asym-
metry between positive and negative scattering
length. Early work (15) predicted that for kF|a| =
p/2, both an attractive and a repulsive Fermi gas
become mechanically unstable (against collapse
and phase separation, respectively). In an attract-
ive Fermi gas, however, the mechanical in-
stability does not occur [due to pairing (31)], in
contrast to our observations in a repulsive Fermi
gas. This suggests that the maximum total re-
pulsive energy [in units of 3/5(2Vn)EF] is larger
than the maximum attractive energy |b| of 0.59
(32) that is realized for infinite a (23).

The interpretation of our results in terms of
a phase transition to itinerant ferromagnetism
is based on the agreement with the prediction
of simplified models [Fig. 1, (15–22)]. Future

Fig. 2. Atom loss rate as a probe
for local spin polarization, for
different temperatures. T/TF = 0.55
(triangles, dashed curve), T/TF =
0.22 (open circles, dotted curve),
and T/TF = 0.12 (solid circles, solid
black curve). The curves are guides
to the eye, based on the assump-
tion of a loss rate that saturates for
increasing a in the normal state. The
shaded area around the phase
transition at T/TF = 0.12 highlights
the same region as in Figs. 3 and 4.

Fig. 3. Kinetic energy of
a repulsively interacting
Fermi gas determined for
different interaction pa-
rameters koFa and tem-
peratures. The measured
kinetic energy is normal-
ized by the Fermi energy
EoF of the noninteracting
Fermi gas at T = 0, cal-
culated at the trap center
with the same number of
atoms per spin state. Each
data point represents the
average of three or four
measurements.
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Coulomb gas: Ceperley, Alder 1980,  Cold atoms: Pilati 2010 



Local density approximation

rate. Third, papers can be highly cited for many reasons—
some substantive and some dubious. Thus the number of
citations is merely an approximate proxy for scientific
quality.

Citation distribution and attachment rate
The PR citation data cover 353 268 papers and 3 110 839
citations from July 1893 through June 2003. The 329 847
papers with at least 1 citation may be broken down as 
follows:

11 publications with more than 1000 citations
79 publications with more than 500 citations

237 publications with more than 300 citations
2 340 publications with more than 100 citations
8 073 publications with more than 50 citations

245 459 publications with fewer than 10 citations
178 019 publications with fewer than 5 citations
84 144 publications with 1 citation.

A somewhat depressing observation is that nearly 70% of
all PR articles have been cited fewer than 10 times. (The
average number of citations is 8.8.) Also evident is the
small number of highly cited publications; table 1 lists the
11 publications with more than 1000 citations. 

Citations have grown rapidly with time, a feature that
mirrors the growth of the PR family of journals. From 1893
until World War II, the number of annual citations from
PR publications doubled approximately every 5.5 years.
The number of PR articles published in a given year also
doubled every 5.5 years. Following the publication crash
of the war years, the number of articles published annu-
ally doubled approximately every 15 years.

The citation data naturally raise the question, What
is the distribution of citations? That is, what is the proba-
bility P(k) that a paper gets cited k times? This question
was investigated by Price, who posited the power law
P(k) } k⊗n, with n positive. A power-law form is exciting for
statistical physicists because it implies the absence of a
characteristic scale for citations—the influence of a publi-
cation may range from useless to earth-shattering. The ab-
sence of a characteristic scale in turn implies that citation
statistics should exhibit many of the intriguing features
associated with phase transitions, which display critical
phenomena on all length scales.

Somewhat surprisingly, the probability distribution
derived from the more than 3 million PR citations still has
significant statistical fluctuations. It proves more useful to
study the cumulative distribution C(k) ⊂ ∫k

F P(k!) dk!, the
probability that a paper is cited at least k times, to reduce
these fluctuations.

On a double logarithmic scale, C(k) has a modest neg-
ative curvature everywhere. That behavior, illustrated in
figure 2, suggests that the distribution decays faster than
a power law and is at variance with results of previous,
smaller-scale studies that suggested either a power law2,11

or a stretched exponential form,12 C(k) } exp(⊗kb), with b
less than 1. It is intriguing that a good fit over much of the
range of the distribution is the log-normal form
C(k) ⊂ A exp{⊗bln k ⊗ c(ln k)2}. Log-normal forms typi-
cally underlie random multiplicative processes. They de-
scribe, for example, the distribution of fragment sizes that
remain after a rock has been hammered many times.

The development of citations may be characterized by
the attachment rate Ak, which gives the likelihood that a
paper with k citations will be cited by a new article. To
measure the attachment rate, first count the number of
times each paper is cited during a specified time range;
this gives k. Then, to get Ak, count the number of times
each paper with a given k in this time window was cited

50 June 2005    Physics Today http://www.physicstoday.org

C
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k

Figure 2. The cumulative citation distribution C(k) versus
the number of citations k for all papers published from July
1893 through June 2003 in the Physical Review journals.
Circles indicate the data. The curve is the log-normal fit
C(k) ⊂ A exp[⊗bln k ⊗ c(ln k)2], with A ⊂ 0.15, b ⊂ 0.40,
and c ⊂ 0.16.

Table 1. Physical Review Articles with more than 1000 Citations Through June 2003
Publication # cites Av. age Title Author(s)
PR 140, A1133 (1965) 3227 26.7 Self-Consistent Equations Including Exchange and Correlation Effects W. Kohn, L. J. Sham

PR 136, B864 (1964) 2460 28.7 Inhomogeneous Electron Gas P. Hohenberg, W. Kohn

PRB 23, 5048 (1981) 2079 14.4 Self-Interaction Correction to Density-Functional Approximations for 
Many-Electron Systems J. P. Perdew, A. Zunger

PRL 45, 566 (1980) 1781 15.4 Ground State of the Electron Gas by a Stochastic Method D. M. Ceperley, B. J. Alder

PR 108, 1175 (1957) 1364 20.2 Theory of Superconductivity J. Bardeen, L. N. Cooper, J. R. Schrieffer

PRL 19, 1264 (1967) 1306 15.5 A Model of Leptons S. Weinberg

PRB 12, 3060 (1975) 1259 18.4 Linear Methods in Band Theory O. K. Anderson

PR 124, 1866 (1961) 1178 28.0 Effects of Configuration Interaction of Intensities and Phase Shifts U. Fano

RMP 57, 287 (1985) 1055 9.2 Disordered Electronic Systems P. A. Lee, T. V. Ramakrishnan

RMP 54, 437 (1982) 1045 10.8 Electronic Properties of Two-Dimensional Systems T. Ando, A. B. Fowler, F. Stern
PRB 13, 5188 (1976) 1023 20.8 Special Points for Brillouin-Zone Integrations H. J. Monkhorst, J. D. Pack

PR, Physical Review; PRB, Physical Review B; PRL, Physical Review Letters; RMP, Reviews of Modern Physics.

Redner, Physics Today, 2005
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Uniform system: QMC 

Uniform system shows ferromagnetism for high 
density and large interactions
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Ferromagnetism in shallow optical lattices
Ma, Pilati, Troyer and Dai, Nature Physics, 2012
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FIG. 2. Phase diagrams at fixed optical lattice intensity V0. The red-color intensity indicates the polarization P =
(ρ↑ − ρ↓)/(ρ↑ + ρ↓). The optical lattice depths are (a) V0 = 0.5ER, (b) V0 = 2ER, (c) V0 = 4ERand (d) V0 = 4ER calculated
using HK-LSDA instead of KS-LSDA. The green and blue curves indicate, respectively, the transitions to partially and fully
polarized phases in homogeneous systems (V0 = 0). Ferromagnetism dominates in the region of large optical lattice intensity
V0 and scattering length a, where the non-trivial phase boundary arises due to the Kohn-Sham band theory, which cannot be
captured using HK-LSDA .

red). The crossover regions in this very shallow lattice
are similar to the boundaries of the homogeneous sys-
tem V0 = 0 [13], indicated by the green and blue lines.
In deeper optical lattices (V0 = 2ER in figure 2(b) and
V0 = 4ER in figure 2(c)) polarization sets in at much
weaker interactions, indicating that the optical lattice
strongly favours ferromagnetism.

We can see two prominent features due to the lattice.
The first is the much bigger extent of the partially or
fully polarized phases in the presence of an optical lat-
tice. This is due to the higher local density at the po-
tential minima in the optical lattice, which increases the
local density beyond the critical value for polarization.
Comparing Figs. 2(c) and (d) we see that including the
accurate kinetic energy in the KS-LSDA this effect is even
stronger than in the simpler HK-LSDA approximation.
A second striking effect that does not even show up is the
non-monotonic behavior of the phase boundary: there is
a large fully polarized region at densities up to half filling
(n ≤ 1), which rapidly shrinks at higher filling. This fea-
ture is due to band structure effects and a gap between
up-spin and down-spin subbands, and thus completely
absent in the HK-LSDA approximation (figure 2(d)).

We thus next calculate the detailed band structure of
the interacting system, shown in the left panels of fig-
ure 3, for a weak optical lattice (V0 = 2ER) without a
band gap and on the right for a moderate optical lat-
tice with a band gap (V0 = 4ER). Weak interactions
(a = 0.04d) change the band structure only slightly. In-
creasing the interaction to a = 0.08d (second row) we find
a partially polarized state in the deeper lattice: the two
spin sub-bands split and the band structure is substan-
tially changed. At even stronger interaction a = 0.16d
(third row) the gas is partially polarized also in the shal-
lower lattice, and becomes fully polarized in the deeper
lattice. Note that here the fermions are fully polarized up
to half band filling n = 1, since only the up-spin band gets
occupied. Notice also that in the fully polarized state the
first band is fully occupied and the system is insulating
due to the gap between the first and second sub-bands.
Going beyond half filling the next band has the opposite

spin, which means that we change to a partially polarized
state – explaining the sharp feature around n = 1 in the
phase diagram in figure 2(c). To recover full polariza-
tion for n > 1 one needs to increase either interaction or
lattice depth to push the energy of the lowest down-spin
band above the second up-spin band.

At half band filling n = 1 we expect antiferromag-
netism to compete with ferromagnetism. To see anti-
ferromagnetism we need to consider a unit cell consisting
not of one but of 23 lattice sites, and compare the energies
of antiferromagnetic and uniform configurations. Indeed
we find, as shown in figure 4, that antiferromagnetic or-
dering is preferred at intermediate interaction strengths
and half band filling, matching with the single band Hub-
bard model physics that becomes valid in the upper left
hand corner of the shown phase diagram.

These phase diagrams for repulsively interacting
fermionic atoms in an optical lattice are just the start
of using DFT for atomic gases and there is a countless
number of further applications. Already in this simple
system we have seen striking effects, like substantially
enhanced ferromagnetism and strikingly non-monotonic
behavior of the phase boundaries that is not present in a
simple Hk-LSDA approximation.

One immediate extension might be to apply diagram-
matic correction of the LSDA functional, in analogy with
Hedin’s GW method [15] for the Coulomb case, which is
important there to get accurate band gaps [16]. Since,
due to the local nature of the interaction, first order di-
agrams are already included in the LSDA functional, we
can focus on higher order corrections.

The next directions to explore are the limitations of
LSDA in the strongly correlated regime. While self in-
teraction corrections (SIC) [17] are not needed (due to
the local nature of the interaction), it will be interesting
to use the LDA+U method [18] which combines LSDA
with a Hartree Fock approximation, or LDA+DMFT [19]
which combines an LSDA functional with a dynamical
mean field theory (DMFT) [20] treatment of the corre-
lated orbitals. Both methods can easily be adapted to
atomic gases using our LSDA functional. On the one

Green and Blue: partially and fully polarized in free-space
Black and Yellow: partially and fully polarized with optical lattice
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FIG. 3. Band structure. Shown are band structures for
two values of the optical lattice intensity (V0 = 2ER in the
left column, V0 = 4ER in the right column) and three values
of scattering length (a = 0.04, 0.08, 0.16 d from top to bottom)
at half-filling n = 1. The blue and red curve corresponds to
the majority and minority spin-component respectively. The
black curve is the result for an unpolarized noninteracting gas.
energies are shown relative to the chemical potential, shown
as a dashed green line. The wave-vector values (given on the
x-axis in units of π/d) scan a curve which goes through the
high symmetry points Γ = (0, 0, 0), X = (0, 1, 0), R = (1, 1, 1)
and M = (1, 1, 0) of the first Brillouin zone.

hand this will provide us with even more accurate meth-
ods for the simulation of fermionic quantum gases. On
the other hand controlled experiments on fermionic gases
will provide reference data for phase transitions, band
structures and band gaps over a wide range of lattice
depths and interactions that can be used to systemati-
cally explore and improve hybrid functionals – which will
in turn lead to better functionals also for materials sim-
ulations.

Adding a harmonic confining potential, trap effects can
be studied, and phenomena like phase separation and the
structure of domain walls in inhomogeneous systems can
be studied going well beyond the usual “local density
approximation” (HK-LSDA) approximation that is com-
mon so far. Modern high performance DFT codes can
easily be adapted to work with our LSDA functional and
will allow the simulation of tens of thousands of fermionic
atoms in a trap.

Another direction for future research will be the func-
tionals for attractive interactions using the local pair den-
sity approximation [21] that has been developed to de-
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FIG. 4. Phase diagram and antiferromagnetic (AF)
band structure at half filling n = ρd3 = 1. Left: Fer-
romagnetic (antiferromagnetic) phases are indicated by the
red-colored polarization (blue-colored staggered polarization).
As scattering length a increases, the fermionic optical lat-
tice undergoes phase transitions from unpolarized (small a),
to antiferromagnetic (moderate a), and finally to ferromag-
netic (large a). Right: To observe antiferromagnetism, the
unit cell has to be doubled, resulting in a face centered cu-
bic (fcc) lattice. A spin-density-wave gap ∆SDW shows up
in the antiferromagnetic state of an optical lattice with laser
intensity V0 = 4ER and scattering length a = 0.08d. Here,
the high symmetry points are Γ = (0, 0, 0), X = (0, 1, 0),
L = (1/2, 1/2, 1/2) and W = (1/2, 1, 0).

scribe superconducting electronic systems , including not
only the fermionic densities ρ↑ and ρ↓ but also a density
for paired fermions ρp, or the superfluid LDA (SLDA)
method of Bulgac [22].

Density functional theory can also be generalized to
the finite temperature systems, as first proposed in ref-
erence [23] and recently discussed in reference [24] and
[25]. Since the thermal effects in cold atom systems are
extremely important, the application of the finite tem-
perature DFT scheme will pave a new way to simulate
fermions at low but finite temperatures.

Maybe most exciting is the potential using time-
dependent density functional theory (TD-DFT) [26] to
study the non-equilibrium dynamics of quantum gases.

Density functional theory can thus form an important
bridge between atomic physics and materials simulation,
much stronger than the Hubbard model that is at the
center of attention now but relevant only to a small class
of materials. Making use of decades of innovation in DFT
in materials science provide valuable tools for the inves-
tigation of the intriguing physics of quantum gases. In
return, atomic gases provide an ideal test bed to address
the challenges faced in the simulation of strongly corre-
lated fermionic systems and will help to further improve
functionals for strongly correlated systems – thus realiz-
ing the promise of optical lattice quantum simulators to
be a useful tool for materials science.

METHODS

Fermions in an optical lattice: In the presence of an
optical field created by three pairs of counter-propagating
laser beams, the neutral fermions experience a po-

Blue: staggered magnetization
Red: uniform magnetization
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x-axis in units of π/d) scan a curve which goes through the
high symmetry points Γ = (0, 0, 0), X = (0, 1, 0), R = (1, 1, 1)
and M = (1, 1, 0) of the first Brillouin zone.

hand this will provide us with even more accurate meth-
ods for the simulation of fermionic quantum gases. On
the other hand controlled experiments on fermionic gases
will provide reference data for phase transitions, band
structures and band gaps over a wide range of lattice
depths and interactions that can be used to systemati-
cally explore and improve hybrid functionals – which will
in turn lead to better functionals also for materials sim-
ulations.

Adding a harmonic confining potential, trap effects can
be studied, and phenomena like phase separation and the
structure of domain walls in inhomogeneous systems can
be studied going well beyond the usual “local density
approximation” (HK-LSDA) approximation that is com-
mon so far. Modern high performance DFT codes can
easily be adapted to work with our LSDA functional and
will allow the simulation of tens of thousands of fermionic
atoms in a trap.

Another direction for future research will be the func-
tionals for attractive interactions using the local pair den-
sity approximation [21] that has been developed to de-
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to antiferromagnetic (moderate a), and finally to ferromag-
netic (large a). Right: To observe antiferromagnetism, the
unit cell has to be doubled, resulting in a face centered cu-
bic (fcc) lattice. A spin-density-wave gap ∆SDW shows up
in the antiferromagnetic state of an optical lattice with laser
intensity V0 = 4ER and scattering length a = 0.08d. Here,
the high symmetry points are Γ = (0, 0, 0), X = (0, 1, 0),
L = (1/2, 1/2, 1/2) and W = (1/2, 1, 0).

scribe superconducting electronic systems , including not
only the fermionic densities ρ↑ and ρ↓ but also a density
for paired fermions ρp, or the superfluid LDA (SLDA)
method of Bulgac [22].

Density functional theory can also be generalized to
the finite temperature systems, as first proposed in ref-
erence [23] and recently discussed in reference [24] and
[25]. Since the thermal effects in cold atom systems are
extremely important, the application of the finite tem-
perature DFT scheme will pave a new way to simulate
fermions at low but finite temperatures.

Maybe most exciting is the potential using time-
dependent density functional theory (TD-DFT) [26] to
study the non-equilibrium dynamics of quantum gases.

Density functional theory can thus form an important
bridge between atomic physics and materials simulation,
much stronger than the Hubbard model that is at the
center of attention now but relevant only to a small class
of materials. Making use of decades of innovation in DFT
in materials science provide valuable tools for the inves-
tigation of the intriguing physics of quantum gases. In
return, atomic gases provide an ideal test bed to address
the challenges faced in the simulation of strongly corre-
lated fermionic systems and will help to further improve
functionals for strongly correlated systems – thus realiz-
ing the promise of optical lattice quantum simulators to
be a useful tool for materials science.

METHODS

Fermions in an optical lattice: In the presence of an
optical field created by three pairs of counter-propagating
laser beams, the neutral fermions experience a po-
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has not been discussed in the literature. Our experiments do
not reveal any major increase in spin fluctuations which
seems to exclude a ferromagnetic state. In the simplest
picture, we could regard the atomic quasiparticles as free
atoms, and then apply the Stoner model to them.
Ferromagnetic domain formation is analogous to phase
separation between the two spin components [3]. Since
dimers interact equally with the two spin components, one
might expect that even a noticeable dimer fraction should
not suppress the tendency of the atomic gas to form do-
mains. Therefore, in a simple model, one may neglect
dimer-atom interactions.

If the Stoner model applies to this quasiparticle gas, the
next question is whether the temperature is low enough
for the ferromagnetic phase transition. Available theoreti-
cal treatments do not predict an exact maximum transition
temperature to the ferromagnetic state and obtain an
unphysical divergence for large scattering lengths. Since
the only energy scale is the Fermi temperature, one would
expect a transition temperature which is a fraction of
the Fermi temperature [37], higher or around the
temperature scale probed in our experiments. However,
even above the transition temperature, the susceptibility
is enhanced. A simple Weiss mean field or Stoner
model leads to the generic form of the susceptibility
!ðTÞ ¼ !0ðTÞ=ð1$ w!0ðTÞÞ, where !0ðTÞ is the Pauli
susceptibility of the non-interacting gas and w the interac-
tion parameter. This formula predicts a twofold increase
in the susceptibility even 50% above the transition tem-
perature, which is well within the sensitivity of our
measurements.

Therefore, our experiment can rule out ferromagnetism
for temperatures even slightly lower than the experimental
temperatures. Temperatures are very difficult to measure
in a transient way for a dynamic system which may not be
in full equilibrium. For example, cloud thermometry
requires full equilibration and lifetimes much longer than
the longest trap period. We attempted to measure the
temperature after the hold time near the Feshbach reso-
nance by quickly switching the magnetic field to weak
interactions at 527 G and then performing noise thermom-
etry using speckle imaging [4]. We measure column-
integrated fluctuations that are 0.61(8) of the Poisson value
which implies an effective temperature well below TF,
around 0.33(7) TF, not much higher than our initial
temperature of 0.23 TF. Although the cloud is not in full
equilibrium, an effective local temperature can still be
obtained from noise thermometry.

Alternatively, we can estimate the temperature increase
from the heat released by pair formation. A simple model
[38] accounting for the relevant energy contributions
predicts for kFa ¼ 1 that molecule fractions of higher
than 20% result in a final temperature above 0:4TF, an
estimate which is higher than the measurement reported
above. One may hope that closer to resonance many-body

effects lower the released energy; however, as we show
in the Supplemental Material (Fig. 1 of [38]) this is
not necessarily the case due to the repulsive interaction
energy.
Our experiment has not shown any evidence for a pos-

sible ferromagnetic phase in an atomic gas in ‘‘chemical’’
equilibrium with dimers. This implies one of the following
possibilities. (i) This gas can be described by a simple
Hamiltoninan with strong short range repulsion.
However, this Hamiltonian does not lead to ferromagne-
tism. This would be in conflict with the results of recent
quantum Monte Carlo simulations [19,20] and second
order perturbation theory [11], and in agreement with
conclusions based on Tan relations [39]. (ii) The tempera-
ture of the gas was too high to observe ferromagnetism.
This would then imply a critical temperature around or
below 0:2T=TF, lower than generally assumed. (iii) The
quasiparticles cannot be described by the simple model of
an atomic gas with short-range repulsive interactions due
to their interactions with the paired fraction.
A previous experiment [3] reported evidence for ferro-

magnetism by presenting non-monotonic behavior of atom
loss rate, kinetic energy and cloud size when approaching
the Feshbach resonance, in agreement with predictions
based on the Stoner model. Our measurements confirm
that the properties of the gas strongly change near
kFa ¼ 1. Similar to [3], we observe features in kinetic
and release energy measurements near the resonance (see
Supplemental Material [38]). However, the behavior is
more complex than that captured by simple models. The
atomic fraction decays non-exponentially (see Fig. 3), and
therefore an extracted decay timewill depend on the details
of the measurement such as time resolution. Reference [3]
found a maximum of the loss rate of 200 s$1 for a Fermi
energy of 28 kHz. Our lower bound of the decay rate of
3% 103 s$1 is 15 times faster at a five times smaller Fermi
energy. Our more detailed study rules out that Ref. [3] has
observed ferromagnetic behavior.
Our conclusion is that an ultracold gas with strong short

range repulsive interactions near a Feshbach resonance
remains in the paramagnetic phase. The fast formation of
molecules and the accompanying heating makes it impos-
sible to study such a gas in equilibrium, confirming pre-
dictions of a rapid conversion of the atomic gas to pairs
[21,40]. The Stoner criterion for ferromagnetism obtains
when the effective interaction strength times the density of
states is larger than one. This is a at least an approximately
valid criterion for multi-band lattice models [41]. We have
shown here that this criterion cannot be applied to Fermi
gases with short-range repulsive interactions (the basic
Stoner model) since the neglected competition with pairing
is crucial.
This work was supported by NSF and ONR, AFOSR

MURI, and under ARO Grant No. W911NF-07-1-0493
with funds from the DARPA Optical Lattice Emulator
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has not been discussed in the literature. Our experiments do
not reveal any major increase in spin fluctuations which
seems to exclude a ferromagnetic state. In the simplest
picture, we could regard the atomic quasiparticles as free
atoms, and then apply the Stoner model to them.
Ferromagnetic domain formation is analogous to phase
separation between the two spin components [3]. Since
dimers interact equally with the two spin components, one
might expect that even a noticeable dimer fraction should
not suppress the tendency of the atomic gas to form do-
mains. Therefore, in a simple model, one may neglect
dimer-atom interactions.

If the Stoner model applies to this quasiparticle gas, the
next question is whether the temperature is low enough
for the ferromagnetic phase transition. Available theoreti-
cal treatments do not predict an exact maximum transition
temperature to the ferromagnetic state and obtain an
unphysical divergence for large scattering lengths. Since
the only energy scale is the Fermi temperature, one would
expect a transition temperature which is a fraction of
the Fermi temperature [37], higher or around the
temperature scale probed in our experiments. However,
even above the transition temperature, the susceptibility
is enhanced. A simple Weiss mean field or Stoner
model leads to the generic form of the susceptibility
!ðTÞ ¼ !0ðTÞ=ð1$ w!0ðTÞÞ, where !0ðTÞ is the Pauli
susceptibility of the non-interacting gas and w the interac-
tion parameter. This formula predicts a twofold increase
in the susceptibility even 50% above the transition tem-
perature, which is well within the sensitivity of our
measurements.

Therefore, our experiment can rule out ferromagnetism
for temperatures even slightly lower than the experimental
temperatures. Temperatures are very difficult to measure
in a transient way for a dynamic system which may not be
in full equilibrium. For example, cloud thermometry
requires full equilibration and lifetimes much longer than
the longest trap period. We attempted to measure the
temperature after the hold time near the Feshbach reso-
nance by quickly switching the magnetic field to weak
interactions at 527 G and then performing noise thermom-
etry using speckle imaging [4]. We measure column-
integrated fluctuations that are 0.61(8) of the Poisson value
which implies an effective temperature well below TF,
around 0.33(7) TF, not much higher than our initial
temperature of 0.23 TF. Although the cloud is not in full
equilibrium, an effective local temperature can still be
obtained from noise thermometry.

Alternatively, we can estimate the temperature increase
from the heat released by pair formation. A simple model
[38] accounting for the relevant energy contributions
predicts for kFa ¼ 1 that molecule fractions of higher
than 20% result in a final temperature above 0:4TF, an
estimate which is higher than the measurement reported
above. One may hope that closer to resonance many-body

effects lower the released energy; however, as we show
in the Supplemental Material (Fig. 1 of [38]) this is
not necessarily the case due to the repulsive interaction
energy.
Our experiment has not shown any evidence for a pos-

sible ferromagnetic phase in an atomic gas in ‘‘chemical’’
equilibrium with dimers. This implies one of the following
possibilities. (i) This gas can be described by a simple
Hamiltoninan with strong short range repulsion.
However, this Hamiltonian does not lead to ferromagne-
tism. This would be in conflict with the results of recent
quantum Monte Carlo simulations [19,20] and second
order perturbation theory [11], and in agreement with
conclusions based on Tan relations [39]. (ii) The tempera-
ture of the gas was too high to observe ferromagnetism.
This would then imply a critical temperature around or
below 0:2T=TF, lower than generally assumed. (iii) The
quasiparticles cannot be described by the simple model of
an atomic gas with short-range repulsive interactions due
to their interactions with the paired fraction.
A previous experiment [3] reported evidence for ferro-

magnetism by presenting non-monotonic behavior of atom
loss rate, kinetic energy and cloud size when approaching
the Feshbach resonance, in agreement with predictions
based on the Stoner model. Our measurements confirm
that the properties of the gas strongly change near
kFa ¼ 1. Similar to [3], we observe features in kinetic
and release energy measurements near the resonance (see
Supplemental Material [38]). However, the behavior is
more complex than that captured by simple models. The
atomic fraction decays non-exponentially (see Fig. 3), and
therefore an extracted decay timewill depend on the details
of the measurement such as time resolution. Reference [3]
found a maximum of the loss rate of 200 s$1 for a Fermi
energy of 28 kHz. Our lower bound of the decay rate of
3% 103 s$1 is 15 times faster at a five times smaller Fermi
energy. Our more detailed study rules out that Ref. [3] has
observed ferromagnetic behavior.
Our conclusion is that an ultracold gas with strong short

range repulsive interactions near a Feshbach resonance
remains in the paramagnetic phase. The fast formation of
molecules and the accompanying heating makes it impos-
sible to study such a gas in equilibrium, confirming pre-
dictions of a rapid conversion of the atomic gas to pairs
[21,40]. The Stoner criterion for ferromagnetism obtains
when the effective interaction strength times the density of
states is larger than one. This is a at least an approximately
valid criterion for multi-band lattice models [41]. We have
shown here that this criterion cannot be applied to Fermi
gases with short-range repulsive interactions (the basic
Stoner model) since the neglected competition with pairing
is crucial.
This work was supported by NSF and ONR, AFOSR
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has not been discussed in the literature. Our experiments do
not reveal any major increase in spin fluctuations which
seems to exclude a ferromagnetic state. In the simplest
picture, we could regard the atomic quasiparticles as free
atoms, and then apply the Stoner model to them.
Ferromagnetic domain formation is analogous to phase
separation between the two spin components [3]. Since
dimers interact equally with the two spin components, one
might expect that even a noticeable dimer fraction should
not suppress the tendency of the atomic gas to form do-
mains. Therefore, in a simple model, one may neglect
dimer-atom interactions.

If the Stoner model applies to this quasiparticle gas, the
next question is whether the temperature is low enough
for the ferromagnetic phase transition. Available theoreti-
cal treatments do not predict an exact maximum transition
temperature to the ferromagnetic state and obtain an
unphysical divergence for large scattering lengths. Since
the only energy scale is the Fermi temperature, one would
expect a transition temperature which is a fraction of
the Fermi temperature [37], higher or around the
temperature scale probed in our experiments. However,
even above the transition temperature, the susceptibility
is enhanced. A simple Weiss mean field or Stoner
model leads to the generic form of the susceptibility
!ðTÞ ¼ !0ðTÞ=ð1$ w!0ðTÞÞ, where !0ðTÞ is the Pauli
susceptibility of the non-interacting gas and w the interac-
tion parameter. This formula predicts a twofold increase
in the susceptibility even 50% above the transition tem-
perature, which is well within the sensitivity of our
measurements.

Therefore, our experiment can rule out ferromagnetism
for temperatures even slightly lower than the experimental
temperatures. Temperatures are very difficult to measure
in a transient way for a dynamic system which may not be
in full equilibrium. For example, cloud thermometry
requires full equilibration and lifetimes much longer than
the longest trap period. We attempted to measure the
temperature after the hold time near the Feshbach reso-
nance by quickly switching the magnetic field to weak
interactions at 527 G and then performing noise thermom-
etry using speckle imaging [4]. We measure column-
integrated fluctuations that are 0.61(8) of the Poisson value
which implies an effective temperature well below TF,
around 0.33(7) TF, not much higher than our initial
temperature of 0.23 TF. Although the cloud is not in full
equilibrium, an effective local temperature can still be
obtained from noise thermometry.

Alternatively, we can estimate the temperature increase
from the heat released by pair formation. A simple model
[38] accounting for the relevant energy contributions
predicts for kFa ¼ 1 that molecule fractions of higher
than 20% result in a final temperature above 0:4TF, an
estimate which is higher than the measurement reported
above. One may hope that closer to resonance many-body

effects lower the released energy; however, as we show
in the Supplemental Material (Fig. 1 of [38]) this is
not necessarily the case due to the repulsive interaction
energy.
Our experiment has not shown any evidence for a pos-

sible ferromagnetic phase in an atomic gas in ‘‘chemical’’
equilibrium with dimers. This implies one of the following
possibilities. (i) This gas can be described by a simple
Hamiltoninan with strong short range repulsion.
However, this Hamiltonian does not lead to ferromagne-
tism. This would be in conflict with the results of recent
quantum Monte Carlo simulations [19,20] and second
order perturbation theory [11], and in agreement with
conclusions based on Tan relations [39]. (ii) The tempera-
ture of the gas was too high to observe ferromagnetism.
This would then imply a critical temperature around or
below 0:2T=TF, lower than generally assumed. (iii) The
quasiparticles cannot be described by the simple model of
an atomic gas with short-range repulsive interactions due
to their interactions with the paired fraction.
A previous experiment [3] reported evidence for ferro-

magnetism by presenting non-monotonic behavior of atom
loss rate, kinetic energy and cloud size when approaching
the Feshbach resonance, in agreement with predictions
based on the Stoner model. Our measurements confirm
that the properties of the gas strongly change near
kFa ¼ 1. Similar to [3], we observe features in kinetic
and release energy measurements near the resonance (see
Supplemental Material [38]). However, the behavior is
more complex than that captured by simple models. The
atomic fraction decays non-exponentially (see Fig. 3), and
therefore an extracted decay timewill depend on the details
of the measurement such as time resolution. Reference [3]
found a maximum of the loss rate of 200 s$1 for a Fermi
energy of 28 kHz. Our lower bound of the decay rate of
3% 103 s$1 is 15 times faster at a five times smaller Fermi
energy. Our more detailed study rules out that Ref. [3] has
observed ferromagnetic behavior.
Our conclusion is that an ultracold gas with strong short

range repulsive interactions near a Feshbach resonance
remains in the paramagnetic phase. The fast formation of
molecules and the accompanying heating makes it impos-
sible to study such a gas in equilibrium, confirming pre-
dictions of a rapid conversion of the atomic gas to pairs
[21,40]. The Stoner criterion for ferromagnetism obtains
when the effective interaction strength times the density of
states is larger than one. This is a at least an approximately
valid criterion for multi-band lattice models [41]. We have
shown here that this criterion cannot be applied to Fermi
gases with short-range repulsive interactions (the basic
Stoner model) since the neglected competition with pairing
is crucial.
This work was supported by NSF and ONR, AFOSR
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Back to Trapabove, there is no longer a phase transition. In a
mean-field approximation, a ferromagnetic phase
would appear at all temperatures but for increasing
values of koFa. Our observations may imply that
the interaction energy saturates around koFa ≈ 5.

The spin-polarized ferromagnetic state should
not suffer from inelastic collisions. However,
typical lifetimes were 10 to 20 ms, which were
probably related to a small domain size and three-
body recombination at domain walls.

We were unsuccessful in imaging ferromag-
netic domains using differential in situ phase-
contrast imaging (28). A signal-to-noise level of
~ 10 suggests that there were at least 100 do-
mains in a volume given by our spatial resolution
of ~3 mm and by the radial size of the cloud. This
implies that the maximum volume of the spin do-
mains is ~5 mm3, containing ~50 spin-polarized
atoms. We suspect that the short lifetime prevented
the domains from growing to a larger size and
eventually adopting the equilibrium texture of the
ground state, which has been predicted to have
the spins pointing radially outward, like a hedgehog
(20, 22). All our measurements are sensitive only
to local spin polarization and are independent of
domain structure and texture.

The only difference between our experiment
and the ideal Stoner model is a molecular ad-
mixture of 25% (Fig. 4). The molecular fraction
was constant for koFa > 1.8 for all temperatures and
therefore cannot be responsible for the sudden
change of behavior of the gas at koFa ≅ 2.2 at the
coldest temperature T/TF = 0.12. This prediction
was confirmed by repeating the kinetic energy
measurements with amolecular admixture of 60%.
The minimum in the kinetic energy occurred at the
same value of koFa within experimental accuracy.

For a comparison of the observed phase tran-
sition at koFa ≅ 2.2 to the theoretical predictions, the
ideal gas koF has to be replaced by the value for the
interacting gas, which is smaller by ~15% because
of the expansion of the cloud (Fig. 4), resulting in a
critical value for kFa≅ 1.9 T 0.2. At T/TF = 0.12, the
finite temperature correction in the critical value for
kFa is predicted to be less than 5% (19). The
observed value for kFa is larger than both themean-
field prediction of p/2 and the second-order pre-
diction of 1.054 at zero temperature (19). Depend-
ing on the theoretical approach, the phase transition
has been predicted to be first or second order. This
could not been discerned in our experiment because
of the inhomogeneous density of the cloud.

It has been speculated (19) that earlier experi-
ments on the measurement of the interaction ener-
gy (29) and radio frequency spectroscopy of Fermi
gases (30) showed evidence for the transition to a
ferromagnetic state at or below kFa = 1. This inter-
pretation seems to be ruled out by our experiment.

Our work demonstrates a remarkable asym-
metry between positive and negative scattering
length. Early work (15) predicted that for kF|a| =
p/2, both an attractive and a repulsive Fermi gas
become mechanically unstable (against collapse
and phase separation, respectively). In an attract-
ive Fermi gas, however, the mechanical in-
stability does not occur [due to pairing (31)], in
contrast to our observations in a repulsive Fermi
gas. This suggests that the maximum total re-
pulsive energy [in units of 3/5(2Vn)EF] is larger
than the maximum attractive energy |b| of 0.59
(32) that is realized for infinite a (23).

The interpretation of our results in terms of
a phase transition to itinerant ferromagnetism
is based on the agreement with the prediction
of simplified models [Fig. 1, (15–22)]. Future

Fig. 2. Atom loss rate as a probe
for local spin polarization, for
different temperatures. T/TF = 0.55
(triangles, dashed curve), T/TF =
0.22 (open circles, dotted curve),
and T/TF = 0.12 (solid circles, solid
black curve). The curves are guides
to the eye, based on the assump-
tion of a loss rate that saturates for
increasing a in the normal state. The
shaded area around the phase
transition at T/TF = 0.12 highlights
the same region as in Figs. 3 and 4.

Fig. 3. Kinetic energy of
a repulsively interacting
Fermi gas determined for
different interaction pa-
rameters koFa and tem-
peratures. The measured
kinetic energy is normal-
ized by the Fermi energy
EoF of the noninteracting
Fermi gas at T = 0, cal-
culated at the trap center
with the same number of
atoms per spin state. Each
data point represents the
average of three or four
measurements.
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Back to Trap

Sommer, Nature 2011



Time-dependent DFT
• Time-dependent density obtained from 

• TDDFT is exact with exact exchange-correlation potential-> 
adiabatic local-density approximation

• Widely applied to dynamics in chemistry, biophysics and solid-
state physics, see http://www.tddft.org/

Runge, Gross 1984
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news & views

One of the most stimulating areas 
of research in ultracold atoms 
is the exploration of strongly 

interacting Fermi gases1. As reported2 
in Nature Physics, John Gaebler et al. 
make a significant contribution to 
this subject by providing the first 
experimental evidence of an energy gap, 
called the pseudogap, owing to pairing 
correlations above the superfluid phase-
transition temperature Tc of the unitary 
Fermi gas. Their measurement uses 
the new technique of angle-resolved 
radiofrequency (RF) spectroscopy, 
which is an analogue of angle-resolved 
photoemission spectroscopy3,4 (ARPES), 
one of the most powerful probes of 
correlated electrons in solid-state 
materials. Despite crucial differences, 
there are also some interesting 
similarities between the pseudogap 
above Tc in ultracold Fermi gases 
and the underdoped regime of high-
temperature superconductors.

To appreciate the significance of 
these results, it is useful to recall that 
the unitary Fermi gas is in the middle of 
the crossover between two very different 
limits: Bardeen–Cooper–Schrieffer 
(BCS) superfluidity of fermion pairs 
and Bose–Einstein condensation (BEC) 
of bosons. Most superconductors or 
superfluids studied in the past hundred 
years are firmly in one or the other limit. It 
is only in the past few years that an atomic 
physics technique called the Feshbach 
resonance1 has allowed us to actually 
tune the attractive interactions between 
fermionic atoms (6Li, 40K) and span the 
entire BCS to BEC crossover shown 
in Fig. 1.

In the BCS limit, a weak attraction 
between fermions leads to the formation — 
and condensation — of Cooper pairs with 
an effective size much larger than the 
interparticle distance. The normal state 
above Tc is a Fermi liquid with a Fermi 
surface of gapless excitations. In the BEC 
limit, on the other hand, strong attraction 
leads to tightly bound diatomic molecules 
that are weakly repulsive bosons. The state 
above Tc is a normal Bose gas and only at 

very high temperatures do the molecules 
dissociate into atoms.

The unitary regime lies between these two 
very different limits. Here the interaction 
parameter between atoms, the s-wave 
scattering length, diverges and the cross-
section is limited only by unitarity, that is, 

the conservation of probability. The ground 
state near unitarity is a strongly interacting 
superfluid of pairs, the size of which is of 
the order of the interparticle spacing of 
constituent fermions. This also leads to a very 
high Tc, in which Tc = (0.15–0.2)EF, where EF 
is the Fermi energy5,6.

ULTRACOLD FERMI GASES

Pre-pairing for condensation
Pair formation and condensation usually occur together in Fermi superfluids. The observation of a pseudogap that 
implies pairing above the condensation temperature in a strongly interacting Fermi gas is thus an exciting development.

Mohit Randeria

Figure 1 | Phase diagram of the BCS to BEC crossover as a function of the dimensionless attraction 
1/(kFas) (where kF is the Fermi momentum and as is the scattering length) and the temperature T 
in units of EF. The pictures show schematically the evolution of the ground state from the BCS limit 
with large, spatially overlapping Cooper pairs to the BEC limit with tightly bound molecules. The 
ground state at unitarity (1/(kFas) = 0) has strongly interacting pairs with size comparable to 1/kF. 
As a function of increasing attraction, the pair-formation crossover scale T* diverges away from Tc 
below which a condensate exists. Most Fermi superfluids and superconductors are close to the BCS 
limit where these two temperatures coincide. The experiments reported by Gaebler et al.2 probe the 
unitary regime and reveal a pairing pseudogap in the range of temperatures between Tc and T*. This 
global phase diagram is based on ref. 5; for recent quantum Monte Carlo calculations near unitarity, 
see refs 6 and 8.
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Finite-T VHXC

So does UFG!

T ⇠ EF

• Lack of finite-T energy functional

• Just use T=0 one ?

• But ...
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Temperature dependence of VHXC
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Summary & Outlook

• In long term... 

• Bosons, superfluidity, open systems ...

• Well controllable cold atom experiments can be used to 
calibrate and improve DFT itself 

• DFT is a useful tool for statics and dynamics of 
cold atoms systems 



Thank you!


