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Diagrammatic approaches
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What about the sign problem ?
Sign problem free: Kramers pairs due to the 
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What about the sign problem ?

And more …

LW, Hung and Troyer, PRB 2014

exactlyN=2 particles on each lattice site,Hwould reduce to
an exact SUðNÞ-symmetric Heisenberg model HH ¼
J=2N

P
hi;jiSi $ Sj, with Si being the vector of the SUðNÞ

spin operators Sai ¼
P

!;"c
y
i!T

a
!"ci", expressed in terms of

the generators Ta, a ¼ 1; . . . ; N2 % 1; of SUðNÞ in the
fundamental representation, with TrðTaTbÞ ¼ #ab=2 [e.g.,
Ta ¼ $a=2 in terms of the Pauli matrices $a for SU(2)].
This would result, e.g., in the largeU limit of amodel that in
addition to H also includes a local Hubbard-U interaction,
which reduces the local particle fluctuations around the
mean value of N=2. In the large-N limit, and considering
only the paramagnetic saddle point, these fluctuations
become irrelevant and the Hubbard-U interaction merely
fixes the average particle number to N=2. The
Hamiltonian in Eq. (1) indeed equals the U ¼ 0 limit of
the Hubbard-Heisenberg Hamiltonian of the seminal
works in Refs. [2–4], and represents an unrestricted
SUðNÞ-symmetric t% J model. It has been considered
previously using QMC simulations on the square lattice,
where an exotic gapless spin liquid was obtained forN ¼ 4
flavors [27]. In the following, we consider the case of the
honeycomb lattice, motivated also by recent studies for the
SU(2) Hubbard model [40], and are in particular interested
in the response of the weak-coupling SUðNÞ semimetal
(SM) to an explicit SUðNÞ-symmetric flavor exchange in-
teraction J.

Large-N.—Before presenting QMC results, we consider
the mean-field decoupling ofH in terms of the bond mean-
fields %ij ¼ j%ijjei&ij ¼ hP!c

y
i!cj!i=N, which becomes

exact in the large-N limit. The %ij carry a phase &ij, and
j%ijj2 relates the bond strength hSi $ Sji. We numerically
solve the mean-field equations self-consistently for a six-
site unit cell (with nine bonds), which retains the full lattice
symmetry (cf. the left inset of Fig. 1). This leads to the
following phase diagram: at large t=J, the kinetic energy
dominates and all the%ij are equal and real; thus, the system
in this region is a fluxless SM. Below a critical value near
t=J ¼ 0:21, the system undergoes a continuous quantum
phase transition into a columnar valence bond solid (cVBS)
phase with a Kekule pattern [5,41], illustrated in the right
inset of Fig. 1. For comparison, we note that on the
square lattice, the noninteracting Fermi sea is unstable,
and in the large-N limit d-density wave states occur imme-
diately at weak coupling, while a valence bond solid
(VBS) with box dimerization emerges at large exchange
coupling [27].

QMC method.—To explore the phase diagram beyond
the large-N limit, and to assess the stability range of
the large-N results, we employ a SUðNÞ-generalized
formulation of the projector QMC simulations
[27,42,43], which allows for the numerically exact evalu-
ation of ground state properties for all even values
of N. Observables are obtained as h!0jOj!0i ¼
lim"!1h!Tje%"H=2Oe%"H=2j!Ti=h!Tje%"Hj!Ti. We
use a trial wave function j!Ti ¼

Q
!j!Ti!, where j!Ti!

is the ground state of the single particle Hamiltonian

H0
! ¼ %t

P
hi;jic

y
i!cj! expðð2'i=#0Þ

Rrj
ri d‘ $AÞ þ H:c: in

the flavor ! Hilbert subspace, where #0 ¼ he=c denotes
the flux quantum, and ri the position of lattice site i. The flux
#=#0 ¼ 10%4 is chosen sufficiently small to lift the ground
state degeneracy in j!Ti. We performed QMC simulations
on finite systems of linear extentL andNs ¼ 2L2 sites, with
periodic boundary conditions. Projection parameters
"t ¼ 30 and an imaginary time discretization of $(t ¼
0:05were found sufficient to obtain converged ground-state
quantities within statistical uncertainty. From a fit of the

imaginary-time displaced Green’s function [44] Gðq; (Þ ¼
hð1=2NÞPs;!c

y
qs!ð(Þcqs!ð0Þi to its long-time behavior

lim(!1Gðq; (Þ / e%($spðqÞ, the single-particle gap $sp ¼
$spðKÞ can be extracted without an analytical continuation.
Here, the momentum q is defined with respect to the coor-
dinates of the two-site unit cells of the honeycomb lattice
that form a triangular lattice, K denotes a corner of the
hexagonal Brillouin zone (where the Dirac points of the SM
reside), and s ¼ A, B corresponds to the site of the unit cell
that belongs to sublattice A and B, respectively. Similarly,
we obtain the spin gap$$ð!Þ from the time-displaced spin-
spin correlation function in the antiferromagnetic (AFM)
sector, SAFMð!; (Þ ¼ ð1=NsÞ

P
i;j)i)jhSið(Þ $ Sjð0Þi, where

)i ¼ '1 if site i belongs to sublattice A (B). The equal
time value SAFMð!Þ ¼ SAFMð!; ( ¼ 0Þ provides the
structure factor for long-range AFM order on this bipartite
lattice. In order to determine the dimerization pattern
of the VBS phase stabilized in the large-N analysis,
we measure the SUðNÞ dimer correlation function

FIG. 1 (color online). Ground state phase diagram of fermions
with SUðNÞ-symmetric flavor exchange on the honeycomb lat-
tice. Crosses denote parameters at which QMC simulations have
been carried out. For all considered (even) N the system under-
goes a quantum phase transition from a semimetal (SM) to an
insulator. For N ( 6 the insulating state is a columnar valence
bond solid (cVBS), while at N ¼ 4 it is a valence bond solid with
resonating valence bond plaquettes (pVBS); both are depicted in
the right inset. At N ¼ 2 an antiferromagnetic insulator (AFM)
appears. The left inset shows the lattice structure with the six-
sites unit cell employed in the large-N calculations.
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sign problem. Such algorithms express the par-
tition function as a sum over Feynman histories,
and the sign problem arises when the weights
assigned to the trajectories are not all positive
because of quantum interference effects. A gen-
eral solution to the fermion sign problem has been
proved to be in the computational complexity class
of nondeterministic polynomial (NP) hard (5),
and so there has been little hope that the antifer-
romagnetic quantum critical point could be elu-
cidated by computational studies.

Application of the methods of quantum field
theory and the renormalization group to the on-
set of antiferromagnetism in a metal (6) has
identified (7, 8) a universal quantum field theory
that captures all the singular low-energy quan-
tum fluctuations that control the quantum crit-
ical point and deviations from the Fermi liquid
physics of traditional metals. The field theory
is expressed in terms of fermionic excitations in
the vicinity of a finite number of “hot spots” on
the Fermi surface, and is thus independent of the
details of the fermionic band structure, except for
the number of hot spots and Fermi velocities at
the hot spots (9). Recent work (10, 11) has shown

that the renormalization group and Feynman graph
expansions of the field theory flow to strong cou-
pling in two spatial dimensions, making further
analytical progress difficult.

Here, we show that the universal quantum
field theory can be realized in lattice models that
are free of the sign problem and so is amenable
to large-scale QMC studies. Our claim does not
contradict the no-go theorem of (5), because we
do not provide a general recipe for eliminating
the sign problem. However, we will eliminate
it for the specific case of the onset of antifer-
romagnetic order in a two-dimensional metal,
provided the perturbative arguments on the im-
portance of the hot spots to the quantum field
theory (7, 8, 10, 11) apply. Our modified lattice
model has at least two bands. Therefore, in cases
in which there is only a single active band at the
transition, such as in the electron-doped cuprates,
our method requires modifying the Fermi sur-
face far away from the hot spots; we show that
this can be done while preserving the universal
low-energy properties of the antiferromagnetic
critical point. On the other hand, our method
applies to multiband situations (such as in the

iron-based superconductors) without changes to
their Fermi surface configuration. Being a low-
energy effective theory, the method will not
apply where the proximity of a Mott insulator is
important, as is likely the case in the hole-doped
cuprates (12–16).

To illustrate our method, we consider the on-
set of antiferromagnetic order in a simple one-
band model on the square lattice, as is appropriate
for the electron-doped cuprates. The electrons, ck
(the spin index is left implicit), with dispersion
ek, have a single “large” Fermi surface (Fig. 1A).
The antiferromagnetic order parameter is →fq; we
will assume the important fluctuations of →fq
are restricted to small values of |q|, much smaller
than the size of the Brillouin zone. The antifer-
romagnetic ordering wavevector is K = (p,p),
and →fq represents the electron spin density at
the wavevector K + q; we will also refer to the
antiferromagnetic order as spin density wave
(SDW) order. We can thus write the electron
part of the Hamiltonian as

H ¼∑
k
ekc

†
kck þ l∑

k,q
c†kþKþq(

→s ⋅ →fq)ck ð1Þ

where l is the “Yukawa” coupling between the
electrons and the SDWorder, and→s are the Pauli
matrices. The Yukawa term is the simplest cou-
pling consistent with translational symmetry and
spin-rotation invariance, and can be derived, e.g.,
by decoupling of the repulsive interaction in a
Hubbard model by an auxiliary field that maps
to →f in the long-wavelength limit (17). The hot
spots are at k for which ek = ek+K = 0 (Fig.
1A); at these points, →fq¼0 scatters electrons be-
tween initial and final states, which are both on the
Fermi surface. To obtain the electron Fermi sur-
face in a metal with SDWorder, we replace→fq by
its expectation value 〈→fq〉 ¼

→
N dq,0 (where

→
N is the

staggered magnetization) and recompute the
electron dispersion; this leads to the Fermi sur-
face reconstruction shown in Fig. 1B.

We now describe our method to deform the
model, such that the sign problem is avoided,
while preserving the structure of the hot spots.
Let us separate the hot spots into two groups, so
that K only connects hot spots from one group
to the other. Now deform the one-band electronic
dispersion to a two-band model with an addi-
tional “orbital” label so that all the hot spots in
one group are on the Fermi surfaces of the first
band, while the hot spots of the other group
reside on the Fermi surfaces of the second band
(an example of such a dispersion is shown in
Fig. 1C, in which the “horizontal” and “vertical”
Fermi surfaces are part of two separate electronic
bands). As can be seen, the vicinities of the hot
spots in the two-band model are essentially iden-
tical to those in the one-band model in Fig. 1A,
and so the same low-energy theory for the onset
of antiferromagnetism applies to both models.
With no further assumptions, the deformed model
has only positive weights in a suitable QMC
realization.

K

A B

K

C

Fig. 1. (A) Fermi surface of the Fermi liquid phase of a single band model on the square lattice with
unit lattice spacing. The “hot spots” are denoted by the filled circles. (B) The reconstructed Fermi
surface in the metal with SDW order. The dashed lines show the Fermi surface in the metal without SDW
order, and its translation by K. Gaps have opened at the hot spots, leading to small “pocket” Fermi
surfaces. (C) A deformed Fermi surface of the metal without SDW order, in which the vicinities of the
hot spots are unchanged from (A). The horizontal and vertical Fermi surfaces now belong to separate
electronic bands.
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Fig. 2. (A) Fermi surfaces (solid lines) of LF for free yx,y fermions with the parameters listed in the
text. The dashed lines show the portion of the Fermi surface in Fig. 1C that was shifted by K to
obtain the yy Fermi surface. The hot spots are now at the intersections of the Fermi surfaces. (B)
Mean-field yx,y Fermi surfaces with SDW order j〈→f〉j = 0:25.
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We solve the sign problem in a particle-hole symmetric spin-polarized fermion model on bipartite lattices
using the idea of fermion bags. The solution can be extended to a class of models at half filling but without
particle-hole symmetry. Attractive Hubbard models with an odd number of fermion species can also be solved.
Our solutions should allow us to study quantum phase transitions that have remained unexplored so far due to
sign problems.
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Quantum Monte Carlo methods for many-body fermionic
systems in thermal equilibrium usually require one to be
able to rewrite quantum partition functions as a sum over
classical configurations with positive Boltzmann weights that
are computable in polynomial time. Unfortunately, due to the
underlying quantum nature of the problem, the Boltzmann
weights can be negative or even complex in general. Such
expansions are said to suffer from a sign problem [1]. The
discovery of an expansion with positive Boltzmann weights
is referred to as a solution to the sign problem. Solutions to
sign problems in many quantum systems are considered to be
outstanding problems in computational complexity [2].

Traditionally, solutions are based on rewriting the interact-
ing problem as a free fermion problem where fermions only in-
teract with background auxiliary fields [3–6]. The Boltzmann
weight then depends on the determinant of the free fermion
matrix, which can still be negative or complex. However, in
electronic systems, a symmetric treatment of both spin com-
ponents of the electron can sometimes make the Boltzmann
weight positive since it can be written as the product of two real
determinants that come with the same sign [7]. Sign problems
in spin-polarized systems are usually much harder to solve
since the Boltzmann weight contains only a single determinant.
In certain cases the presence of an antiunitary symmetry in the
fermion matrix can help prove the absence of sign problems
even though there is only a single fermion determinant [8].
However, such an approach also usually requires the presence
of an even number of fermion species.

Spin-polarized electronic systems with particle-hole sym-
metry are special since holes can mimic the second species
of fermions. In relativistic systems, particle-hole symmetry
is replaced by charge conjugation symmetry and antiparticles
can play the role of the second species of fermions. Thus
one might expect that solutions to sign problems would
emerge naturally in the presence of particle-hole or charge
conjugation symmetries. However, even in the presence of
these symmetries, it is easy to find models with sign problems
that have remained unsolved. Consider for example, the
tight-binding model of spin-polarized graphene described by
the Hamilton operator

H =
∑

⟨ij⟩
−t(c†i cj + c

†
j ci) + V

(
ni − 1

2

) (
nj − 1

2

)
, (1)

where ⟨ij ⟩ refers to the nearest-neighbor bond connecting
different sublattices on the honeycomb lattice. In this model
the repulsion between the electrons is modeled with a nearest-

neighbor Hubbard-type interaction. The model is well known
as the tV model and was considered on square lattices a
long time ago [9,10]. Although the model has a particle-hole
symmetry, as far as we know its sign problem has not been
solved by traditional methods for any value of V . Thus, it
seems like the tV model at half filling in spin-polarized
systems is more difficult to solve than the traditional Hubbard
model with an on-site U interaction between the two spins.
Unlike the traditional Hubbard model, here the V < 0 model
cannot be mapped into the V > 0 model through a unitary
transformation. In the repulsive case for V ! 2t the sign
problem could indeed be solved using a nontraditional method
called the meron-cluster approach [11]. Unfortunately, that
solution could not be extended to smaller values of V .

The spin-polarized t-V model (1) is of interest from a fun-
damental quantum field theory perspective since it describes
a minimally doubled lattice fermion system [12]. A similar
minimally doubled fermion system can be obtained with
Hamiltonian staggered fermions on a square lattice [13,14].
These models contain an interesting quantum phase transi-
tion between a semimetal phase (containing massless Dirac
fermions) to a Mott insulating phase (with massive Dirac
fermions) accompanied by spontaneous symmetry breaking.
The properties of this transition can be studied using massless
four-fermion quantum field theory containing a single flavor of
four-component Dirac fermions [15]. While in principle these
phase transitions can be formulated and studied on the lattice
using Mote Carlo methods [16], due to sign problems, studies
of an odd number of four-component Dirac fermions do not
exist. Typical calculations involve further doubling and thus
contain an even number of flavors of four-component Dirac
fermions [17–20]. On the other hand predictions using approx-
imate analytic techniques do exist for theories containing both
even and odd numbers of flavor [21–23]. In this Rapid Commu-
nication we solve the sign problem in (1) for all values of V >
0, thus allowing us to study the quantum phase transition in
minimally doubled fermion systems. While most of our discus-
sion will be focused on (1) for concreteness, many of the ideas
behind the solution are general and easily extendable to other
models including those with an odd number of fermion flavors.
We will mention some of these extensions towards the end.

We first rewrite the Hamilton operator (1) in a form that
makes particle-hole symmetry more explicit. Hence we write

H =
∑

⟨ij⟩
c
†
i Mij cj + V

4
(n+

i − n−
i )(n+

j − n−
j ), (2)
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classical configurations with positive Boltzmann weights that
are computable in polynomial time. Unfortunately, due to the
underlying quantum nature of the problem, the Boltzmann
weights can be negative or even complex in general. Such
expansions are said to suffer from a sign problem [1]. The
discovery of an expansion with positive Boltzmann weights
is referred to as a solution to the sign problem. Solutions to
sign problems in many quantum systems are considered to be
outstanding problems in computational complexity [2].

Traditionally, solutions are based on rewriting the interact-
ing problem as a free fermion problem where fermions only in-
teract with background auxiliary fields [3–6]. The Boltzmann
weight then depends on the determinant of the free fermion
matrix, which can still be negative or complex. However, in
electronic systems, a symmetric treatment of both spin com-
ponents of the electron can sometimes make the Boltzmann
weight positive since it can be written as the product of two real
determinants that come with the same sign [7]. Sign problems
in spin-polarized systems are usually much harder to solve
since the Boltzmann weight contains only a single determinant.
In certain cases the presence of an antiunitary symmetry in the
fermion matrix can help prove the absence of sign problems
even though there is only a single fermion determinant [8].
However, such an approach also usually requires the presence
of an even number of fermion species.

Spin-polarized electronic systems with particle-hole sym-
metry are special since holes can mimic the second species
of fermions. In relativistic systems, particle-hole symmetry
is replaced by charge conjugation symmetry and antiparticles
can play the role of the second species of fermions. Thus
one might expect that solutions to sign problems would
emerge naturally in the presence of particle-hole or charge
conjugation symmetries. However, even in the presence of
these symmetries, it is easy to find models with sign problems
that have remained unsolved. Consider for example, the
tight-binding model of spin-polarized graphene described by
the Hamilton operator
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where ⟨ij ⟩ refers to the nearest-neighbor bond connecting
different sublattices on the honeycomb lattice. In this model
the repulsion between the electrons is modeled with a nearest-

neighbor Hubbard-type interaction. The model is well known
as the tV model and was considered on square lattices a
long time ago [9,10]. Although the model has a particle-hole
symmetry, as far as we know its sign problem has not been
solved by traditional methods for any value of V . Thus, it
seems like the tV model at half filling in spin-polarized
systems is more difficult to solve than the traditional Hubbard
model with an on-site U interaction between the two spins.
Unlike the traditional Hubbard model, here the V < 0 model
cannot be mapped into the V > 0 model through a unitary
transformation. In the repulsive case for V ! 2t the sign
problem could indeed be solved using a nontraditional method
called the meron-cluster approach [11]. Unfortunately, that
solution could not be extended to smaller values of V .

The spin-polarized t-V model (1) is of interest from a fun-
damental quantum field theory perspective since it describes
a minimally doubled lattice fermion system [12]. A similar
minimally doubled fermion system can be obtained with
Hamiltonian staggered fermions on a square lattice [13,14].
These models contain an interesting quantum phase transi-
tion between a semimetal phase (containing massless Dirac
fermions) to a Mott insulating phase (with massive Dirac
fermions) accompanied by spontaneous symmetry breaking.
The properties of this transition can be studied using massless
four-fermion quantum field theory containing a single flavor of
four-component Dirac fermions [15]. While in principle these
phase transitions can be formulated and studied on the lattice
using Mote Carlo methods [16], due to sign problems, studies
of an odd number of four-component Dirac fermions do not
exist. Typical calculations involve further doubling and thus
contain an even number of flavors of four-component Dirac
fermions [17–20]. On the other hand predictions using approx-
imate analytic techniques do exist for theories containing both
even and odd numbers of flavor [21–23]. In this Rapid Commu-
nication we solve the sign problem in (1) for all values of V >
0, thus allowing us to study the quantum phase transition in
minimally doubled fermion systems. While most of our discus-
sion will be focused on (1) for concreteness, many of the ideas
behind the solution are general and easily extendable to other
models including those with an odd number of fermion flavors.
We will mention some of these extensions towards the end.

We first rewrite the Hamilton operator (1) in a form that
makes particle-hole symmetry more explicit. Hence we write
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We discover a quantum Monte Carlo (QMC) method to solve the fermion sign problem in interacting fermion
models by employing a Majorana representation of complex fermions. We call it the “Majorana QMC” (MQMC).
MQMC simulations can be performed efficiently both at finite and zero temperatures. Especially, MQMC is
fermion sign free in simulating a class of spinless fermion models on bipartite lattices at half filling and with an
arbitrary range of (unfrustrated) interactions. Moreover, we find a class of SU (N ) fermionic models with odd
N , which are sign free in MQMC but whose sign problem cannot be in solved in other QMC methods, such as
continuous-time QMC. To the best of our knowledge, MQMC is the first auxiliary field QMC method to solve
the fermion sign problem in spinless (more generally, an odd number of species) fermion models. We conjecture
that MQMC could be applied to solve the fermion sign problem in more generic fermionic models.
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Introduction. Interacting fermionic quantum systems with
strong correlations and/or topological properties have attracted
increasing attention [1,2]. Nonetheless, in two and higher
spatial dimensions, strongly interacting quantum systems are
generically beyond the reach of analytical methods in the sense
of solving those quantum models in an unbiased way. As an
intrinsically unbiased numerical method, the quantum Monte
Carlo (QMC) simulation plays a key role in understanding
the physics of strongly correlated many-body systems [3–7].
Unfortunately, in simulating fermionic many-body systems,
QMC often encounters the notorious fermion minus-sign
problem [8,9], which arises as a consequence of Fermi
statistics [10]. Undoubtedly, generic solutions of fermion sign
problems would lead to a great leap forward in understanding
correlated electronic systems [9].

Many QMC algorithms are based on converting an interact-
ing fermion model into a problem of free fermions interacting
with background auxiliary classical fields; the Boltzmann
weight is the determinant of the free fermion matrix which is a
function of auxiliary fields and which can be positive, negative,
or even complex. In such determinant QMC (DQMC), when
the determinants are rendered to be positive definite, we
say a solution to the fermion sign problem is found. For
spinful electrons, the conventional strategy of solving the
fermion sign problem is to find a symmetric treatment of
both spin components of electrons such that the Boltzmann
weight can be written as the product of two real determinants
with the same sign and is then positive definite [11–16]. For
spinless or spin-polarized fermion models, it is usually much
more difficult to solve the fermion sign problem because the
Boltzmann weight contains only a single determinant and the
usual strategy used for even species of fermions cannot be
directly applied here.

In this Rapid Communication, based on the Majorana
representation of fermions, we propose an auxiliary field
QMC approach to solve the fermion sign problem in spinless
fermion models. We observe that each complex fermion can be

*yaohong@tsinghua.edu.cn

represented as two Majorana fermions. Consequently, we can
express spinless fermion Hamiltonians in a Majorana represen-
tation and then perform Hubbard-Stratonovich (HS) transfor-
mations to decouple interactions by introducing background
auxiliary fields. Under certain conditions, such as particle-hole
symmetry, we can find a symmetric treatment of two species
of Majorana fermions, namely, the free Majorana fermion
Hamiltonian obtained after HS transformations is a sum of two
symmetric parts, each involving only one species of Majorana
fermions, such that the Boltzmann weight is a product of two
identical real quantities and is then positive definite. This is
the basic idea of the Majorana approach to solve the fermion
sign problem in spinless or spin-polarized fermion models
which we call the “Majorana QMC” (MQMC). Note that
the MQMC approach proposed here is qualitatively different
from the meron-cluster method [17,18] and fermion bag
method [19,20] developed previously, all of which are based
on the continuous-time QMC (CTQMC) [20–23]. MQMC
is a QMC approach based on auxiliary fields to solve the
fermion sign problem in a class of spinless (more generally, an
odd number of species) fermion models. Moreover, MQMC
has an important advantage: It is much more efficient than
continuous-time QMC in simulating models at low and zero
temperatures; the computation-time cost in MQMC scales as
β ≡ 1/T while it scales as β3 in continuous-time QMC [20]
(see also more recent developments discussed in Ref. [24]).

As an application of the sign-free MQMC algorithm, we
have used it to study the charge density wave (CDW) quantum
phase transition of the spinless fermion model with repulsive
density interactions on the honeycomb lattice with a much
larger system size (2L2 sites with L up to 24) than previous
studies, and obtained quantum critical exponents which are
in reasonable agreement with renormalization group (RG)
calculations [25]. We also show that MQMC can solve the
fermion sign problem in a class of SU (N = odd) models
which are beyond the capability of other QMC methods, such
as the continuous-time QMC.

Majorana quantum Monte Carlo. To explicitly illustrate
how MQMC could solve the fermion sign problem in a class
of spinless fermion models, we consider the following general

1098-0121/2015/91(24)/241117(5) 241117-1 ©2015 American Physical Society
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We present the ground state extension of the efficient continuous-time quantum Monte Carlo algorithm for
lattice fermions of M. Iazzi and M. Troyer, Phys. Rev. B 91, 241118 (2015). Based on continuous-time expansion
of an imaginary-time projection operator, the algorithm is free of systematic error and scales linearly with
projection time and interaction strength. Compared to the conventional quantum Monte Carlo methods for lattice
fermions, this approach has greater flexibility and is easier to combine with powerful machinery such as histogram
reweighting and extended ensemble simulation techniques. We discuss the implementation of the continuous-time
projection in detail using the spinless t-V model as an example and compare the numerical results with exact
diagonalization, density matrix renormalization group, and infinite projected entangled-pair states calculations.
Finally we use the method to study the fermionic quantum critical point of spinless fermions on a honeycomb
lattice and confirm previous results concerning its critical exponents.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) methods are powerful
and versatile tools for studying quantum phases and phase
transitions. Algorithmic development in the past two decades
including the nonlocal updates [1–5] and the continuous-time
formulations [6,7] have greatly boosted the power of QMC
methods, even surpassing the hardware improvements follow-
ing Moore’s law. Using modern QMC methods, the simulation
of bosons and unfrustrated spin models is considered a solved
problem. QMC simulations therefore can be used to test
novel theoretical scenarios [8–12] and to verify experimental
realizations. [13]

While efficient algorithms exist for the simulation of
bosons and unfrustrated spin models [1–5,14,15], simulations
of fermions are more challenging because of the infamous
fermion sign problem [16,17]. It causes exponential growth
of computational effort as system size or inverse temperature
increases. Even for systems without a sign problem, the phase
diagram of correlated fermions can be nontrivial to establish
[18,19], not to mention to accurately determine the universality
class and associated critical exponents [20,21]. The main
reason for this difficulty is the unfavorable superlinear scaling
with system size and/or inverse temperature of determinantal
quantum Monte Carlo methods, which are the workhorse of
correlated lattice fermion simulations.

Determinantal QMC method sums a factorially large
number of fermion exchange processes into a matrix deter-
minant, thereby avoiding the fermion sign problems in certain
cases. An algorithm based on this idea is the Blankenbecler-
Scalapino-Sugar (BSS) method [22]. It maps an interacting
fermionic system to free fermions in a spatially and temporally
fluctuating external field and then performs Monte Carlo
sampling of this field. Numerical instabilities of the original
approach have been remedied in Refs. [23,24]. The BSS algo-
rithm has become the method of choice of many lattice fermion
simulations due to its linear scaling in the inverse temperature
β. We refer to Refs. [25,26] for pedagogical reviews.

Closely related is the Hirsch-Fye algorithm [27], which
is numerically more stable and is more broadly applicable
because it is formulated using a (potentially time-dependent)

action rather than a Hamiltonian. However, its computational
effort scales cubically with the inverse temperature and the
interaction strength therefore is much less efficient than the
BSS method for the cases where both methods are applicable.
The Hirsch-Fye method thus has typically been used in the
study of quantum impurity problems and as impurity solvers
in the framework of dynamical mean field theory (DMFT)
[28], where time-dependent actions need to be simulated.

Both the BSS and the Hirsch-Fye algorithm are based on a
discretization of imaginary time, thus introducing a systematic
time step error, called the Trotter error. Nearly 20 years ago
it was realized that time discretization is not necessary for the
simulation of lattice models [6,7]. Besides increased accuracy
due to the absence of a Trotter error, continuous imaginary-
time formulations often results in a more efficient and flexible
algorithm [3]. In Ref. [29] a continuous-time QMC method for
lattice fermions has been proposed. However, the scaling of
this algorithm and numerical stabilization have not been dis-
cussed in this paper and we are not aware of any application of
the algorithm. Further development on fermionic continuous-
time QMC algorithms [38] have focused on quantum im-
purity problems: the continuous-time interaction expansion
(CT-INT) algorithm [31], the continuous-time hybridization
expansion (CT-HYB) algorithm [33], and the continuous-time
auxiliary field (CT-AUX) [32] algorithm. CT-INT and CT-
AUX are based on weak-coupling expansion of the action
and share the same scaling as the Hirsch-Fye method [39].
These methods have revolutionized the simulation of quantum
impurity problems and DMFT calculations [38]. However, for
lattice models they remained suboptimal compared to the BSS
method due to their cubic scaling in the inverse temperature.
Very recently an efficient continuous-time algorithm has been
developed by two of the authors that scales identically to the
time-honored BSS method [30] and can be used both with an
auxiliary field (LCT-AUX) and without (LCT-INT). The prefix
“L” indicating both their linear scaling and their applicability
to lattice models. In Table I we summarize some properties of
these determinantal QMC methods.

Finite-temperature determinantal QMC methods can be ex-
tended to projector formulations [23,34–37], where the ground

1098-0121/2015/91(23)/235151(11) 235151-1 ©2015 American Physical Society
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Quantum Monte Carlo methods for many-body fermionic
systems in thermal equilibrium usually require one to be
able to rewrite quantum partition functions as a sum over
classical configurations with positive Boltzmann weights that
are computable in polynomial time. Unfortunately, due to the
underlying quantum nature of the problem, the Boltzmann
weights can be negative or even complex in general. Such
expansions are said to suffer from a sign problem [1]. The
discovery of an expansion with positive Boltzmann weights
is referred to as a solution to the sign problem. Solutions to
sign problems in many quantum systems are considered to be
outstanding problems in computational complexity [2].

Traditionally, solutions are based on rewriting the interact-
ing problem as a free fermion problem where fermions only in-
teract with background auxiliary fields [3–6]. The Boltzmann
weight then depends on the determinant of the free fermion
matrix, which can still be negative or complex. However, in
electronic systems, a symmetric treatment of both spin com-
ponents of the electron can sometimes make the Boltzmann
weight positive since it can be written as the product of two real
determinants that come with the same sign [7]. Sign problems
in spin-polarized systems are usually much harder to solve
since the Boltzmann weight contains only a single determinant.
In certain cases the presence of an antiunitary symmetry in the
fermion matrix can help prove the absence of sign problems
even though there is only a single fermion determinant [8].
However, such an approach also usually requires the presence
of an even number of fermion species.

Spin-polarized electronic systems with particle-hole sym-
metry are special since holes can mimic the second species
of fermions. In relativistic systems, particle-hole symmetry
is replaced by charge conjugation symmetry and antiparticles
can play the role of the second species of fermions. Thus
one might expect that solutions to sign problems would
emerge naturally in the presence of particle-hole or charge
conjugation symmetries. However, even in the presence of
these symmetries, it is easy to find models with sign problems
that have remained unsolved. Consider for example, the
tight-binding model of spin-polarized graphene described by
the Hamilton operator

H =
∑

⟨ij⟩
−t(c†i cj + c

†
j ci) + V

(
ni − 1

2

) (
nj − 1

2

)
, (1)

where ⟨ij ⟩ refers to the nearest-neighbor bond connecting
different sublattices on the honeycomb lattice. In this model
the repulsion between the electrons is modeled with a nearest-

neighbor Hubbard-type interaction. The model is well known
as the tV model and was considered on square lattices a
long time ago [9,10]. Although the model has a particle-hole
symmetry, as far as we know its sign problem has not been
solved by traditional methods for any value of V . Thus, it
seems like the tV model at half filling in spin-polarized
systems is more difficult to solve than the traditional Hubbard
model with an on-site U interaction between the two spins.
Unlike the traditional Hubbard model, here the V < 0 model
cannot be mapped into the V > 0 model through a unitary
transformation. In the repulsive case for V ! 2t the sign
problem could indeed be solved using a nontraditional method
called the meron-cluster approach [11]. Unfortunately, that
solution could not be extended to smaller values of V .

The spin-polarized t-V model (1) is of interest from a fun-
damental quantum field theory perspective since it describes
a minimally doubled lattice fermion system [12]. A similar
minimally doubled fermion system can be obtained with
Hamiltonian staggered fermions on a square lattice [13,14].
These models contain an interesting quantum phase transi-
tion between a semimetal phase (containing massless Dirac
fermions) to a Mott insulating phase (with massive Dirac
fermions) accompanied by spontaneous symmetry breaking.
The properties of this transition can be studied using massless
four-fermion quantum field theory containing a single flavor of
four-component Dirac fermions [15]. While in principle these
phase transitions can be formulated and studied on the lattice
using Mote Carlo methods [16], due to sign problems, studies
of an odd number of four-component Dirac fermions do not
exist. Typical calculations involve further doubling and thus
contain an even number of flavors of four-component Dirac
fermions [17–20]. On the other hand predictions using approx-
imate analytic techniques do exist for theories containing both
even and odd numbers of flavor [21–23]. In this Rapid Commu-
nication we solve the sign problem in (1) for all values of V >
0, thus allowing us to study the quantum phase transition in
minimally doubled fermion systems. While most of our discus-
sion will be focused on (1) for concreteness, many of the ideas
behind the solution are general and easily extendable to other
models including those with an odd number of fermion flavors.
We will mention some of these extensions towards the end.

We first rewrite the Hamilton operator (1) in a form that
makes particle-hole symmetry more explicit. Hence we write

H =
∑

⟨ij⟩
c
†
i Mij cj + V

4
(n+

i − n−
i )(n+

j − n−
j ), (2)
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fermion sign free in simulating a class of spinless fermion models on bipartite lattices at half filling and with an
arbitrary range of (unfrustrated) interactions. Moreover, we find a class of SU (N ) fermionic models with odd
N , which are sign free in MQMC but whose sign problem cannot be in solved in other QMC methods, such as
continuous-time QMC. To the best of our knowledge, MQMC is the first auxiliary field QMC method to solve
the fermion sign problem in spinless (more generally, an odd number of species) fermion models. We conjecture
that MQMC could be applied to solve the fermion sign problem in more generic fermionic models.
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Introduction. Interacting fermionic quantum systems with
strong correlations and/or topological properties have attracted
increasing attention [1,2]. Nonetheless, in two and higher
spatial dimensions, strongly interacting quantum systems are
generically beyond the reach of analytical methods in the sense
of solving those quantum models in an unbiased way. As an
intrinsically unbiased numerical method, the quantum Monte
Carlo (QMC) simulation plays a key role in understanding
the physics of strongly correlated many-body systems [3–7].
Unfortunately, in simulating fermionic many-body systems,
QMC often encounters the notorious fermion minus-sign
problem [8,9], which arises as a consequence of Fermi
statistics [10]. Undoubtedly, generic solutions of fermion sign
problems would lead to a great leap forward in understanding
correlated electronic systems [9].

Many QMC algorithms are based on converting an interact-
ing fermion model into a problem of free fermions interacting
with background auxiliary classical fields; the Boltzmann
weight is the determinant of the free fermion matrix which is a
function of auxiliary fields and which can be positive, negative,
or even complex. In such determinant QMC (DQMC), when
the determinants are rendered to be positive definite, we
say a solution to the fermion sign problem is found. For
spinful electrons, the conventional strategy of solving the
fermion sign problem is to find a symmetric treatment of
both spin components of electrons such that the Boltzmann
weight can be written as the product of two real determinants
with the same sign and is then positive definite [11–16]. For
spinless or spin-polarized fermion models, it is usually much
more difficult to solve the fermion sign problem because the
Boltzmann weight contains only a single determinant and the
usual strategy used for even species of fermions cannot be
directly applied here.

In this Rapid Communication, based on the Majorana
representation of fermions, we propose an auxiliary field
QMC approach to solve the fermion sign problem in spinless
fermion models. We observe that each complex fermion can be
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represented as two Majorana fermions. Consequently, we can
express spinless fermion Hamiltonians in a Majorana represen-
tation and then perform Hubbard-Stratonovich (HS) transfor-
mations to decouple interactions by introducing background
auxiliary fields. Under certain conditions, such as particle-hole
symmetry, we can find a symmetric treatment of two species
of Majorana fermions, namely, the free Majorana fermion
Hamiltonian obtained after HS transformations is a sum of two
symmetric parts, each involving only one species of Majorana
fermions, such that the Boltzmann weight is a product of two
identical real quantities and is then positive definite. This is
the basic idea of the Majorana approach to solve the fermion
sign problem in spinless or spin-polarized fermion models
which we call the “Majorana QMC” (MQMC). Note that
the MQMC approach proposed here is qualitatively different
from the meron-cluster method [17,18] and fermion bag
method [19,20] developed previously, all of which are based
on the continuous-time QMC (CTQMC) [20–23]. MQMC
is a QMC approach based on auxiliary fields to solve the
fermion sign problem in a class of spinless (more generally, an
odd number of species) fermion models. Moreover, MQMC
has an important advantage: It is much more efficient than
continuous-time QMC in simulating models at low and zero
temperatures; the computation-time cost in MQMC scales as
β ≡ 1/T while it scales as β3 in continuous-time QMC [20]
(see also more recent developments discussed in Ref. [24]).

As an application of the sign-free MQMC algorithm, we
have used it to study the charge density wave (CDW) quantum
phase transition of the spinless fermion model with repulsive
density interactions on the honeycomb lattice with a much
larger system size (2L2 sites with L up to 24) than previous
studies, and obtained quantum critical exponents which are
in reasonable agreement with renormalization group (RG)
calculations [25]. We also show that MQMC can solve the
fermion sign problem in a class of SU (N = odd) models
which are beyond the capability of other QMC methods, such
as the continuous-time QMC.

Majorana quantum Monte Carlo. To explicitly illustrate
how MQMC could solve the fermion sign problem in a class
of spinless fermion models, we consider the following general
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We present the ground state extension of the efficient continuous-time quantum Monte Carlo algorithm for
lattice fermions of M. Iazzi and M. Troyer, Phys. Rev. B 91, 241118 (2015). Based on continuous-time expansion
of an imaginary-time projection operator, the algorithm is free of systematic error and scales linearly with
projection time and interaction strength. Compared to the conventional quantum Monte Carlo methods for lattice
fermions, this approach has greater flexibility and is easier to combine with powerful machinery such as histogram
reweighting and extended ensemble simulation techniques. We discuss the implementation of the continuous-time
projection in detail using the spinless t-V model as an example and compare the numerical results with exact
diagonalization, density matrix renormalization group, and infinite projected entangled-pair states calculations.
Finally we use the method to study the fermionic quantum critical point of spinless fermions on a honeycomb
lattice and confirm previous results concerning its critical exponents.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) methods are powerful
and versatile tools for studying quantum phases and phase
transitions. Algorithmic development in the past two decades
including the nonlocal updates [1–5] and the continuous-time
formulations [6,7] have greatly boosted the power of QMC
methods, even surpassing the hardware improvements follow-
ing Moore’s law. Using modern QMC methods, the simulation
of bosons and unfrustrated spin models is considered a solved
problem. QMC simulations therefore can be used to test
novel theoretical scenarios [8–12] and to verify experimental
realizations. [13]

While efficient algorithms exist for the simulation of
bosons and unfrustrated spin models [1–5,14,15], simulations
of fermions are more challenging because of the infamous
fermion sign problem [16,17]. It causes exponential growth
of computational effort as system size or inverse temperature
increases. Even for systems without a sign problem, the phase
diagram of correlated fermions can be nontrivial to establish
[18,19], not to mention to accurately determine the universality
class and associated critical exponents [20,21]. The main
reason for this difficulty is the unfavorable superlinear scaling
with system size and/or inverse temperature of determinantal
quantum Monte Carlo methods, which are the workhorse of
correlated lattice fermion simulations.

Determinantal QMC method sums a factorially large
number of fermion exchange processes into a matrix deter-
minant, thereby avoiding the fermion sign problems in certain
cases. An algorithm based on this idea is the Blankenbecler-
Scalapino-Sugar (BSS) method [22]. It maps an interacting
fermionic system to free fermions in a spatially and temporally
fluctuating external field and then performs Monte Carlo
sampling of this field. Numerical instabilities of the original
approach have been remedied in Refs. [23,24]. The BSS algo-
rithm has become the method of choice of many lattice fermion
simulations due to its linear scaling in the inverse temperature
β. We refer to Refs. [25,26] for pedagogical reviews.

Closely related is the Hirsch-Fye algorithm [27], which
is numerically more stable and is more broadly applicable
because it is formulated using a (potentially time-dependent)

action rather than a Hamiltonian. However, its computational
effort scales cubically with the inverse temperature and the
interaction strength therefore is much less efficient than the
BSS method for the cases where both methods are applicable.
The Hirsch-Fye method thus has typically been used in the
study of quantum impurity problems and as impurity solvers
in the framework of dynamical mean field theory (DMFT)
[28], where time-dependent actions need to be simulated.

Both the BSS and the Hirsch-Fye algorithm are based on a
discretization of imaginary time, thus introducing a systematic
time step error, called the Trotter error. Nearly 20 years ago
it was realized that time discretization is not necessary for the
simulation of lattice models [6,7]. Besides increased accuracy
due to the absence of a Trotter error, continuous imaginary-
time formulations often results in a more efficient and flexible
algorithm [3]. In Ref. [29] a continuous-time QMC method for
lattice fermions has been proposed. However, the scaling of
this algorithm and numerical stabilization have not been dis-
cussed in this paper and we are not aware of any application of
the algorithm. Further development on fermionic continuous-
time QMC algorithms [38] have focused on quantum im-
purity problems: the continuous-time interaction expansion
(CT-INT) algorithm [31], the continuous-time hybridization
expansion (CT-HYB) algorithm [33], and the continuous-time
auxiliary field (CT-AUX) [32] algorithm. CT-INT and CT-
AUX are based on weak-coupling expansion of the action
and share the same scaling as the Hirsch-Fye method [39].
These methods have revolutionized the simulation of quantum
impurity problems and DMFT calculations [38]. However, for
lattice models they remained suboptimal compared to the BSS
method due to their cubic scaling in the inverse temperature.
Very recently an efficient continuous-time algorithm has been
developed by two of the authors that scales identically to the
time-honored BSS method [30] and can be used both with an
auxiliary field (LCT-AUX) and without (LCT-INT). The prefix
“L” indicating both their linear scaling and their applicability
to lattice models. In Table I we summarize some properties of
these determinantal QMC methods.

Finite-temperature determinantal QMC methods can be ex-
tended to projector formulations [23,34–37], where the ground
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We present a guiding principle for designing fermionic Hamiltonians and quantum Monte Carlo (QMC)
methods that are free from the infamous sign problem by exploiting the Lie groups and Lie algebras that
appear naturally in the Monte Carlo weight of fermionic QMC simulations. Specifically, rigorous
mathematical constraints on the determinants involving matrices that lie in the split orthogonal group
provide a guideline for sign-free simulations of fermionic models on bipartite lattices. This guiding
principle not only unifies the recent solutions of the sign problem based on the continuous-time quantum
Monte Carlo methods and the Majorana representation, but also suggests new efficient algorithms to
simulate physical systems that were previously prohibitive because of the sign problem.
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One of the biggest challenges to the classical simulation
of quantum systems is the infamous fermion sign problem
of quantum Monte Carlo (QMC) simulations. It appears
when the weights of configurations in a QMC simulation
may become negative and therefore cannot be directly
interpreted as probabilities [1]. In the presence of a sign
problem, the simulation effort typically grows exponen-
tially with system size and inverse temperature.
While the sign problem is nondeterministic polynomial

hard [2], implying that there is little hope of finding a generic
solution, this does not exclude ad hoc solutions to the sign
problem for specific models. For example, one can some-
times exploit symmetries to design appropriate sign-
problem-free QMC algorithms for a restricted class of
models [3]. However, it is unclear how broad these classes
are and it is in general hard to foresee whether a given
physical model would have a sign problem in any QMC
simulations. The situation is not dissimilar to the study of
many intriguing problems in the nondeterministic polyno-
mial complexity class, where a seemingly infeasible prob-
lem might turn out to have a polynomial-time solution
surprisingly [4].
A fruitful approach in pursuing such specific solutions is

to design Hamiltonians that capture the right low energy
physics and allow sign-problem-free QMC simulations at
the same time, called “designer” Hamiltonians [5]. This
naturally calls for design principles. For bosonic and
quantum spin systems a valuable guiding principle is the
Marshall sign rule [6,7], which ensures non-negative
weight for all configurations. The design of the sign-
problem-free fermionic Hamiltonians is harder. The meth-
ods of choice for fermionic QMC simulations are the
determinantal QMC approaches, including traditional dis-
crete-time [8] and new continuous-time approaches [9–13].
Both approaches map the original interacting system to free

fermions with an imaginary-time dependent Hamiltonian.
The partition function is then written as a weighted sum of
matrix determinants after tracing out the fermions [8,9,12]:

Z ¼
X

C

fC det ½I þ T e−
R

β

0
dτHCðτÞ&; ð1Þ

where fC is a c number and HCðτÞ is an imaginary-time
dependent single-particle Hamiltonian matrix (whose
matrix elements denote hopping amplitudes and on-site
energies on a lattice), both depending on the Monte Carlo
configuration C. T denotes the time ordering and I is the
identity matrix. The appearance of the matrix determinant
complicates the analysis of the sign problem because it is
often not straightforward to see the sign of the Monte Carlo
weight of a given configuration [14,15], and the sign of the
determinant is related [16] to the Aharonov-Anandan phase
[17] of the imaginary-time evolution. The situation is
further complicated by the fact that even for a given
physical model the choice of the effective Hamiltonian
HC is not unique (it depends on details of the QMC
algorithm such as whether and how to perform an auxiliary
field decomposition) and the specific choice may affect the
appearance of the sign problem [14,18,19].
One successful guiding principle for fermionic simula-

tions that has been discovered in the context of nuclear
physics [20,21], lattice QCD [22], and condensed matter
physics [23] relies on the time-reversal symmetry (TRS) of
the effective Hamiltonian HC. TRS ensures a non-negative
matrix determinant in Eq. (1) because the eigenvalues of the
matrix necessarily appear in Kramers pairs. A typical
example of this kind is the attractive Hubbard model at
balanced filling of two spin species, where after decom-
position of the interaction term the Monte Carlo weight
even factorizes into the product of two identical matrix
determinants. Additional conditions such as half filling and
bipartiteness of the lattice lead to a solution of the sign
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We solve the sign problem in a particle-hole symmetric spin-polarized fermion model on bipartite lattices
using the idea of fermion bags. The solution can be extended to a class of models at half filling but without
particle-hole symmetry. Attractive Hubbard models with an odd number of fermion species can also be solved.
Our solutions should allow us to study quantum phase transitions that have remained unexplored so far due to
sign problems.
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Quantum Monte Carlo methods for many-body fermionic
systems in thermal equilibrium usually require one to be
able to rewrite quantum partition functions as a sum over
classical configurations with positive Boltzmann weights that
are computable in polynomial time. Unfortunately, due to the
underlying quantum nature of the problem, the Boltzmann
weights can be negative or even complex in general. Such
expansions are said to suffer from a sign problem [1]. The
discovery of an expansion with positive Boltzmann weights
is referred to as a solution to the sign problem. Solutions to
sign problems in many quantum systems are considered to be
outstanding problems in computational complexity [2].

Traditionally, solutions are based on rewriting the interact-
ing problem as a free fermion problem where fermions only in-
teract with background auxiliary fields [3–6]. The Boltzmann
weight then depends on the determinant of the free fermion
matrix, which can still be negative or complex. However, in
electronic systems, a symmetric treatment of both spin com-
ponents of the electron can sometimes make the Boltzmann
weight positive since it can be written as the product of two real
determinants that come with the same sign [7]. Sign problems
in spin-polarized systems are usually much harder to solve
since the Boltzmann weight contains only a single determinant.
In certain cases the presence of an antiunitary symmetry in the
fermion matrix can help prove the absence of sign problems
even though there is only a single fermion determinant [8].
However, such an approach also usually requires the presence
of an even number of fermion species.

Spin-polarized electronic systems with particle-hole sym-
metry are special since holes can mimic the second species
of fermions. In relativistic systems, particle-hole symmetry
is replaced by charge conjugation symmetry and antiparticles
can play the role of the second species of fermions. Thus
one might expect that solutions to sign problems would
emerge naturally in the presence of particle-hole or charge
conjugation symmetries. However, even in the presence of
these symmetries, it is easy to find models with sign problems
that have remained unsolved. Consider for example, the
tight-binding model of spin-polarized graphene described by
the Hamilton operator

H =
∑

⟨ij⟩
−t(c†i cj + c

†
j ci) + V

(
ni − 1

2

) (
nj − 1

2

)
, (1)

where ⟨ij ⟩ refers to the nearest-neighbor bond connecting
different sublattices on the honeycomb lattice. In this model
the repulsion between the electrons is modeled with a nearest-

neighbor Hubbard-type interaction. The model is well known
as the tV model and was considered on square lattices a
long time ago [9,10]. Although the model has a particle-hole
symmetry, as far as we know its sign problem has not been
solved by traditional methods for any value of V . Thus, it
seems like the tV model at half filling in spin-polarized
systems is more difficult to solve than the traditional Hubbard
model with an on-site U interaction between the two spins.
Unlike the traditional Hubbard model, here the V < 0 model
cannot be mapped into the V > 0 model through a unitary
transformation. In the repulsive case for V ! 2t the sign
problem could indeed be solved using a nontraditional method
called the meron-cluster approach [11]. Unfortunately, that
solution could not be extended to smaller values of V .

The spin-polarized t-V model (1) is of interest from a fun-
damental quantum field theory perspective since it describes
a minimally doubled lattice fermion system [12]. A similar
minimally doubled fermion system can be obtained with
Hamiltonian staggered fermions on a square lattice [13,14].
These models contain an interesting quantum phase transi-
tion between a semimetal phase (containing massless Dirac
fermions) to a Mott insulating phase (with massive Dirac
fermions) accompanied by spontaneous symmetry breaking.
The properties of this transition can be studied using massless
four-fermion quantum field theory containing a single flavor of
four-component Dirac fermions [15]. While in principle these
phase transitions can be formulated and studied on the lattice
using Mote Carlo methods [16], due to sign problems, studies
of an odd number of four-component Dirac fermions do not
exist. Typical calculations involve further doubling and thus
contain an even number of flavors of four-component Dirac
fermions [17–20]. On the other hand predictions using approx-
imate analytic techniques do exist for theories containing both
even and odd numbers of flavor [21–23]. In this Rapid Commu-
nication we solve the sign problem in (1) for all values of V >
0, thus allowing us to study the quantum phase transition in
minimally doubled fermion systems. While most of our discus-
sion will be focused on (1) for concreteness, many of the ideas
behind the solution are general and easily extendable to other
models including those with an odd number of fermion flavors.
We will mention some of these extensions towards the end.

We first rewrite the Hamilton operator (1) in a form that
makes particle-hole symmetry more explicit. Hence we write

H =
∑

⟨ij⟩
c
†
i Mij cj + V

4
(n+

i − n−
i )(n+

j − n−
j ), (2)
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We discover a quantum Monte Carlo (QMC) method to solve the fermion sign problem in interacting fermion
models by employing a Majorana representation of complex fermions. We call it the “Majorana QMC” (MQMC).
MQMC simulations can be performed efficiently both at finite and zero temperatures. Especially, MQMC is
fermion sign free in simulating a class of spinless fermion models on bipartite lattices at half filling and with an
arbitrary range of (unfrustrated) interactions. Moreover, we find a class of SU (N ) fermionic models with odd
N , which are sign free in MQMC but whose sign problem cannot be in solved in other QMC methods, such as
continuous-time QMC. To the best of our knowledge, MQMC is the first auxiliary field QMC method to solve
the fermion sign problem in spinless (more generally, an odd number of species) fermion models. We conjecture
that MQMC could be applied to solve the fermion sign problem in more generic fermionic models.
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Introduction. Interacting fermionic quantum systems with
strong correlations and/or topological properties have attracted
increasing attention [1,2]. Nonetheless, in two and higher
spatial dimensions, strongly interacting quantum systems are
generically beyond the reach of analytical methods in the sense
of solving those quantum models in an unbiased way. As an
intrinsically unbiased numerical method, the quantum Monte
Carlo (QMC) simulation plays a key role in understanding
the physics of strongly correlated many-body systems [3–7].
Unfortunately, in simulating fermionic many-body systems,
QMC often encounters the notorious fermion minus-sign
problem [8,9], which arises as a consequence of Fermi
statistics [10]. Undoubtedly, generic solutions of fermion sign
problems would lead to a great leap forward in understanding
correlated electronic systems [9].

Many QMC algorithms are based on converting an interact-
ing fermion model into a problem of free fermions interacting
with background auxiliary classical fields; the Boltzmann
weight is the determinant of the free fermion matrix which is a
function of auxiliary fields and which can be positive, negative,
or even complex. In such determinant QMC (DQMC), when
the determinants are rendered to be positive definite, we
say a solution to the fermion sign problem is found. For
spinful electrons, the conventional strategy of solving the
fermion sign problem is to find a symmetric treatment of
both spin components of electrons such that the Boltzmann
weight can be written as the product of two real determinants
with the same sign and is then positive definite [11–16]. For
spinless or spin-polarized fermion models, it is usually much
more difficult to solve the fermion sign problem because the
Boltzmann weight contains only a single determinant and the
usual strategy used for even species of fermions cannot be
directly applied here.

In this Rapid Communication, based on the Majorana
representation of fermions, we propose an auxiliary field
QMC approach to solve the fermion sign problem in spinless
fermion models. We observe that each complex fermion can be
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represented as two Majorana fermions. Consequently, we can
express spinless fermion Hamiltonians in a Majorana represen-
tation and then perform Hubbard-Stratonovich (HS) transfor-
mations to decouple interactions by introducing background
auxiliary fields. Under certain conditions, such as particle-hole
symmetry, we can find a symmetric treatment of two species
of Majorana fermions, namely, the free Majorana fermion
Hamiltonian obtained after HS transformations is a sum of two
symmetric parts, each involving only one species of Majorana
fermions, such that the Boltzmann weight is a product of two
identical real quantities and is then positive definite. This is
the basic idea of the Majorana approach to solve the fermion
sign problem in spinless or spin-polarized fermion models
which we call the “Majorana QMC” (MQMC). Note that
the MQMC approach proposed here is qualitatively different
from the meron-cluster method [17,18] and fermion bag
method [19,20] developed previously, all of which are based
on the continuous-time QMC (CTQMC) [20–23]. MQMC
is a QMC approach based on auxiliary fields to solve the
fermion sign problem in a class of spinless (more generally, an
odd number of species) fermion models. Moreover, MQMC
has an important advantage: It is much more efficient than
continuous-time QMC in simulating models at low and zero
temperatures; the computation-time cost in MQMC scales as
β ≡ 1/T while it scales as β3 in continuous-time QMC [20]
(see also more recent developments discussed in Ref. [24]).

As an application of the sign-free MQMC algorithm, we
have used it to study the charge density wave (CDW) quantum
phase transition of the spinless fermion model with repulsive
density interactions on the honeycomb lattice with a much
larger system size (2L2 sites with L up to 24) than previous
studies, and obtained quantum critical exponents which are
in reasonable agreement with renormalization group (RG)
calculations [25]. We also show that MQMC can solve the
fermion sign problem in a class of SU (N = odd) models
which are beyond the capability of other QMC methods, such
as the continuous-time QMC.

Majorana quantum Monte Carlo. To explicitly illustrate
how MQMC could solve the fermion sign problem in a class
of spinless fermion models, we consider the following general
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We present the ground state extension of the efficient continuous-time quantum Monte Carlo algorithm for
lattice fermions of M. Iazzi and M. Troyer, Phys. Rev. B 91, 241118 (2015). Based on continuous-time expansion
of an imaginary-time projection operator, the algorithm is free of systematic error and scales linearly with
projection time and interaction strength. Compared to the conventional quantum Monte Carlo methods for lattice
fermions, this approach has greater flexibility and is easier to combine with powerful machinery such as histogram
reweighting and extended ensemble simulation techniques. We discuss the implementation of the continuous-time
projection in detail using the spinless t-V model as an example and compare the numerical results with exact
diagonalization, density matrix renormalization group, and infinite projected entangled-pair states calculations.
Finally we use the method to study the fermionic quantum critical point of spinless fermions on a honeycomb
lattice and confirm previous results concerning its critical exponents.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) methods are powerful
and versatile tools for studying quantum phases and phase
transitions. Algorithmic development in the past two decades
including the nonlocal updates [1–5] and the continuous-time
formulations [6,7] have greatly boosted the power of QMC
methods, even surpassing the hardware improvements follow-
ing Moore’s law. Using modern QMC methods, the simulation
of bosons and unfrustrated spin models is considered a solved
problem. QMC simulations therefore can be used to test
novel theoretical scenarios [8–12] and to verify experimental
realizations. [13]

While efficient algorithms exist for the simulation of
bosons and unfrustrated spin models [1–5,14,15], simulations
of fermions are more challenging because of the infamous
fermion sign problem [16,17]. It causes exponential growth
of computational effort as system size or inverse temperature
increases. Even for systems without a sign problem, the phase
diagram of correlated fermions can be nontrivial to establish
[18,19], not to mention to accurately determine the universality
class and associated critical exponents [20,21]. The main
reason for this difficulty is the unfavorable superlinear scaling
with system size and/or inverse temperature of determinantal
quantum Monte Carlo methods, which are the workhorse of
correlated lattice fermion simulations.

Determinantal QMC method sums a factorially large
number of fermion exchange processes into a matrix deter-
minant, thereby avoiding the fermion sign problems in certain
cases. An algorithm based on this idea is the Blankenbecler-
Scalapino-Sugar (BSS) method [22]. It maps an interacting
fermionic system to free fermions in a spatially and temporally
fluctuating external field and then performs Monte Carlo
sampling of this field. Numerical instabilities of the original
approach have been remedied in Refs. [23,24]. The BSS algo-
rithm has become the method of choice of many lattice fermion
simulations due to its linear scaling in the inverse temperature
β. We refer to Refs. [25,26] for pedagogical reviews.

Closely related is the Hirsch-Fye algorithm [27], which
is numerically more stable and is more broadly applicable
because it is formulated using a (potentially time-dependent)

action rather than a Hamiltonian. However, its computational
effort scales cubically with the inverse temperature and the
interaction strength therefore is much less efficient than the
BSS method for the cases where both methods are applicable.
The Hirsch-Fye method thus has typically been used in the
study of quantum impurity problems and as impurity solvers
in the framework of dynamical mean field theory (DMFT)
[28], where time-dependent actions need to be simulated.

Both the BSS and the Hirsch-Fye algorithm are based on a
discretization of imaginary time, thus introducing a systematic
time step error, called the Trotter error. Nearly 20 years ago
it was realized that time discretization is not necessary for the
simulation of lattice models [6,7]. Besides increased accuracy
due to the absence of a Trotter error, continuous imaginary-
time formulations often results in a more efficient and flexible
algorithm [3]. In Ref. [29] a continuous-time QMC method for
lattice fermions has been proposed. However, the scaling of
this algorithm and numerical stabilization have not been dis-
cussed in this paper and we are not aware of any application of
the algorithm. Further development on fermionic continuous-
time QMC algorithms [38] have focused on quantum im-
purity problems: the continuous-time interaction expansion
(CT-INT) algorithm [31], the continuous-time hybridization
expansion (CT-HYB) algorithm [33], and the continuous-time
auxiliary field (CT-AUX) [32] algorithm. CT-INT and CT-
AUX are based on weak-coupling expansion of the action
and share the same scaling as the Hirsch-Fye method [39].
These methods have revolutionized the simulation of quantum
impurity problems and DMFT calculations [38]. However, for
lattice models they remained suboptimal compared to the BSS
method due to their cubic scaling in the inverse temperature.
Very recently an efficient continuous-time algorithm has been
developed by two of the authors that scales identically to the
time-honored BSS method [30] and can be used both with an
auxiliary field (LCT-AUX) and without (LCT-INT). The prefix
“L” indicating both their linear scaling and their applicability
to lattice models. In Table I we summarize some properties of
these determinantal QMC methods.

Finite-temperature determinantal QMC methods can be ex-
tended to projector formulations [23,34–37], where the ground

1098-0121/2015/91(23)/235151(11) 235151-1 ©2015 American Physical Society

 Wei, Wu, Li, Zhang, Xiang, 
arXiv:1601.01994

Latest update
Split Orthogonal Group: A Guiding Principle for Sign-Problem-Free

Fermionic Simulations

Lei Wang,1 Ye-Hua Liu,1 Mauro Iazzi,1 Matthias Troyer,1 and Gergely Harcos2
1Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland

2Alfréd Rényi Institute of Mathematics, Reáltanoda utca 13-15., Budapest H-1053, Hungary
(Received 28 June 2015; revised manuscript received 19 October 2015; published 17 December 2015)

We present a guiding principle for designing fermionic Hamiltonians and quantum Monte Carlo (QMC)
methods that are free from the infamous sign problem by exploiting the Lie groups and Lie algebras that
appear naturally in the Monte Carlo weight of fermionic QMC simulations. Specifically, rigorous
mathematical constraints on the determinants involving matrices that lie in the split orthogonal group
provide a guideline for sign-free simulations of fermionic models on bipartite lattices. This guiding
principle not only unifies the recent solutions of the sign problem based on the continuous-time quantum
Monte Carlo methods and the Majorana representation, but also suggests new efficient algorithms to
simulate physical systems that were previously prohibitive because of the sign problem.

DOI: 10.1103/PhysRevLett.115.250601 PACS numbers: 05.10.Ln, 02.20.Tw, 02.70.Ss, 71.10.Fd

One of the biggest challenges to the classical simulation
of quantum systems is the infamous fermion sign problem
of quantum Monte Carlo (QMC) simulations. It appears
when the weights of configurations in a QMC simulation
may become negative and therefore cannot be directly
interpreted as probabilities [1]. In the presence of a sign
problem, the simulation effort typically grows exponen-
tially with system size and inverse temperature.
While the sign problem is nondeterministic polynomial

hard [2], implying that there is little hope of finding a generic
solution, this does not exclude ad hoc solutions to the sign
problem for specific models. For example, one can some-
times exploit symmetries to design appropriate sign-
problem-free QMC algorithms for a restricted class of
models [3]. However, it is unclear how broad these classes
are and it is in general hard to foresee whether a given
physical model would have a sign problem in any QMC
simulations. The situation is not dissimilar to the study of
many intriguing problems in the nondeterministic polyno-
mial complexity class, where a seemingly infeasible prob-
lem might turn out to have a polynomial-time solution
surprisingly [4].
A fruitful approach in pursuing such specific solutions is

to design Hamiltonians that capture the right low energy
physics and allow sign-problem-free QMC simulations at
the same time, called “designer” Hamiltonians [5]. This
naturally calls for design principles. For bosonic and
quantum spin systems a valuable guiding principle is the
Marshall sign rule [6,7], which ensures non-negative
weight for all configurations. The design of the sign-
problem-free fermionic Hamiltonians is harder. The meth-
ods of choice for fermionic QMC simulations are the
determinantal QMC approaches, including traditional dis-
crete-time [8] and new continuous-time approaches [9–13].
Both approaches map the original interacting system to free

fermions with an imaginary-time dependent Hamiltonian.
The partition function is then written as a weighted sum of
matrix determinants after tracing out the fermions [8,9,12]:

Z ¼
X

C

fC det ½I þ T e−
R

β

0
dτHCðτÞ&; ð1Þ

where fC is a c number and HCðτÞ is an imaginary-time
dependent single-particle Hamiltonian matrix (whose
matrix elements denote hopping amplitudes and on-site
energies on a lattice), both depending on the Monte Carlo
configuration C. T denotes the time ordering and I is the
identity matrix. The appearance of the matrix determinant
complicates the analysis of the sign problem because it is
often not straightforward to see the sign of the Monte Carlo
weight of a given configuration [14,15], and the sign of the
determinant is related [16] to the Aharonov-Anandan phase
[17] of the imaginary-time evolution. The situation is
further complicated by the fact that even for a given
physical model the choice of the effective Hamiltonian
HC is not unique (it depends on details of the QMC
algorithm such as whether and how to perform an auxiliary
field decomposition) and the specific choice may affect the
appearance of the sign problem [14,18,19].
One successful guiding principle for fermionic simula-

tions that has been discovered in the context of nuclear
physics [20,21], lattice QCD [22], and condensed matter
physics [23] relies on the time-reversal symmetry (TRS) of
the effective Hamiltonian HC. TRS ensures a non-negative
matrix determinant in Eq. (1) because the eigenvalues of the
matrix necessarily appear in Kramers pairs. A typical
example of this kind is the attractive Hubbard model at
balanced filling of two spin species, where after decom-
position of the interaction term the Monte Carlo weight
even factorizes into the product of two identical matrix
determinants. Additional conditions such as half filling and
bipartiteness of the lattice lead to a solution of the sign
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Ĥ0 = �t
X

hi,ji

⇣
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Asymmetric Hubbard model

Realization: mixture of ultracold fermions (e.g. 6Li and 40K)
Now, continuously tunable by spin-dependent modulations

t#t"

our experimental resolution, we could measure a suppres-
sion by at least a factor of 25).

We also checked the behavior of jJeff=Jj as a function of
! for a fixed value ofK0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and" 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
and Jeff < 0 (right). In both regions, a typical (vertically inte-
grated) interference pattern without final acceleration to the zone
edge is shown (the x axis is scaled in units of the recoil
momentum prec ! h=dL.) Inset: Rephasing time after dephasing
at K0 ! 2:4 and subsequent reduction of K0. (b) Dephasing time
as a function of @!=J for K0 ! 2:2.

FIG. 2. Dynamical suppression of tunneling in an optical lat-
tice. Shown here is jJeff=Jj as a function of the shaking parame-
ter K0 for V0=Erec ! 6, !=2! ! 1 kHz (squares), V0=Erec ! 6,
!=2! ! 0:5 kHz (circles), and V0=Erec ! 4, !=2! ! 1 kHz
(triangles). The dashed line is the theoretical prediction.
Inset: jJeff=Jj as a function of ! for K0 ! 2:0 and V0=Erec !
9 corresponding to J=h ! 90 Hz.
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Two limiting cases
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SIMPLE MODEL FOR SEMICONDUCTOR-METAL TRANSITIONS:
SmB~ AND TRANSITION-METAL OXIDES
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(Received 12 March 1969)
We propose a simple model for a semiconductor-metal transition, based on the exis-

tence of both localized (ionic) and band (Bloch) states. It differs from other theories in
that we assume the one-electron states to be essentially unchanged by the transition.
The electron-hole interaction is responsible for the anomalous temperature dependence
of the number of conduction electrons. For interactions larger than a critical value, a
first-order semiconductor-metal phase transition takes place.

Many substances, including SmBS' and a num-
ber of transition-metal oxides, ' exhibit semicon-
ductor-metal transitions. ' The transitions are
in many cases first-order phase transitions (e.g. ,
in V,O, ); however, they can also result from a
gradual but anomalously large increase in can-
ductivity over a range of temperatures (e.g. , in
SmB, and Ti,O,). In addition, measurements of
large magnetic susceptibilities with anomalous
temperature dependences suggest that in many of
these materials localized magnetic moments ex-
ist and that they are intimately connected with
the transition. As an example, it has been hy-
pothesized' that in SmB, the conduction electrons
and the localized moments are produced simul-
taneously by the promotion of a single localized
electron from the spherically symmetric Sm++
ion (4= 0) into a conduction band The Sm+. ++ ion
left behind (J= —,') acts as a localized moment.
We present here a simple theory of the semi-

conductor-metal transition based on a model hav-
ing both localized and itinerant interacting quasi-
particle states. The relevant single-electron
states consist of (a) bands of extended Bloch func-

tions and (b) a set of localized states centered at
the sites of the metallic ions in the crystal. As
T—0 the localized states are lower in energy
than the band states and are fully occupied by
electrons. Therefore the quasiparticle excita-
tions are either localized holes or itinerant elec-
trons. In the language of second quantization and
in the spirit of the Landau theory of Fermi liq-
uids, we write the one-particle terms as

H =Pe (k)a-~a- +gab tb0 v vkg vkg . ig ig'
vkg Sg

where avko4 creates an electron in state k, band
v, with spin o, and b, o~ creates a hole with spin
o at site i. The energies ev(k) and F. are positive
definite and such that

n =—min[E + e (k) j & 0

is the energy gap for the formation of an elec-
tron-hole pair. We further assume that the qua-
siparticle interaction is screened, and its range
short enough so that only intra-atomic terms
need be considered. In this case the interaction

Long-range spin order on bipartite 
lattices with infinitesimal repulsion

“Fruit fly” of DMFT 

Kennedy and Lieb 1986

XXZ model with Ising anisotropy
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What is the universality class ?
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Abstract 

Let m(n) denote the smallest integer m with the property that any set of n points in Euclidean 
3-space has an element such that at most m other elements are equidistant from it. We have that 

cn 1'3 log log n <<. m(n) <<, n 3/5 fl(n), 

where c > 0 is a constant and fl(n) is an extremely slowly growing function, related to the inverse 
of the Ackermann function. (~) 1999 Elsevier Science B.V. All rights reserved 

1. Introduction 

One o f  Erd6s 's  favorite problems, raised more than half  a century ago [4,8] was the 
following. What  is the maximum number, f a ( n ) ,  of  times that the unit distance can 
occur among n points in Euclidean d-space? In [1], we asked a more general question. 
Given a set P = { P l  . . . . .  pn} of  n points in ~d and positive real numbers ~1 , . . . , ~ , ,  
let mi denote the number o f  points in P whose distance from Pi is ~i. Determine 

/ /  

Fd(n)  = max ~ mi, 
i=1 

where the maximum is taken over all n-element point sets and all possible choices o f  
the numbers ai. In an extremal configuration, 0~i must be one o f  the m o s t  'popular '  
distances from Pi, i.e., a distance which occurs the largest number o f  times. Clearly, 
Fd(n)>~2 fd (n )  for every d and n. 

* Correspondence address: Courant Institute, New York University, 251 Mercer Street, New York, NY 10012, 
USA. E-mail: pach@cims.nyu.edu. Supported by NSF grant CCR-97-32101, OTKA-T-020914, and PSC- 
CUNY Research Award 667339. 

0012-365X/99/$-see front matter (~) 1999 Elsevier Science B.V. All rights reserved 
PII: S0012-365X(98)00328-8 
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