arXiv:1301.7435, in press PRL 110, 166802 (2013)

Topological charge pumping of cold atoms

date.

Lei Wang

Institute for Theoretical Physics ETH Zurich

Collaborators:

weight and the second second and the second se

Alexey Soluyanov Matthias Troyer

Xi Dai

Pumps

Pump is a device that moves fluids, or sometimes slurries, by mechanical action.

Pumps

Pump is a device that moves fluids, or sometimes slurries, by mechanical action.

Pumps

Pump is a device that moves fluids, or sometimes slurries, by mechanical action.

Archimedes' screw ~250 BC

• conductor penetrated by Aharonov-Bohm fluxes x , x

Archimedes' screw ~250 BC

Switkes et al 1999

Topological pump

A device transfers **quantized charge** in each pumping cycle. Thouless 1983

- \sim Current the weight d(k) is d(k) is d(k).
- Nodissipation δt) + $(t \delta t) \cos ka$
- Dynamical analog of quantum Hall effect $d_{-}(k) = 0$

Experimental progresses

Optical Superlattice

Fölling et al, Atala et al

ca

in-situ imaging

Gemelke et al, Sherson et al, Bakr et al

n

r

$$V_{\rm OL}(x) = V_1 \cos^2\left(\frac{2\pi x}{d}\right) + V_2 \cos^2\left(\frac{\pi x}{d} - \varphi\right)$$

Allows to measure exact quantization of pumped charge

$$V_{\rm OL}(x,t) = V_1 \cos^2\left(\frac{2\pi x}{d}\right) + V_2 \cos^2\left(\frac{\pi x}{d} - \frac{\pi t}{T}\right)$$

$$V_{\rm OL}(x,t) = V_1 \cos^2\left(\frac{2\pi x}{d}\right) + V_2 \cos^2\left(\frac{\pi x}{d} - \frac{\pi t}{T}\right)$$

$$V_{\rm OL}(x,t) = V_1 \cos^2\left(\frac{2\pi x}{d}\right) + V_2 \cos^2\left(\frac{\pi x}{d} - \frac{\pi t}{T}\right)$$

Su, Schrieffer, Heeger, 1979

$$V_{\rm OL}(x,t) = V_1 \cos^2\left(\frac{2\pi x}{d}\right) + V_2 \cos^2\left(\frac{\pi x}{d} - \frac{\pi t}{T}\right)$$

$$A = B - A = B$$

T/4
$$\mathbf{A} \cdots \mathbf{B} \cdots \mathbf{A} \cdots \mathbf{B}$$

$$T/2 \quad A - B = A - B$$

Su, Schrieffer, Heeger, 1979

Rice, Mele, 1982

Quantization of pumped charge

 $j(x,t) \longrightarrow$

 $H(x,t) = -\frac{\hbar^2}{2m} \nabla^2 + V_{\rm OL}(x,t)$ $i\frac{\partial}{\partial t}|\Psi\rangle = H(x,t)|\Psi\rangle$

Quantization of pumped charge

3T

4T

T

0.00

-0.01

Connection to IQHE

$$H(k_x,t) = H(k_x,t+T)$$

$$\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ t = T \end{array} \end{array}$$

$$V_1 = 4E_R \quad V_2 = 4E_R$$

Adiabatically thread a quantum of magnetic flux through cylinder.

2

Connection to IQHE

$$H(k_x,t) = H(k_x,t+T)$$

Adiabatically thread a quantum of magnetic flux through cylinder.

$$\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ t = T \end{array} \end{array}$$

 $V_1 = 4E_R \quad V_2 = 4E_R$

 $\Delta Q = \int_{0}^{T} \sigma_{xy} \frac{\mathcal{U}_{xy}}{dt} \frac{d\Phi}{dt} = \sigma_{xy} \frac{e}{e}$

2

Adiabatic Connection

 $V_1 = 4E_R \quad V_2 = 4E_R$

 $V_1 = 0 \quad V_2 = 4E_R$

 $V_1 \cos^2\left(\frac{2\pi x}{d}\right) + V_2 \cos^2\left(\frac{\pi x}{d} - \frac{\pi t}{T}\right)$

Adiabatic Connection

 $V_1 = 4E_R \quad V_2 = 4E_R$

Practical issues

✤ Detection

- External trap
- Temperature effect
- Non-adiabatic effect

Trapping & Detection

LW, Troyer and Dai, 1301.7435 PRL in press

 $\Delta n = \langle x \rangle / d$

Trapping & Detection

LW, Troyer and Dai, 1301.7435 PRL in press

 $\Delta n = \langle x \rangle / d$

Trapping & Detection

LW, Troyer and Dai, 1301.7435 PRL in press

 $\Delta n = \langle x \rangle / d$

Temperature & Non-adiabatic effect

Temperature $\ll \frac{\Delta}{k_B}$ $T \gg \frac{\hbar}{\Lambda}$

Temperature & Non-adiabatic effect

Measure Chern number of 2D optical lattice

with

Topological pumping effect

Synthetic gauge-field in optical lattices

Imprint complex phases to the hopping amplitude

✤ 1D Peierls lattice NIST, Hamburg

$$H = -J\sum_{m} e^{i2\pi\Phi} c_{m+1}^{\dagger} c_m + H.c.$$

Synthetic gauge-field in optical lattices

Imprint complex phases to the hopping amplitude

✤ 1D Peierls lattice NIST, Hamburg

$$H = -J\sum_{m} e^{i2\pi\Phi} c_{m+1}^{\dagger} c_m + H.c.$$

Hofstadter optical lattice

 $H = -J \sum e^{i2\pi n\Phi} c_{m+1,n}^{\dagger} c_{m,n} + c_{m,n+1}^{\dagger} c_{m,n} + H.c. \quad \Phi = p/q$ m,n

 Φ_{\bigstar}

É

Hofstadter optical lattice

 Φ_{\bigstar}

 $H = -J \sum e^{i2\pi n\Phi} c^{\dagger}_{m+1,n} c_{m,n} + c^{\dagger}_{m,n+1} c_{m,n} + H.c. \quad \Phi = p/q$ m.n

Hofstadter optical lattice

 $H = -J \sum e^{i2\pi n\Phi} c^{\dagger}_{m+1,n} c_{m,n} + c^{\dagger}_{m,n+1} c_{m,n} + H.c. \quad \Phi = p/q$ m.n

NO sharp edge states in harmonic trapping potential Buchhold *et al*

Density profile

Umucalilar *et al*

Time-of-flight

Alba *et al*, Zhao *et al*

Time-of-flight

Alba et al, Zhao et al

Time-of-flight

Alba et al, Zhao et al

Time-of-flight

Alba et al, Zhao et al

Zak phases Density profile Spin projection S, Spin projection Sy Spin projection S 1.0 1.0 1.0Abanin et al $\sqrt{3} \frac{1}{q_y/2\pi}$ $\sqrt{3} \frac{1}{q_y/2\pi}$ Umucalilar et al 0.0 0.0 0.0 $k_{...}$ (b) - φ=1/4 $- - \cdot \phi = 1/3$ -0.5 \vec{H}_1 , \vec{G}_2 \vec{G}_1 0.8 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 0.6 Crystal momentum, $3q_z/2\pi$ Crystal momentum, $3a_r/2\pi$ Crystal momentum, $3a_{x}/2\pi$ n(r) k, 0.4 Δn 0.2 H_{γ} Semi-classical dynamics Dirac points 0 0 30 (a) 10 20 40 50 r/a Price et al

$$\dot{\mathbf{r}} = \frac{1}{\hbar} \frac{\partial \varepsilon(\mathbf{k})}{\partial \mathbf{k}} - \frac{\mathbf{F}}{\hbar} \times \hat{\mathbf{z}} \Omega(\mathbf{k})$$

 $j(x,t) \longrightarrow$

We propose a new probe based on Topological Pumping Effect

 $\rho(\mathbf{k}_{x}, y)$

Hybrid time-of-flight

LW, Soluyanov and Troyer, PRL 110, 166802 (2013)

Hybri-of-flight

LW, Soluyanov and Troyer, PRL 110, 166802 (2013)

Hybrider F-flight LW, Soluyanov and Troyer, PRL 110, 166802 (2013)

 $\Phi = 1/7 \ C = 1$

Quantitative Characterizations

- ✤ Slope
- # of cuts (edge modes)
- ✤ COM along y-direction

Bipartition particle number (trace index)
Alexandradinata *et al*

Salient features

- Bulk detection, does not require edge states
- ∞ ρ(k_x, y) is almost impossible to measure in solids, but is natural to cold atom toolbox
- Can be extended to interacting case

Fractional charge pumping

Use hybrid ToF to detect FQHE and fractional Chern insulators realized in optical lattices

Fractional charge pumping

Use hybrid ToF to detect FQHE and fractional Chern insulators realized in optical lattices

Numerical diagnosis of fractional Hall conductance

1. Center-of-mass shift

$$Y(\Phi_x) = \frac{1}{L_y} \sum_{\mathbf{r}} y_{\mathbf{r}} n_{\mathbf{r}}(\Phi_x)$$

2. Particle number flow

$$N_{\mathcal{A}}(\Phi_x) = \sum_{\mathbf{r}\in A} n_{\mathbf{r}}(\Phi_x)$$

Avoid calculating overlap between wavefunctions TKNN

LW, Soluyanov and Troyer, to appear

Numerical diagnosis of fractional Hall conductance

1. Center-of-mass shift

$$Y(\Phi_x) = \frac{1}{L_y} \sum_{\mathbf{r}} y_{\mathbf{r}} n_{\mathbf{r}}(\Phi_x)$$

2. Particle number flow

$$N_{\mathcal{A}}(\Phi_x) = \sum_{\mathbf{r}\in A} n_{\mathbf{r}}(\Phi_x)$$

Avoid calculating overlap between wavefunctions TKNN

0.5

LW, Soluyanov and Troyer, to appear

Summary

arXiv:1301.7435, in press PRL 110, 166802 (2013)

 $j(x,t) \longrightarrow$

Topological charge pumping is a common thread unifies many features of topological states Guideline for design and detection of topological

phases in cold atom systems

