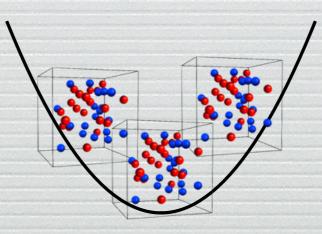
Density functional theory for static and dynamic properties of cold atomic gases



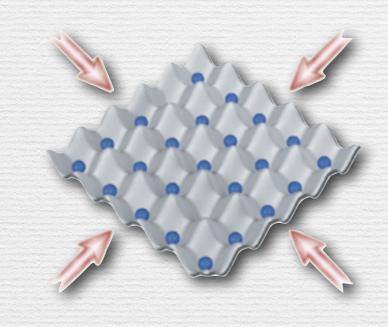
Lei Wang Theoretische Physik, ETH Zurich

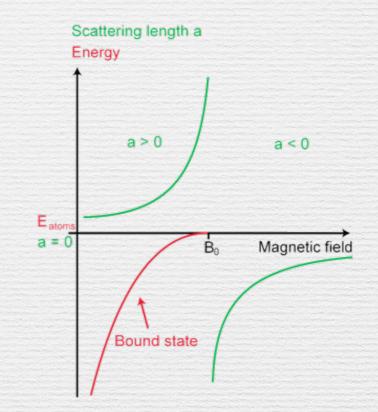
The Ping Nang Ma, Ilia Zintchenko, Matthias Troyer

Sebastiano Pilati

Cold atoms: Quantum simulator

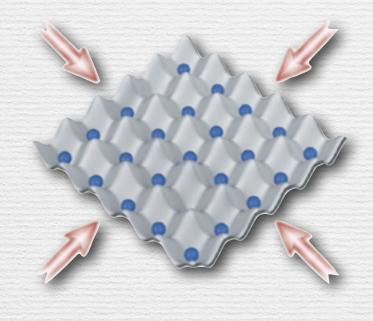
• Highly controllable

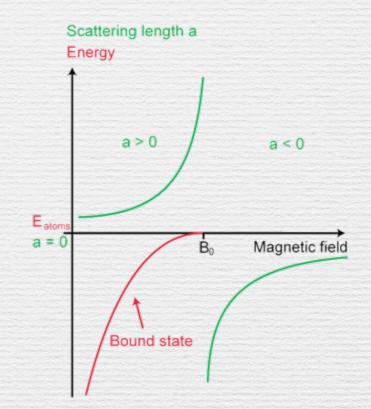




Cold atoms: Quantum simulator

• Highly controllable

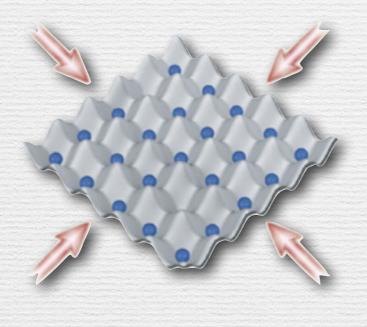


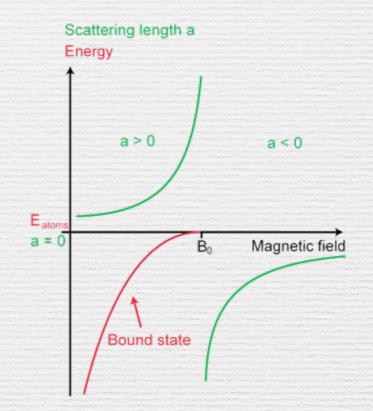


• Quantum simulator for static properties

Cold atoms: Quantum simulator

• Highly controllable



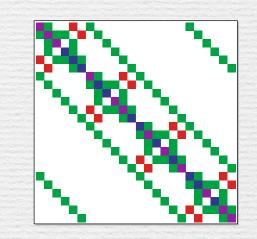


- Quantum simulator for static properties
- Coherent quantum evolution for long time:

ideal playground for quantum dynamics!

Exact Diagonalization $H|\Psi\rangle = E|\Psi\rangle$

- Give exact results
- Limited to small systems
 - 25 site Fermi-Hubbard model with 12 atoms on the Earth Simulator in 2006

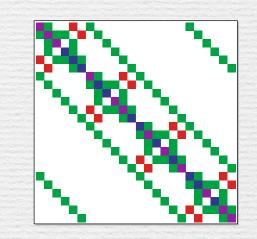


DMRG

- Extremely powerful in 1D
- Higher dimension generalization is possible but expansive

Exact Diagonalization $H|\Psi\rangle = E|\Psi\rangle$

- Give exact results
- Limited to small systems
 - 25 site Fermi-Hubbard model with 12 atoms on the Earth Simulator in 2006



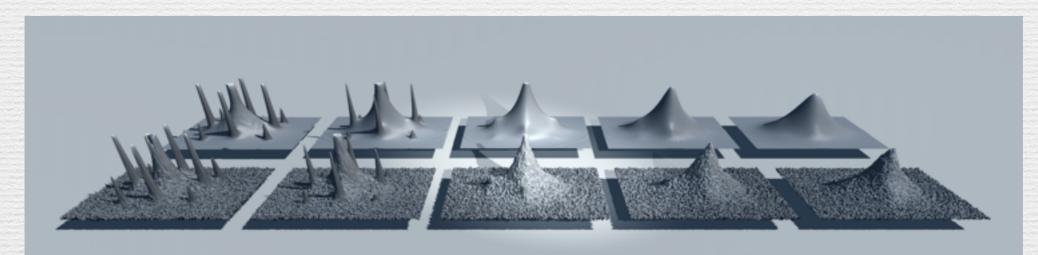
DMRG

- Extremely powerful in 1D
- Higher dimension generalization is possible but expansive

Quantum Monte Carlo

- We can solve static properties of
 - Bosons in any dimensions,

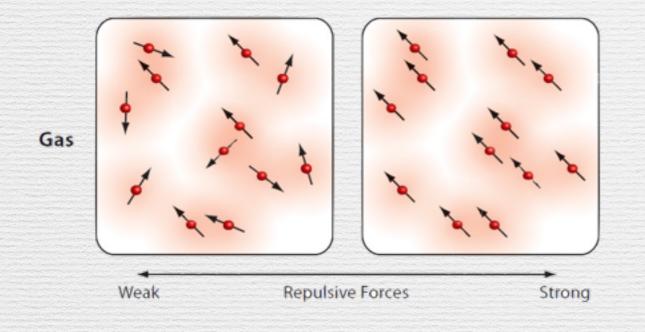
Trotzky, Pollet, Nature Physics, 2010



• Fermions in 1D for all T, 2D and 3D at $T{>}0.05E_{\rm F}$

Beyond lattice models

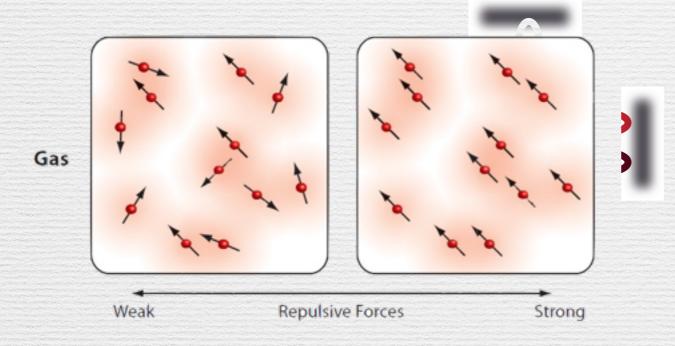
Jo, Science 2009



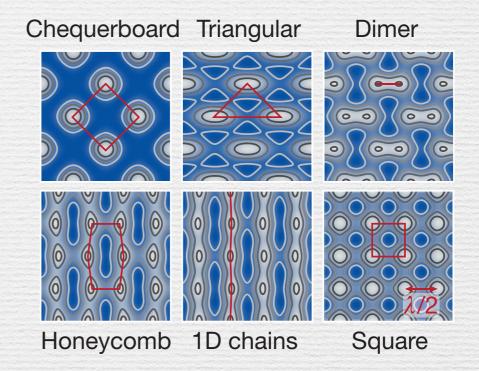
Magnetic Field [G] 600 750 780 800 810 815 818 200 Atom Loss Rate [1/s] 150 -/Λ 100 -50 -0 -0 0 8 2 Interaction Parameter kr°a

Beyond lattice models

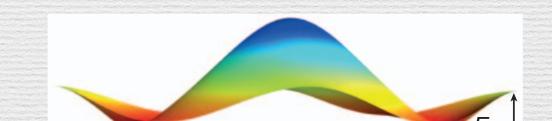
Jo, Science 2009



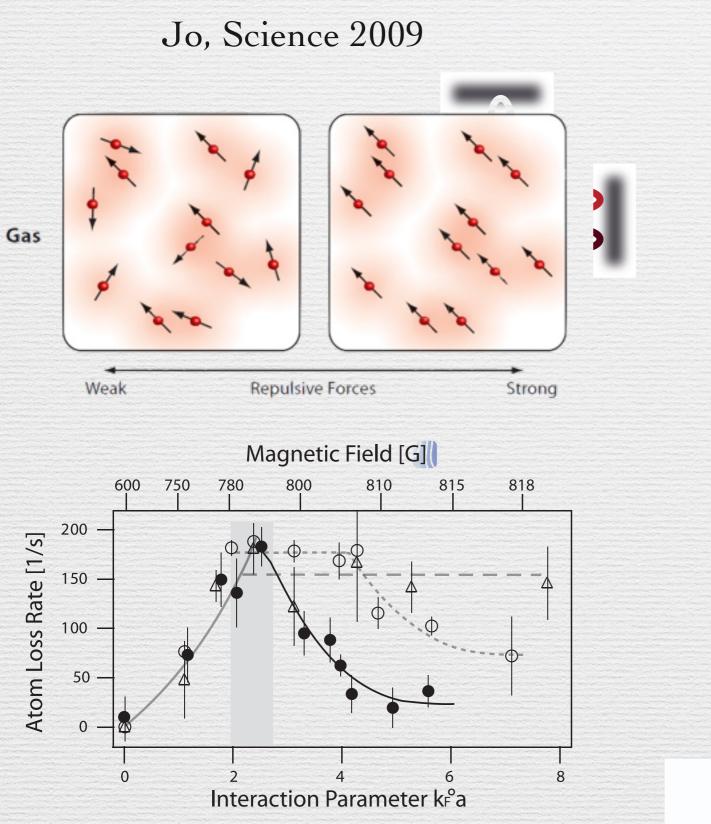
Tarruell, Nature 2012



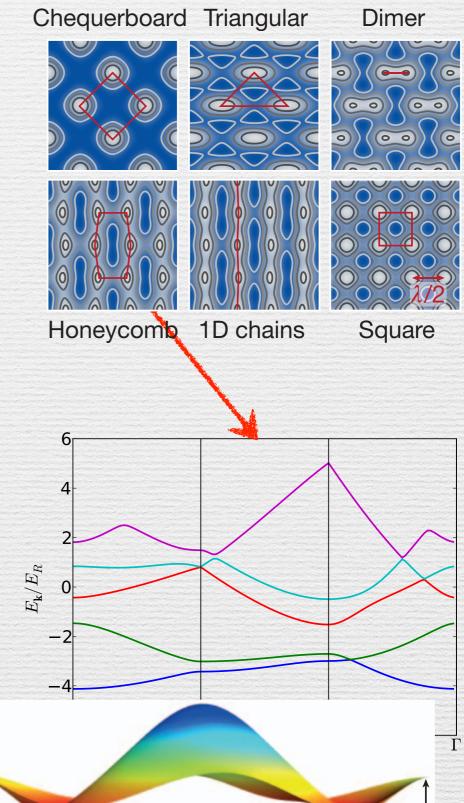
Magnetic Field [G] 750 780 800 810 815 818 600 200 -Atom Loss Rate [1/s] 150 -100 -50 -0 -0 8 Interaction Parameter kF°a



Beyond lattice models

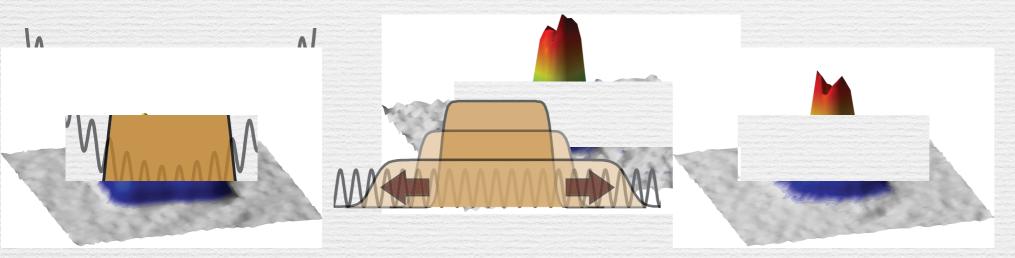


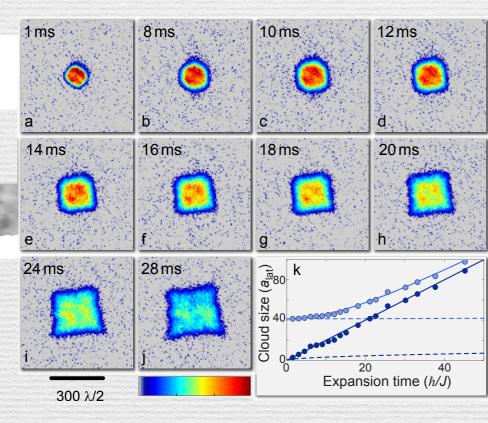
Tarruell, Nature 2012

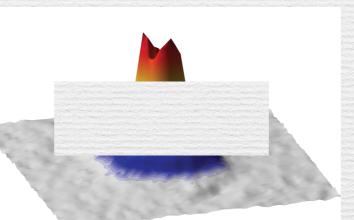


Mon-equi

Schneider, Nature Physics 2012







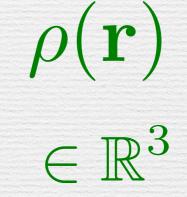
A Strand

namics on-equi Sommer, Nature 2011 Schneider, Nature Physics 2012 1 10 1.5ance [m 0.0 1 ms 10 ms 12 ms 8 ms d b С а 30 Time [ms] 20 40 50 60 16 ms 20 ms 14 ms 18 ms h g е Cloud size (a_{lat}) 24 ms 28 ms 0.5 Distance [mm] 0.0 -0.5 0 -1.0 $\begin{array}{ccc} 20 & 40 \\ \text{Expansion time } (\hbar/J) \end{array}$ 300 2/2 -1.5-30 Ó 25 5

10 15 20 : Time [ms]

 $\Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_N)$

 $\in \mathbb{R}^{3N}$



Commences and

 $\Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_N)$

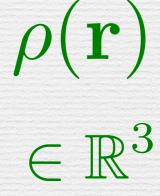
 $\in \mathbb{R}^{3N}$

 $ho(\mathbf{r})$ $\in \mathbb{R}^3$

• Hohenberg-Kohn theorem: All properties of the system are **completely** determined by the ground state density

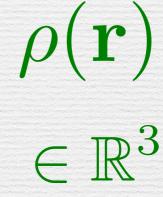
 $\Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_N)$

 $\in \mathbb{R}^{3N}$



- Hohenberg-Kohn theorem: All properties of the system are completely determined by the ground state density
- Exact ground state density and energy can be obtained by minimizing the density functional

 $\Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_N)$ $\in \mathbb{R}^{3N}$



- Hohenberg-Kohn theorem: All properties of the system are completely determined by the ground state density
- Exact ground state density and energy can be obtained by minimizing the density functional

$$E[\rho] = F[\rho] + \int d\mathbf{r} V_{\text{ext}}(\mathbf{r})\rho(\mathbf{r})$$

Kohn-Sham approach Kohn, Sham 1965

 $F[\rho] = K[\rho] + E_{\rm H}[\rho] + E_{\rm XC}[\rho]$

Kohn-Sham approach Kohn, Sham 1965

 $F[\rho] = K[\rho] + E_{\rm H}[\rho] + E_{\rm XC}[\rho]$

kinetic energy

Kohn-Sham approach Kohn, Sham 1965

 $F[\rho] = K[\rho] + E_{\rm H}[\rho] + E_{\rm XC}[\rho]$

mean field energy

Kohn-Sham approach

Kohn, Sham 1965

energy

 $F[\rho] = K[\rho] + E_{\rm H}[\rho] + E_{\rm XC}[\rho]$ exchange-correlation

Kohn-Sham approach Kohn, Sham 1965 $F[\rho] = K[\rho] + E_{\rm H}[\rho] + E_{\rm XC}[\rho]$ exchange-correlation energy $\frac{\delta E}{\delta \rho} = 0$

Kohn-Sham approach Kohn, Sham 1965 $F[\rho] = K[\rho] + E_{\rm H}[\rho] + E_{\rm XC}[\rho]$ exchange-correlation energy $\frac{\delta E}{\delta \rho} = 0$ $\frac{\delta K}{\delta \rho} + \frac{\delta E_{\rm H}[\rho]}{\delta \rho} + \frac{\delta E_{\rm XC}[\rho]}{\delta \rho} + V_{\rm ext} = 0$

Kohn-Sham approach Kohn, Sham 1965 $F[\rho] = K[\rho] + E_{\rm H}[\rho] + E_{\rm XC}[\rho]$ exchange-correlation energy $\frac{\delta E}{\delta \rho} = 0$ $\frac{\delta K}{\delta \rho} + V_{\rm H}[\rho] + V_{\rm XC}[\rho] + V_{\rm ext} = 0$

Kohn-Sham approach Kohn, Sham 1965 $F[\rho] = K[\rho] + E_{\rm H}[\rho] + E_{\rm XC}[\rho]$ exchange-correlation energy $\frac{\delta E}{\delta \rho} = 0$ $\frac{\delta K}{\delta \rho} + V_{\rm H}[\rho] + V_{\rm XC}[\rho] + V_{\rm ext} = 0$ $\rho = 2\sum_{j} |\psi_j|^2$

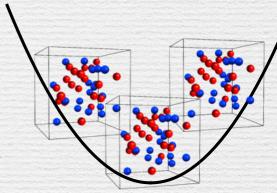
Kohn-Sham approach Kohn, Sham 1965 $F[\rho] = K[\rho] + E_{\rm H}[\rho] + E_{\rm XC}[\rho]$ exchange-correlation energy $\frac{\delta E}{\delta \rho} = 0$ $\frac{\delta K}{\delta \rho} + V_{\rm H}[\rho] + V_{\rm XC}[\rho] + V_{\rm ext} = 0$ $\rho = 2\sum_{j} |\psi_j|^2$ $\left(-\frac{\hbar^2 \nabla^2}{2m} + V_{\text{ext}} + V_{\text{H}}[\rho] + V_{\text{XC}}[\rho]\right)\psi_j = \varepsilon_j \psi_j$

Local density approximation

• KS-DFT is in principle exact if we knew Vxc

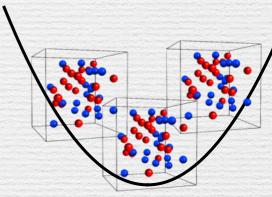
Local density approximation

- KS-DFT is in principle exact if we knew Vxc
- Local density approximation: use Vxc of a uniform system with same local density Coulomb gas: Ceperley, Alder 1980, Cold atoms: Pilati 2010



Local density approximation

- KS-DFT is in principle exact if we knew Vxc
- Local density approximation: use Vxc of a uniform system with same local density Coulomb gas: Ceperley, Alder 1980, Cold atoms: Pilati 2010



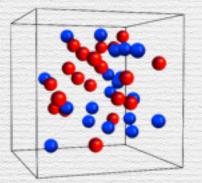
Redner, Physics Today, 2005

Table 1. Physical Review Articles with more than 1000 Citations Through June 2003				
Publication	# cites	Av. age	Title	Author(s)
<i>PR</i> 140 , A1133 (1965)	3227	26.7	Self-Consistent Equations Including Exchange and Correlation Effects	W. Kohn, L. J. Sham
<i>PR</i> 136 , B864 (1964)	2460	28.7	Inhomogeneous Electron Gas	P. Hohenberg, W. Kohn
PRB 23, 5048 (1981)	2079	14.4	Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems	J. P. Perdew, A. Zunger
PRL 45, 566 (1980)	1781	15.4	Ground State of the Electron Gas by a Stochastic Method	D. M. Ceperley, B. J. Alder
<i>PR</i> 108 , 1175 (1957)	1364	20.2	Theory of Superconductivity	J. Bardeen, L. N. Cooper, J. R. Schrieffer
PRL 19, 1264 (1967)	1306	15.5	A Model of Leptons	S. Weinberg
PRB 12, 3060 (1975)	1259	18.4	Linear Methods in Band Theory	O. K. Anderson
<i>PR</i> 124 , 1866 (1961)	1178	28.0	Effects of Configuration Interaction of Intensities and Phase Shifts	U. Fano
<i>RMP</i> 57 , 287 (1985)	1055	9.2	Disordered Electronic Systems	P. A. Lee, T. V. Ramakrishnan
<i>RMP</i> 54 , 437 (1982)	1045	10.8	Electronic Properties of Two-Dimensional Systems	T. Ando, A. B. Fowler, F. Stern
PRB 13, 5188 (1976)	1023	20.8	Special Points for Brillouin-Zone Integrations	H. J. Monkhorst, J. D. Pack

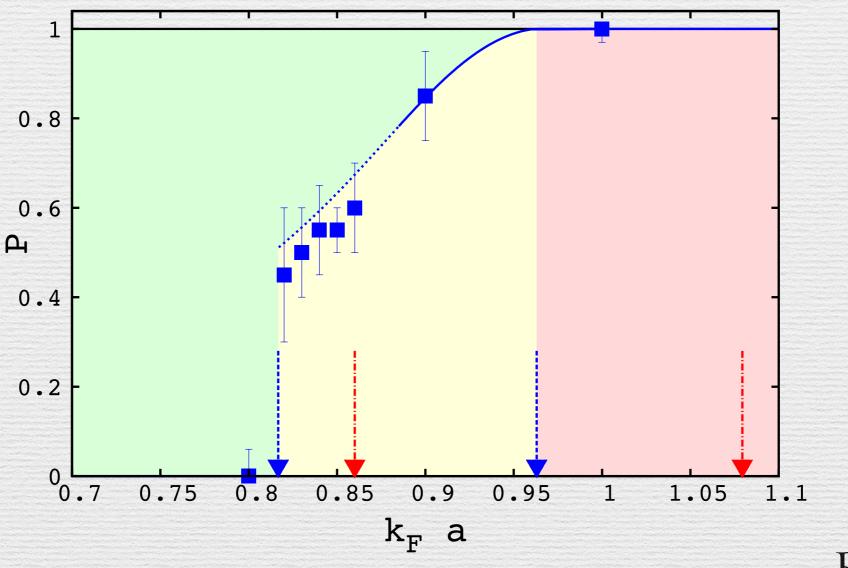
Magnetism in harmonic trap and shallow optical lattice

Optical

Uniform system: QMC

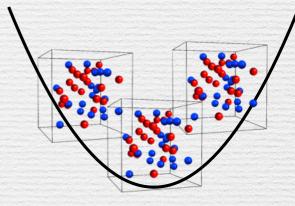


Uniform system shows ferromagnetism for high density and large interactions



Pilati 2010

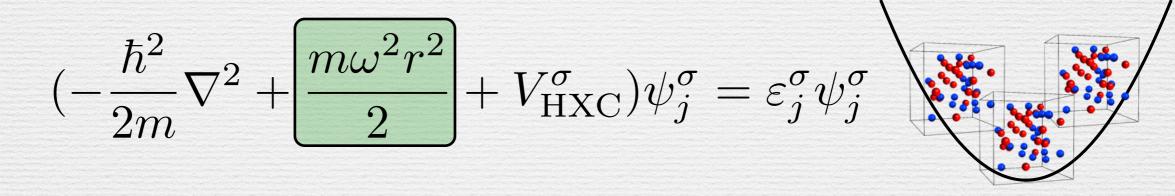
Harmonic Trap: DFT

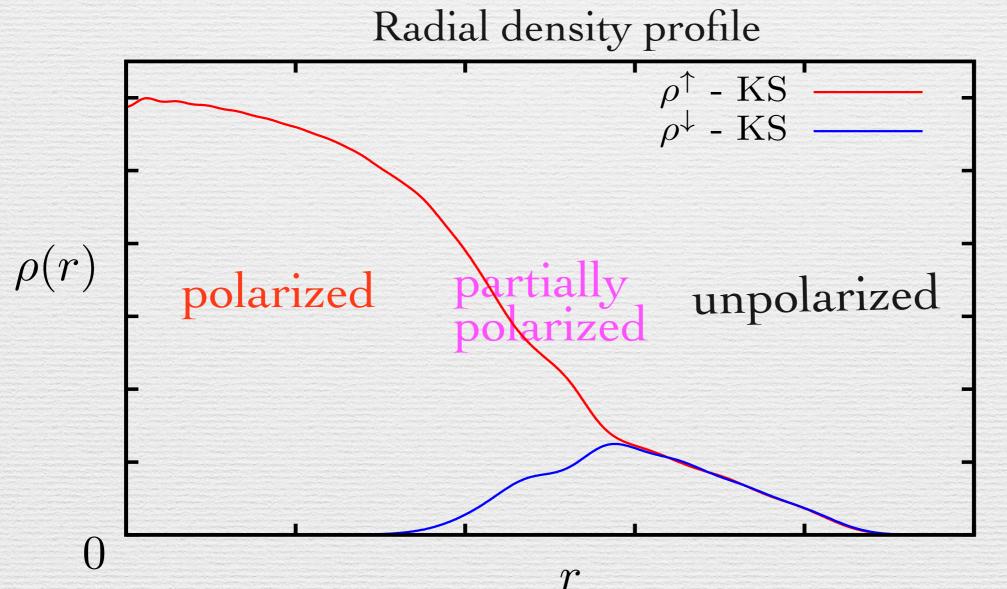


Harmonic Trap: DFT

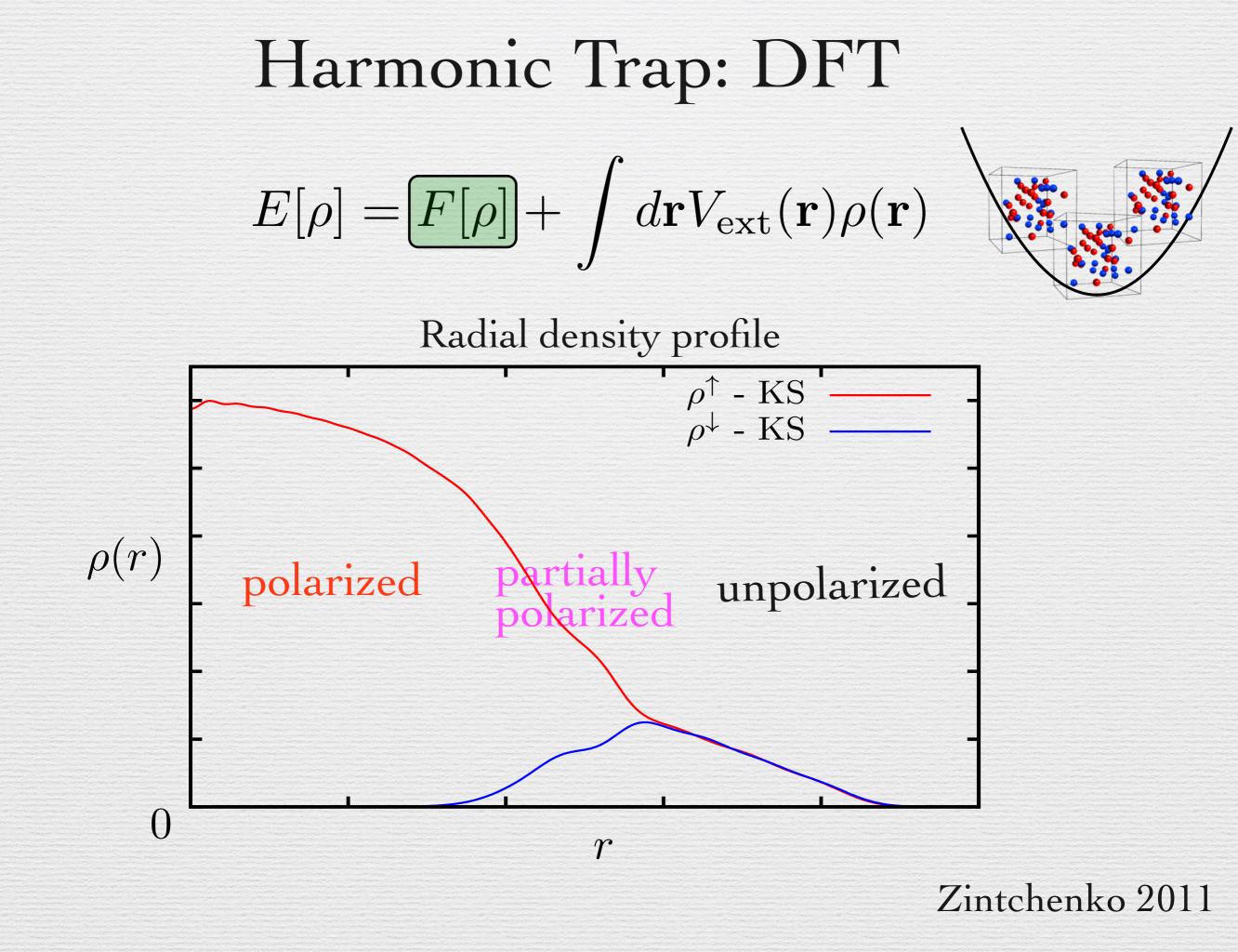
 $\left(-\frac{\hbar^2}{2m}\nabla^2 + \boxed{\frac{m\omega^2 r^2}{2}} + V^{\sigma}_{\rm HXC}\right)\psi^{\sigma}_j = \varepsilon^{\sigma}_j\psi^{\sigma}_j$

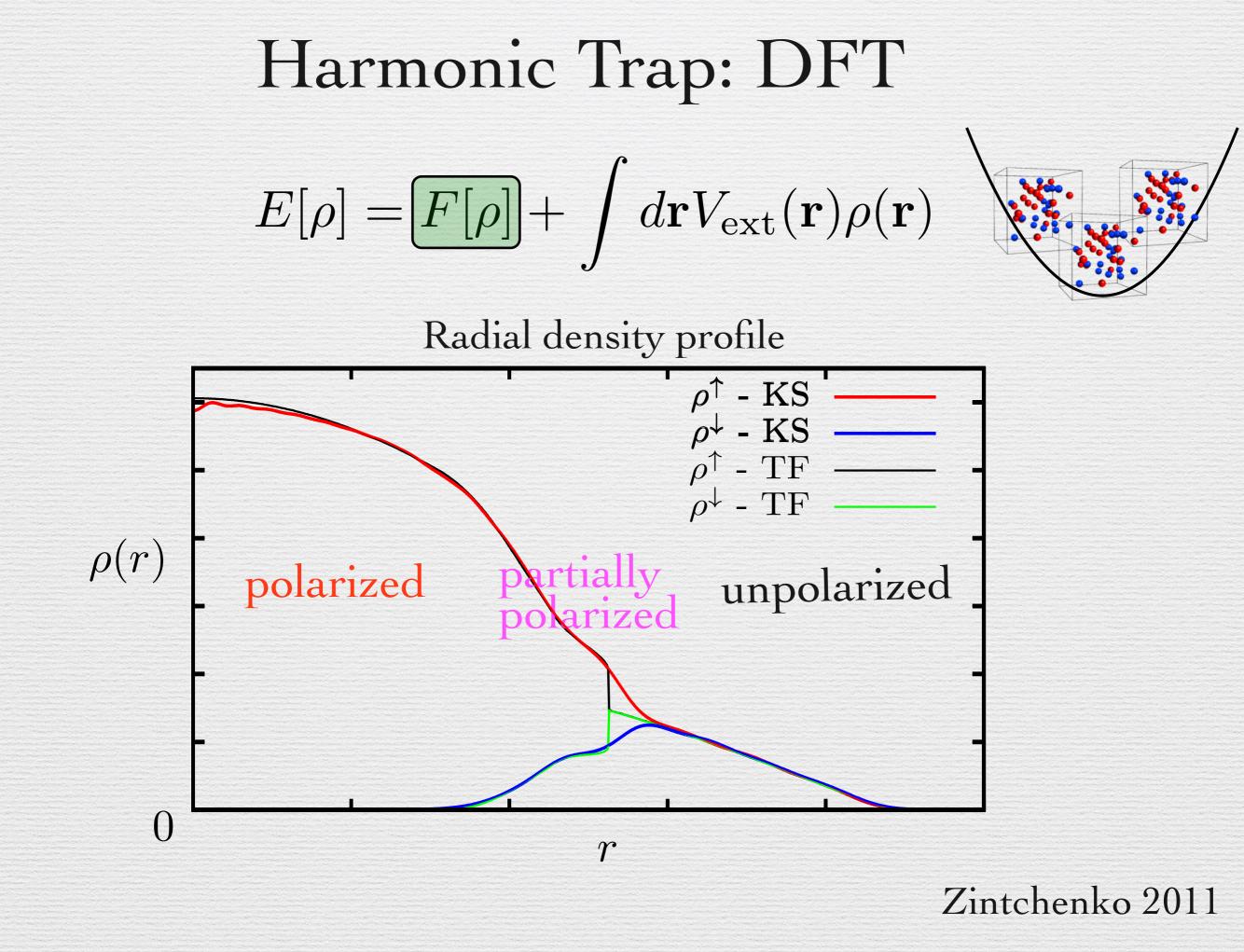
Harmonic Trap: DFT





Zintchenko 2011





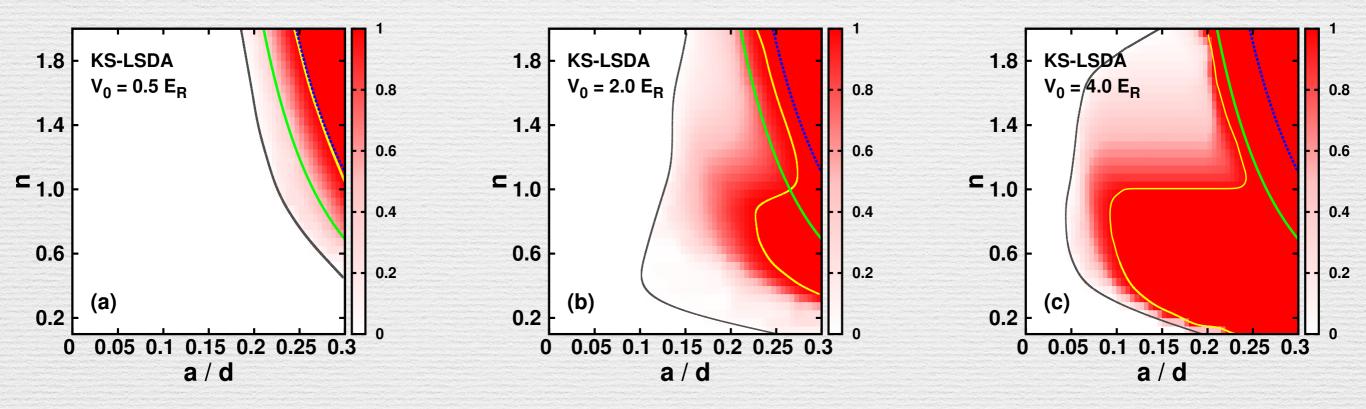
Ferromagnetism in shallow optical lattices

Ma, Pilati, Troyer and Dai, Nature Physics, 2012

 $V_{\rm OL}(\mathbf{r}) = V_0 \left[\sin^2\left(\frac{2\pi}{\lambda}x\right) + \sin^2\left(\frac{2\pi}{\lambda}y\right) + \sin^2\left(\frac{2\pi}{\lambda}z\right) \right]$

Ferromagnetism in shallow optical lattices Ma, Pilati, Troyer and Dai, Nature Physics, 2012

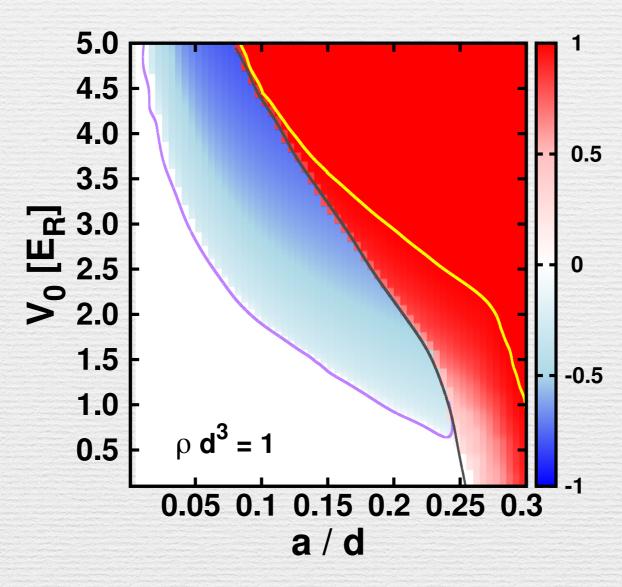
$$V_{\rm OL}(\mathbf{r}) = V_0 \left[\sin^2\left(\frac{2\pi}{\lambda}x\right) + \sin^2\left(\frac{2\pi}{\lambda}y\right) + \sin^2\left(\frac{2\pi}{\lambda}z\right)\right]$$



Green and Blue: partially and fully polarized in free-space Black and Yellow: partially and fully polarized with optical lattice

Antiferromagnetism

Ma, Pilati, Troyer and Dai, Nature Physics, 2012

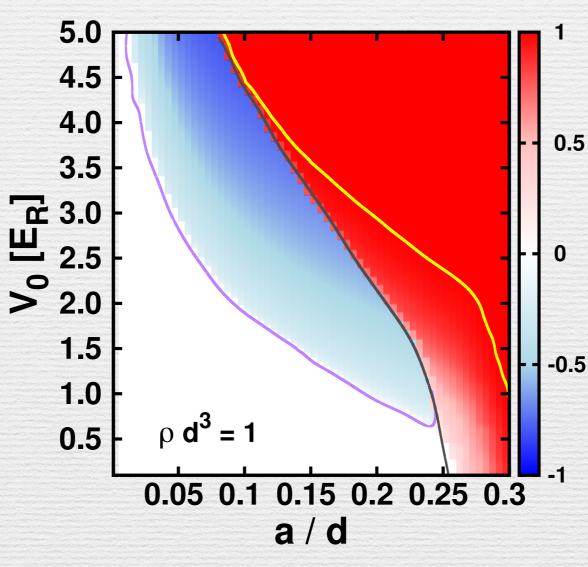


Blue: staggered magnetization Red: uniform magnetization

Antiferromagnetism

Ma, Pilati, Troyer and Dai, Nature Physics, 2012

One Band Hubbard model Here



Blue: staggered magnetization Red: uniform magnetization

• 2009: Indirect evidences for itinerant ferromagnetism (Jo, Science)

• 2009: Indirect evidences for itinerant ferromagnetism (Jo, Science)

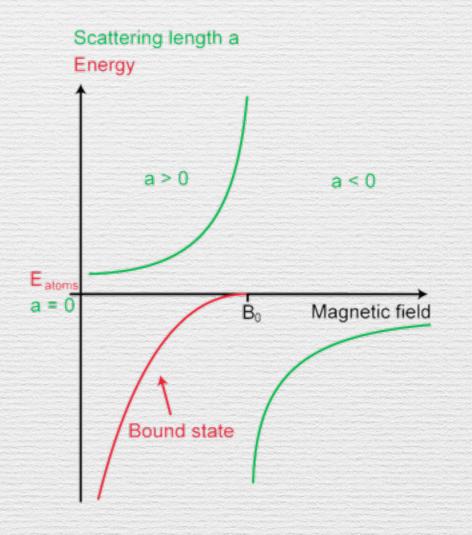
• 2012: Pair formation in repulsive Fermi gas (Sanner, PRL, Lee, PRA)

Our conclusion is that an ultracold gas with strong short range repulsive interactions near a Feshbach resonance remains in the paramagnetic phase. The fast formation of molecules and the accompanying heating makes it impossible to study such a gas in equilibrium, confirming predictions of a rapid conversion of the atomic gas to pairs

• 2009: Indirect evidences for itinerant ferromagnetism (Jo, Science)

• 2012: Pair formation in repulsive Fermi gas (Sanner, PRL, Lee, PRA)

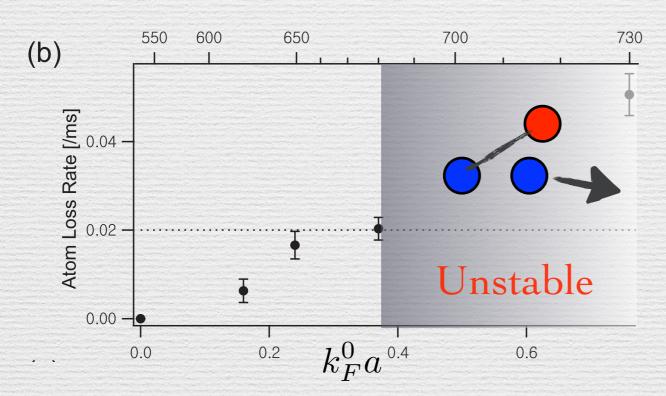
Our conclusion is that an ultracold gas with strong short range repulsive interactions near a Feshbach resonance remains in the paramagnetic phase. The fast formation of molecules and the accompanying heating makes it impossible to study such a gas in equilibrium, confirming predictions of a rapid conversion of the atomic gas to pairs

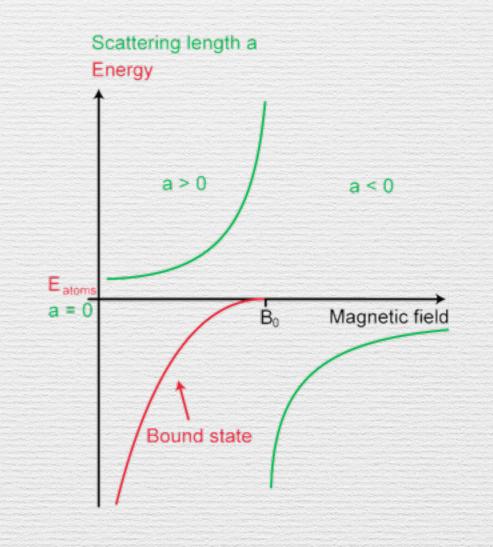


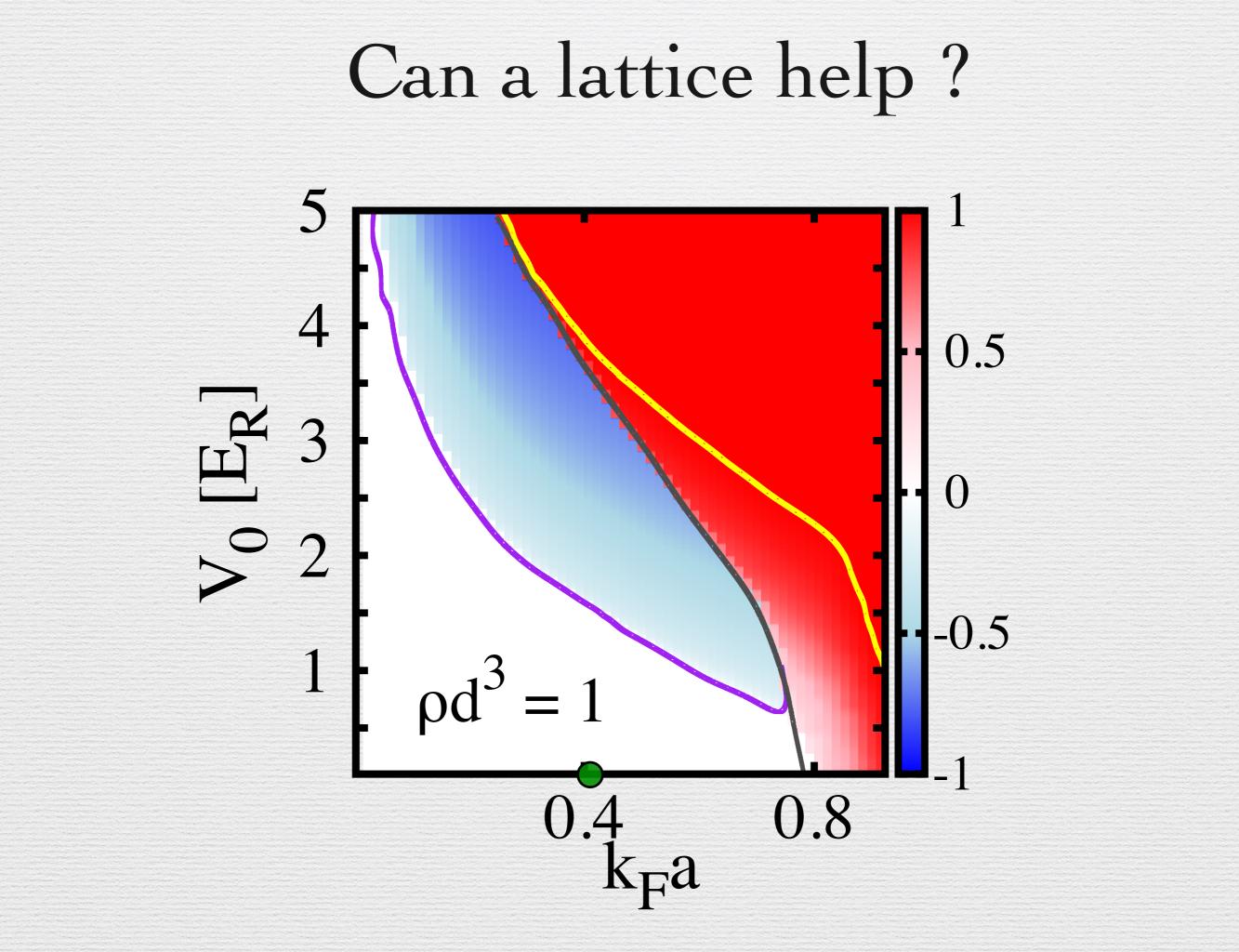
• 2009: Indirect evidences for itinerant ferromagnetism (Jo, Science)

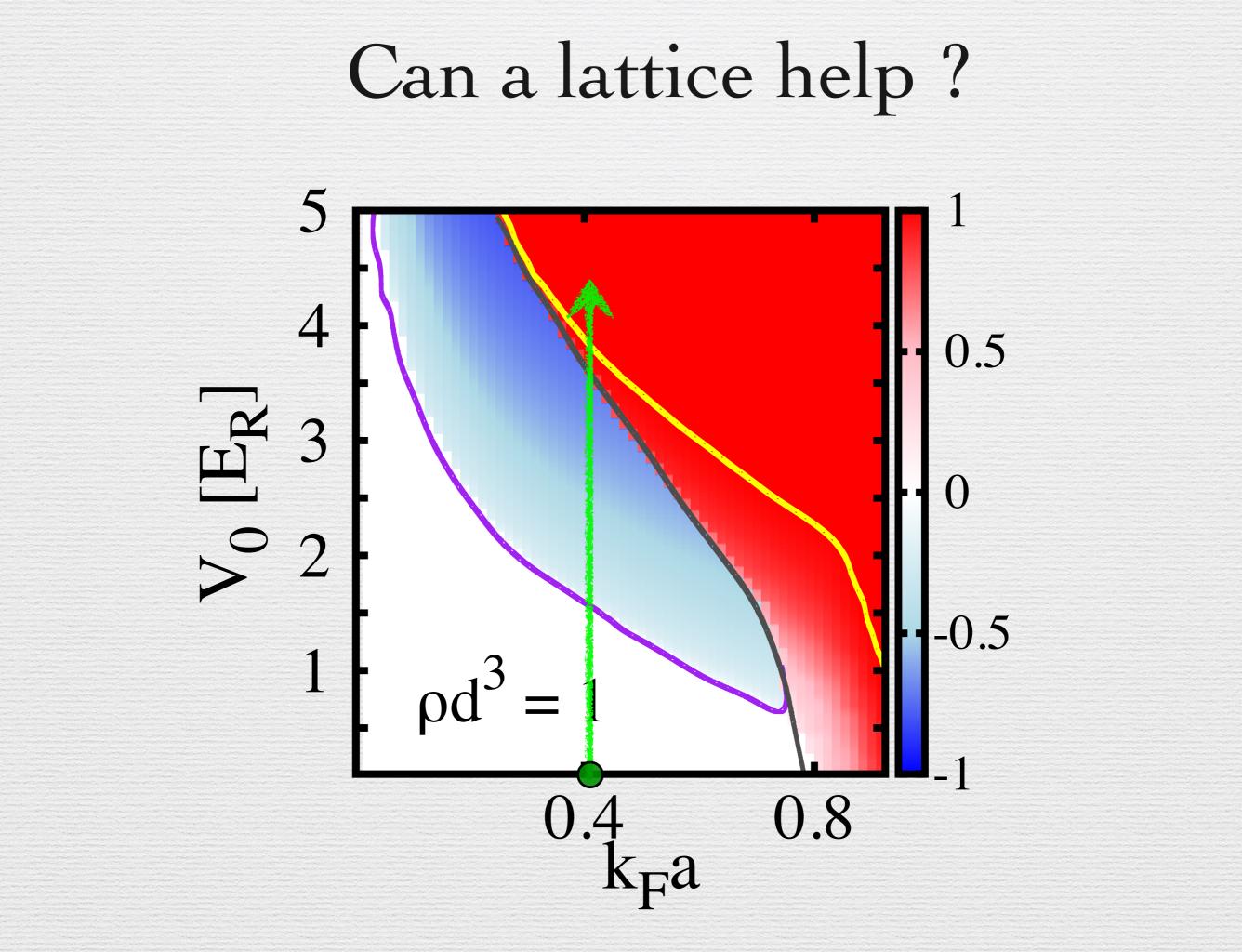
• 2012: Pair formation in repulsive Fermi gas (Sanner, PRL, Lee, PRA)

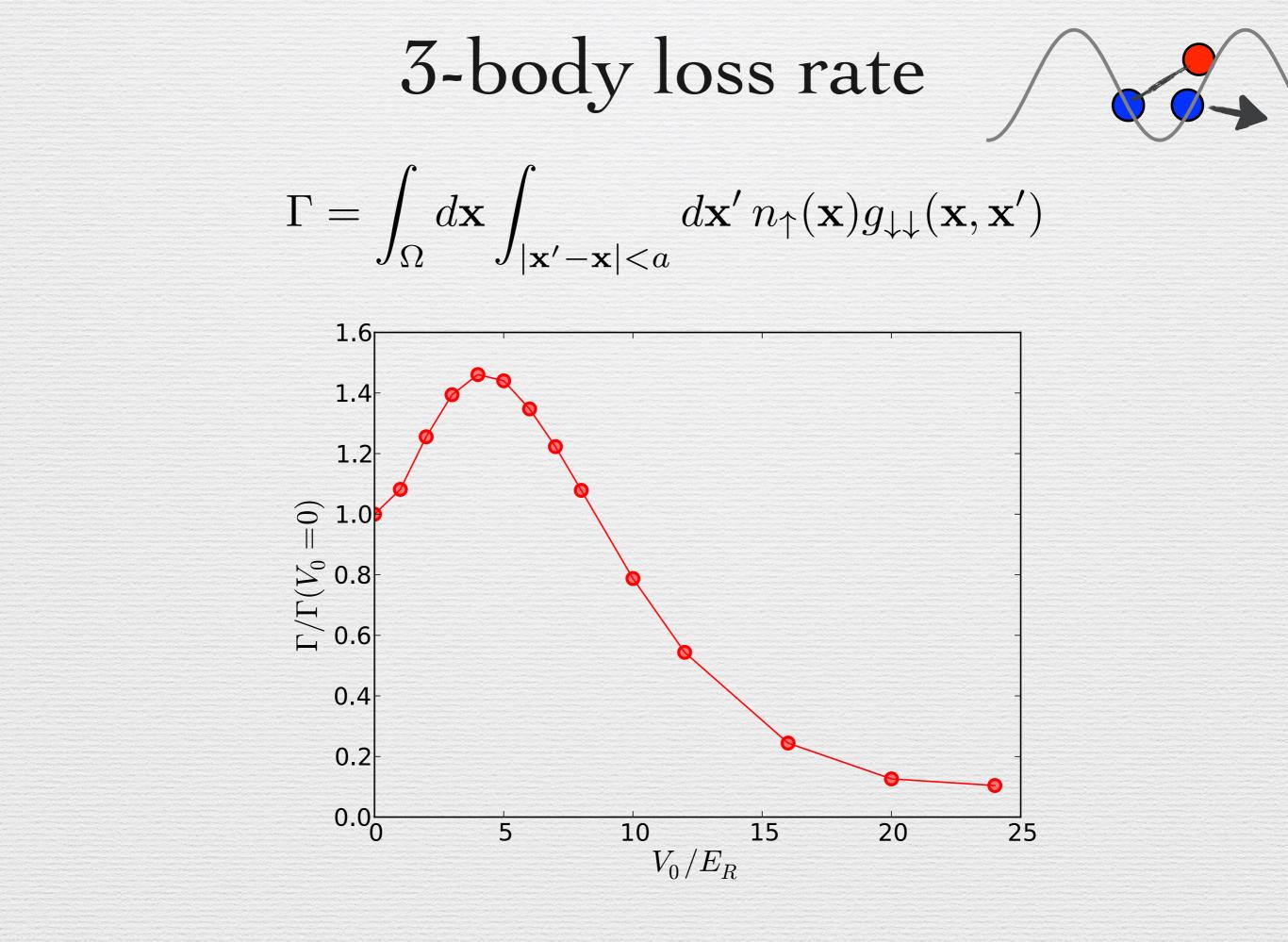
Our conclusion is that an ultracold gas with strong short range repulsive interactions near a Feshbach resonance remains in the paramagnetic phase. The fast formation of molecules and the accompanying heating makes it impossible to study such a gas in equilibrium, confirming predictions of a rapid conversion of the atomic gas to pairs





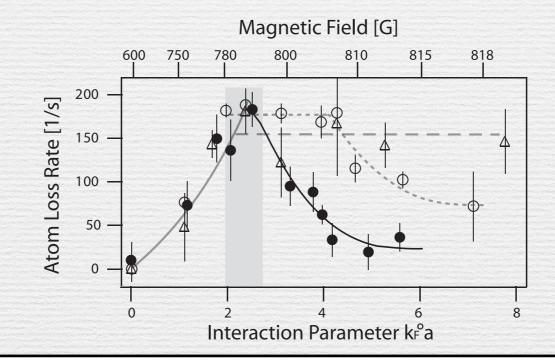






Back to Trap

Jo, Science 2009

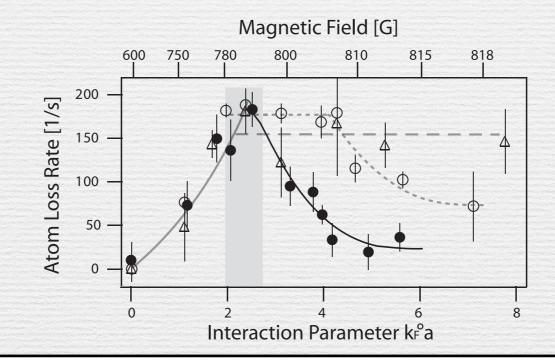


a = 0.02

ᇲ

Back to Trap

Jo, Science 2009

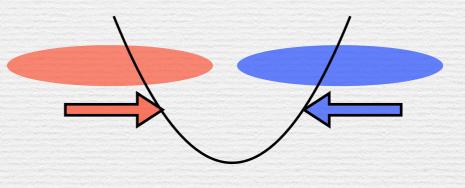


a = 0.02

ᇲ

Back to Trap

Sommer, Nature 2011



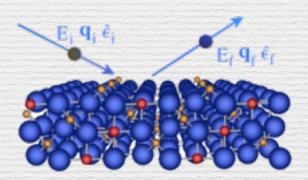
a = 0.02

Time-dependent DFT Runge, Gross 1984

• Time-dependent density obtained from

$$i\frac{\partial}{\partial t}\psi_j(\mathbf{r},t) = \left[-\frac{\hbar^2\nabla^2}{2m} + V_{\text{ext}}(\mathbf{r},t) + V_{\text{H}}(\mathbf{r},t) + V_{\text{xc}}[\rho(\mathbf{r}',t')](\mathbf{r},t)\right]\psi_j(\mathbf{r},t)$$

- TDDFT is exact with exact exchange-correlation potential-> adiabatic local-density approximation
- Widely applied to dynamics in chemistry, biophysics and solidstate physics, see <u>http://www.tddft.org</u>/

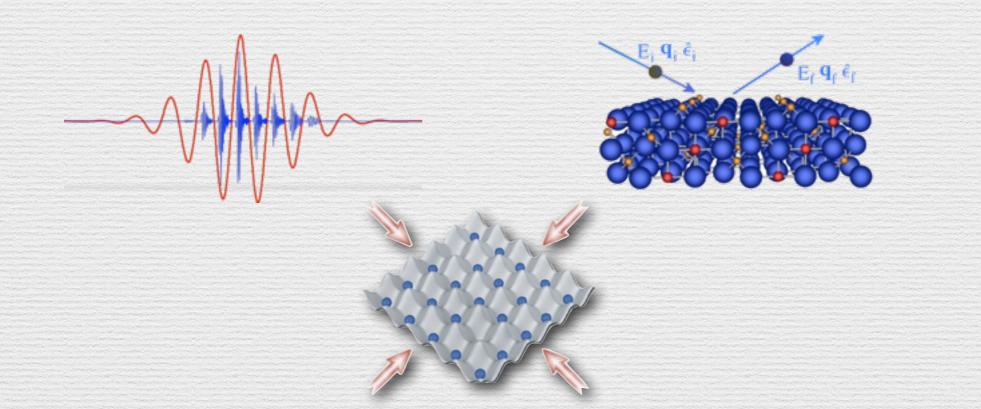


Time-dependent DFT Runge, Gross 1984

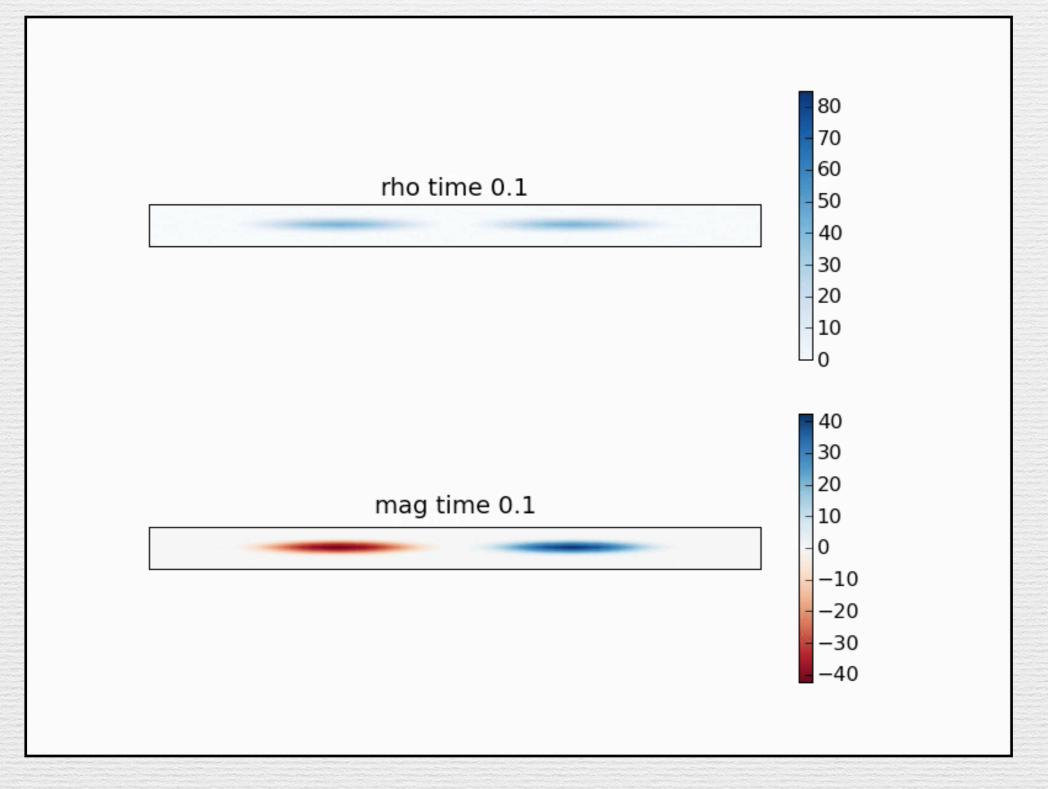
• Time-dependent density obtained from

$$i\frac{\partial}{\partial t}\psi_j(\mathbf{r},t) = \left[-\frac{\hbar^2\nabla^2}{2m} + V_{\text{ext}}(\mathbf{r},t) + V_{\text{H}}(\mathbf{r},t) + V_{\text{xc}}[\rho(\mathbf{r}',t')](\mathbf{r},t)\right]\psi_j(\mathbf{r},t)$$

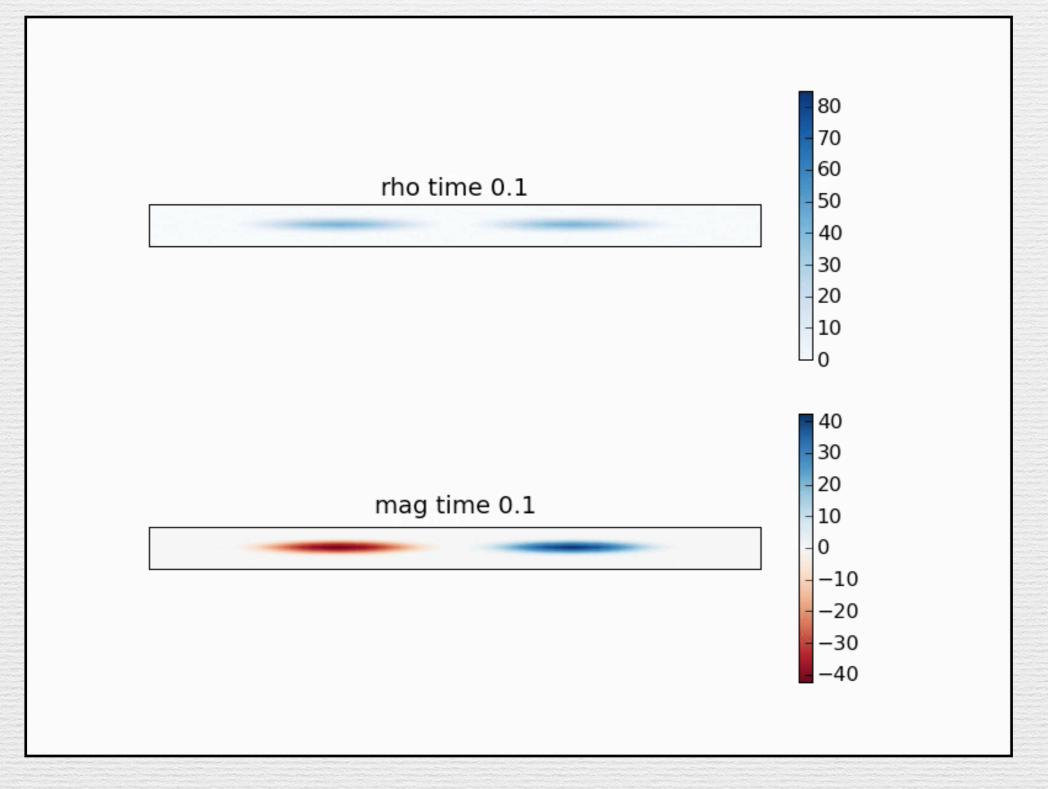
- TDDFT is exact with exact exchange-correlation potential-> adiabatic local-density approximation
- Widely applied to dynamics in chemistry, biophysics and solidstate physics, see <u>http://www.tddft.org</u>/



Strongly interacting: Bounce



Strongly interacting: Bounce



Finite-temperature DFT for unitary Fermi gas

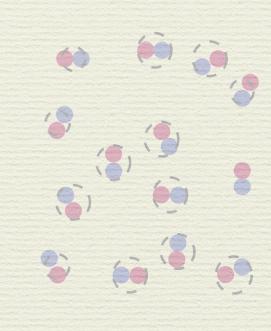
Condensation

Pairing

Normal Fermi liquid

Superfluid

Unitarity



Normal

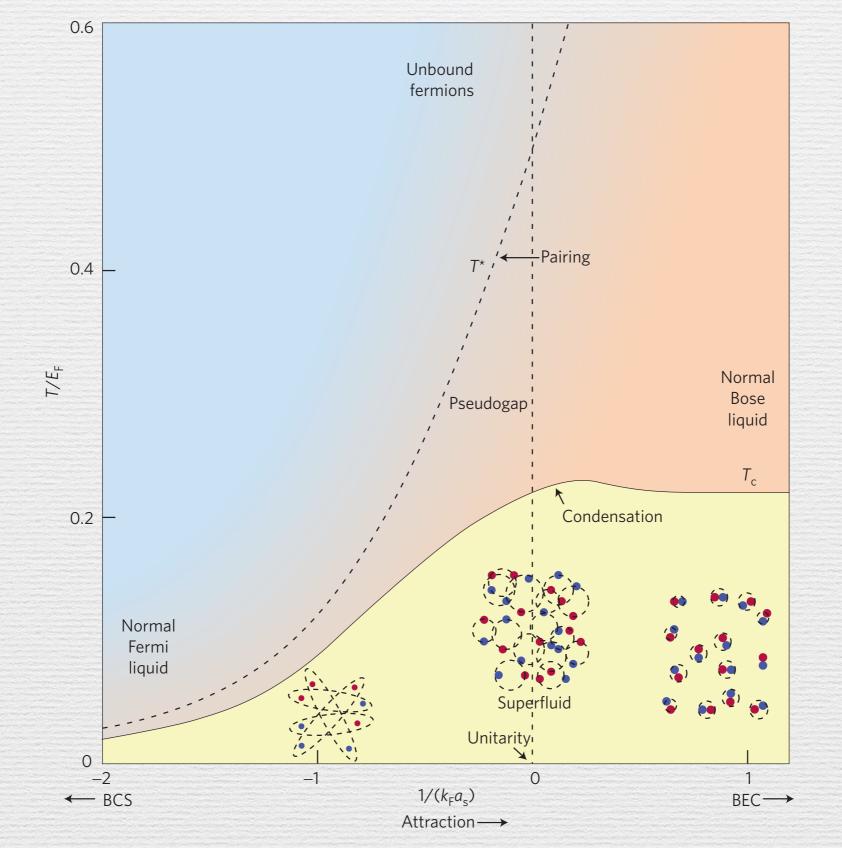
Bose

liquid

 $T_{\rm c}$

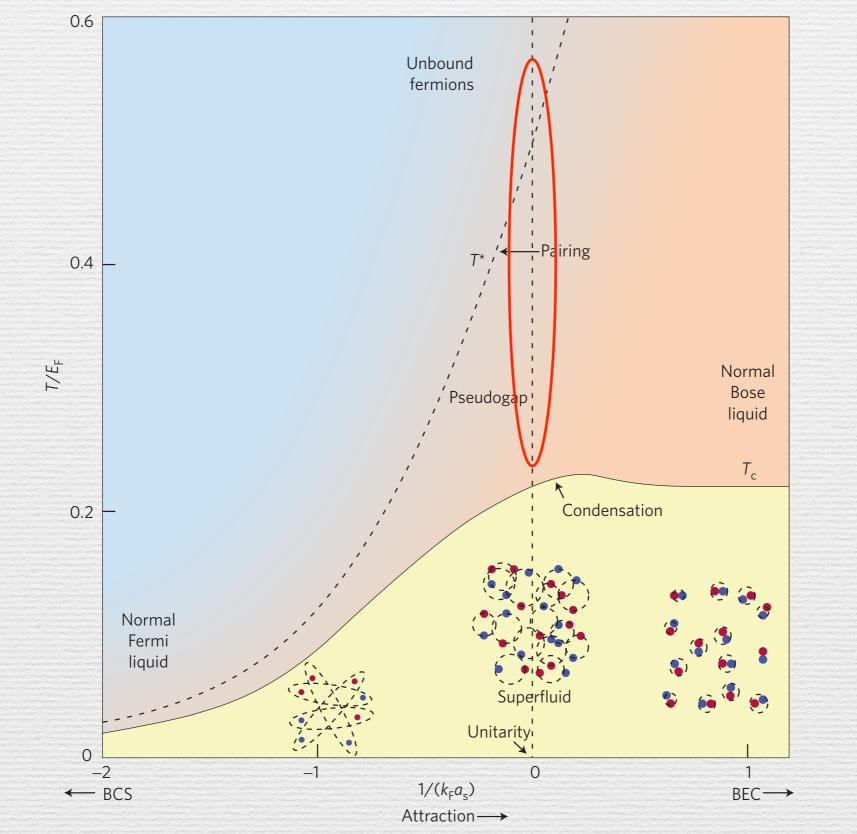
Unitary Fermi gas

Randeria 2010



Unitary Fermi gas

Randeria 2010



Finite-T DFT

Mermin 1965 Kohn,Sham 1965

 $\Omega^{T}[\rho] = K^{T}[\rho] + F_{\text{HXC}}^{T}[\rho] + \int d\mathbf{r} (V_{\text{ext}}(\mathbf{r}) - \mu)\rho(\mathbf{r})$

Finite-T DFT

Mermin 1965 Kohn,Sham 1965

 $\Omega^{T}[\rho] = K^{T}[\rho] + F_{\text{HXC}}[\rho] + \int d\mathbf{r} (V_{\text{ext}}(\mathbf{r}) - \mu)\rho(\mathbf{r})$

 $\left(-\frac{\hbar^2 \nabla^2}{2m} + V_{\text{ext}} + V_{\text{HXC}}[\rho]\right)\psi_j = \varepsilon_j \psi_j \qquad \rho = 2\sum_j \frac{|\psi_j|^2}{e^{(\varepsilon_j - \mu)/k_BT} + 1}$

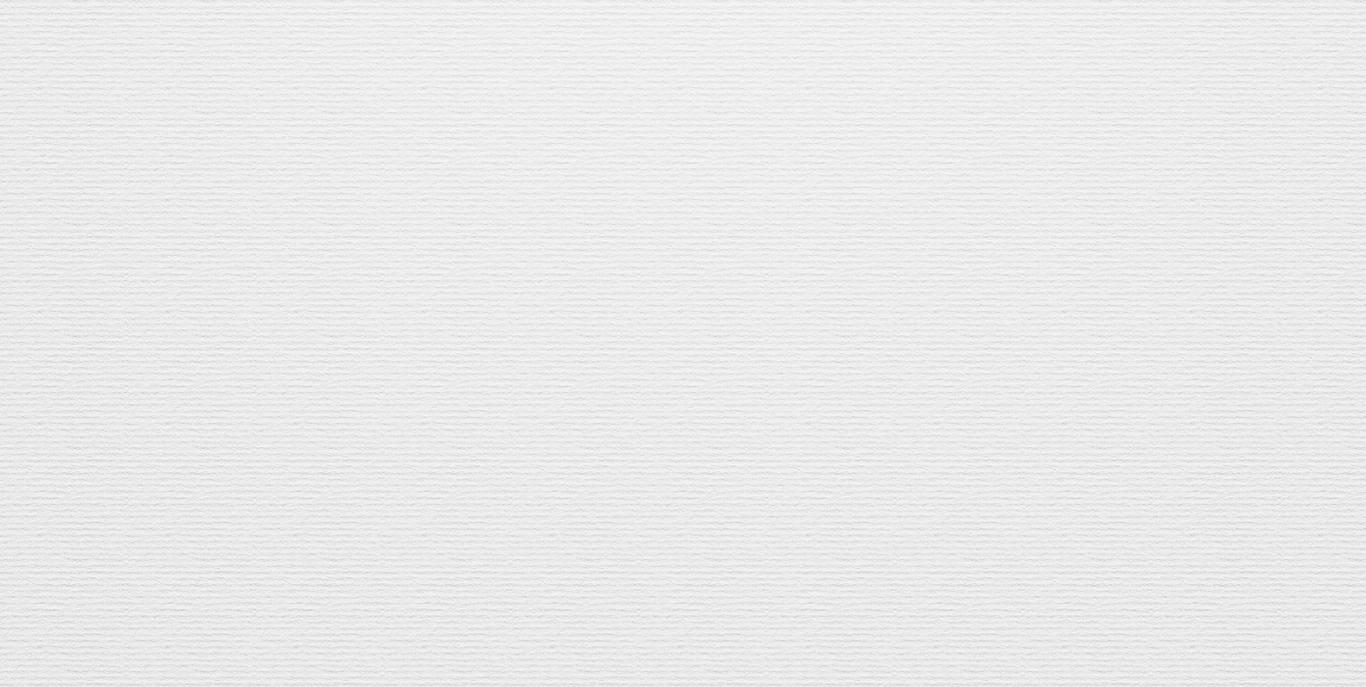
Finite-T DFT Mermin 1965 Kohn, Sham 1965 $\Omega^{T}[\rho] = K^{T}[\rho] + F_{\text{HXC}}[\rho] + \int d\mathbf{r} (V_{\text{ext}}(\mathbf{r}) - \mu)\rho(\mathbf{r})$ $\left(-\frac{\hbar^2 \nabla^2}{2m} + V_{\text{ext}} + V_{\text{HXC}}[\rho]\right)\psi_j = \varepsilon_j \psi_j \qquad \rho = 2\sum_j \frac{|\psi_j|^2}{e^{(\varepsilon_j - \mu)/k_B T} + 1}$

Finite-T DFT Mermin 1965 Kohn, Sham 1965 $\Omega^{T}[\rho] = K^{T}[\rho] + F_{\text{HXC}}^{T}[\rho] + \int d\mathbf{r} (V_{\text{ext}}(\mathbf{r}) - \mu)\rho(\mathbf{r})$ $\left(-\frac{\hbar^2 \nabla^2}{2m} + V_{\text{ext}} + V_{\text{HXC}}[\rho]\right)\psi_j = \varepsilon_j \psi_j \qquad \rho = 2\sum_j \frac{|\psi_j|^2}{e^{(\varepsilon_j - \mu)/k_B T} + 1}$

LDA

 $\overline{V_{\text{HXC}}^{T}} = \frac{F_{\text{HXC}}^{T}[\rho]}{\delta\rho} \approx \mu^{T}(\rho) - \mu_{0}^{T}(\rho)$

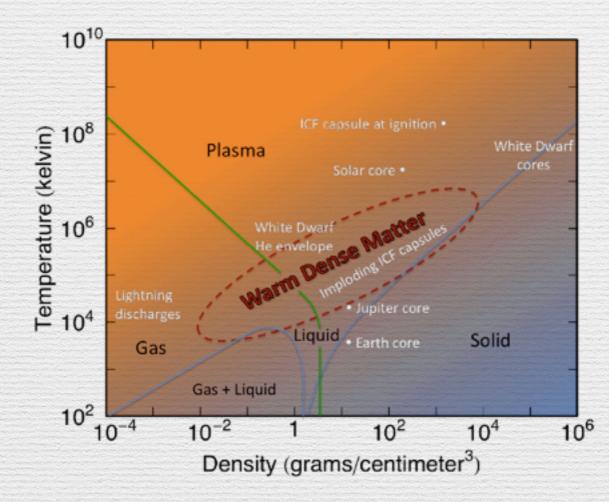
• Lack of finite-T energy functional



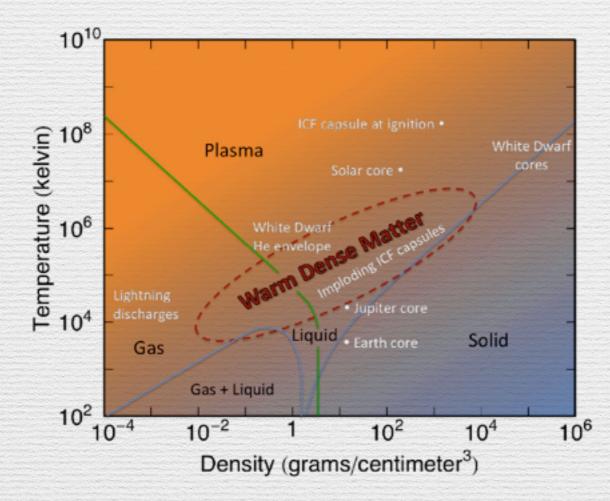
- Lack of finite-T energy functional
- Just use T=0 one ?

- Lack of finite-T energy functional
- Just use T=0 one ?
- But ...

- Lack of finite-T energy functional
- Just use T=0 one ?
- But ...

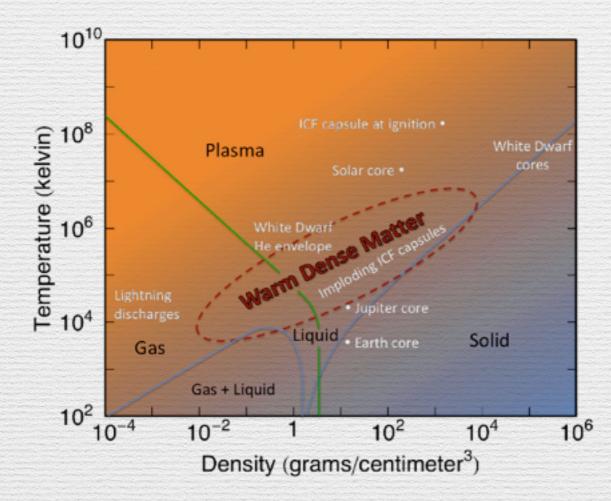


- Lack of finite-T energy functional
- Just use T=0 one ?
- But ...



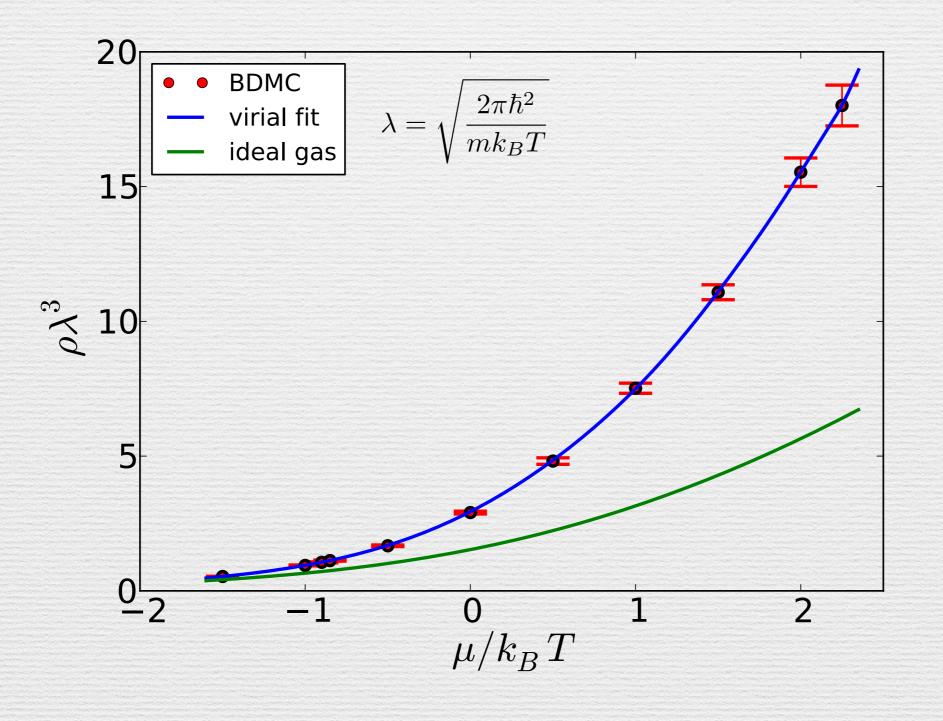
 $T \sim E_F$

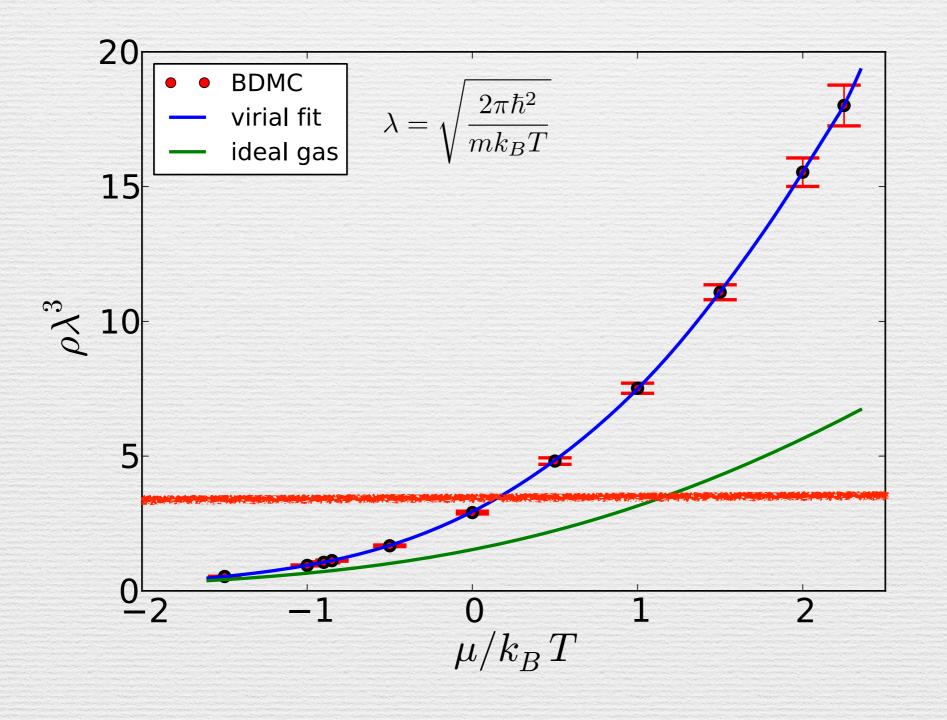
- Lack of finite-T energy functional
- Just use T=0 one ?
- But ...

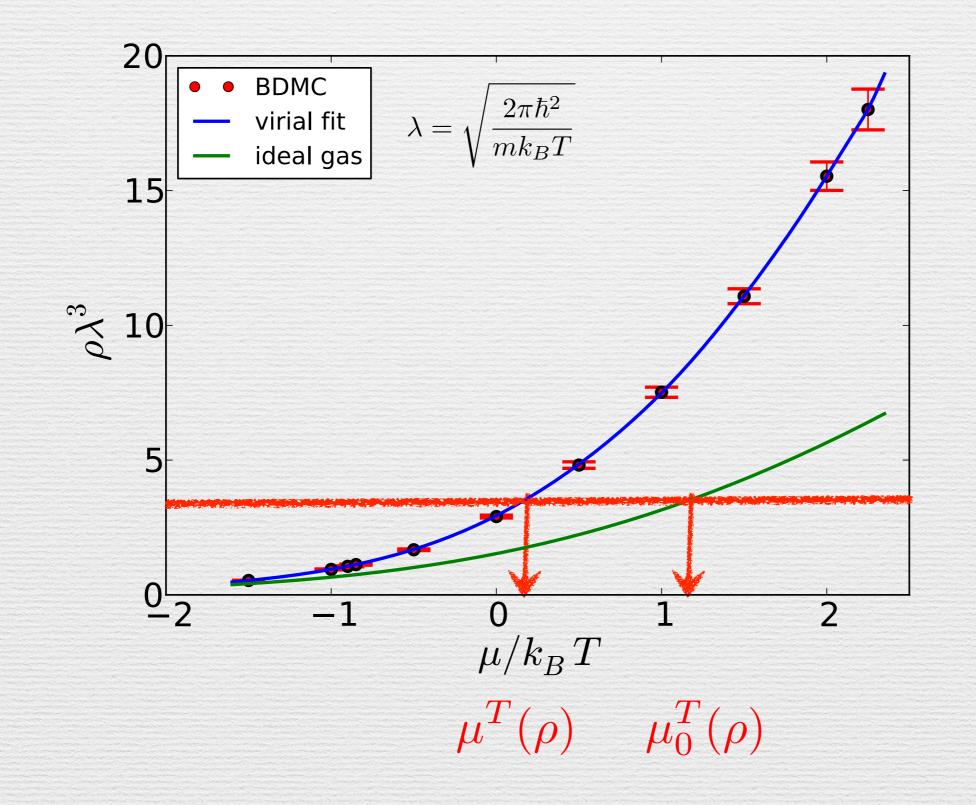


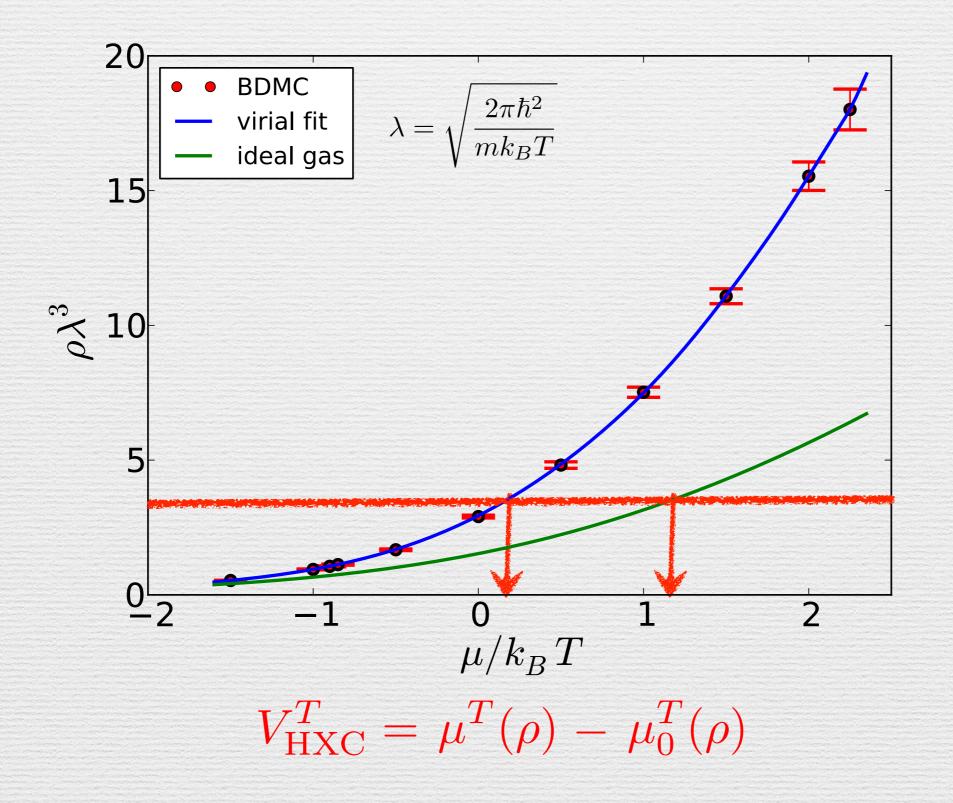
 $T \sim E_F$

So does UFG!

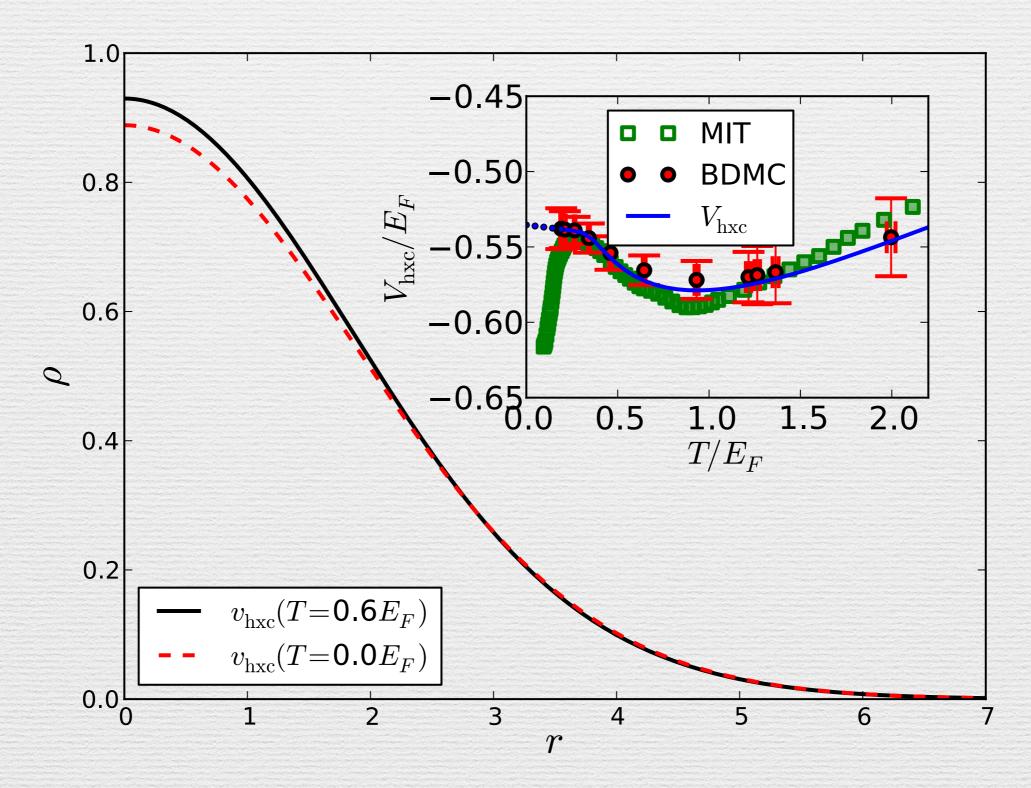




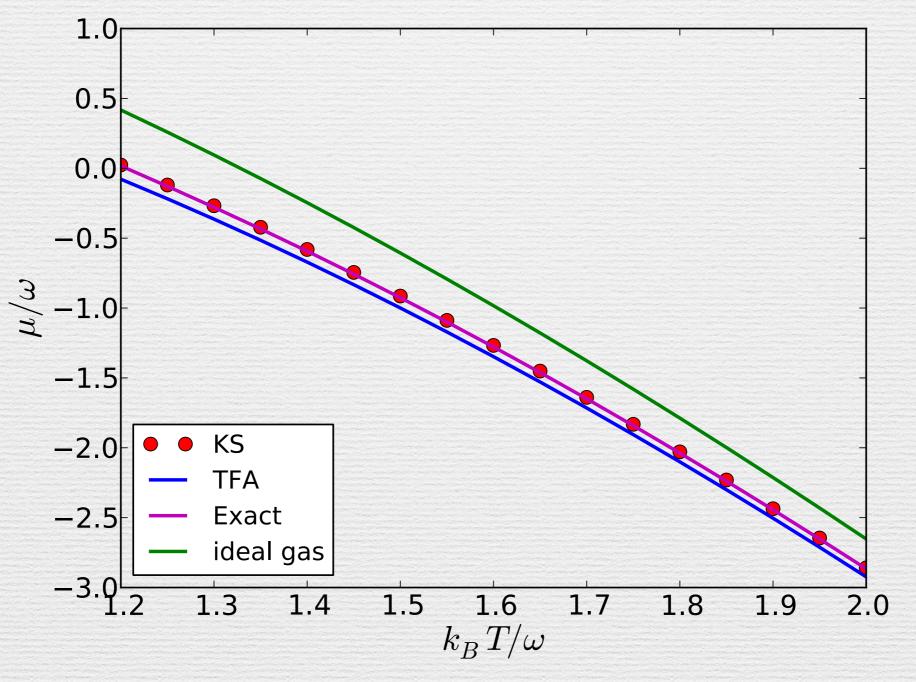




Temperature dependence of V_{HXC}

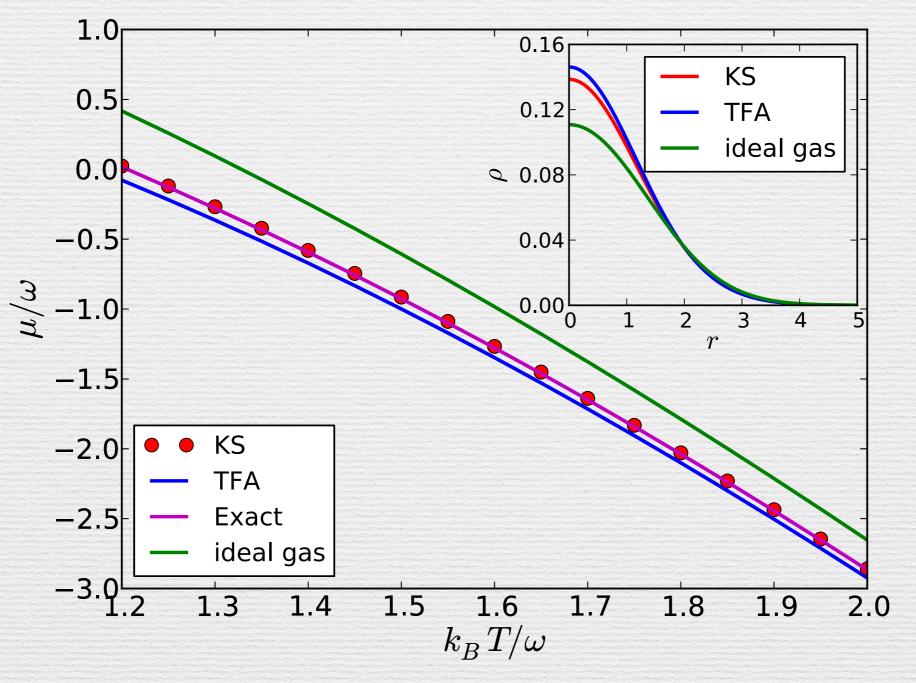


Four atoms in a trap

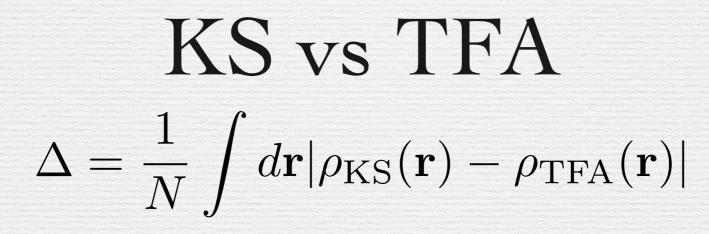


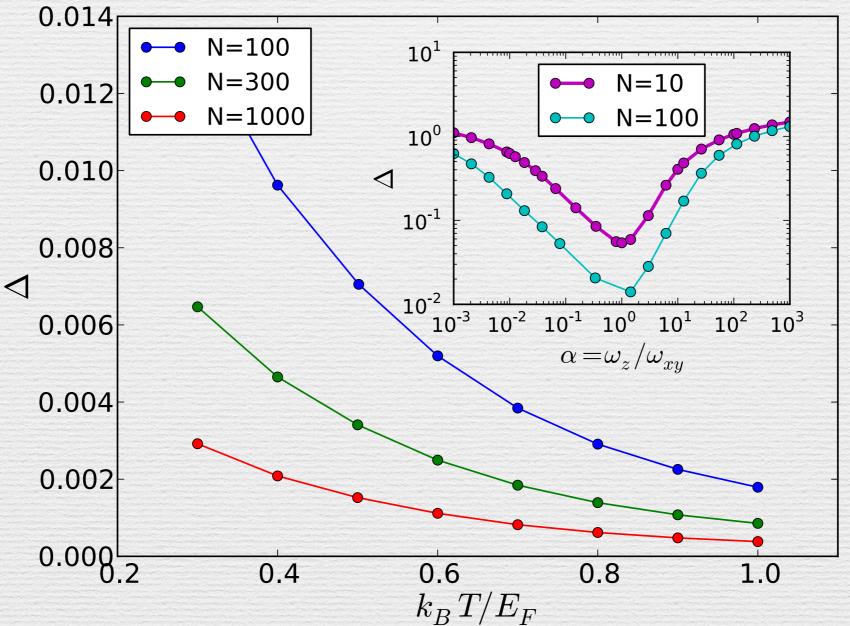
 $N = \frac{2e^{-3\omega/2k_BT}}{(1 - e^{-\omega/k_BT})^3} (z + 2b_2^{\omega}z^2 + 3b_3^{\omega}z^3 + \dots) \qquad z = e^{\mu/k_BT}$

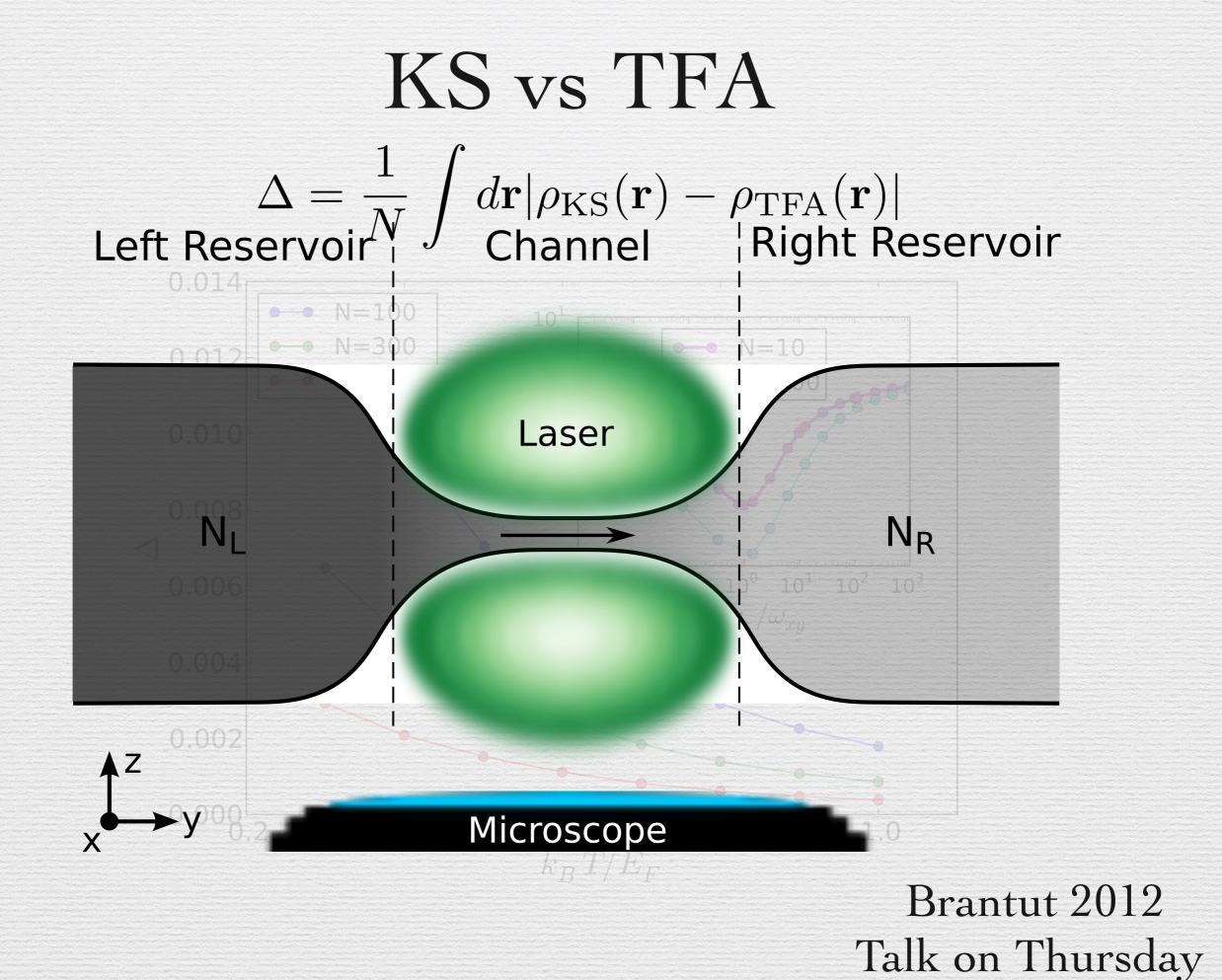
Four atoms in a trap



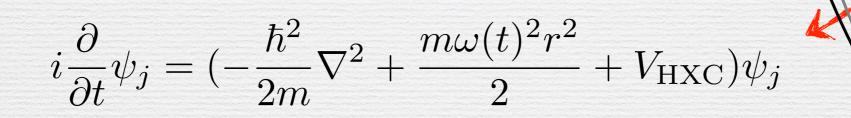
 $N = \frac{2e^{-3\omega/2k_BT}}{(1 - e^{-\omega/k_BT})^3} (z + 2b_2^{\omega}z^2 + 3b_3^{\omega}z^3 + \dots) \qquad z = e^{\mu/k_BT}$

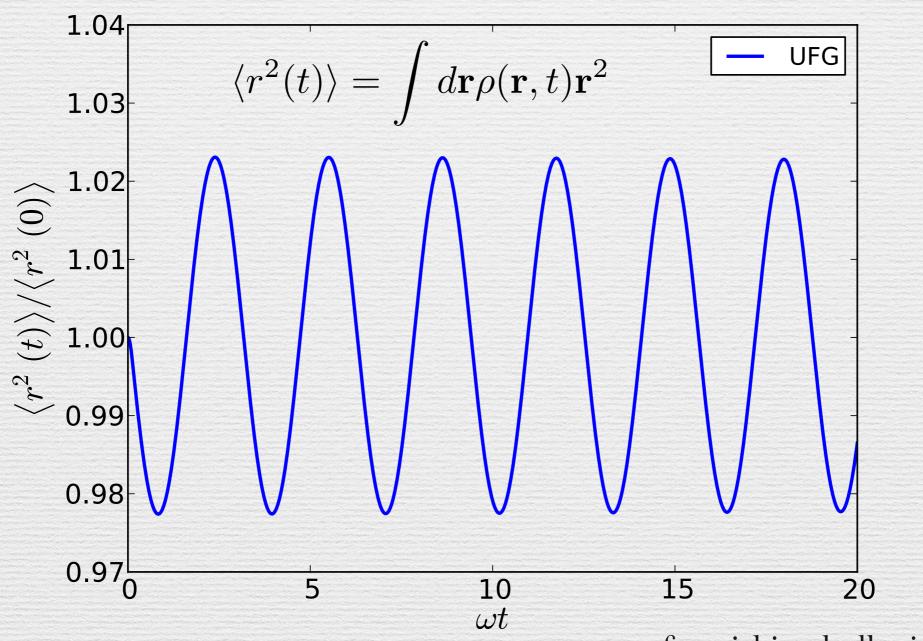






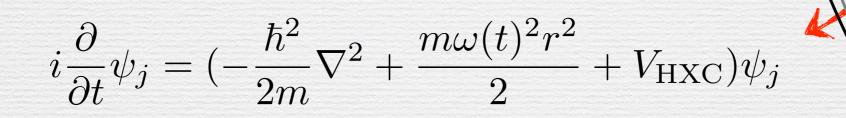
Breathing mode

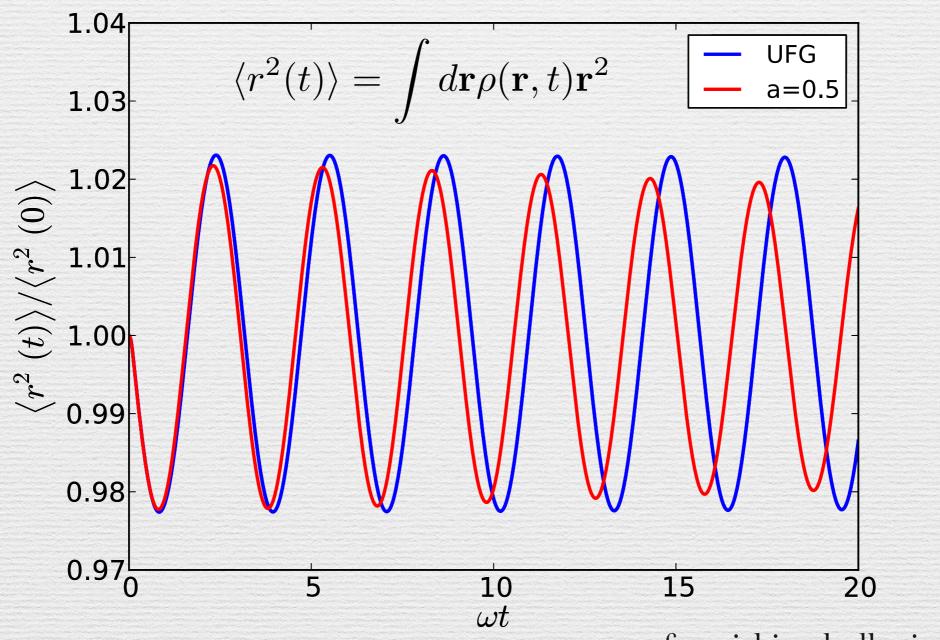




cf vanishing bulk viscosity of UFG Castin 2004, Son 2007

Breathing mode

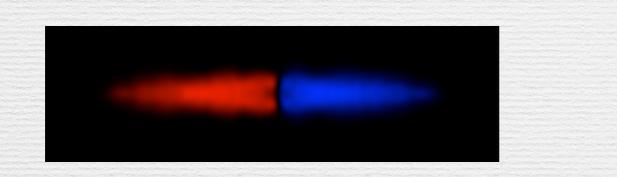


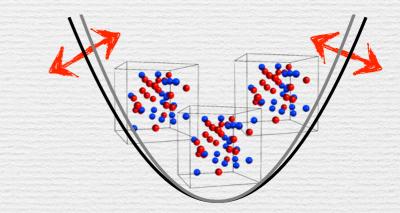


cf vanishing bulk viscosity of UFG Castin 2004, Son 2007

Summary & Outlook

• DFT is a useful tool for statics and dynamics of cold atoms systems





- In long term...
 - Bosons, superfluidity, open systems ...
 - Well controllable cold atom experiments can be used to calibrate and improve DFT itself

