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Pump is a device that moves fluids, or sometimes 
slurries, by mechanical action.



Pumps
Pump is a device that moves fluids, or sometimes 
slurries, by mechanical action.



Pumps
Pump is a device that moves fluids, or sometimes 
slurries, by mechanical action.

Archimedes’ screw ~250 BC



Pumps

Buttiker, Brouwer, Zhou, Spivak, Altshuler ...

Pump is a device that moves fluids, or sometimes 
slurries, by mechanical action.

Pump for Electrons (2)
Examples: 

• quantum dot with shape-distorting gate voltages x1, x2

• conductor penetrated by Aharonov-Bohm fluxes x , x• conductor penetrated by Aharonov-Bohm fluxes x1, x2
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x2

x1 x2
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Switkes et al. (1999)  Switkes et al 1999 Archimedes’ screw ~250 BC



Topological pump
A device transfers quantized charge in each pumping 
cycle. 

Thouless 1983

Su Schrieffer Heeger Model model for polyacetalene
simplest “two band” model
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Provided symmetry requires dz(k)=0, the states with �t>0 and �t<0 are topologically distinct.
Without the extra symmetry, all 1D band structures are topologically equivalent.
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n Current flows in an insulating state

n No dissipation! 

n Dynamical analog of quantum Hall effect



Experimental progresses

Optical Superlattice in-situ imaging

Full (independent) dynamical
control over V1, V2 and φ

Gemelke et al, Sherson et al, Bakr et al 

per lattice site, exhibit a corresponding variance in the particle
number s2i~!nni . When the interactions between the particles relative
to their kinetic energy are increased, the systemundergoes a quantum

phase transition to aMott insulating state4–6. For homogeneous con-
ditions and a two-dimensional simple square lattice, this transition is
expected to occur at U=Jð Þc^16:4 (see ref. 23), where small shifts of
this critical value have been reported when the system is additionally
exposed to an underlying harmonic trapping potential24. In our case,
such an additional harmonic confinement was caused by the
Gaussian beam profile of our lattice beams (1/e2 waist of 75 mm)
and resulted in an in-plane harmonic confinement with trapping
frequencies vx/(2p)5 72(4)Hz and vy/(2p)5 83(4)Hz for lattice
depths of Vx,y5 23(2)Er. For U=J ? U=Jð Þc the Mott insulator
can be described by neglecting the tunnelling energy of the system
in the so called zero-tunnelling approximation (atomic limit). The
in-trap density distribution then exhibits a pronounced shell struc-
ture of incompressible regions where the density is pinned to integer
values and increases in a step-likemanner from the outer wings to the
inner core5,16,25,26. At zero temperature, the particle number variance
at a lattice site is then expected to vanish (s2i~0), resulting in perfect
Fock states. For low, but still finite temperatures kBT = U , thermal
fluctuations can be induced. These fluctuations limit the quality of
the number squeezing and eventually lead to a complete melting of
the characteristic shell structure of a Mott insulator when the tem-
perature is increased above the melting temperature Tm^0:2U=kB
(see refs 20 and 21).

We monitored the dramatic differences in the density profiles and
the on-site number fluctuations by imaging the in-trap atom distri-
butions of a BEC and aMott insulator in the zero-tunnelling limit for
different atom numbers and temperatures (see top row of Fig. 2). For
the Mott insulators, the lattices along the x and y directions were
increased in S-shaped ramps within 75ms up to values of
Vx,y5 23(2)Er. To freeze out the atom distribution of a BEC, we
ramped up the lattices within 0.1ms. Using the point spread function
of our optical imaging system we were able to reconstruct the atom
number distribution on the lattice with single-site and single-atom
resolution via an image processing algorithm (seeMethods). It works
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Figure 2 | High-resolution fluorescence images of a BEC and Mott
insulators. The top row shows experimentally obtained raw images of a BEC
(a) and Mott insulators for increasing particle numbers (b–g) in the zero-
tunnelling limit. The middle row shows numerically reconstructed atom
distribution on the lattice. The images were convoluted with the point
spread function (* indicates the convolution operator) of our imaging

system for comparison with the original images. The bottom row shows the
reconstructed atomnumber distribution. Each circle indicates a single atom;
the pointsmark the lattice sites. The BEC andMott insulators were prepared
with the same in-plane harmonic confinement (see Supplementary
Information for the Bose–Hubbard model parameters of our system).
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Figure 1 | Experimental set-up. Two-dimensional bosonic quantumgases are
prepared in a single two-dimensional plane of an optical standing wave along
the z direction, which is created by retroreflecting a laser beam (l5 1,064 nm)
on the coated vacuum window. Additional lattice beams along the x and y
directions are used to bring the system into the strongly correlated regime of a
Mott insulator. The atoms are detected using fluorescence imaging via a high-
resolution microscope objective. Fluorescence of the atoms was induced by
illuminating the quantum gas with an optical molasses that simultaneously
laser-cools the atoms. The inset shows a section from a fluorescence picture of
a dilute thermal cloud (points mark the lattice sites).
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Su, Schrieffer, Heeger, 1979

1D pumping lattices 
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Su, Schrieffer, Heeger, 1979

1D pumping lattices 
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Quantization of pumped charge

j(x, t)
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Quantization of pumped charge

j(x, t)
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Connection to IQHE

Integer Quantum Hall Effect :  Laughlin Argument

Adiabatically thread a quantum of magnetic flux through cylinder.
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Connection to IQHE

Integer Quantum Hall Effect :  Laughlin Argument

Adiabatically thread a quantum of magnetic flux through cylinder.
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Adiabatic Connection

V1 = 0 V2 = 4ERV1 = 4ER V2 = 4ER
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Practical issues

n Detection

n External trap 

n Temperature effect

n Non-adiabatic effect 



Trapping & Detection
LW, Troyer and Dai, 1301.7435 

PRL in press 

�n = hxi/d
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Temperature & Non-adiabatic effect

Temperature ⌧ �
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Temperature & Non-adiabatic effect
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Measure Chern number 
of 2D optical lattice

Topological pumping effect
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Synthetic gauge-field in 
optical lattices

n Imprint complex phases to the hopping amplitude 

subsequently deload all atoms into the jmF ¼ þ1i spin
state while mapping the occupied crystal momentum kx to
free-particle momentum [14]. We image this distribution
after a 13.1 ms TOF, revealing kmin. The Peierls phase,
shown as crosses in Fig. 3(a), is !=" ¼ kmin=kL.

In the sudden method, we test the robustness of the
Peierls phase ! by first adiabatically loading to ! ¼ #"
(the condensate sits at the edge of the Brillouin zone) and
then suddenly changing both!z and!rf [18] to new values
(changing both ! and t). This results in momentum space
oscillations centered at kmin. After a time # we release the
BEC, and measure as above. We fit the crystal momentum
dynamics with kxð#Þ¼kminþ"kxcosð2"#f&þ$Þ, where
"kx is the amplitude, and $ is an overall phase shift whose
average value is 0:9ð1Þ" for these measurements [14].
Figure 3(a) (circles) shows the measured Peierls tunneling
phase as a function of !z.

Measurements from the adiabatic and sudden methods
are in good agreement with each other and their expected
values [Fig. 3(a), dashed curves], highlighting the precise
experimental control offered by our rf-Raman induced
effective Zeeman lattice. This agreement also demon-
strates the robustness of our engineered Hamiltonian to
deliberate variations in !rf of up to 0:25EL, as was antici-
pated by the absence of !rf in the large !R expression for
!. We find that the hopping phase is unaltered by small
changes in !rf even when t changes significantly.

The sloshing amplitude j"kxj is displayed in Fig. 3(b).
For large initial j"kxj (shaded region) we observe the
depletion of BEC atoms and a strong damping of the center
of mass oscillation (evident from the departure of the

oscillation amplitude from the value predicted by single-
particle arguments). Both of these effects are signatures of
an energetic instability in the dynamics of a BEC moving
in a combined harmonic plus periodic potential [19]. The
region of strong damping observed in our system coincides
with the expected range "kx > 0:5kL (shaded gray region)
of this dynamical instability [19]. Figure 3(c) displays the
tunneling amplitude t, obtained from f&. For comparison, a
sinusoidal lattice would require a depth of V0 ' 8EL to
give similar parameters.
Having discussed the behavior of atoms in the lattice’s

lowest band, we now explore the full lattice by suddenly
turning it on, diabatically projecting a ground state BEC
into higher bands. At the beginning of such a pulse, an
ordinary periodic potential would first spatially modulate
the BEC’s phase before the atoms begin to move [20]; our
effective Zeeman lattice induces such a modulation but in a
spin-dependent manner. We focus on the !R ( !rf and
!R ) !rf tight-binding regimes and investigate the spin
and spatial structure of our lattice. Our data extends well
beyond the short-time phase modulation regime.
In the absence of either Raman or rf coupling, there is no

lattice. As indicated in Fig. 4(a), we use two different
methods to introduce our lattice on an initial spatially
uniform state: (i) starting with a rf-dressed state (with
kx ¼ 0), we suddenly (ton < 1 %s) turn on the Raman

(a)

(b)

FIG. 2 (color online). Effective mass. (a) Comparison of the
oscillations of a BEC in the jmF ¼ *1i state to those in a rf-
Raman-dressed BEC [@!R ¼ 12:4ð9Þ EL and @!rf ¼ 2:04ð6Þ
EL]. The curves are fits to a sinusoid from which we obtain
fx ¼ 14:0ð1Þ Hz and f& ¼ 5:3ð1Þ Hz, thus m&=m ¼ 7:0ð3Þ and
t ¼ 0:015ð1ÞEL. (b) Measurements of m&=m as a function of!R

and !rf . The curves depict the expected m&=m ratio.

(a)

(b)

(c)

FIG. 3 (color online). Peierls transformation. (a) Peierls phase
! measured using adiabatic (crosses) and sudden (circles)
changes of !z. Vertical lines denote the first Brillouin zone.
(b) Sloshing amplitude after suddenly changing !z. We ob-
served strong damping of oscillations in the region shaded in
gray. (c) Tunneling amplitude t measured from oscillation fre-
quency. The rf coupling was modulated as a function of !z to
test the robustness of the Peierls phase !. The Raman coupling
was held at @!R ¼ 10:0ð8ÞEL. The dashed curves correspond to
the expected behavior calculated from HrfþR, and the pink bands
arise from the experimental uncertainty in !R.

PRL 108, 225303 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
1 JUNE 2012

225303-3

Jimenez-Garcıa et al

k ¼ A=@. As will be detailed later on, we experimentally
observe the relaxation of the condensate quasimomentum
toward the minimum of the effective dispersion relation.
Therefore, the imprinted Peierls phase can be directly read
out from the quasimomentum distribution revealed in the
time of flight after a sudden switch off of the lattice and the
external potential.

As a central result, Fig. 2(b) shows the experimental data
together with the theoretical predictions from Eq. (3). After
increasing the forcing amplitude slowly (within up to
120 ms) to the desired value, the corresponding quasimo-
mentum distribution was recorded. From the obtained
time-of-flight images, examples of which are shown in
Fig. 2(c), we extract the Peierls phases ! [22]. We observe
an excellent agreement between experiment and theory,
thus proving the controlled generation of an arbitrary
vector gauge potential encoded into the Peierls phase ! 2
½0; 2"½. In addition, the experimental images demonstrate
the large degree of coherence maintained in the atomic
sample throughout the shaking process. As an additional
feature, Fig. 2(a) shows that the Peierls phase allows us

now to invert the sign of the effective tunneling element
without crossing jJeffj ¼ 0 via the rotation in the complex
plane.
In the following, we will discuss the details of the

relaxation of the system toward nonzero quasimomenta
superfluid states, allowing for the described direct mea-
surement of the Peierls phase. Note that for an homoge-
neous and noninteracting system, the initial Bloch wave at
ki ¼ 0 remains an eigenstate of the effective Hamiltonian.
Thus, no transfer to states with k ! 0 is expected after the
shaking is turned on. However, since we are working with
interacting bosons and an external harmonic confinement,
more effects come into play.
When the gauge potential is ramped up from 0 to Af, the

condensate acquires a nonzero group velocity, reflecting
the presence of an artificial electric force FE ¼ # _A. This
velocity induces a displacement of the condensate’s center-
of-mass position xc in the harmonic potential of frequency
f [22]. The resulting restoring force induces oscillations
both in position and momentum space [see Fig. 3(a)]. In
Fig. 3(b), we report a time-resolved measurement of the
condensate quasimomentum after a quench to a final
Peierls phase of #"=4. The oscillations around the final
quasimomentum result from an excitation of the dipole
mode: The measured frequency of 3:6$ 0:4 Hz perfectly
matches the expected dressed condensate frequencyffiffiffiffiffiffiffiffiffiffiffiffiffi
m=m%p

f for particles having an effective mass m% in the
lattice of 10$ 1Erec depth with a tunneling amplitude of
0:3Jbare (ftheo ¼ 3:5$ 0:5 Hz). The coupling to nonzero
quasimomenta results thus from the underlying harmonic
trapping potential.
In addition, this center-of-mass dynamics is subjected to

several damping mechanisms induced by the trap anhar-
monicity or the lattice discreteness, which leads to a cou-
pling to other collective modes and therefore to the
relaxation of the BEC toward the new equilibrium state.
Therefore, the duration of the ramp from 0 to Af has to be
compared with the time scale of those relaxation mecha-
nisms. In Fig. 3 we compare time-resolved measurements
of the quasimomentum distribution for a slow ramp
[Fig. 3(d)] of A to a final Peierls phase ! ¼ 3"=2, with a
sudden quench [Fig. 3(f)]. As the gauge field is slowly
increased, the BEC follows the shift of the dispersion
relation minimum, as depicted in Fig. 3(c). For the quench,
on the contrary, for which the shift of the dispersion
relation occurs within 1 ms, the system cannot follow
and thus relaxes into the nearest minimum of the effective
band structure [see Fig. 3(e)]. For the chosen value, this
minimum lies on the left with respect to the original k ¼ 0
peaks and we thus find the BEC at k ¼ #"=2d. This
demonstrates clearly that in the presence of these relaxa-
tion mechanisms, the forcing does not induce a net particle
current in the lattice, unlike for ratchets, but allows the
engineering of ground-state superfluids at arbitrary non-
zero quasimomenta.

(a)

(b)

(c)

FIG. 2 (color). Creation of complex tunneling matrix ele-
ments. (a) Absolute value of the tunneling parameter obtained
from Eq. (3) for our experimental parameters (T1 þ T2 ¼ 1 ms
and T1=T2 ¼ 2:1). (b) The measured Peierls phases in a 1D
driven optical lattice for different values of the forcing amplitude
K are depicted as circles. The dashed red curve corresponds to
the theoretically expected values [Eq. (3)]. (c) Quasimomentum
distribution of the BEC after 27 ms time of flight for different
values of K. The Peierls phase as a function of K is deduced
from the observed shifts of the interference patterns.
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Experimental Realization of Strong Effective Magnetic Fields in an Optical Lattice

M. Aidelsburger,1,2 M. Atala,1,2 S. Nascimbène,1,2,3 S. Trotzky,1,2 Y.-A. Chen,1,2,* and I. Bloch1,2,†

1Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4, 80799 München, Germany
2Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany

3Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
(Received 26 September 2011; published 12 December 2011)

We use Raman-assisted tunneling in an optical superlattice to generate large tunable effective magnetic

fields for ultracold atoms. When hopping in the lattice, the accumulated phase shift by an atom is

equivalent to the Aharonov-Bohm phase of a charged particle exposed to a staggered magnetic field of

large magnitude, on the order of 1 flux quantum per plaquette. We study the ground state of this system

and observe that the frustration induced by the magnetic field can lead to a degenerate ground state for

noninteracting particles. We provide a measurement of the local phase acquired from Raman-induced

tunneling, demonstrating time-reversal symmetry breaking of the underlying Hamiltonian. Furthermore,

the quantum cyclotron orbit of single atoms in the lattice exposed to the magnetic field is directly revealed.

DOI: 10.1103/PhysRevLett.107.255301 PACS numbers: 67.85.!d, 03.65.Vf, 03.75.Lm, 73.20.!r

The application of strong magnetic fields to two-
dimensional electron gases has led to the discovery of
seminal quantum many-body phenomena, such as the in-
teger and fractional quantum Hall effect [1]. Ultracold
atoms constitute a unique experimental system for study-
ing such systems in a clean and well-controlled environ-
ment and for exploring new physical regimes, not
attainable in typical condensed matter systems [2,3].
However, charge neutrality of atoms prevents direct appli-
cation of the Lorentz force with a magnetic field. An
equivalent effect can be provided by the Coriolis force in
a rotating atomic gas, which led to the observation of
quantized vortices in a Bose-Einstein condensate [4]. The
regime of fast rotation, in which the atomic gas occupies
the lowest Landau level, was achieved in Refs. [5] but the
amplitude of the effective gauge field remained too small
to enter the strongly correlated regime that requires a
number of vortices on the order of the particle number
[2,6]. An alternative route consists in applying Raman
lasers to the gas in order to realize a Berry’s phase for a
moving particle [7,8]. The effective gauge fields generated
in such a setup resulted in the observation of a few vortices,
but were still far from the strong-field regime.

In this Letter, we demonstrate the creation of strong
effective magnetic fields for ultracold atoms in a two-
dimensional optical lattice. Inspired by the proposal of
Jaksch and Zoller [9] and subsequent work [10–12], our
technique is based on atom tunneling assisted by Raman
transitions [see Fig. 1(a)]. Because of the spatial variation
of the Raman coupling, the wave function of an atom
tunneling from one lattice site to another acquires a non-
trivial phase, which can be interpreted as an effective
Aharonov-Bohm phase. In our setup, the magnetic flux
per four-site plaquette is staggered with a zero mean,
alternating between !=2 and !!=2 [see Fig. 1(b)] [13].
We study the nature of the ground state in this optical

lattice from its momentum distribution and show, in par-
ticular, that the frustration associated with the effective
magnetic field can lead to a degenerate ground state for
single particles, similar to the prediction of Ref. [14]. We
also study the quantum cyclotron dynamics of single atoms
restricted to a four-site plaquette and obtain direct evidence
for time-reversal symmetry breaking of the Hamiltonian.
Our experimental setup consists of an ultracold gas of

87Rb atoms held in a two-dimensional square lattice, form-
ing an array of 1D Bose gases. The lattice was created by
two standing waves of laser light at "s ¼ 767 nm (‘‘short’’
lattices) and a third one with twice the wavelength

FIG. 1 (color). Experimental setup. (a) The experiment con-
sists of a 2D array of 1D potential tubes with spacing jdxj ¼
jdyj ¼ "s=2. While bare tunneling occurs along the y direction
with amplitude J, it is inhibited along x owing to a staggered
potential offset !. A pair of Raman lasers with wave vectors k1;2

and frequency difference !1 !!2 ¼ !=@, induces a resonant
tunnel coupling of magnitude K whose phase depends on posi-
tion. This realizes an effective flux ## per plaquette with
alternating sign along x. (b) Spatial distribution of the phase of
the Raman-induced tunnel coupling realized in the experiment.
The gray shaded area highlights the magnetic unit cell.
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subsequently deload all atoms into the jmF ¼ þ1i spin
state while mapping the occupied crystal momentum kx to
free-particle momentum [14]. We image this distribution
after a 13.1 ms TOF, revealing kmin. The Peierls phase,
shown as crosses in Fig. 3(a), is !=" ¼ kmin=kL.

In the sudden method, we test the robustness of the
Peierls phase ! by first adiabatically loading to ! ¼ #"
(the condensate sits at the edge of the Brillouin zone) and
then suddenly changing both!z and!rf [18] to new values
(changing both ! and t). This results in momentum space
oscillations centered at kmin. After a time # we release the
BEC, and measure as above. We fit the crystal momentum
dynamics with kxð#Þ¼kminþ"kxcosð2"#f&þ$Þ, where
"kx is the amplitude, and $ is an overall phase shift whose
average value is 0:9ð1Þ" for these measurements [14].
Figure 3(a) (circles) shows the measured Peierls tunneling
phase as a function of !z.

Measurements from the adiabatic and sudden methods
are in good agreement with each other and their expected
values [Fig. 3(a), dashed curves], highlighting the precise
experimental control offered by our rf-Raman induced
effective Zeeman lattice. This agreement also demon-
strates the robustness of our engineered Hamiltonian to
deliberate variations in !rf of up to 0:25EL, as was antici-
pated by the absence of !rf in the large !R expression for
!. We find that the hopping phase is unaltered by small
changes in !rf even when t changes significantly.

The sloshing amplitude j"kxj is displayed in Fig. 3(b).
For large initial j"kxj (shaded region) we observe the
depletion of BEC atoms and a strong damping of the center
of mass oscillation (evident from the departure of the

oscillation amplitude from the value predicted by single-
particle arguments). Both of these effects are signatures of
an energetic instability in the dynamics of a BEC moving
in a combined harmonic plus periodic potential [19]. The
region of strong damping observed in our system coincides
with the expected range "kx > 0:5kL (shaded gray region)
of this dynamical instability [19]. Figure 3(c) displays the
tunneling amplitude t, obtained from f&. For comparison, a
sinusoidal lattice would require a depth of V0 ' 8EL to
give similar parameters.
Having discussed the behavior of atoms in the lattice’s

lowest band, we now explore the full lattice by suddenly
turning it on, diabatically projecting a ground state BEC
into higher bands. At the beginning of such a pulse, an
ordinary periodic potential would first spatially modulate
the BEC’s phase before the atoms begin to move [20]; our
effective Zeeman lattice induces such a modulation but in a
spin-dependent manner. We focus on the !R ( !rf and
!R ) !rf tight-binding regimes and investigate the spin
and spatial structure of our lattice. Our data extends well
beyond the short-time phase modulation regime.
In the absence of either Raman or rf coupling, there is no

lattice. As indicated in Fig. 4(a), we use two different
methods to introduce our lattice on an initial spatially
uniform state: (i) starting with a rf-dressed state (with
kx ¼ 0), we suddenly (ton < 1 %s) turn on the Raman

(a)

(b)

FIG. 2 (color online). Effective mass. (a) Comparison of the
oscillations of a BEC in the jmF ¼ *1i state to those in a rf-
Raman-dressed BEC [@!R ¼ 12:4ð9Þ EL and @!rf ¼ 2:04ð6Þ
EL]. The curves are fits to a sinusoid from which we obtain
fx ¼ 14:0ð1Þ Hz and f& ¼ 5:3ð1Þ Hz, thus m&=m ¼ 7:0ð3Þ and
t ¼ 0:015ð1ÞEL. (b) Measurements of m&=m as a function of!R

and !rf . The curves depict the expected m&=m ratio.

(a)

(b)

(c)

FIG. 3 (color online). Peierls transformation. (a) Peierls phase
! measured using adiabatic (crosses) and sudden (circles)
changes of !z. Vertical lines denote the first Brillouin zone.
(b) Sloshing amplitude after suddenly changing !z. We ob-
served strong damping of oscillations in the region shaded in
gray. (c) Tunneling amplitude t measured from oscillation fre-
quency. The rf coupling was modulated as a function of !z to
test the robustness of the Peierls phase !. The Raman coupling
was held at @!R ¼ 10:0ð8ÞEL. The dashed curves correspond to
the expected behavior calculated from HrfþR, and the pink bands
arise from the experimental uncertainty in !R.
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k ¼ A=@. As will be detailed later on, we experimentally
observe the relaxation of the condensate quasimomentum
toward the minimum of the effective dispersion relation.
Therefore, the imprinted Peierls phase can be directly read
out from the quasimomentum distribution revealed in the
time of flight after a sudden switch off of the lattice and the
external potential.

As a central result, Fig. 2(b) shows the experimental data
together with the theoretical predictions from Eq. (3). After
increasing the forcing amplitude slowly (within up to
120 ms) to the desired value, the corresponding quasimo-
mentum distribution was recorded. From the obtained
time-of-flight images, examples of which are shown in
Fig. 2(c), we extract the Peierls phases ! [22]. We observe
an excellent agreement between experiment and theory,
thus proving the controlled generation of an arbitrary
vector gauge potential encoded into the Peierls phase ! 2
½0; 2"½. In addition, the experimental images demonstrate
the large degree of coherence maintained in the atomic
sample throughout the shaking process. As an additional
feature, Fig. 2(a) shows that the Peierls phase allows us

now to invert the sign of the effective tunneling element
without crossing jJeffj ¼ 0 via the rotation in the complex
plane.
In the following, we will discuss the details of the

relaxation of the system toward nonzero quasimomenta
superfluid states, allowing for the described direct mea-
surement of the Peierls phase. Note that for an homoge-
neous and noninteracting system, the initial Bloch wave at
ki ¼ 0 remains an eigenstate of the effective Hamiltonian.
Thus, no transfer to states with k ! 0 is expected after the
shaking is turned on. However, since we are working with
interacting bosons and an external harmonic confinement,
more effects come into play.
When the gauge potential is ramped up from 0 to Af, the

condensate acquires a nonzero group velocity, reflecting
the presence of an artificial electric force FE ¼ # _A. This
velocity induces a displacement of the condensate’s center-
of-mass position xc in the harmonic potential of frequency
f [22]. The resulting restoring force induces oscillations
both in position and momentum space [see Fig. 3(a)]. In
Fig. 3(b), we report a time-resolved measurement of the
condensate quasimomentum after a quench to a final
Peierls phase of #"=4. The oscillations around the final
quasimomentum result from an excitation of the dipole
mode: The measured frequency of 3:6$ 0:4 Hz perfectly
matches the expected dressed condensate frequencyffiffiffiffiffiffiffiffiffiffiffiffiffi
m=m%p

f for particles having an effective mass m% in the
lattice of 10$ 1Erec depth with a tunneling amplitude of
0:3Jbare (ftheo ¼ 3:5$ 0:5 Hz). The coupling to nonzero
quasimomenta results thus from the underlying harmonic
trapping potential.
In addition, this center-of-mass dynamics is subjected to

several damping mechanisms induced by the trap anhar-
monicity or the lattice discreteness, which leads to a cou-
pling to other collective modes and therefore to the
relaxation of the BEC toward the new equilibrium state.
Therefore, the duration of the ramp from 0 to Af has to be
compared with the time scale of those relaxation mecha-
nisms. In Fig. 3 we compare time-resolved measurements
of the quasimomentum distribution for a slow ramp
[Fig. 3(d)] of A to a final Peierls phase ! ¼ 3"=2, with a
sudden quench [Fig. 3(f)]. As the gauge field is slowly
increased, the BEC follows the shift of the dispersion
relation minimum, as depicted in Fig. 3(c). For the quench,
on the contrary, for which the shift of the dispersion
relation occurs within 1 ms, the system cannot follow
and thus relaxes into the nearest minimum of the effective
band structure [see Fig. 3(e)]. For the chosen value, this
minimum lies on the left with respect to the original k ¼ 0
peaks and we thus find the BEC at k ¼ #"=2d. This
demonstrates clearly that in the presence of these relaxa-
tion mechanisms, the forcing does not induce a net particle
current in the lattice, unlike for ratchets, but allows the
engineering of ground-state superfluids at arbitrary non-
zero quasimomenta.

(a)

(b)

(c)

FIG. 2 (color). Creation of complex tunneling matrix ele-
ments. (a) Absolute value of the tunneling parameter obtained
from Eq. (3) for our experimental parameters (T1 þ T2 ¼ 1 ms
and T1=T2 ¼ 2:1). (b) The measured Peierls phases in a 1D
driven optical lattice for different values of the forcing amplitude
K are depicted as circles. The dashed red curve corresponds to
the theoretically expected values [Eq. (3)]. (c) Quasimomentum
distribution of the BEC after 27 ms time of flight for different
values of K. The Peierls phase as a function of K is deduced
from the observed shifts of the interference patterns.
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of the lattice for fixed e⇥ective electron mass (straight lines in Fig. 7.5).
These levels follow the usual law:

E = E0 ± �⇥ (B)
�

n +
1
2

⇥
(7.2)

with the cyclotron frequency ⇥ (B) = eB/m⇥ determined by the e�ective
mass of the square lattice band extrema m⇥ = �2(d2E/dk2)�1 = �2/2a2�0.

Figure 7.6.: The Hewlett-Packard
8920A table-top calculator (nick-
named “Rumpelstilzchen”) used by D.
Hofstadter for the numerical solution
of Harper’s equation revealing the
fractal spectrum of lattice electrons in
a magnetic field. (See Fig. 7.5, im-
ages taken from Ref. [88])

7.3. Butterfly and anomalous Landau levels of
graphene

Subsequently to the work of Hofstadter on the square lattice, various
alternative topologies have been studied. The first, obvious choice was
the hexagonal lattice, which has no electron-hole symmetry, leading to
an asymmetric butterfly [55, 102]. The honeycomb lattice was studied
soon after [220], though without reference to the yet-unknown anomalous
quantum Hall e⇥ect of graphene. Finally, special Lieb and Kagome lattice
structures were also studied, featuring graphene-like massless bands in a
square symmetry [22, 130], leading to similar anomalous Landau levels.

The Hofstadter butterfly of a honeycomb lattice is displayed in Fig. 7.7.
At the top and the bottom of the energy spectrum, the structure closely
resembles that of the square lattice. The linear Landau levels are caused
by the massive bands at the �point and can again be described by Eq. (7.2),
this time with an e⇥ective mass of m⇥ = 2�2/3�0d2

CC ⌅ 0.95me. At the Fermi
energy EF however, a very di⇥erent behavior can be observed based on
the massless bands of graphene near the K points (see Sec. 2.2).

As it turns out, the linearized Hamiltonian of graphene near the Fermi
energy can be expressed formally equivalent to the relativistic Dirac equa-
tion in two dimensions. This leads to a very special spectrum that can
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named “Rumpelstilzchen”) used by D.
Hofstadter for the numerical solution
of Harper’s equation revealing the
fractal spectrum of lattice electrons in
a magnetic field. (See Fig. 7.5, im-
ages taken from Ref. [88])

7.3. Butterfly and anomalous Landau levels of
graphene

Subsequently to the work of Hofstadter on the square lattice, various
alternative topologies have been studied. The first, obvious choice was
the hexagonal lattice, which has no electron-hole symmetry, leading to
an asymmetric butterfly [55, 102]. The honeycomb lattice was studied
soon after [220], though without reference to the yet-unknown anomalous
quantum Hall e⇥ect of graphene. Finally, special Lieb and Kagome lattice
structures were also studied, featuring graphene-like massless bands in a
square symmetry [22, 130], leading to similar anomalous Landau levels.

The Hofstadter butterfly of a honeycomb lattice is displayed in Fig. 7.7.
At the top and the bottom of the energy spectrum, the structure closely
resembles that of the square lattice. The linear Landau levels are caused
by the massive bands at the �point and can again be described by Eq. (7.2),
this time with an e⇥ective mass of m⇥ = 2�2/3�0d2

CC ⌅ 0.95me. At the Fermi
energy EF however, a very di⇥erent behavior can be observed based on
the massless bands of graphene near the K points (see Sec. 2.2).

As it turns out, the linearized Hamiltonian of graphene near the Fermi
energy can be expressed formally equivalent to the relativistic Dirac equa-
tion in two dimensions. This leads to a very special spectrum that can
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mass of the square lattice band extrema m⇥ = �2(d2E/dk2)�1 = �2/2a2�0.
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Hofstadter for the numerical solution
of Harper’s equation revealing the
fractal spectrum of lattice electrons in
a magnetic field. (See Fig. 7.5, im-
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7.3. Butterfly and anomalous Landau levels of
graphene

Subsequently to the work of Hofstadter on the square lattice, various
alternative topologies have been studied. The first, obvious choice was
the hexagonal lattice, which has no electron-hole symmetry, leading to
an asymmetric butterfly [55, 102]. The honeycomb lattice was studied
soon after [220], though without reference to the yet-unknown anomalous
quantum Hall e⇥ect of graphene. Finally, special Lieb and Kagome lattice
structures were also studied, featuring graphene-like massless bands in a
square symmetry [22, 130], leading to similar anomalous Landau levels.

The Hofstadter butterfly of a honeycomb lattice is displayed in Fig. 7.7.
At the top and the bottom of the energy spectrum, the structure closely
resembles that of the square lattice. The linear Landau levels are caused
by the massive bands at the �point and can again be described by Eq. (7.2),
this time with an e⇥ective mass of m⇥ = 2�2/3�0d2

CC ⌅ 0.95me. At the Fermi
energy EF however, a very di⇥erent behavior can be observed based on
the massless bands of graphene near the K points (see Sec. 2.2).

As it turns out, the linearized Hamiltonian of graphene near the Fermi
energy can be expressed formally equivalent to the relativistic Dirac equa-
tion in two dimensions. This leads to a very special spectrum that can

142

Hofstadter, 1976 

E

�
Osadchy and Avron, J. Math. Phys. 2001 

� = p/qH = �J
X

m,n

ei2�n�c†m+1,ncm,n + c†m,n+1cm,n +H.c.

 NO sharp edge states in 
harmonic trapping potential

Buchhold et al 



How to measure Chern # ?



How to measure Chern # ?

 n!!" # 1

2q

X
"edge

!!!$ "edge": (6)

In all of our calculations we took q # 401, which is a
prime number allowing p to be successive integers. "
values for other small denominators of q are approximated
by properly choosing p. For instance, " # 1=10 is ap-
proximated by 40=401, 1=4 by 100=401, and 1=3 by
134=401.

We now present the density profiles for several " values.
To make a connection with experiments, we refer to the
work in Ref. [18] in which 40K atoms are stored in an
optical lattice with lattice constant a # 413 nm. We take
V0 # 5ER, which gives t # 0:066ER. The parameters at
hand yield ER=@ # 45:98 kHz and t=@ # 3:035 kHz. With
the choice !% 355 Hz, the gas extends over approxi-
mately 60 lattice sites in the radial direction, so that the
assumption of LDA is satisfied. In Figs. 2 and 3 we fixed
the number of fermions at 5000.

When the local chemical potential !l!r" lies in one of
the gaps, we have @n!r"=@!!r" # 0 because of vanishing
compressibility. Hence, as one can see by comparing
Figs. 1 and 2, corresponding to the energy gaps in the
single particle spectrum, there appear plateaus in the den-
sity profile. The discernible number of plateaus is related to
the size of the energy gaps. For instance, in Fig. 2(a), the
plateau with n # 1 is the band insulator with completely
filled band, which is topologically trivial and has vanishing
Hall conductance. Apart from that, for " # 1=3, the
chemical potential trajectory passes through two gap re-
gions which gives two plateaus with n # 0:333 and n #
0:667, respectively. While for " # 1=4, there are totally
four subbands, but two of them touch at ! # 0, so there are

also two gap regions corresponding to two plateaus with
n # 0:25 and n # 0:75. In Fig. 2(b) we choose two "’s
with larger q, where there are more gaps in the spectrum
and therefore more density plateaus. Experimentally, the
smaller gap one wants to find, the more difficult it is,
because it requires larger system size and lower
temperature.

In Fig. 3 we show the temperature effect on the visibility
of plateaus. We implement the effect of finite temperature
by incorporating the Fermi-Dirac distribution into our
calculations as

 n2D!!l!r"; T" #
1

2q

X
"edge

1

exp&!"edge $!l!r""=kBT' ( 1
:

(7)

We observe from Fig. 3 that plateaus will be smeared out
when kBT > 0:5t.

As shown by Thouless et al., the topological distinction
of the insulators we consider manifests itself in the Hall
conductance, which should be quantized in units of e2=h
[5]. Here, we propose a method to read out the information
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FIG. 3 (color online). Density profile for 5000 fermions at
several temperatures when " # 1=4. Plateaus become indiscern-
ible when kBT % 0:5t.
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FIG. 2 (color online). (a) Density profiles for 5000 fermions
with " # 1=4, " # 7:2992 kHz, !? # 7:3078 kHz (solid line)
and " # 1=3, " # 9:7809 kHz, !? # 9:7873 kHz (dashed
line). (b) Density profiles for 5000 fermions with " # 1=10,
" # 2:9197 kHz, !? # 2:9412 kHz (solid line) and " # 1=7,
" # 4:1605 kHz, !? # 4:1756 kHz (dashed line). Length is
measured in units of lattice constant a. Density is given in units
of particles per lattice site.

FIG. 1 (color online). Density of states for the Hofstadter
butterfly. Darker regions imply greater density. Dashed lines
represent the trajectory of local Fermi energy from the center
to the edge of the cloud, for different values of " corresponding
to those used in Fig. 2, namely " # 1=3, 1=4, 1=7, and 1=10.
Regions marked by ) and ! have Hall conductance #xy # *1,
and marked by + and " have #xy # *2.
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In all of our calculations we took q # 401, which is a
prime number allowing p to be successive integers. "
values for other small denominators of q are approximated
by properly choosing p. For instance, " # 1=10 is ap-
proximated by 40=401, 1=4 by 100=401, and 1=3 by
134=401.

We now present the density profiles for several " values.
To make a connection with experiments, we refer to the
work in Ref. [18] in which 40K atoms are stored in an
optical lattice with lattice constant a # 413 nm. We take
V0 # 5ER, which gives t # 0:066ER. The parameters at
hand yield ER=@ # 45:98 kHz and t=@ # 3:035 kHz. With
the choice !% 355 Hz, the gas extends over approxi-
mately 60 lattice sites in the radial direction, so that the
assumption of LDA is satisfied. In Figs. 2 and 3 we fixed
the number of fermions at 5000.

When the local chemical potential !l!r" lies in one of
the gaps, we have @n!r"=@!!r" # 0 because of vanishing
compressibility. Hence, as one can see by comparing
Figs. 1 and 2, corresponding to the energy gaps in the
single particle spectrum, there appear plateaus in the den-
sity profile. The discernible number of plateaus is related to
the size of the energy gaps. For instance, in Fig. 2(a), the
plateau with n # 1 is the band insulator with completely
filled band, which is topologically trivial and has vanishing
Hall conductance. Apart from that, for " # 1=3, the
chemical potential trajectory passes through two gap re-
gions which gives two plateaus with n # 0:333 and n #
0:667, respectively. While for " # 1=4, there are totally
four subbands, but two of them touch at ! # 0, so there are

also two gap regions corresponding to two plateaus with
n # 0:25 and n # 0:75. In Fig. 2(b) we choose two "’s
with larger q, where there are more gaps in the spectrum
and therefore more density plateaus. Experimentally, the
smaller gap one wants to find, the more difficult it is,
because it requires larger system size and lower
temperature.

In Fig. 3 we show the temperature effect on the visibility
of plateaus. We implement the effect of finite temperature
by incorporating the Fermi-Dirac distribution into our
calculations as
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We observe from Fig. 3 that plateaus will be smeared out
when kBT > 0:5t.

As shown by Thouless et al., the topological distinction
of the insulators we consider manifests itself in the Hall
conductance, which should be quantized in units of e2=h
[5]. Here, we propose a method to read out the information
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FIG. 2 (color online). (a) Density profiles for 5000 fermions
with " # 1=4, " # 7:2992 kHz, !? # 7:3078 kHz (solid line)
and " # 1=3, " # 9:7809 kHz, !? # 9:7873 kHz (dashed
line). (b) Density profiles for 5000 fermions with " # 1=10,
" # 2:9197 kHz, !? # 2:9412 kHz (solid line) and " # 1=7,
" # 4:1605 kHz, !? # 4:1756 kHz (dashed line). Length is
measured in units of lattice constant a. Density is given in units
of particles per lattice site.

FIG. 1 (color online). Density of states for the Hofstadter
butterfly. Darker regions imply greater density. Dashed lines
represent the trajectory of local Fermi energy from the center
to the edge of the cloud, for different values of " corresponding
to those used in Fig. 2, namely " # 1=3, 1=4, 1=7, and 1=10.
Regions marked by ) and ! have Hall conductance #xy # *1,
and marked by + and " have #xy # *2.
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Zak phases
3

where k±(t) = k0 ± f t, f = F/~, and the phase ⌅⇤(⌅)(t)
is given by:

⌅⇤(⌅)(t) = i

⇤ k±(t)

k0

⌅uk�n|⌃k�uk�n⇧dk⇧�1

~

⇤ t

0
⌃n(k±(t

⇧))dt⇧⇥EZt

~ ,

(6)
The first term in the above equation describes the ge-
ometrical phase, while the second and third correspond
to the dynamical phase, which depends on the speed of
motion through the band.

The Ramsey interferometry, performed after half a pe-
riod of the Bloch oscillations (period is given by T =
G/|f |), measures the phase di⇥erence picked up by the
two spin species ⌅⇤(T/2) � ⌅⌅(T/2). Using formula (6),
we obtain the Ramsey phase,

⌥tot = ⌥Zak + ⌥dyn + ⌥Zeeman, (7)

where the Zak phase is given by [27]:

⌥Zak = i

⇤ k0+G/2

k0�G/2
⌅uk�n|⌃k�uk�n⇧dk⇧ (8)

and the dynamical phase and Zeeman phases are given
by

⌥dyn = �1

~

⇤ T/2

�T/2
sign(t⇧)⌃n(k0+f t⇧)dt⇧, ⌥Zeeman = �EZT

~ .

(9)
For the case of a band structure with symmetric disper-
sion relation, ⌃n(k0 + f t⇧) = ⌃n(k0 � f t⇧), the dynamical
phase vanishes, and the Ramsey interferometry directly
gives the Zak phase. This is the case for special choices
of k0 and G1 in the experimentally relevant case of the
brick-wall lattice which we will discuss below.

Measuring Berry curvature and Chern number
of a generic band. Let us now turn to the discussion
of how Ramsey interferometry can be used to determine
the Berry curvature and the Chern number (and there-
fore the topological class) of a gapped band; no special
symmetries are assumed, except for the symmetry of dis-
persion which guarantees the cancellation of the dynam-
ical phase, and allows the separation of the Zak phase.

We choose the primitive cell in quasi-momentum space
to be a torus defined by k = K0 + �1G1 + �2G2, where
�i ⇤ [0; 1) and K0 is an arbitrary quasi-momentum (as
shown in Fig. 2). We notice that the Chern number can-
not be determined by measuring the Zak phases along
the four sides of the torus, essentially, because the Zak
phase is only defined modulo 2⇧. However, as we now
discuss, the Chern number C can be related to the wind-
ing number of the Zak phase across the BZ (see Ref. [2]
for a closely related discussion in the context of adiabatic
pumping).

We consider an experiment in which the Zak phase is
measured for torus cycles defined by G1 as a function of
�2, see Fig. 2. Experimentally, this would be achieved

FIG. 3: a) Brick-wall lattice. A and B sites are marked by
blue and red circles, nearest-neighbor hopping is assumed. b)
The Brillouin zone of the brick-wall lattice model (blue dashed
square). The band structure exhibits two Dirac points marked
by orange circles. Owing to the symmetry of the dispersion,
it is convenient to measure the Zak phase with initial quasi-
momentum k0 = (k0, 0) lying on the x axis, and applying
a force in the y direction. Measuring the variation of the
Zak phase as a function of k0, it is possible to (i) measure
the � Berry’s phase of Dirac particles, (ii) measure the Chern
number of the bands when they are separated by energy gaps.

by preparing the initial state k0 = K0 + G1/2 + �2G2

for di⇥erent values of �2.
Let us show that the small change of Zak phase as �2 is

increased by ⇤�2 is equal to the integral of the Berry cur-
vature over the rectangle ⇤S defined by the corresponding
trajectories (see Fig. 2). Equivalently, the di⇥erence of
the Zak phases ⇥ = ⌥Zak(�2+⇤�2)�⌥Zak(�2) is given by
the Berry’s phase that corresponds to the contour 1234.
It is easiest to see this by choosing a smooth gauge for
the periodic Bloch function in ⇤S (this can be done since
region ⇤S is small; in general, no smooth gauge can be
chosen in the whole BZ). The Berry’s phase ⇥ can be
represented as the sum of the Berry’s phases for the four
sides of the rectangle, ⇥ =

�4
i=1 ⇥i. Since the sides 2

and 4 are equivalent (they di⇥er by G1), but are tra-
versed in the opposite direction, their contribution van-
ishes, ⇥2 + ⇥4 = 0. Because we chose the periodic gauge,
⇥3 + ⇥1 is equal to the di⇥erence of the Zak phases for
trajectories 3 and 1. Thus, the change of the Zak phase is
related to the Berry’s phase, which can be written as an
integral of the Berry’s curvature �12, ⇥ =

⇥
⇥S d2k�12(k).

This relation can be conveniently written in terms of a
uniquely defined quantity z(�2) = ei⌅Zak(�2):

⇤

⇥S
d2k�12(k) = �iz⇥(�2)��2z(�2)⇤�2. (10)

Summing relation (10) over di⇥erent regions, and
using the definition of the Chern number C =
1
2⇤

⇥
BZ d

2k�12(k), we then obtain c via the winding of

 n!!" # 1

2q

X
"edge

!!!$ "edge": (6)

In all of our calculations we took q # 401, which is a
prime number allowing p to be successive integers. "
values for other small denominators of q are approximated
by properly choosing p. For instance, " # 1=10 is ap-
proximated by 40=401, 1=4 by 100=401, and 1=3 by
134=401.

We now present the density profiles for several " values.
To make a connection with experiments, we refer to the
work in Ref. [18] in which 40K atoms are stored in an
optical lattice with lattice constant a # 413 nm. We take
V0 # 5ER, which gives t # 0:066ER. The parameters at
hand yield ER=@ # 45:98 kHz and t=@ # 3:035 kHz. With
the choice !% 355 Hz, the gas extends over approxi-
mately 60 lattice sites in the radial direction, so that the
assumption of LDA is satisfied. In Figs. 2 and 3 we fixed
the number of fermions at 5000.

When the local chemical potential !l!r" lies in one of
the gaps, we have @n!r"=@!!r" # 0 because of vanishing
compressibility. Hence, as one can see by comparing
Figs. 1 and 2, corresponding to the energy gaps in the
single particle spectrum, there appear plateaus in the den-
sity profile. The discernible number of plateaus is related to
the size of the energy gaps. For instance, in Fig. 2(a), the
plateau with n # 1 is the band insulator with completely
filled band, which is topologically trivial and has vanishing
Hall conductance. Apart from that, for " # 1=3, the
chemical potential trajectory passes through two gap re-
gions which gives two plateaus with n # 0:333 and n #
0:667, respectively. While for " # 1=4, there are totally
four subbands, but two of them touch at ! # 0, so there are

also two gap regions corresponding to two plateaus with
n # 0:25 and n # 0:75. In Fig. 2(b) we choose two "’s
with larger q, where there are more gaps in the spectrum
and therefore more density plateaus. Experimentally, the
smaller gap one wants to find, the more difficult it is,
because it requires larger system size and lower
temperature.

In Fig. 3 we show the temperature effect on the visibility
of plateaus. We implement the effect of finite temperature
by incorporating the Fermi-Dirac distribution into our
calculations as

 n2D!!l!r"; T" #
1

2q

X
"edge

1

exp&!"edge $!l!r""=kBT' ( 1
:

(7)

We observe from Fig. 3 that plateaus will be smeared out
when kBT > 0:5t.

As shown by Thouless et al., the topological distinction
of the insulators we consider manifests itself in the Hall
conductance, which should be quantized in units of e2=h
[5]. Here, we propose a method to read out the information
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FIG. 3 (color online). Density profile for 5000 fermions at
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ible when kBT % 0:5t.
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FIG. 2 (color online). (a) Density profiles for 5000 fermions
with " # 1=4, " # 7:2992 kHz, !? # 7:3078 kHz (solid line)
and " # 1=3, " # 9:7809 kHz, !? # 9:7873 kHz (dashed
line). (b) Density profiles for 5000 fermions with " # 1=10,
" # 2:9197 kHz, !? # 2:9412 kHz (solid line) and " # 1=7,
" # 4:1605 kHz, !? # 4:1756 kHz (dashed line). Length is
measured in units of lattice constant a. Density is given in units
of particles per lattice site.

FIG. 1 (color online). Density of states for the Hofstadter
butterfly. Darker regions imply greater density. Dashed lines
represent the trajectory of local Fermi energy from the center
to the edge of the cloud, for different values of " corresponding
to those used in Fig. 2, namely " # 1=3, 1=4, 1=7, and 1=10.
Regions marked by ) and ! have Hall conductance #xy # *1,
and marked by + and " have #xy # *2.

PRL 100, 070402 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
22 FEBRUARY 2008

070402-3

Density profile
Umucalilar et al

Alba et al, Zhao et al 

Time-of-flight



How to measure Chern # ?

Abanin et al

Zak phases
3

where k±(t) = k0 ± f t, f = F/~, and the phase ⌅⇤(⌅)(t)
is given by:

⌅⇤(⌅)(t) = i

⇤ k±(t)

k0

⌅uk�n|⌃k�uk�n⇧dk⇧�1

~

⇤ t

0
⌃n(k±(t

⇧))dt⇧⇥EZt

~ ,

(6)
The first term in the above equation describes the ge-
ometrical phase, while the second and third correspond
to the dynamical phase, which depends on the speed of
motion through the band.

The Ramsey interferometry, performed after half a pe-
riod of the Bloch oscillations (period is given by T =
G/|f |), measures the phase di⇥erence picked up by the
two spin species ⌅⇤(T/2) � ⌅⌅(T/2). Using formula (6),
we obtain the Ramsey phase,

⌥tot = ⌥Zak + ⌥dyn + ⌥Zeeman, (7)

where the Zak phase is given by [27]:

⌥Zak = i

⇤ k0+G/2

k0�G/2
⌅uk�n|⌃k�uk�n⇧dk⇧ (8)

and the dynamical phase and Zeeman phases are given
by

⌥dyn = �1

~

⇤ T/2

�T/2
sign(t⇧)⌃n(k0+f t⇧)dt⇧, ⌥Zeeman = �EZT

~ .

(9)
For the case of a band structure with symmetric disper-
sion relation, ⌃n(k0 + f t⇧) = ⌃n(k0 � f t⇧), the dynamical
phase vanishes, and the Ramsey interferometry directly
gives the Zak phase. This is the case for special choices
of k0 and G1 in the experimentally relevant case of the
brick-wall lattice which we will discuss below.

Measuring Berry curvature and Chern number
of a generic band. Let us now turn to the discussion
of how Ramsey interferometry can be used to determine
the Berry curvature and the Chern number (and there-
fore the topological class) of a gapped band; no special
symmetries are assumed, except for the symmetry of dis-
persion which guarantees the cancellation of the dynam-
ical phase, and allows the separation of the Zak phase.

We choose the primitive cell in quasi-momentum space
to be a torus defined by k = K0 + �1G1 + �2G2, where
�i ⇤ [0; 1) and K0 is an arbitrary quasi-momentum (as
shown in Fig. 2). We notice that the Chern number can-
not be determined by measuring the Zak phases along
the four sides of the torus, essentially, because the Zak
phase is only defined modulo 2⇧. However, as we now
discuss, the Chern number C can be related to the wind-
ing number of the Zak phase across the BZ (see Ref. [2]
for a closely related discussion in the context of adiabatic
pumping).

We consider an experiment in which the Zak phase is
measured for torus cycles defined by G1 as a function of
�2, see Fig. 2. Experimentally, this would be achieved

FIG. 3: a) Brick-wall lattice. A and B sites are marked by
blue and red circles, nearest-neighbor hopping is assumed. b)
The Brillouin zone of the brick-wall lattice model (blue dashed
square). The band structure exhibits two Dirac points marked
by orange circles. Owing to the symmetry of the dispersion,
it is convenient to measure the Zak phase with initial quasi-
momentum k0 = (k0, 0) lying on the x axis, and applying
a force in the y direction. Measuring the variation of the
Zak phase as a function of k0, it is possible to (i) measure
the � Berry’s phase of Dirac particles, (ii) measure the Chern
number of the bands when they are separated by energy gaps.

by preparing the initial state k0 = K0 + G1/2 + �2G2

for di⇥erent values of �2.
Let us show that the small change of Zak phase as �2 is

increased by ⇤�2 is equal to the integral of the Berry cur-
vature over the rectangle ⇤S defined by the corresponding
trajectories (see Fig. 2). Equivalently, the di⇥erence of
the Zak phases ⇥ = ⌥Zak(�2+⇤�2)�⌥Zak(�2) is given by
the Berry’s phase that corresponds to the contour 1234.
It is easiest to see this by choosing a smooth gauge for
the periodic Bloch function in ⇤S (this can be done since
region ⇤S is small; in general, no smooth gauge can be
chosen in the whole BZ). The Berry’s phase ⇥ can be
represented as the sum of the Berry’s phases for the four
sides of the rectangle, ⇥ =

�4
i=1 ⇥i. Since the sides 2

and 4 are equivalent (they di⇥er by G1), but are tra-
versed in the opposite direction, their contribution van-
ishes, ⇥2 + ⇥4 = 0. Because we chose the periodic gauge,
⇥3 + ⇥1 is equal to the di⇥erence of the Zak phases for
trajectories 3 and 1. Thus, the change of the Zak phase is
related to the Berry’s phase, which can be written as an
integral of the Berry’s curvature �12, ⇥ =

⇥
⇥S d2k�12(k).

This relation can be conveniently written in terms of a
uniquely defined quantity z(�2) = ei⌅Zak(�2):

⇤

⇥S
d2k�12(k) = �iz⇥(�2)��2z(�2)⇤�2. (10)

Summing relation (10) over di⇥erent regions, and
using the definition of the Chern number C =
1
2⇤

⇥
BZ d

2k�12(k), we then obtain c via the winding of

 n!!" # 1

2q

X
"edge

!!!$ "edge": (6)

In all of our calculations we took q # 401, which is a
prime number allowing p to be successive integers. "
values for other small denominators of q are approximated
by properly choosing p. For instance, " # 1=10 is ap-
proximated by 40=401, 1=4 by 100=401, and 1=3 by
134=401.

We now present the density profiles for several " values.
To make a connection with experiments, we refer to the
work in Ref. [18] in which 40K atoms are stored in an
optical lattice with lattice constant a # 413 nm. We take
V0 # 5ER, which gives t # 0:066ER. The parameters at
hand yield ER=@ # 45:98 kHz and t=@ # 3:035 kHz. With
the choice !% 355 Hz, the gas extends over approxi-
mately 60 lattice sites in the radial direction, so that the
assumption of LDA is satisfied. In Figs. 2 and 3 we fixed
the number of fermions at 5000.

When the local chemical potential !l!r" lies in one of
the gaps, we have @n!r"=@!!r" # 0 because of vanishing
compressibility. Hence, as one can see by comparing
Figs. 1 and 2, corresponding to the energy gaps in the
single particle spectrum, there appear plateaus in the den-
sity profile. The discernible number of plateaus is related to
the size of the energy gaps. For instance, in Fig. 2(a), the
plateau with n # 1 is the band insulator with completely
filled band, which is topologically trivial and has vanishing
Hall conductance. Apart from that, for " # 1=3, the
chemical potential trajectory passes through two gap re-
gions which gives two plateaus with n # 0:333 and n #
0:667, respectively. While for " # 1=4, there are totally
four subbands, but two of them touch at ! # 0, so there are

also two gap regions corresponding to two plateaus with
n # 0:25 and n # 0:75. In Fig. 2(b) we choose two "’s
with larger q, where there are more gaps in the spectrum
and therefore more density plateaus. Experimentally, the
smaller gap one wants to find, the more difficult it is,
because it requires larger system size and lower
temperature.

In Fig. 3 we show the temperature effect on the visibility
of plateaus. We implement the effect of finite temperature
by incorporating the Fermi-Dirac distribution into our
calculations as

 n2D!!l!r"; T" #
1

2q

X
"edge

1

exp&!"edge $!l!r""=kBT' ( 1
:

(7)

We observe from Fig. 3 that plateaus will be smeared out
when kBT > 0:5t.

As shown by Thouless et al., the topological distinction
of the insulators we consider manifests itself in the Hall
conductance, which should be quantized in units of e2=h
[5]. Here, we propose a method to read out the information
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FIG. 3 (color online). Density profile for 5000 fermions at
several temperatures when " # 1=4. Plateaus become indiscern-
ible when kBT % 0:5t.
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FIG. 2 (color online). (a) Density profiles for 5000 fermions
with " # 1=4, " # 7:2992 kHz, !? # 7:3078 kHz (solid line)
and " # 1=3, " # 9:7809 kHz, !? # 9:7873 kHz (dashed
line). (b) Density profiles for 5000 fermions with " # 1=10,
" # 2:9197 kHz, !? # 2:9412 kHz (solid line) and " # 1=7,
" # 4:1605 kHz, !? # 4:1756 kHz (dashed line). Length is
measured in units of lattice constant a. Density is given in units
of particles per lattice site.

FIG. 1 (color online). Density of states for the Hofstadter
butterfly. Darker regions imply greater density. Dashed lines
represent the trajectory of local Fermi energy from the center
to the edge of the cloud, for different values of " corresponding
to those used in Fig. 2, namely " # 1=3, 1=4, 1=7, and 1=10.
Regions marked by ) and ! have Hall conductance #xy # *1,
and marked by + and " have #xy # *2.
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where k±(t) = k0 ± f t, f = F/~, and the phase ⌅⇤(⌅)(t)
is given by:

⌅⇤(⌅)(t) = i

⇤ k±(t)

k0

⌅uk�n|⌃k�uk�n⇧dk⇧�1

~

⇤ t

0
⌃n(k±(t

⇧))dt⇧⇥EZt

~ ,

(6)
The first term in the above equation describes the ge-
ometrical phase, while the second and third correspond
to the dynamical phase, which depends on the speed of
motion through the band.

The Ramsey interferometry, performed after half a pe-
riod of the Bloch oscillations (period is given by T =
G/|f |), measures the phase di⇥erence picked up by the
two spin species ⌅⇤(T/2) � ⌅⌅(T/2). Using formula (6),
we obtain the Ramsey phase,

⌥tot = ⌥Zak + ⌥dyn + ⌥Zeeman, (7)

where the Zak phase is given by [27]:

⌥Zak = i

⇤ k0+G/2

k0�G/2
⌅uk�n|⌃k�uk�n⇧dk⇧ (8)

and the dynamical phase and Zeeman phases are given
by

⌥dyn = �1

~

⇤ T/2

�T/2
sign(t⇧)⌃n(k0+f t⇧)dt⇧, ⌥Zeeman = �EZT

~ .

(9)
For the case of a band structure with symmetric disper-
sion relation, ⌃n(k0 + f t⇧) = ⌃n(k0 � f t⇧), the dynamical
phase vanishes, and the Ramsey interferometry directly
gives the Zak phase. This is the case for special choices
of k0 and G1 in the experimentally relevant case of the
brick-wall lattice which we will discuss below.

Measuring Berry curvature and Chern number
of a generic band. Let us now turn to the discussion
of how Ramsey interferometry can be used to determine
the Berry curvature and the Chern number (and there-
fore the topological class) of a gapped band; no special
symmetries are assumed, except for the symmetry of dis-
persion which guarantees the cancellation of the dynam-
ical phase, and allows the separation of the Zak phase.

We choose the primitive cell in quasi-momentum space
to be a torus defined by k = K0 + �1G1 + �2G2, where
�i ⇤ [0; 1) and K0 is an arbitrary quasi-momentum (as
shown in Fig. 2). We notice that the Chern number can-
not be determined by measuring the Zak phases along
the four sides of the torus, essentially, because the Zak
phase is only defined modulo 2⇧. However, as we now
discuss, the Chern number C can be related to the wind-
ing number of the Zak phase across the BZ (see Ref. [2]
for a closely related discussion in the context of adiabatic
pumping).

We consider an experiment in which the Zak phase is
measured for torus cycles defined by G1 as a function of
�2, see Fig. 2. Experimentally, this would be achieved

FIG. 3: a) Brick-wall lattice. A and B sites are marked by
blue and red circles, nearest-neighbor hopping is assumed. b)
The Brillouin zone of the brick-wall lattice model (blue dashed
square). The band structure exhibits two Dirac points marked
by orange circles. Owing to the symmetry of the dispersion,
it is convenient to measure the Zak phase with initial quasi-
momentum k0 = (k0, 0) lying on the x axis, and applying
a force in the y direction. Measuring the variation of the
Zak phase as a function of k0, it is possible to (i) measure
the � Berry’s phase of Dirac particles, (ii) measure the Chern
number of the bands when they are separated by energy gaps.

by preparing the initial state k0 = K0 + G1/2 + �2G2

for di⇥erent values of �2.
Let us show that the small change of Zak phase as �2 is

increased by ⇤�2 is equal to the integral of the Berry cur-
vature over the rectangle ⇤S defined by the corresponding
trajectories (see Fig. 2). Equivalently, the di⇥erence of
the Zak phases ⇥ = ⌥Zak(�2+⇤�2)�⌥Zak(�2) is given by
the Berry’s phase that corresponds to the contour 1234.
It is easiest to see this by choosing a smooth gauge for
the periodic Bloch function in ⇤S (this can be done since
region ⇤S is small; in general, no smooth gauge can be
chosen in the whole BZ). The Berry’s phase ⇥ can be
represented as the sum of the Berry’s phases for the four
sides of the rectangle, ⇥ =

�4
i=1 ⇥i. Since the sides 2

and 4 are equivalent (they di⇥er by G1), but are tra-
versed in the opposite direction, their contribution van-
ishes, ⇥2 + ⇥4 = 0. Because we chose the periodic gauge,
⇥3 + ⇥1 is equal to the di⇥erence of the Zak phases for
trajectories 3 and 1. Thus, the change of the Zak phase is
related to the Berry’s phase, which can be written as an
integral of the Berry’s curvature �12, ⇥ =

⇥
⇥S d2k�12(k).

This relation can be conveniently written in terms of a
uniquely defined quantity z(�2) = ei⌅Zak(�2):

⇤

⇥S
d2k�12(k) = �iz⇥(�2)��2z(�2)⇤�2. (10)

Summing relation (10) over di⇥erent regions, and
using the definition of the Chern number C =
1
2⇤

⇥
BZ d

2k�12(k), we then obtain c via the winding of

 n!!" # 1

2q

X
"edge

!!!$ "edge": (6)

In all of our calculations we took q # 401, which is a
prime number allowing p to be successive integers. "
values for other small denominators of q are approximated
by properly choosing p. For instance, " # 1=10 is ap-
proximated by 40=401, 1=4 by 100=401, and 1=3 by
134=401.

We now present the density profiles for several " values.
To make a connection with experiments, we refer to the
work in Ref. [18] in which 40K atoms are stored in an
optical lattice with lattice constant a # 413 nm. We take
V0 # 5ER, which gives t # 0:066ER. The parameters at
hand yield ER=@ # 45:98 kHz and t=@ # 3:035 kHz. With
the choice !% 355 Hz, the gas extends over approxi-
mately 60 lattice sites in the radial direction, so that the
assumption of LDA is satisfied. In Figs. 2 and 3 we fixed
the number of fermions at 5000.

When the local chemical potential !l!r" lies in one of
the gaps, we have @n!r"=@!!r" # 0 because of vanishing
compressibility. Hence, as one can see by comparing
Figs. 1 and 2, corresponding to the energy gaps in the
single particle spectrum, there appear plateaus in the den-
sity profile. The discernible number of plateaus is related to
the size of the energy gaps. For instance, in Fig. 2(a), the
plateau with n # 1 is the band insulator with completely
filled band, which is topologically trivial and has vanishing
Hall conductance. Apart from that, for " # 1=3, the
chemical potential trajectory passes through two gap re-
gions which gives two plateaus with n # 0:333 and n #
0:667, respectively. While for " # 1=4, there are totally
four subbands, but two of them touch at ! # 0, so there are

also two gap regions corresponding to two plateaus with
n # 0:25 and n # 0:75. In Fig. 2(b) we choose two "’s
with larger q, where there are more gaps in the spectrum
and therefore more density plateaus. Experimentally, the
smaller gap one wants to find, the more difficult it is,
because it requires larger system size and lower
temperature.

In Fig. 3 we show the temperature effect on the visibility
of plateaus. We implement the effect of finite temperature
by incorporating the Fermi-Dirac distribution into our
calculations as

 n2D!!l!r"; T" #
1

2q

X
"edge

1

exp&!"edge $!l!r""=kBT' ( 1
:

(7)

We observe from Fig. 3 that plateaus will be smeared out
when kBT > 0:5t.

As shown by Thouless et al., the topological distinction
of the insulators we consider manifests itself in the Hall
conductance, which should be quantized in units of e2=h
[5]. Here, we propose a method to read out the information
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FIG. 3 (color online). Density profile for 5000 fermions at
several temperatures when " # 1=4. Plateaus become indiscern-
ible when kBT % 0:5t.
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FIG. 2 (color online). (a) Density profiles for 5000 fermions
with " # 1=4, " # 7:2992 kHz, !? # 7:3078 kHz (solid line)
and " # 1=3, " # 9:7809 kHz, !? # 9:7873 kHz (dashed
line). (b) Density profiles for 5000 fermions with " # 1=10,
" # 2:9197 kHz, !? # 2:9412 kHz (solid line) and " # 1=7,
" # 4:1605 kHz, !? # 4:1756 kHz (dashed line). Length is
measured in units of lattice constant a. Density is given in units
of particles per lattice site.

FIG. 1 (color online). Density of states for the Hofstadter
butterfly. Darker regions imply greater density. Dashed lines
represent the trajectory of local Fermi energy from the center
to the edge of the cloud, for different values of " corresponding
to those used in Fig. 2, namely " # 1=3, 1=4, 1=7, and 1=10.
Regions marked by ) and ! have Hall conductance #xy # *1,
and marked by + and " have #xy # *2.
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Quantitative Characterizations
n Slope

n # of cuts (edge modes)

n COM  along y-direction

n Bipartition particle number (trace index)

n Bulk detection, does not require edge states 

n ρ(kx, y) is almost impossible to measure in solids, 
but is natural to cold atom toolbox

n Can be extended to interacting case

Salient features
Alexandradinata et al



Fractional charge pumping

2D Laughlin state 
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Use hybrid ToF to detect FQHE and fractional 
Chern insulators realized in optical lattices

1D lattice
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Numerical diagnosis 
of fractional Hall conductance

Avoid calculating overlap 
between wavefunctions TKNN

1. Center-of-mass shift

2. Particle number flow
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Summary

Topological charge pumping is a common thread 
unifies many features of topological states

Guideline for design and detection of topological 
phases in cold atom systems

j(x, t)

arXiv:1301.7435, in press
PRL 110, 166802 (2013) 



Thank you!



LETTERS

Direct observation of second-order atom tunnelling
S. Fölling1, S. Trotzky1, P. Cheinet1, M. Feld1, R. Saers2, A. Widera1,3, T. Müller1,4 & I. Bloch1

Tunnelling ofmaterial particles through a classically impenetrable
barrier constitutes one of the hallmark effects of quantum physics.
When interactions between the particles compete with their
mobility through a tunnel junction, intriguing dynamical beha-
viour can arise because the particles do not tunnel independently.
In single-electron or Bloch transistors, for example, the tunnelling
of an electron or Cooper pair can be enabled or suppressed by the
presence of a second charge carrier due to Coulomb blockade1,2.
Herewe report direct, time-resolved observations of the correlated
tunnelling of two interacting ultracold atoms through a barrier in
a double-well potential. For the regime in which the interactions
between the atoms are weak and tunnel coupling dominates, indi-
vidual atoms can tunnel independently, similar to the case of a
normal Josephson junction. However, when strong repulsive
interactions are present, two atoms located on one side of the
barrier cannot separate3, but are observed to tunnel together as
a pair in a second-order co-tunnelling process. By recording both
the atom position and phase coherence over time, we fully char-
acterize the tunnelling process for a single atom as well as the
correlated dynamics of a pair of atoms for weak and strong inter-
actions. In addition, we identify a conditional tunnelling regime in
which a single atom can only tunnel in the presence of a second
particle, acting as a single atom switch. Such second-order tunnel-
ling events, which are the dominating dynamical effect in the
strongly interacting regime, have not been previously observed
with ultracold atoms. Similar second-order processes form the
basis of superexchange interactions between atoms on neighbour-
ing lattice sites of a periodic potential, a central component of
proposals for realizing quantum magnetism4–7.

For the description and observation of quantum mechanical tun-
nelling, a double-well-type potential, where two localized spatial
modes are separated by a barrier, is among the conceptually simplest
set-ups. When a particle is initially prepared on one side of this
barrier, it will tunnel back and forth between the two sides with a
well-defined frequency. For macroscopic quantum systems, such as
superconductors or atomic Bose–Einstein condensates, this tunnel
coupling can lead to a Josephson-type tunnelling dynamics8–10.When
interactions between individual particles are much stronger than
the tunnel coupling in the system, quantized Josephson dynamics
arises—inwhich, for example, the charge carriers in superconducting
devices tunnel individually across barriers11,12.

In the case of coupled mesoscopic quantum dots, a co-tunnelling
regime can be achieved, where separate electrons only tunnel in a
correlated way13,14. For ensembles of ultracold atoms in periodic
potentials, strong interactions fundamentally alter the properties of
the many-body system, leading to strongly correlated phases such as
the Mott insulating state15–19. In such cases, where direct first-order
tunnelling of single atoms is highly suppressed, second-order corre-
lated tunnelling processes can be the dominant dynamical effects.
Despite the absence of direct long-range interaction mechanisms
between particles, second-order ‘‘superexchange’’-type processes

can provide effective spin-dependent interactions between particles
at separate positions4–7.

The dynamics of interacting bosonic atoms in a double well with
tight confinement is described by a quantized Josephson or a two-
mode Bose–Hubbard hamiltonian11,12

H~{J âa{LâaRzâa{RâaL
! "

{
1

2
D n̂nL{n̂nRð Þz 1

2
U n̂nL(n̂nL{1)zn̂nR(n̂nR{1)ð Þ ð1Þ

1Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz, Germany. 2Department of Physics, Umeå University, 90187 Umeå, Sweden. 3Institut für Angewandte Physik,
Universität Bonn, 53115 Bonn, Germany. 4Institute of Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland.
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Figure 1 | Schematics of double-well generation, loading and detection
sequences. a, Superimposing two optical lattice potentials differing in
period by a factor of two creates an array of double-well potentials.
b, Preparation sequence. An initially large well is split into a biased double-
well potential such that each left well is populated. The bias is then removed
and the central barrier lowered to initiate the tunnelling dynamics (d denotes
the well separation). c, Position measurement. The atom number on each
side can be recorded by ‘dumping’ the population of the left well into an
excited vibrational state of the right well21. Subsequent band-mapping
projects both states into separate Brillouin zones in free space30 (marked red
and blue in the inset). d, Interferometric detection. After sudden release
from the double-well potential and a period of free expansion, the double-slit
interference pattern is recorded. Particles localized to one well exhibit no
interference; for delocalized atoms the pattern yields the relative single-
particle phase (2p/2 in the case shown).
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