
Institute of Physics, Beijing
Chinese Academy of Sciences

Tensor Networks for 
Generative Modeling

Lei Wang (王磊)
https://wangleiphy.github.io

From Boltzmann machines to Born machines, and back

Han, Wang, Fan, LW, Zhang, PRX18’  
Chen, Cheng, Xie, LW, Xiang, PRB 18’ 

Cheng, Chen, LW, Entropy 18’+unpublished

https://wangleiphy.github.io


 

Quantum circuits 
architecture and parametrization

TNSAA: Live long and prosper

Neural networks and 
Probabilistic graphical models



TNSAA in the era of quantum computing

Kim and Swingle, 1711.07500

3

menting well-known quantum algorithms, e.g., factoring
[19]. It seems that these two di↵erent technologies can
be merged together in a way that compensates for their
individual weaknesses; the result is a kind of quantum
assisted tensor network technology.

The rest of the paper is structured as follows. In Sec-
tion II, we define DMERA and explain how one can vari-
ationally find an ansatz that approximates the ground
state of a local Hamiltonian. In Section III, we argue that
a large class of physical states can be well-approximated
by a DMERA with a small number of parameters. In
Section IV, we show that the outcome of the contraction
is resilient to noise. In Section V, we explain how the
network can be contracted on a quantum computer. In
particular, we show that the energy estimated from this
contraction sequence is variational. We discuss some po-
tential applications in Section VI.

II. PROPOSAL

We propose a variational ansatz which we refer to as
deep multi-scale entanglement enormalization ansatz, or
DMERA for short. DMERA is a version of the well-
known multi-scale entanglement renormalization ansatz
(MERA) [9], and like MERA, it is a special kind of ten-
sor network composed of unitary and isometric tensors
such that the network can also be viewed as a quantum
circuit. As in MERA, the key idea of DMERA is to
disentangle local degrees of freedom which can then be
removed using isometries, i.e., unitaries with one input
fixed to a product state. The main di↵erence is in the
way the disentangling operation is carried out.

In MERA, say in the context of a one-dimensional lat-
tice of qubits, one groups the individual qubits into clus-
ters with e↵ective dimension called the bond dimension.
Each scale of the MERA then consists of one layer of
unitaries and one layer of isometries. The variational pa-
rameters are contained in the unitaries and isometries
and the number of variational parameters is determined
by the bond dimension. In DMERA, rather than group-
ing qubits into clusters of some desired bond dimension,
we instead allow each scale to consist of many layers of
two-qubit unitaries. The variational parameters are still
contained in the unitaries, but the number of variational
parameters is now determined by the depth D of the cir-
cuit at each scale. Any DMERA can be realized as a
MERA with su�ciently large bond dimension; similarly,
DMERA can approximate any MERA given su�ciently
large depth D.

A. DMERA

Let us formally define DMERA for one-dimensional
systems. A state | i over L = 2n qubits is a DMERA
with depth D if there exists a sequence of states {| ii}

such that | i = | ni, | 0i = |0i, and

| i+1i = Ui

2

64| ii ⌦ |0 . . . 0i| {z }
2i

3

75 , (2)

where Ui is a depth D local quantum circuit consisting of
two-qubit gates and the 2i |0i are interspersed between
the qubits that have been introduced at j  i; see FIG. 2.
The gates can be labeled in terms of the pair of qubits
that they act on and the time at which they are imple-
mented. There are n = log2 L renormalization steps and
in each step we have D layers of unit depth unitaries.
Therefore, every gate can be specified in terms of a pair
of tuples (i, j) and (s, y) where i and j are the qubits
that the gate acts on, s 2 {1, . . . , n} is the renormaliza-
tion step, and y 2 {1, . . . , D} specifies the layer within
the renormalization step.

 i+1 =  i

|0i

|0i

|0i

|0i

· · ·

FIG. 2. Recursion relation defining a DMERA. The state
| i+1i is constructed from | ii by placing ancillas and apply-
ing a depth-D local quantum circuit consisting of two-qubit
gates.

An important property of DMERA is that expecta-
tion values of local observables can be computed in time
O(eO(D) logL log(1/⌘)) on a classical computer and time
O(D logL

⌘2 ) on a quantum computer, where ⌘ is the de-
sired precision. To see why, it is convenient to recall the
notion of a past causal cone [20, 21]. Given an observ-
able Ô, its past causal cone is the set of gates that can
influence its expectation value. In particular, the width
of the past causal cone determines the number of physi-
cal qubits that are su�cient to estimate the expectation
value. This is because of the following recursion relation:

h i+1| Ô | i+1i = h i|�i(Ô) | ii , (3)

where

�i(·) = h0, . . . , 0|| {z }
2i

U †
i · Ui |0, . . . , 0i| {z }

2i

(4)

is a unital quantum channel that preserves locality [22].
Specifically, let si be the size of the nontrivial support

of the operator �n�i � · · · � �n�1(Ô), and suppose Ô is
supported on a finite interval of length s0 = `. Then we
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Figure 3. Left: 3D grid of tensors obtained by con-
tracting 8 consecutive layers of CZ gates, including the
single qubit gates. Right: example of a typical block of
8 layers of gates on a single qubit; note that the qubit
shares one CZ gate with each of its four neighbors per
block.

III. OVERVIEW OF THE SIMULATOR

A given quantum circuit can always be repre-
sented as a tensor network, where one-qubit gates
are rank-2 tensors (tensors of 2 indexes with di-
mension 2 each), two-qubit gates are rank-4 tensors
(tensors of 4 indexes with dimension 2 each), and
in general n-qubit gates are rank-2n tensors. The
computational and memory cost for the contrac-
tion of such networks is exponential with the num-
ber of open indexes and, for large enough circuits,
the network contraction is unpractical; nonethe-
less, it is always possible to specify input and
output configurations in the computational basis
through rank-1 Kronecker deltas over all qubits,
which can vastly simplify the complexity of the
tensor network. This representation of quantum
circuits gives rise to an e�cient simulation tech-
nique, first introduced in Ref. [37], where the con-
traction of the network gives amplitudes of the cir-
cuit at specified input and output configurations.

Our approach allows the calculation of ampli-
tudes of RQCs through the contraction of their
corresponding tensor networks, as discussed above,
but with an essential first step, which we now de-
scribe. One of the characteristics of the layers of
CZ gates shown in Fig. 2 is that it takes 8 cycles
for each qubit to share one, and only one, CZ gate
with each of its neighbors. This property holds
for all subsets of a 2D square grid, including the
Bristlecone architecture. Therefore, it is possible
to contract every 8 layers of the tensor network
corresponding to an RQC of the form described
in Section II onto an I ⇥ J two-dimensional grid
of tensors, where I and J are the dimensions of
the grid of qubits. While in this work we assume
that the number of layers is a multiple of 8, our
simulator can be trivially used for RQCs with a

Figure 4. Contraction of the 3D grid of tensors (see
Fig. 3) in the time direction to obtain a 2D grid of
tensors.

depth that is not a multiple of 8. The bond di-
mensions between each tensor and its neighbors
are the Schmidt rank of a CZ gate, which (as for
any diagonal two-qubit gate) is equal to 2 (note
that for iSWAP the Schmidt rank is equal to 4,
thus e↵ectively doubling the depth of the circuit
as compared to the CZ case). After contracting
each group of 8 layers in the time direction onto a
single, denser layer of tensors, the RQC is mapped
onto an I ⇥ J ⇥ K three-dimensional grid of ten-
sors of indexes of bond dimension 2, as shown in
Fig. 3, where K = t/8, and 1 + t + 1 is the depth
of the circuit (see Section II). Note that the ini-
tial (final) layer of Hadamard gates, as well as the
input (resp. output) delta tensors, can be trivially
contracted with the initial (resp. final) cycle of 8
layers of gates. At this point, the randomness of
the RQCs appears only in the entries of the tensors
in the tensor network, but not in its layout, which
is largely regular, and whose contraction complex-
ity is therefore independent of the particular RQC
instance at hand. This approach contrasts with
those taken in Refs. [35, 38, 40], which propose
simulators that either benefit from an approach
tailored for each random instance of an RQC, or
take advantage of the particular layout of the CZ
layers.

The contraction of the resulting 3D tensor net-
work described above (see Fig. 3) in order to com-
pute the amplitude corresponding to specified ini-
tial and final bit-strings is described in the follow-
ing Section IIIA.

A. Contraction of the 3D tensor network

In this section, we describe the contraction
procedure followed for the computation of single
perfect-fidelity output amplitudes for the 3D grid
of tensors described in the previous section.

Starting from the 3D grid of tensors of Fig. 3, we
first contract each vertical (K direction) column of
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The leading near-term proposal for a quantum
supremacy experiment on NISQ devices is based on
the sampling of bit-strings from a random quantum
circuit (RQC) [13, 17, 19, 21]. Indeed, under rea-
sonable assumptions, sampling from large RQCs
is classically unfeasible [11, 13, 14, 16, 17, 19, 21].
Further, these quantum circuits appear to become
di�cult to simulate at relatively small sizes and
within error tolerances that are expected to be im-
plementable on early NISQ hardware [13]. Here,
we present a flexible simulator that both raises the
bar for quantum supremacy demonstrations and
provides expanded verification of quantum hard-
ware through sampling.

This verification can be done through calculat-
ing the cross entropy di↵erence between experi-
mentally obtained samples and the output distri-
bution of an ideal circuit, as proposed in Boixo
et al. [13]. Once su�ciently large quantum cir-
cuits can be run with reasonable fidelity on quan-
tum hardware to be beyond the ability to com-
pute samples classically, the cross entropy can no
longer be calculated since there is no means to ob-
tain the output distribution of an ideal circuit.
Close correspondence between experiments, nu-
merics, and theory up to that point, for a variety
of circuits with combinations of fewer qubits, shal-
lower depth, or simpler-to-simulate circuits (e.g.,
more Cli↵ord gates) or architectures (see end of
Sec. III A 1) of the same size, suggest by extrapola-
tion that the hardware is performing correctly and
has achieved practical quantum supremacy against
the best state-of-the-art algorithms.

Here, we propose a flexible RQC simulator to
classically simulate quantum circuits that were be-
yond reach for previous approaches, including the
simulation of the Google Bristlecone QPU. By de-
sign, our simulator is “blind” to the randomness
in the choice of single-qubit gates of the RQCs.
Therefore, it presents no fluctuations in perfor-
mance from one RQC to another. Moreover, by ex-
panding on a technique introduced in [29], includ-
ing introducing fine-grained “cuts” that enable us
to judiciously balance memory requirements with
number of independent computations that can be
done in parallel, our simulator can output 1/f am-
plitudes with a target fidelity f at the same com-
putational cost to compute a single perfect-fidelity
amplitude; furthermore, we present an alternative
technique to simulate RQC sampling with target
fidelity f with the same speedup factor of 1/f .

In the last few years, many di↵erent simulators
have been proposed, either based on the direct evo-
lution of the quantum wave-function [13, 29–35],
Cli↵ord + T gate sets [36], and tensor network
contraction [37–40]. Tensor network contraction
based simulators have been particularly successful

Figure 1. Sub-lattices of interest of the full Bristlecone-
72 (bottom right), ordered by increasing hardness for
a given depth. Note that Bristlecone-72 (entire lattice)
is not harder to simulate than Bristlecone-70, since the
two corner tensors can be contracted trivially at a neg-
ligible cost (see Section III). Note also that Bristlecone-
64 is similar in hardness to Bristlecone-48, and sub-
stantially easier to simulate than Bristlecone-60, as is
discussed in Sections III and VI. We identify a family
of sub-lattices of Bristlecone, namely Bristlecone-24,
-30, -40, -48, -60 and -70, that are hard to simulate
classically, while keeping the number of qubits as low
as possible.

in simulating RQCs for sizes close to the quan-
tum supremacy regime. Some recent simulators
exploited [35, 39, 40] weaknesses in the design of
the RQCs presented in [13], and even introduced
small changes in the circuits that make them signif-
icantly easier to simulate. These designs have been
revised (see Section II) to remove these weaknesses
[29]. It is also important to note that the quantum
supremacy computational task of interest consists
of producing a sample of bit-strings within some
variational distance of the output distribution de-
fined by a quantum circuit [13, 17, 19, 21]. This
is very di↵erent from computing a single output
amplitude, as done in Ref. [40] (see Sec. IV).

Among the proposed classical approaches, it is
worth mentioning Markov et al.’s simulator [29].
Their method is based on splitting I ⇥ J grids of
qubits in halves, which are then independently
simulated [39]. To make the simulator more
competitive, Markov et al. introduce checkpoint
states and reuse them for di↵erent branches of
a tree where internal nodes represent Schmidt
decompositions of cross-gates and leaves represent
simulation results for each tree path. The number
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can deal practically with approximationmethods
for the graph isomorphism problem.
Additionally, improved sequence generation

models are possible with the ability to read and
write to memory (69). These approaches demon-
strate better ability for learning long- and short-
termpatterns.Morework is neededonRiemannian
optimization methods that exploit the geometry
of latent space. Structured architectures such as
multilevel VAE (85) offer newways of organizing
latent space and are promising research direc-
tions. New approaches also lie in inverse RL,
geared toward learning a reward or loss function
(86). Research in this direction will allow for the
discovery of reward functions associated with
different materials discovery tasks.

Outlook

Inverse design is an important component of the
complex framework required to designmatter at
an accelerated pace. The tools for inverse design,
especially those stemming from the field of ma-
chine learning, have shown rapid progress in
the last several years and have allowed chemical
space to be framed into probabilistic data-driven
models. Generativemodels produce large numbers
of candidate molecules, and the physical realiza-
tions of these candidates will require automated
high-throughput efforts to validate the genera-
tive approach. The community has yet has to
show more than a few examples of successful

closed-loop approaches for the design of matter
(87). The blurring of the barriers between theory
and experiment will lead to AI-enabled auto-
mated laboratories (88, 89).
The combination of inverse design tools with

active learning approaches such as Bayesian
optimization (90, 91) can enable a model that
adapts as it explores chemical space, which
allows for expanding a model in regions of
high uncertainty and enabling the discovery
of regions of molecular space with desirable
properties as a function of composition. Active
learning in the space of objective functions could
lead to a better understanding of the best rewards
to seek while carrying out machine learning.
As seen, central to machine learning meth-

odologies is the representation of molecules;
representations that encode the relevant physics
will tend to generalize better. Despite consider-
able progress, much work remains. Graph and
hierarchical representations of molecules are an
area requiring further study.
The integration of machine learning as a new

pillar of knowledge in the curricula of chemical,
biochemical, medicinal, and materials sciences
will allow for a more rapid adoption of themeth-
odologies summarized in this work.
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Fig. 4. Schematic representation of several architectures found in
generative models. RNNs are used for sequence generation. The VAE
shows the semi-supervised variant, jointly trained by molecules (x) and
properties (y). Latent space is denoted with Z, and latent vectors with z.
In the GAN setting, the noise eventually acquires structure via the

adversarial training. Reinforcement learning (RL) shows a policy
gradient with MTCS in the task of SMILES completion with
arbitrary rewards. Shown in the lower right are hybrid architectures
such as AAE (adversarial autoencoders) and ORGAN, which represents
GAN and RL.
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Fig. 4. Schematic representation of several architectures found in
generative models. RNNs are used for sequence generation. The VAE
shows the semi-supervised variant, jointly trained by molecules (x) and
properties (y). Latent space is denoted with Z, and latent vectors with z.
In the GAN setting, the noise eventually acquires structure via the

adversarial training. Reinforcement learning (RL) shows a policy
gradient with MTCS in the task of SMILES completion with
arbitrary rewards. Shown in the lower right are hybrid architectures
such as AAE (adversarial autoencoders) and ORGAN, which represents
GAN and RL.
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Page 159

“… the images encountered in 
AI applications occupy a 
negligible proportion of

the volume of image space.”
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Probabilistic Generative Modeling

How to express, learn, and sample from a 
high-dimensional probability distribution ? 
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latent space



Boltzmann Machines

statistical physics

p(x) =
e−E(x)

Z
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to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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The setup for measuring the SHG is described
in the supporting online material (22). We expect
that the SHG strongly depends on the resonance
that is excited. Obviously, the incident polariza-
tion and the detuning of the laser wavelength
from the resonance are of particular interest. One
possibility for controlling the detuning is to
change the laser wavelength for a given sample,
which is difficult because of the extremely broad
tuning range required. Thus, we follow an
alternative route, lithographic tuning (in which
the incident laser wavelength of 1.5 mm, as well
as the detection system, remains fixed), and tune
the resonance positions by changing the SRR
size. In this manner, we can also guarantee that
the optical properties of the SRR constituent
materials are identical for all configurations. The
blue bars in Fig. 1 summarize the measured SHG
signals. For excitation of the LC resonance in Fig.
1A (horizontal incident polarization), we find
an SHG signal that is 500 times above the noise
level. As expected for SHG, this signal closely
scales with the square of the incident power
(Fig. 2A). The polarization of the SHG emission
is nearly vertical (Fig. 2B). The small angle with
respect to the vertical is due to deviations from
perfect mirror symmetry of the SRRs (see
electron micrographs in Fig. 1). Small detuning
of the LC resonance toward smaller wavelength
(i.e., to 1.3-mm wavelength) reduces the SHG
signal strength from 100% to 20%. For ex-
citation of the Mie resonance with vertical
incident polarization in Fig. 1D, we find a small
signal just above the noise level. For excitation
of the Mie resonance with horizontal incident
polarization in Fig. 1C, a small but significant
SHG emission is found, which is again po-

larized nearly vertically. For completeness, Fig.
1B shows the off-resonant case for the smaller
SRRs for vertical incident polarization.

Although these results are compatible with
the known selection rules of surface SHG from
usual nonlinear optics (23), these selection rules
do not explain the mechanism of SHG. Follow-
ing our above argumentation on the magnetic
component of the Lorentz force, we numerically
calculate first the linear electric and magnet-
ic field distributions (22); from these fields,
we compute the electron velocities and the
Lorentz-force field (fig. S1). In the spirit of a
metamaterial, the transverse component of the
Lorentz-force field can be spatially averaged
over the volume of the unit cell of size aby a
by t. This procedure delivers the driving force
for the transverse SHG polarization. As usual,
the SHG intensity is proportional to the square
modulus of the nonlinear electron displacement.
Thus, the SHG strength is expected to be
proportional to the square modulus of the
driving force, and the SHG polarization is
directed along the driving-force vector. Cor-
responding results are summarized in Fig. 3 in
the same arrangement as Fig. 1 to allow for a
direct comparison between experiment and
theory. The agreement is generally good, both
for linear optics and for SHG. In particular, we
find a much larger SHG signal for excitation of
those two resonances (Fig. 3, A and C), which
are related to a finite magnetic-dipole moment
(perpendicular to the SRR plane) as compared
with the purely electric Mie resonance (Figs.
1D and 3D), despite the fact that its oscillator
strength in the linear spectrum is comparable.
The SHG polarization in the theory is strictly
vertical for all resonances. Quantitative devia-
tions between the SHG signal strengths of ex-
periment and theory, respectively, are probably
due to the simplified SRR shape assumed in
our calculations and/or due to the simplicity of
our modeling. A systematic microscopic theory
of the nonlinear optical properties of metallic

metamaterials would be highly desirable but is
currently not available.
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Reducing the Dimensionality of
Data with Neural Networks
G. E. Hinton* and R. R. Salakhutdinov

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural
network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent
can be used for fine-tuning the weights in such ‘‘autoencoder’’ networks, but this works well only if
the initial weights are close to a good solution. We describe an effective way of initializing the
weights that allows deep autoencoder networks to learn low-dimensional codes that work much
better than principal components analysis as a tool to reduce the dimensionality of data.

D
imensionality reduction facilitates the
classification, visualization, communi-
cation, and storage of high-dimensional

data. A simple and widely used method is
principal components analysis (PCA), which

finds the directions of greatest variance in the
data set and represents each data point by its
coordinates along each of these directions. We
describe a nonlinear generalization of PCA that
uses an adaptive, multilayer Bencoder[ network

Fig. 3. Theory, presented as the experiment (see
Fig. 1). The SHG source is the magnetic compo-
nent of the Lorentz force on metal electrons in
the SRRs.
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Figure 2. Left: To generate pixel xi one conditions on all the pre-
viously generated pixels left and above of xi. Center: To gen-
erate a pixel in the multi-scale case we can also condition on the
subsampled image pixels (in light blue). Right: Diagram of the
connectivity inside a masked convolution. In the first layer, each
of the RGB channels is connected to previous channels and to the
context, but is not connected to itself. In subsequent layers, the
channels are also connected to themselves.

ply them to large-scale modeling of natural images. The
resulting PixelRNNs are composed of up to twelve, fast
two-dimensional Long Short-Term Memory (LSTM) lay-
ers. These layers use LSTM units in their state (Hochreiter
& Schmidhuber, 1997; Graves & Schmidhuber, 2009) and
adopt a convolution to compute at once all the states along
one of the spatial dimensions of the data. We design two
types of these layers. The first type is the Row LSTM layer
where the convolution is applied along each row; a similar
technique is described in (Stollenga et al., 2015). The sec-
ond type is the Diagonal BiLSTM layer where the convolu-
tion is applied in a novel fashion along the diagonals of the
image. The networks also incorporate residual connections
(He et al., 2015) around LSTM layers; we observe that this
helps with training of the PixelRNN for up to twelve layers
of depth.

We also consider a second, simplified architecture which
shares the same core components as the PixelRNN. We ob-
serve that Convolutional Neural Networks (CNN) can also
be used as sequence model with a fixed dependency range,
by using Masked convolutions. The PixelCNN architec-
ture is a fully convolutional network of fifteen layers that
preserves the spatial resolution of its input throughout the
layers and outputs a conditional distribution at each loca-
tion.

Both PixelRNN and PixelCNN capture the full generality
of pixel inter-dependencies without introducing indepen-
dence assumptions as in e.g., latent variable models. The
dependencies are also maintained between the RGB color
values within each individual pixel. Furthermore, in con-
trast to previous approaches that model the pixels as con-
tinuous values (e.g., Theis & Bethge (2015); Gregor et al.
(2014)), we model the pixels as discrete values using a
multinomial distribution implemented with a simple soft-
max layer. We observe that this approach gives both repre-
sentational and training advantages for our models.

The contributions of the paper are as follows. In Section
3 we design two types of PixelRNNs corresponding to the
two types of LSTM layers; we describe the purely convo-
lutional PixelCNN that is our fastest architecture; and we
design a Multi-Scale version of the PixelRNN. In Section 5
we show the relative benefits of using the discrete softmax
distribution in our models and of adopting residual connec-
tions for the LSTM layers. Next we test the models on
MNIST and on CIFAR-10 and show that they obtain log-
likelihood scores that are considerably better than previous
results. We also provide results for the large-scale Ima-
geNet dataset resized to both 32 ⇥ 32 and 64 ⇥ 64 pixels;
to our knowledge likelihood values from generative models
have not previously been reported on this dataset. Finally,
we give a qualitative evaluation of the samples generated
from the PixelRNNs.

2. Model

Our aim is to estimate a distribution over natural images
that can be used to tractably compute the likelihood of im-
ages and to generate new ones. The network scans the im-
age one row at a time and one pixel at a time within each
row. For each pixel it predicts the conditional distribution
over the possible pixel values given the scanned context.
Figure 2 illustrates this process. The joint distribution over
the image pixels is factorized into a product of conditional
distributions. The parameters used in the predictions are
shared across all pixel positions in the image.

To capture the generation process, Theis & Bethge (2015)
propose to use a two-dimensional LSTM network (Graves
& Schmidhuber, 2009) that starts at the top left pixel and
proceeds towards the bottom right pixel. The advantage of
the LSTM network is that it effectively handles long-range
dependencies that are central to object and scene under-
standing. The two-dimensional structure ensures that the
signals are well propagated both in the left-to-right and top-
to-bottom directions.

In this section we first focus on the form of the distribution,
whereas the next section will be devoted to describing the
architectural innovations inside PixelRNN.

2.1. Generating an Image Pixel by Pixel

The goal is to assign a probability p(x) to each image x
formed of n⇥n pixels. We can write the image x as a one-
dimensional sequence x1, ..., xn2 where pixels are taken
from the image row by row. To estimate the joint distri-
bution p(x) we write it as the product of the conditional
distributions over the pixels:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1) (1)

Pixel Recurrent Neural Networks

PixelCNN Row LSTM Diagonal BiLSTM

Figure 4. Visualization of the input-to-state and state-to-state
mappings for the three proposed architectures.

3.2. Diagonal BiLSTM

The Diagonal BiLSTM is designed to both parallelize the
computation and to capture the entire available context for
any image size. Each of the two directions of the layer
scans the image in a diagonal fashion starting from a cor-
ner at the top and reaching the opposite corner at the bot-
tom. Each step in the computation computes at once the
LSTM state along a diagonal in the image. Figure 4 (right)
illustrates the computation and the resulting receptive field.

The diagonal computation proceeds as follows. We first
skew the input map into a space that makes it easy to ap-
ply convolutions along diagonals. The skewing operation
offsets each row of the input map by one position with re-
spect to the previous row, as illustrated in Figure 3; this
results in a map of size n ⇥ (2n � 1). At this point we can
compute the input-to-state and state-to-state components of
the Diagonal BiLSTM. For each of the two directions, the
input-to-state component is simply a 1⇥1 convolution Kis

that contributes to the four gates in the LSTM core; the op-
eration generates a 4h ⇥ n ⇥ n tensor. The state-to-state
recurrent component is then computed with a column-wise
convolution Kss that has a kernel of size 2 ⇥ 1. The step
takes the previous hidden and cell states, combines the con-
tribution of the input-to-state component and produces the
next hidden and cell states, as defined in Equation 3. The
output feature map is then skewed back into an n ⇥ n map
by removing the offset positions. This computation is re-
peated for each of the two directions. Given the two out-
put maps, to prevent the layer from seeing future pixels,
the right output map is then shifted down by one row and
added to the left output map.

Besides reaching the full dependency field, the Diagonal
BiLSTM has the additional advantage that it uses a con-
volutional kernel of size 2 ⇥ 1 that processes a minimal
amount of information at each step yielding a highly non-
linear computation. Kernel sizes larger than 2 ⇥ 1 are not
particularly useful as they do not broaden the already global
receptive field of the Diagonal BiLSTM.

3.3. Residual Connections

We train PixelRNNs of up to twelve layers of depth. As
a means to both increase convergence speed and propagate
signals more directly through the network, we deploy resid-
ual connections (He et al., 2015) from one LSTM layer to
the next. Figure 5 shows a diagram of the residual blocks.
The input map to the PixelRNN LSTM layer has 2h fea-
tures. The input-to-state component reduces the number of
features by producing h features per gate. After applying
the recurrent layer, the output map is upsampled back to 2h
features per position via a 1 ⇥ 1 convolution and the input
map is added to the output map. This method is related to
previous approaches that use gating along the depth of the
recurrent network (Kalchbrenner et al., 2015; Zhang et al.,
2016), but has the advantage of not requiring additional
gates. Apart from residual connections, one can also use
learnable skip connections from each layer to the output.
In the experiments we evaluate the relative effectiveness of
residual and layer-to-output skip connections.
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Figure 5. Residual blocks for a PixelCNN (left) and PixelRNNs.

3.4. Masked Convolution

The h features for each input position at every layer in the
network are split into three parts, each corresponding to
one of the RGB channels. When predicting the R chan-
nel for the current pixel xi, only the generated pixels left
and above of xi can be used as context. When predicting
the G channel, the value of the R channel can also be used
as context in addition to the previously generated pixels.
Likewise, for the B channel, the values of both the R and
G channels can be used. To restrict connections in the net-
work to these dependencies, we apply a mask to the input-
to-state convolutions and to other purely convolutional lay-
ers in a PixelRNN.

We use two types of masks that we indicate with mask A
and mask B, as shown in Figure 2 (Right). Mask A is ap-
plied only to the first convolutional layer in a PixelRNN
and restricts the connections to those neighboring pixels
and to those colors in the current pixels that have already
been predicted. On the other hand, mask B is applied to
all the subsequent input-to-state convolutional transitions
and relaxes the restrictions of mask A by also allowing the
connection from a color to itself. The masks can be eas-
ily implemented by zeroing out the corresponding weights
in the input-to-state convolutions after each update. Simi-

WaveNet 1609.03499,1711.10433 PixelCNN

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1⇥1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)
ln (1 + µ)

,

3
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Figure 2. Left: To generate pixel xi one conditions on all the pre-
viously generated pixels left and above of xi. Center: To gen-
erate a pixel in the multi-scale case we can also condition on the
subsampled image pixels (in light blue). Right: Diagram of the
connectivity inside a masked convolution. In the first layer, each
of the RGB channels is connected to previous channels and to the
context, but is not connected to itself. In subsequent layers, the
channels are also connected to themselves.

ply them to large-scale modeling of natural images. The
resulting PixelRNNs are composed of up to twelve, fast
two-dimensional Long Short-Term Memory (LSTM) lay-
ers. These layers use LSTM units in their state (Hochreiter
& Schmidhuber, 1997; Graves & Schmidhuber, 2009) and
adopt a convolution to compute at once all the states along
one of the spatial dimensions of the data. We design two
types of these layers. The first type is the Row LSTM layer
where the convolution is applied along each row; a similar
technique is described in (Stollenga et al., 2015). The sec-
ond type is the Diagonal BiLSTM layer where the convolu-
tion is applied in a novel fashion along the diagonals of the
image. The networks also incorporate residual connections
(He et al., 2015) around LSTM layers; we observe that this
helps with training of the PixelRNN for up to twelve layers
of depth.

We also consider a second, simplified architecture which
shares the same core components as the PixelRNN. We ob-
serve that Convolutional Neural Networks (CNN) can also
be used as sequence model with a fixed dependency range,
by using Masked convolutions. The PixelCNN architec-
ture is a fully convolutional network of fifteen layers that
preserves the spatial resolution of its input throughout the
layers and outputs a conditional distribution at each loca-
tion.

Both PixelRNN and PixelCNN capture the full generality
of pixel inter-dependencies without introducing indepen-
dence assumptions as in e.g., latent variable models. The
dependencies are also maintained between the RGB color
values within each individual pixel. Furthermore, in con-
trast to previous approaches that model the pixels as con-
tinuous values (e.g., Theis & Bethge (2015); Gregor et al.
(2014)), we model the pixels as discrete values using a
multinomial distribution implemented with a simple soft-
max layer. We observe that this approach gives both repre-
sentational and training advantages for our models.

The contributions of the paper are as follows. In Section
3 we design two types of PixelRNNs corresponding to the
two types of LSTM layers; we describe the purely convo-
lutional PixelCNN that is our fastest architecture; and we
design a Multi-Scale version of the PixelRNN. In Section 5
we show the relative benefits of using the discrete softmax
distribution in our models and of adopting residual connec-
tions for the LSTM layers. Next we test the models on
MNIST and on CIFAR-10 and show that they obtain log-
likelihood scores that are considerably better than previous
results. We also provide results for the large-scale Ima-
geNet dataset resized to both 32 ⇥ 32 and 64 ⇥ 64 pixels;
to our knowledge likelihood values from generative models
have not previously been reported on this dataset. Finally,
we give a qualitative evaluation of the samples generated
from the PixelRNNs.

2. Model

Our aim is to estimate a distribution over natural images
that can be used to tractably compute the likelihood of im-
ages and to generate new ones. The network scans the im-
age one row at a time and one pixel at a time within each
row. For each pixel it predicts the conditional distribution
over the possible pixel values given the scanned context.
Figure 2 illustrates this process. The joint distribution over
the image pixels is factorized into a product of conditional
distributions. The parameters used in the predictions are
shared across all pixel positions in the image.

To capture the generation process, Theis & Bethge (2015)
propose to use a two-dimensional LSTM network (Graves
& Schmidhuber, 2009) that starts at the top left pixel and
proceeds towards the bottom right pixel. The advantage of
the LSTM network is that it effectively handles long-range
dependencies that are central to object and scene under-
standing. The two-dimensional structure ensures that the
signals are well propagated both in the left-to-right and top-
to-bottom directions.

In this section we first focus on the form of the distribution,
whereas the next section will be devoted to describing the
architectural innovations inside PixelRNN.

2.1. Generating an Image Pixel by Pixel

The goal is to assign a probability p(x) to each image x
formed of n⇥n pixels. We can write the image x as a one-
dimensional sequence x1, ..., xn2 where pixels are taken
from the image row by row. To estimate the joint distri-
bution p(x) we write it as the product of the conditional
distributions over the pixels:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1) (1)
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Figure 4. Visualization of the input-to-state and state-to-state
mappings for the three proposed architectures.

3.2. Diagonal BiLSTM

The Diagonal BiLSTM is designed to both parallelize the
computation and to capture the entire available context for
any image size. Each of the two directions of the layer
scans the image in a diagonal fashion starting from a cor-
ner at the top and reaching the opposite corner at the bot-
tom. Each step in the computation computes at once the
LSTM state along a diagonal in the image. Figure 4 (right)
illustrates the computation and the resulting receptive field.

The diagonal computation proceeds as follows. We first
skew the input map into a space that makes it easy to ap-
ply convolutions along diagonals. The skewing operation
offsets each row of the input map by one position with re-
spect to the previous row, as illustrated in Figure 3; this
results in a map of size n ⇥ (2n � 1). At this point we can
compute the input-to-state and state-to-state components of
the Diagonal BiLSTM. For each of the two directions, the
input-to-state component is simply a 1⇥1 convolution Kis

that contributes to the four gates in the LSTM core; the op-
eration generates a 4h ⇥ n ⇥ n tensor. The state-to-state
recurrent component is then computed with a column-wise
convolution Kss that has a kernel of size 2 ⇥ 1. The step
takes the previous hidden and cell states, combines the con-
tribution of the input-to-state component and produces the
next hidden and cell states, as defined in Equation 3. The
output feature map is then skewed back into an n ⇥ n map
by removing the offset positions. This computation is re-
peated for each of the two directions. Given the two out-
put maps, to prevent the layer from seeing future pixels,
the right output map is then shifted down by one row and
added to the left output map.

Besides reaching the full dependency field, the Diagonal
BiLSTM has the additional advantage that it uses a con-
volutional kernel of size 2 ⇥ 1 that processes a minimal
amount of information at each step yielding a highly non-
linear computation. Kernel sizes larger than 2 ⇥ 1 are not
particularly useful as they do not broaden the already global
receptive field of the Diagonal BiLSTM.

3.3. Residual Connections

We train PixelRNNs of up to twelve layers of depth. As
a means to both increase convergence speed and propagate
signals more directly through the network, we deploy resid-
ual connections (He et al., 2015) from one LSTM layer to
the next. Figure 5 shows a diagram of the residual blocks.
The input map to the PixelRNN LSTM layer has 2h fea-
tures. The input-to-state component reduces the number of
features by producing h features per gate. After applying
the recurrent layer, the output map is upsampled back to 2h
features per position via a 1 ⇥ 1 convolution and the input
map is added to the output map. This method is related to
previous approaches that use gating along the depth of the
recurrent network (Kalchbrenner et al., 2015; Zhang et al.,
2016), but has the advantage of not requiring additional
gates. Apart from residual connections, one can also use
learnable skip connections from each layer to the output.
In the experiments we evaluate the relative effectiveness of
residual and layer-to-output skip connections.
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Figure 5. Residual blocks for a PixelCNN (left) and PixelRNNs.

3.4. Masked Convolution

The h features for each input position at every layer in the
network are split into three parts, each corresponding to
one of the RGB channels. When predicting the R chan-
nel for the current pixel xi, only the generated pixels left
and above of xi can be used as context. When predicting
the G channel, the value of the R channel can also be used
as context in addition to the previously generated pixels.
Likewise, for the B channel, the values of both the R and
G channels can be used. To restrict connections in the net-
work to these dependencies, we apply a mask to the input-
to-state convolutions and to other purely convolutional lay-
ers in a PixelRNN.

We use two types of masks that we indicate with mask A
and mask B, as shown in Figure 2 (Right). Mask A is ap-
plied only to the first convolutional layer in a PixelRNN
and restricts the connections to those neighboring pixels
and to those colors in the current pixels that have already
been predicted. On the other hand, mask B is applied to
all the subsequent input-to-state convolutional transitions
and relaxes the restrictions of mask A by also allowing the
connection from a color to itself. The masks can be eas-
ily implemented by zeroing out the corresponding weights
in the input-to-state convolutions after each update. Simi-

WaveNet 1609.03499,1711.10433 PixelCNN

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1⇥1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)
ln (1 + µ)

,

3

Speech data Image data

= p(x1)p(x2 |x1)p(x3 |x1, x2)⋯
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“Teach a quantum state to write digits”
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Nice features of an MPS Born Machine

ExpressibilityLearning Inference Sampling
Glasser, Clark, Deng,  

Gao, Chen, Huang… 17’

p(x) = | |2 /Z



Tractable Likelihood

Efficient & unbiased learning compared to  
models with intractable partition functions

Z = tractable via  
efficient tensor contraction

*applies to TTN  
and MERA as well

∂Z/∂ ( ) = 2 ×



Adaptive Learning

Adaptively grows the bond dimensions, thus 
dynamically tuning the expressibility

8

FIG. 5: Bond dimensions of the learnt MPS. Each pixel in
this figure corresponds to bond dimension of the right leg of

the tensor associated to the identical coordinate in the
original image.

pects of the result are worth mentioning. Firstly, the MPS
learnt to leave margin blank with width 4 pixels, which is the
most obvious common feature in MNIST database. Secondly,
the activated pixels compose kinds of pen strokes that can be
extracted from the digits. Finally, a few of the samples al-
ready be recognized as digits. We expect as one increases
the maximal bond dimension and keeps on training the MPS
will produce more realistic images. Unlike the discrimina-
tive learning task carried out in [30], it seems we need to use
much larger bond dimensions to achieve a good performance
in the unsupervised learning. We think the reason is that in
the classification task, local features of an image are used for
predicting label of the image. Those local features, such as
presence of loop for label “6”, usually span a shorter range
of pixes, thus do not require MPS to remember longer-range
correlation between pixels. However it is necessary for gener-
ative modeling because learning the joint distribution from the

(a) Generated (b) Original

FIG. 6: (a) Images generated from a MPS trained on the
1000-image training set over 251 loops, achieving a final
average NLL 16.8. (b) Original images randomly selected

from the training set.

(a) column reconstruction on
training images

(b) row reconstruction on training
images

(c) column reconstruction on
testing images

(d) row reconstruction on testing
images

FIG. 7: Image reconstruction from partial images by direct
sampling of a MPS that has been trained on the 1000-image

training set over 251 loops. (a,b) Restoration of images in the
training set, e.g. those shown in Fig. 6(b). (c,d)

Reconstruction of 16 images chosen from the test set. The
test set contains images from the MNIST database that were

not used for training. The given parts are in black and the
reconstructed parts are in gray. The reconstructed parts are:
(a,c) 12 columns from either the left or the right; (b,d) 12

rows from either the top or the bottom.

data consists of (but not limited to) learning two-point corre-
lations between pairs of variables that could be far from each
other.

Thirdly we carried out image restoration experiment on the
MPS trained on 1000 images. As shown in Fig. 7 we first
remove part of images from the samples in Fig. 6 (b) then re-
construct ungiven pixels (in gray) using direct sampling con-
ditioning on given parts. For column reconstruction, its per-
formance is remarkable. The reconstructed images in Fig. 7(a)
are almost identical with the original ones in Fig. 6(b). On the
other hand, for row reconstruction in Fig. 7(b), it made inter-
esting but reasonable deviations. For instance, the rightmost
on the first row, an “1” has been bent to “7”. We also checked
its ability to reconstruct MNIST images other than the training
images, as shown in Fig. 7(c,d). These indicates that the MPS
has learned crucial features of the dataset, rather than merely
memorizing the training instances. In fact, even as early as
when trained over only 11 loops, the MPS could perform col-
umn reconstruction with similar image quality, but its row re-
construction performance was much worse than later when

Bond dimensionsTraining images

*applies to 2-site 
optimization
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No thermalization issue compared to  
slow mixing Gibbs sampling of  Boltzmann Machines

Ferris & Vidal 2012p(x) = ∏
i

p(xi |x<i) = ∏
i

p(x<i+1)
p(x<i)

*applies to TTN  
and MERA as well
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No thermalization issue compared to  
slow mixing Gibbs sampling of  Boltzmann Machines

Ferris & Vidal 2012p(x) = ∏
i

p(xi |x<i) = ∏
i

p(x<i+1)
p(x<i)

*applies to TTN  
and MERA as well
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“Zipper Sampling”

No thermalization issue compared to  
slow mixing Gibbs sampling of  Boltzmann Machines

Ferris & Vidal 2012p(x) = ∏
i

p(xi |x<i) = ∏
i

p(x<i+1)
p(x<i)

*applies to TTN  
and MERA as well
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Arbitrary order, in contrast to autoregressive models
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(a) (b) (c)

Figure 1. Illustration of the swap operation in Eq. (5) and Eq. (6)
using handwritten digits from the MNIST dataset. (a) Two original
images. (b) Swapped images for up/down bipartition. (c) Swapped
images for checkerboard bipartition of the pixels. The blue and red
colors indicate the regions of the bipartition X and Y respectively.

Finally, Section V summarizes our main points and outlook
for future directions.

II. COMPLEXITY OF DATASET: CLASSICAL MUTUAL
INFORMATION AND QUANTUM ENTANGLEMENT

ENTROPY

Modeling data probability using an energy based model
(1) calls for a classical information theoretical analysis. Mu-
tual information (MI) is a fundamental information theoretical
concept which quantifies the complexity of probability distri-
bution ⇡(v) associated with the dataset. Assuming x 2 X and
y 2 Y are two subset of the variables and v = x [ y, their
marginal probability distributions are ⇡(x) =

P
y2Y ⇡(x, y),

and ⇡(y) =
P

x2X ⇡(x, y) respectively. The MI reads

I(X : Y) =
X

x2X,y2Y
⇡(x, y) ln

"
⇡(x, y)
⇡(x)⇡(y)

#
. (3)

The MI measures the amount of information shared between
the two sets of variables. MI is zero only for independent
variables. In this sense, the MI is a stronger criterion than the
correlation of variables since having zero correlation does not
necessarily imply vanishing MI. The MI can be used as the
objective functions in machine learning applications [32–34].
Here we adopt a di↵erent point view, which treats MI as a
complexity measure of the dataset to be modeled.

On the other hand, if we view the target dataset as snapshots
of the same quantum state collapsed on a fixed basis (2), it
is natural to measure its complexity using the second Rényi
entanglement entropy

S R = � ln Tr(⇢2
X), (4)

where (⇢X)x,x0 =
P

y2Y  (x, y) (x0, y) is the reduced density
matrix, and  (v = x [ y) is the probability amplitude associ-

ated with the probability, such that p(v) in Eq. (2) approaches
to the data probability distribution ⇡(v). The second Rényi
entanglement entropy is a lower bound of the von Neumann
entanglement entropy S vN = �Tr[⇢X ln(⇢X)].

To reveal connection of the classical and quantum informa-
tion theoretical measures, we write the MI as
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where the expected value h· · · ix,y is with respect to the dataset
probability ⇡(x, y).

There are apparent similarities between Eqs. (5) and (6).
Both equations contain swap ratios of probability or probabil-
ity amplitude [35, 36]. To illustrated the e↵ect of the swap
ratio, Figure 1(a) shows two samples from the MNIST data
set [(x, y) and (x0, y0)] and Fig. 1(b,c) show the corresponding
swapped images [(x0, y) and (x, y0)] for up/down and checker-
board bipartitions. The ratio in Eq. (5) and Eq. (6) would be
smaller if the swapped images are less likely to appear in the
original dataset ⇡(v), therefore makes larger contribution to
the mutual information or the entanglement entropy. Refer-
ence [37] argues that the dominant correlations in the natural
datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
di�culty one may consider to compute alternative quantities
such as the Rényi mutual information [80].
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Figure 1. Illustration of the swap operation in Eq. (5) and Eq. (6)
using handwritten digits from the MNIST dataset. (a) Two original
images. (b) Swapped images for up/down bipartition. (c) Swapped
images for checkerboard bipartition of the pixels. The blue and red
colors indicate the regions of the bipartition X and Y respectively.
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variables. In this sense, the MI is a stronger criterion than the
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necessarily imply vanishing MI. The MI can be used as the
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Here we adopt a di↵erent point view, which treats MI as a
complexity measure of the dataset to be modeled.
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set [(x, y) and (x0, y0)] and Fig. 1(b,c) show the corresponding
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smaller if the swapped images are less likely to appear in the
original dataset ⇡(v), therefore makes larger contribution to
the mutual information or the entanglement entropy. Refer-
ence [37] argues that the dominant correlations in the natural
datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
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is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
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scaling for various quantum states [31] are very instructive
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states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
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Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
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which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
di�culty one may consider to compute alternative quantities
such as the Rényi mutual information [80].

Quantum Perspective on Deep Learning

Q: How to quantify our inductive biases ? 

A: Information pattern of  probability distributions



2

(a) (b) (c)

Figure 1. Illustration of the swap operation in Eq. (5) and Eq. (6)
using handwritten digits from the MNIST dataset. (a) Two original
images. (b) Swapped images for up/down bipartition. (c) Swapped
images for checkerboard bipartition of the pixels. The blue and red
colors indicate the regions of the bipartition X and Y respectively.

Finally, Section V summarizes our main points and outlook
for future directions.

II. COMPLEXITY OF DATASET: CLASSICAL MUTUAL
INFORMATION AND QUANTUM ENTANGLEMENT

ENTROPY

Modeling data probability using an energy based model
(1) calls for a classical information theoretical analysis. Mu-
tual information (MI) is a fundamental information theoretical
concept which quantifies the complexity of probability distri-
bution ⇡(v) associated with the dataset. Assuming x 2 X and
y 2 Y are two subset of the variables and v = x [ y, their
marginal probability distributions are ⇡(x) =

P
y2Y ⇡(x, y),

and ⇡(y) =
P

x2X ⇡(x, y) respectively. The MI reads

I(X : Y) =
X

x2X,y2Y
⇡(x, y) ln

"
⇡(x, y)
⇡(x)⇡(y)

#
. (3)

The MI measures the amount of information shared between
the two sets of variables. MI is zero only for independent
variables. In this sense, the MI is a stronger criterion than the
correlation of variables since having zero correlation does not
necessarily imply vanishing MI. The MI can be used as the
objective functions in machine learning applications [32–34].
Here we adopt a di↵erent point view, which treats MI as a
complexity measure of the dataset to be modeled.

On the other hand, if we view the target dataset as snapshots
of the same quantum state collapsed on a fixed basis (2), it
is natural to measure its complexity using the second Rényi
entanglement entropy

S R = � ln Tr(⇢2
X), (4)

where (⇢X)x,x0 =
P

y2Y  (x, y) (x0, y) is the reduced density
matrix, and  (v = x [ y) is the probability amplitude associ-

ated with the probability, such that p(v) in Eq. (2) approaches
to the data probability distribution ⇡(v). The second Rényi
entanglement entropy is a lower bound of the von Neumann
entanglement entropy S vN = �Tr[⇢X ln(⇢X)].

To reveal connection of the classical and quantum informa-
tion theoretical measures, we write the MI as

I(X : Y) = �
*
ln
*
⇡(x, y0)⇡(x0, y)
⇡(x0, y0)⇡(x, y)

+

x0,y0

+

x,y
, (5)

and the second Rényi entropy as

S R = � ln
**
 (x, y0) (x0, y)
 (x0, y0) (x, y)

+

x0,y0

+

x,y
, (6)

where the expected value h· · · ix,y is with respect to the dataset
probability ⇡(x, y).

There are apparent similarities between Eqs. (5) and (6).
Both equations contain swap ratios of probability or probabil-
ity amplitude [35, 36]. To illustrated the e↵ect of the swap
ratio, Figure 1(a) shows two samples from the MNIST data
set [(x, y) and (x0, y0)] and Fig. 1(b,c) show the corresponding
swapped images [(x0, y) and (x, y0)] for up/down and checker-
board bipartitions. The ratio in Eq. (5) and Eq. (6) would be
smaller if the swapped images are less likely to appear in the
original dataset ⇡(v), therefore makes larger contribution to
the mutual information or the entanglement entropy. Refer-
ence [37] argues that the dominant correlations in the natural
datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
di�culty one may consider to compute alternative quantities
such as the Rényi mutual information [80].

2

(a) (b) (c)

Figure 1. Illustration of the swap operation in Eq. (5) and Eq. (6)
using handwritten digits from the MNIST dataset. (a) Two original
images. (b) Swapped images for up/down bipartition. (c) Swapped
images for checkerboard bipartition of the pixels. The blue and red
colors indicate the regions of the bipartition X and Y respectively.

Finally, Section V summarizes our main points and outlook
for future directions.

II. COMPLEXITY OF DATASET: CLASSICAL MUTUAL
INFORMATION AND QUANTUM ENTANGLEMENT

ENTROPY

Modeling data probability using an energy based model
(1) calls for a classical information theoretical analysis. Mu-
tual information (MI) is a fundamental information theoretical
concept which quantifies the complexity of probability distri-
bution ⇡(v) associated with the dataset. Assuming x 2 X and
y 2 Y are two subset of the variables and v = x [ y, their
marginal probability distributions are ⇡(x) =

P
y2Y ⇡(x, y),

and ⇡(y) =
P

x2X ⇡(x, y) respectively. The MI reads

I(X : Y) =
X

x2X,y2Y
⇡(x, y) ln

"
⇡(x, y)
⇡(x)⇡(y)

#
. (3)

The MI measures the amount of information shared between
the two sets of variables. MI is zero only for independent
variables. In this sense, the MI is a stronger criterion than the
correlation of variables since having zero correlation does not
necessarily imply vanishing MI. The MI can be used as the
objective functions in machine learning applications [32–34].
Here we adopt a di↵erent point view, which treats MI as a
complexity measure of the dataset to be modeled.

On the other hand, if we view the target dataset as snapshots
of the same quantum state collapsed on a fixed basis (2), it
is natural to measure its complexity using the second Rényi
entanglement entropy

S R = � ln Tr(⇢2
X), (4)

where (⇢X)x,x0 =
P

y2Y  (x, y) (x0, y) is the reduced density
matrix, and  (v = x [ y) is the probability amplitude associ-

ated with the probability, such that p(v) in Eq. (2) approaches
to the data probability distribution ⇡(v). The second Rényi
entanglement entropy is a lower bound of the von Neumann
entanglement entropy S vN = �Tr[⇢X ln(⇢X)].

To reveal connection of the classical and quantum informa-
tion theoretical measures, we write the MI as

I(X : Y) = �
*
ln
*
⇡(x, y0)⇡(x0, y)
⇡(x0, y0)⇡(x, y)

+

x0,y0

+

x,y
, (5)

and the second Rényi entropy as

S R = � ln
**
 (x, y0) (x0, y)
 (x0, y0) (x, y)

+

x0,y0

+

x,y
, (6)

where the expected value h· · · ix,y is with respect to the dataset
probability ⇡(x, y).

There are apparent similarities between Eqs. (5) and (6).
Both equations contain swap ratios of probability or probabil-
ity amplitude [35, 36]. To illustrated the e↵ect of the swap
ratio, Figure 1(a) shows two samples from the MNIST data
set [(x, y) and (x0, y0)] and Fig. 1(b,c) show the corresponding
swapped images [(x0, y) and (x, y0)] for up/down and checker-
board bipartitions. The ratio in Eq. (5) and Eq. (6) would be
smaller if the swapped images are less likely to appear in the
original dataset ⇡(v), therefore makes larger contribution to
the mutual information or the entanglement entropy. Refer-
ence [37] argues that the dominant correlations in the natural
datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
di�culty one may consider to compute alternative quantities
such as the Rényi mutual information [80].

Quantum Perspective on Deep Learning

Q: How to quantify our inductive biases ? 

A: Information pattern of  probability distributions



2

(a) (b) (c)

Figure 1. Illustration of the swap operation in Eq. (5) and Eq. (6)
using handwritten digits from the MNIST dataset. (a) Two original
images. (b) Swapped images for up/down bipartition. (c) Swapped
images for checkerboard bipartition of the pixels. The blue and red
colors indicate the regions of the bipartition X and Y respectively.

Finally, Section V summarizes our main points and outlook
for future directions.

II. COMPLEXITY OF DATASET: CLASSICAL MUTUAL
INFORMATION AND QUANTUM ENTANGLEMENT

ENTROPY

Modeling data probability using an energy based model
(1) calls for a classical information theoretical analysis. Mu-
tual information (MI) is a fundamental information theoretical
concept which quantifies the complexity of probability distri-
bution ⇡(v) associated with the dataset. Assuming x 2 X and
y 2 Y are two subset of the variables and v = x [ y, their
marginal probability distributions are ⇡(x) =

P
y2Y ⇡(x, y),

and ⇡(y) =
P

x2X ⇡(x, y) respectively. The MI reads

I(X : Y) =
X

x2X,y2Y
⇡(x, y) ln

"
⇡(x, y)
⇡(x)⇡(y)

#
. (3)

The MI measures the amount of information shared between
the two sets of variables. MI is zero only for independent
variables. In this sense, the MI is a stronger criterion than the
correlation of variables since having zero correlation does not
necessarily imply vanishing MI. The MI can be used as the
objective functions in machine learning applications [32–34].
Here we adopt a di↵erent point view, which treats MI as a
complexity measure of the dataset to be modeled.

On the other hand, if we view the target dataset as snapshots
of the same quantum state collapsed on a fixed basis (2), it
is natural to measure its complexity using the second Rényi
entanglement entropy

S R = � ln Tr(⇢2
X), (4)

where (⇢X)x,x0 =
P

y2Y  (x, y) (x0, y) is the reduced density
matrix, and  (v = x [ y) is the probability amplitude associ-

ated with the probability, such that p(v) in Eq. (2) approaches
to the data probability distribution ⇡(v). The second Rényi
entanglement entropy is a lower bound of the von Neumann
entanglement entropy S vN = �Tr[⇢X ln(⇢X)].

To reveal connection of the classical and quantum informa-
tion theoretical measures, we write the MI as

I(X : Y) = �
*
ln
*
⇡(x, y0)⇡(x0, y)
⇡(x0, y0)⇡(x, y)

+

x0,y0

+

x,y
, (5)

and the second Rényi entropy as

S R = � ln
**
 (x, y0) (x0, y)
 (x0, y0) (x, y)

+

x0,y0

+

x,y
, (6)

where the expected value h· · · ix,y is with respect to the dataset
probability ⇡(x, y).

There are apparent similarities between Eqs. (5) and (6).
Both equations contain swap ratios of probability or probabil-
ity amplitude [35, 36]. To illustrated the e↵ect of the swap
ratio, Figure 1(a) shows two samples from the MNIST data
set [(x, y) and (x0, y0)] and Fig. 1(b,c) show the corresponding
swapped images [(x0, y) and (x, y0)] for up/down and checker-
board bipartitions. The ratio in Eq. (5) and Eq. (6) would be
smaller if the swapped images are less likely to appear in the
original dataset ⇡(v), therefore makes larger contribution to
the mutual information or the entanglement entropy. Refer-
ence [37] argues that the dominant correlations in the natural
datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
di�culty one may consider to compute alternative quantities
such as the Rényi mutual information [80].

2

(a) (b) (c)

Figure 1. Illustration of the swap operation in Eq. (5) and Eq. (6)
using handwritten digits from the MNIST dataset. (a) Two original
images. (b) Swapped images for up/down bipartition. (c) Swapped
images for checkerboard bipartition of the pixels. The blue and red
colors indicate the regions of the bipartition X and Y respectively.

Finally, Section V summarizes our main points and outlook
for future directions.

II. COMPLEXITY OF DATASET: CLASSICAL MUTUAL
INFORMATION AND QUANTUM ENTANGLEMENT

ENTROPY

Modeling data probability using an energy based model
(1) calls for a classical information theoretical analysis. Mu-
tual information (MI) is a fundamental information theoretical
concept which quantifies the complexity of probability distri-
bution ⇡(v) associated with the dataset. Assuming x 2 X and
y 2 Y are two subset of the variables and v = x [ y, their
marginal probability distributions are ⇡(x) =

P
y2Y ⇡(x, y),

and ⇡(y) =
P

x2X ⇡(x, y) respectively. The MI reads

I(X : Y) =
X

x2X,y2Y
⇡(x, y) ln

"
⇡(x, y)
⇡(x)⇡(y)

#
. (3)

The MI measures the amount of information shared between
the two sets of variables. MI is zero only for independent
variables. In this sense, the MI is a stronger criterion than the
correlation of variables since having zero correlation does not
necessarily imply vanishing MI. The MI can be used as the
objective functions in machine learning applications [32–34].
Here we adopt a di↵erent point view, which treats MI as a
complexity measure of the dataset to be modeled.

On the other hand, if we view the target dataset as snapshots
of the same quantum state collapsed on a fixed basis (2), it
is natural to measure its complexity using the second Rényi
entanglement entropy

S R = � ln Tr(⇢2
X), (4)

where (⇢X)x,x0 =
P

y2Y  (x, y) (x0, y) is the reduced density
matrix, and  (v = x [ y) is the probability amplitude associ-

ated with the probability, such that p(v) in Eq. (2) approaches
to the data probability distribution ⇡(v). The second Rényi
entanglement entropy is a lower bound of the von Neumann
entanglement entropy S vN = �Tr[⇢X ln(⇢X)].

To reveal connection of the classical and quantum informa-
tion theoretical measures, we write the MI as

I(X : Y) = �
*
ln
*
⇡(x, y0)⇡(x0, y)
⇡(x0, y0)⇡(x, y)

+

x0,y0

+

x,y
, (5)

and the second Rényi entropy as

S R = � ln
**
 (x, y0) (x0, y)
 (x0, y0) (x, y)

+

x0,y0

+

x,y
, (6)

where the expected value h· · · ix,y is with respect to the dataset
probability ⇡(x, y).

There are apparent similarities between Eqs. (5) and (6).
Both equations contain swap ratios of probability or probabil-
ity amplitude [35, 36]. To illustrated the e↵ect of the swap
ratio, Figure 1(a) shows two samples from the MNIST data
set [(x, y) and (x0, y0)] and Fig. 1(b,c) show the corresponding
swapped images [(x0, y) and (x, y0)] for up/down and checker-
board bipartitions. The ratio in Eq. (5) and Eq. (6) would be
smaller if the swapped images are less likely to appear in the
original dataset ⇡(v), therefore makes larger contribution to
the mutual information or the entanglement entropy. Refer-
ence [37] argues that the dominant correlations in the natural
datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
di�culty one may consider to compute alternative quantities
such as the Rényi mutual information [80].

2

(a) (b) (c)

Figure 1. Illustration of the swap operation in Eq. (5) and Eq. (6)
using handwritten digits from the MNIST dataset. (a) Two original
images. (b) Swapped images for up/down bipartition. (c) Swapped
images for checkerboard bipartition of the pixels. The blue and red
colors indicate the regions of the bipartition X and Y respectively.

Finally, Section V summarizes our main points and outlook
for future directions.

II. COMPLEXITY OF DATASET: CLASSICAL MUTUAL
INFORMATION AND QUANTUM ENTANGLEMENT

ENTROPY

Modeling data probability using an energy based model
(1) calls for a classical information theoretical analysis. Mu-
tual information (MI) is a fundamental information theoretical
concept which quantifies the complexity of probability distri-
bution ⇡(v) associated with the dataset. Assuming x 2 X and
y 2 Y are two subset of the variables and v = x [ y, their
marginal probability distributions are ⇡(x) =

P
y2Y ⇡(x, y),

and ⇡(y) =
P

x2X ⇡(x, y) respectively. The MI reads

I(X : Y) =
X

x2X,y2Y
⇡(x, y) ln

"
⇡(x, y)
⇡(x)⇡(y)

#
. (3)

The MI measures the amount of information shared between
the two sets of variables. MI is zero only for independent
variables. In this sense, the MI is a stronger criterion than the
correlation of variables since having zero correlation does not
necessarily imply vanishing MI. The MI can be used as the
objective functions in machine learning applications [32–34].
Here we adopt a di↵erent point view, which treats MI as a
complexity measure of the dataset to be modeled.

On the other hand, if we view the target dataset as snapshots
of the same quantum state collapsed on a fixed basis (2), it
is natural to measure its complexity using the second Rényi
entanglement entropy

S R = � ln Tr(⇢2
X), (4)

where (⇢X)x,x0 =
P

y2Y  (x, y) (x0, y) is the reduced density
matrix, and  (v = x [ y) is the probability amplitude associ-

ated with the probability, such that p(v) in Eq. (2) approaches
to the data probability distribution ⇡(v). The second Rényi
entanglement entropy is a lower bound of the von Neumann
entanglement entropy S vN = �Tr[⇢X ln(⇢X)].

To reveal connection of the classical and quantum informa-
tion theoretical measures, we write the MI as

I(X : Y) = �
*
ln
*
⇡(x, y0)⇡(x0, y)
⇡(x0, y0)⇡(x, y)

+

x0,y0

+

x,y
, (5)

and the second Rényi entropy as

S R = � ln
**
 (x, y0) (x0, y)
 (x0, y0) (x, y)

+

x0,y0

+

x,y
, (6)

where the expected value h· · · ix,y is with respect to the dataset
probability ⇡(x, y).

There are apparent similarities between Eqs. (5) and (6).
Both equations contain swap ratios of probability or probabil-
ity amplitude [35, 36]. To illustrated the e↵ect of the swap
ratio, Figure 1(a) shows two samples from the MNIST data
set [(x, y) and (x0, y0)] and Fig. 1(b,c) show the corresponding
swapped images [(x0, y) and (x, y0)] for up/down and checker-
board bipartitions. The ratio in Eq. (5) and Eq. (6) would be
smaller if the swapped images are less likely to appear in the
original dataset ⇡(v), therefore makes larger contribution to
the mutual information or the entanglement entropy. Refer-
ence [37] argues that the dominant correlations in the natural
datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
di�culty one may consider to compute alternative quantities
such as the Rényi mutual information [80].

2

(a) (b) (c)

Figure 1. Illustration of the swap operation in Eq. (5) and Eq. (6)
using handwritten digits from the MNIST dataset. (a) Two original
images. (b) Swapped images for up/down bipartition. (c) Swapped
images for checkerboard bipartition of the pixels. The blue and red
colors indicate the regions of the bipartition X and Y respectively.

Finally, Section V summarizes our main points and outlook
for future directions.

II. COMPLEXITY OF DATASET: CLASSICAL MUTUAL
INFORMATION AND QUANTUM ENTANGLEMENT

ENTROPY

Modeling data probability using an energy based model
(1) calls for a classical information theoretical analysis. Mu-
tual information (MI) is a fundamental information theoretical
concept which quantifies the complexity of probability distri-
bution ⇡(v) associated with the dataset. Assuming x 2 X and
y 2 Y are two subset of the variables and v = x [ y, their
marginal probability distributions are ⇡(x) =

P
y2Y ⇡(x, y),

and ⇡(y) =
P

x2X ⇡(x, y) respectively. The MI reads

I(X : Y) =
X

x2X,y2Y
⇡(x, y) ln

"
⇡(x, y)
⇡(x)⇡(y)

#
. (3)

The MI measures the amount of information shared between
the two sets of variables. MI is zero only for independent
variables. In this sense, the MI is a stronger criterion than the
correlation of variables since having zero correlation does not
necessarily imply vanishing MI. The MI can be used as the
objective functions in machine learning applications [32–34].
Here we adopt a di↵erent point view, which treats MI as a
complexity measure of the dataset to be modeled.

On the other hand, if we view the target dataset as snapshots
of the same quantum state collapsed on a fixed basis (2), it
is natural to measure its complexity using the second Rényi
entanglement entropy

S R = � ln Tr(⇢2
X), (4)

where (⇢X)x,x0 =
P

y2Y  (x, y) (x0, y) is the reduced density
matrix, and  (v = x [ y) is the probability amplitude associ-

ated with the probability, such that p(v) in Eq. (2) approaches
to the data probability distribution ⇡(v). The second Rényi
entanglement entropy is a lower bound of the von Neumann
entanglement entropy S vN = �Tr[⇢X ln(⇢X)].

To reveal connection of the classical and quantum informa-
tion theoretical measures, we write the MI as

I(X : Y) = �
*
ln
*
⇡(x, y0)⇡(x0, y)
⇡(x0, y0)⇡(x, y)

+

x0,y0

+

x,y
, (5)

and the second Rényi entropy as

S R = � ln
**
 (x, y0) (x0, y)
 (x0, y0) (x, y)

+

x0,y0

+

x,y
, (6)

where the expected value h· · · ix,y is with respect to the dataset
probability ⇡(x, y).

There are apparent similarities between Eqs. (5) and (6).
Both equations contain swap ratios of probability or probabil-
ity amplitude [35, 36]. To illustrated the e↵ect of the swap
ratio, Figure 1(a) shows two samples from the MNIST data
set [(x, y) and (x0, y0)] and Fig. 1(b,c) show the corresponding
swapped images [(x0, y) and (x, y0)] for up/down and checker-
board bipartitions. The ratio in Eq. (5) and Eq. (6) would be
smaller if the swapped images are less likely to appear in the
original dataset ⇡(v), therefore makes larger contribution to
the mutual information or the entanglement entropy. Refer-
ence [37] argues that the dominant correlations in the natural
datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
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is not merely a “metaphorical vehicle” to measure the com-
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(1) calls for a classical information theoretical analysis. Mu-
tual information (MI) is a fundamental information theoretical
concept which quantifies the complexity of probability distri-
bution ⇡(v) associated with the dataset. Assuming x 2 X and
y 2 Y are two subset of the variables and v = x [ y, their
marginal probability distributions are ⇡(x) =

P
y2Y ⇡(x, y),

and ⇡(y) =
P

x2X ⇡(x, y) respectively. The MI reads

I(X : Y) =
X

x2X,y2Y
⇡(x, y) ln

"
⇡(x, y)
⇡(x)⇡(y)

#
. (3)

The MI measures the amount of information shared between
the two sets of variables. MI is zero only for independent
variables. In this sense, the MI is a stronger criterion than the
correlation of variables since having zero correlation does not
necessarily imply vanishing MI. The MI can be used as the
objective functions in machine learning applications [32–34].
Here we adopt a di↵erent point view, which treats MI as a
complexity measure of the dataset to be modeled.

On the other hand, if we view the target dataset as snapshots
of the same quantum state collapsed on a fixed basis (2), it
is natural to measure its complexity using the second Rényi
entanglement entropy

S R = � ln Tr(⇢2
X), (4)

where (⇢X)x,x0 =
P

y2Y  (x, y) (x0, y) is the reduced density
matrix, and  (v = x [ y) is the probability amplitude associ-

ated with the probability, such that p(v) in Eq. (2) approaches
to the data probability distribution ⇡(v). The second Rényi
entanglement entropy is a lower bound of the von Neumann
entanglement entropy S vN = �Tr[⇢X ln(⇢X)].

To reveal connection of the classical and quantum informa-
tion theoretical measures, we write the MI as

I(X : Y) = �
*
ln
*
⇡(x, y0)⇡(x0, y)
⇡(x0, y0)⇡(x, y)

+

x0,y0

+

x,y
, (5)

and the second Rényi entropy as

S R = � ln
**
 (x, y0) (x0, y)
 (x0, y0) (x, y)

+

x0,y0

+

x,y
, (6)

where the expected value h· · · ix,y is with respect to the dataset
probability ⇡(x, y).

There are apparent similarities between Eqs. (5) and (6).
Both equations contain swap ratios of probability or probabil-
ity amplitude [35, 36]. To illustrated the e↵ect of the swap
ratio, Figure 1(a) shows two samples from the MNIST data
set [(x, y) and (x0, y0)] and Fig. 1(b,c) show the corresponding
swapped images [(x0, y) and (x, y0)] for up/down and checker-
board bipartitions. The ratio in Eq. (5) and Eq. (6) would be
smaller if the swapped images are less likely to appear in the
original dataset ⇡(v), therefore makes larger contribution to
the mutual information or the entanglement entropy. Refer-
ence [37] argues that the dominant correlations in the natural
datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
di�culty one may consider to compute alternative quantities
such as the Rényi mutual information [80].
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Figure 1. Illustration of the swap operation in Eq. (5) and Eq. (6)
using handwritten digits from the MNIST dataset. (a) Two original
images. (b) Swapped images for up/down bipartition. (c) Swapped
images for checkerboard bipartition of the pixels. The blue and red
colors indicate the regions of the bipartition X and Y respectively.
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ABSTRACT
Formal understanding of the inductive bias behind deep convolutional networks,
i.e. the relation between the network’s architectural features and the functions it
is able to model, is limited. In this work, we establish a fundamental connection
between the fields of quantum physics and deep learning, and use it for obtain-
ing novel theoretical observations regarding the inductive bias of convolutional
networks. Specifically, we show a structural equivalence between the function re-
alized by a convolutional arithmetic circuit (ConvAC) and a quantum many-body
wave function, which facilitates the use of quantum entanglement measures as
quantifiers of a deep network’s expressive ability to model correlations. Further-
more, the construction of a deep ConvAC in terms of a quantum Tensor Network
is enabled. This allows us to perform a graph-theoretic analysis of a convolutional
network, tying its expressiveness to a min-cut in its underlying graph. We demon-
strate a practical outcome in the form of a direct control over the inductive bias
via the number of channels (width) of each layer. We empirically validate our
findings on standard convolutional networks which involve ReLU activations and
max pooling. The description of a deep convolutional network in well-defined
graph-theoretic tools and the structural connection to quantum entanglement, are
two interdisciplinary bridges that are brought forth by this work.

1 INTRODUCTION
A central factor in the application of machine learning to a given task is the restriction of the hypoth-
esis space of learned functions known as inductive bias. In deep convolutional networks, inductive
bias manifests itself in architectural features such as number of layers, number of channels per layer,
and more (LeCun et al., 2015). Formal understanding of the inductive bias behind convolutional net-
works is limited – the assumptions encoded into these models, which seem to form an excellent prior
knowledge for different types of data (e.g. Krizhevsky et al. (2012); He et al. (2016); van den Oord
et al. (2016)), are for the most part a mystery.

An important aspect of the influence that a certain architectural feature has on the inductive bias, is its
effect on the network’s ability to model correlations between regions of its input. In this regard, one
typically considers partitions that divide input regions into disjoint sets, and asks how far the function
realized by the network is from being separable with respect to these partitions(Cohen and Shashua,
2017; Levine et al., 2017). For example, Cohen and Shashua (2017) show that when separability is
measured through the algebraic notion of separation-rank, deep Convolutional Arithmetic Circuits
(ConvACs) (Cohen et al., 2016b) support exponential (in network size) separation-ranks for certain
input partitions, while being limited to polynomial separation-ranks for others. ConvACs are a
special class of convolutional networks, characterized by linear activations and product pooling,
which served a key role in theoretical analyses of convolutional networks, in virtue of their algebraic
structure.

In this work, we draw upon formal similarities between how physicists describe a system of many-
particles as a quantum mechanical wave function, and how machine learning practitioners map a
high-dimensional input (e.g. image) to a set of output labels through a deep network. In particular,
we show that there is a structural equivalence between a function modeled by a ConvAC and a
many-body quantum wave function, which relies on their underlying tensorial structure. This allows
employment of the well-established physical notion of quantum entanglement measures (Plenio and
Virmani, 2007), which subsumes other algebraic notions of separability such as the separation-rank
mentioned above, for the analysis of correlations modeled by deep convolutional networks.
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The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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in deep learning, in which deep neural networks can even
reach billions of parameters [33]. In the history of machine
learning, gradient-free algorithms were employed to optimize
small-scale neural networks [34]. However, they failed to
scale up to a larger number of parameters. It is the back-
propagation algorithm [35] which can e�ciently compute the
gradient of the neural network output with respect to the
network parameters enables scalable training of deep neural
nets. It is thus highly demanded to have scalable quantum al-
gorithms for estimating gradients on actual quantum circuits.

Recently, gradient-based learning of quantum circuits has
been devised for quantum control [36] and discriminative
tasks [37, 38]. Although they are still less e�cient compared
to the back-propagation algorithm for neural networks, these
unbiased gradient algorithms can already greatly accelerate
the quantum circuit learning. Unfortunately, direct application
of these gradient algorithms [36–38] to QCBM training is still
non-trivial since the output of the generative model is gen-
uinely bit strings which follow high-dimensional probability
distributions. In fact, it is even an ongoing research topic
in deep learning to perform di↵erentiable learning of implicit
generative model with discrete outputs [24, 39].

In this paper, we develop an e�cient gradient-based learn-
ing algorithm to train the QCBM. In what follows, we first
present a practical quantum-classical hybrid algorithm to train
the quantum circuit as a generative model in Sec. II, thus
realize a Born machine. Then we apply the algorithm on
3 ⇥ 3 Bars-and-Stripes and double Gaussian peaks datasets
in Sec. III. We show that the training is robust to moderate
sampling noise, and is scalable in circuit depth. Increasing
the circuit depth significantly improves the representational
power for generative tasks. Finally, we conclude and discuss
caveats and future research directions about the QCBM in
Sec. IV.

II. MODEL AND LEARNING ALGORITHM

Given a dataset D = {x} containing independent and iden-
tically distributed (i.i.d.) samples from a target distribution
⇡(x), we set up a QCBM to generate samples close to the
unknown target distribution. As shown in Fig. 1, the QCBM
takes the product state |0i as an input and evolves it to a
final state | ✓i by a sequence of unitary gates. Then we can
measure this output state on computation basis to obtain a
sample of bits x ⇠ p✓(x) = |hx| ✓i|2. The goal of the training
is to let the model probability distribution p✓ approach to ⇡.

We employ a classical-quantum hybrid feedback loop as
the training strategy. The setup is similar to the Quantum
Approximate Optimization Algorithm (QAOA) [40–42] and
the Variational Quantum Eigensolver (VQE) [43–45]. By
constructing the circuits and performing measurements re-
peatedly we collect a batch of samples from the QCBM.
Then we introduce two-sample test as a measure of distance
between generated samples and training set, which is used
as our di↵erentiable loss. Using a classical optimizer which
takes the gradient information of the loss function, we can
push the generated sample distribution towards the target

Figure 1. Illustration of the di↵erentiable QCBM training scheme.
Top left is the quantum circuit which produce bit string samples. The
dashed box on the right denotes two-sample test on the generated
samples and training samples, with the loss function (Eq. (1)) and
corresponding gradients (Eq. (2)) as outputs. �✓ is the amount of
updated to be applied to the circuit parameters, which are computed
by a classical optimizer. The outcome of the training is to produce
a quantum circuit which generates samples according to the learned
probability distribution on the computational basis.

distribution.

A. Quantum Circuit Architecture Design

The overall circuit layout is similar to the IBM variational
quantum eigensolver [45], where one interweaves single qubit
rotation layers and entangler layers shown in Fig. 1. The
rotation layers are parameterized by rotation angles ✓ = {✓↵

l
},

where the layer index l runs from 0 to d, with d the maximum
depth of the circuit. ↵ is a combination of qubit index j and
arbitrary rotation gate index, where the arbitrary rotation gate
has the form U(✓ j

l
) = Rz(✓

j,1
l

)Rx(✓ j,2
l

)Rz(✓
j,3
l

) with Rm(✓) ⌘
exp
⇣�i✓�m

2

⌘
. The total number of parameters in this QCBM

is (3d + 1)n, with n the number of qubits [46].
We employ CNOT gates with no learnable parameters for

the entangle layers to induce correlations between qubits. In
light of experimental constraints on the connectivity of the
circuits, we make the connection of the entangle layers to be
sparse by requiring its topology as a tree (i.e. the simplest
connected graph). From the classical probabilistic graph-
ical model’s perspective [13], the tree graph that captures
information content of the dataset most e�ciently is Chow-
Liu tree [47]. Since controlled unitary gates have a close
relation with classical probability graphical models [48], we
employ the same Chow-Liu tree as the topology of CNOT
gates. To construct the Chow-Liu tree we first compute mutual
information between all pairs of the bits for samples in the
training set as weights, and then construct the maximum
spanning tree using, for example, the Kruskal’s algorithm.
The assignment of the control bit and the target bit on a bond
is random, since the Chow-Liu algorithm treated directed

Quantum Circuit Born Machine
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Quantum sampling complexity underlines the “quantum supremacy” 
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(a)

(b)

(c)

(d)

FIG. 12. Mapping of the generative matrix product state
(MPS) quantum circuit with V = 3 to a bond dimension
D = 23 MPS tensor network diagram. First (a) interpret the
circuit diagram as a tensor diagram by interpreting reference
states h0| as vectors [1, 0]; qubit lines as dimension 2 tensor
indices; and measurements as setting indices to fixed values.
Then (b) contract the reference states into the unitary tensors
and (c) redraw the tensors in a linear chain. Finally, (d) merge
three D = 2 indices into a single D = 8 dimensional index on
each bond.

Given the ability to measure and reset a subset of phys-
ical qubits, a key advantage of implementing a discrim-
inative or generative tensor network model based on an
MPS is that for a model with V virtual qubits, an arbi-
trary number of inputs or outputs can be processed by
using only V +1 physical qubits. The circuits illustrating
how this can be done are shown in Fig. 11.

The implementation of the discriminative algorithm
shown in Fig. 11(a) begins by preparing and entangling
V input qubit states. One of the qubits is measured and
reset to the next input state. Then all V + 1 qubits are
entangled and a single qubit measured and re-prepared.
Continuing in this way, one can process all of the inputs.
Once all inputs are processed, the model output is ob-
tained by sampling one or more of the physical qubits.

To implement the generative MPS algorithm shown in
Fig. 11(b), one prepares all qubits to a reference state

|0i⌦V +1 and after entangling the qubits, one measures
and records a single qubit to generate the first output
value. This qubit is reset to the state |0i and all the
qubits are then acted on by another (V + 1) qubit uni-
tary. A single qubit is again measured to generate the
second output value, and the algorithm continues until
N outputs have been generated.

To understand the equivalence of the generative circuit
of Fig. 11(b) to conventional tensor diagram notation for
an MPS, interpret the circuit diagram Fig. 12(a) as a ten-
sor network diagram, treating elements such as reference
states h0| as tensors or vectors [1, 0]. One can contract
or sum over the reference state indices and merge any V

qubit indices into a single index of dimension D = 2V .
The result is a standard MPS tensor network diagram
Fig. 12(d) for the amplitude of observing a particular set
of values of the measured qubits.

C. Noise Resilience

Any implementation of our proposed approach on
near-term quantum hardware will have to contend with
a significant level of noise due to qubit and gate imper-
fections. But one intuition about noise e↵ects in our
tree models is that an error which corrupts a qubit only
scrambles the information coming from the patch of in-
puts belonging to the past “causal cone” of that qubit.
And because the vast majority of the operations occur
near the leaves of the tree, the most likely errors there-
fore correspond to scrambling only small patches of the
input data. We note that a good classifier should nat-
urally be robust to small deformations and corruptions
of the input, and, in fact, adding various kinds of noise
during training is a commonly used strategy in classical
machine learning. Based on these intuitions, we expect
our circuits could demonstrate a high level of tolerance
to noise.

In order to quantitatively understand the robustness of
our proposed approach to noise on quantum hardware,

FIG. 13. The test accuracy for each of the pairwise classifiers
under noise corresponding to a T1 of 5µs, a T2 of 7µs, and
a gate time of 200 ns. In most cases, the accuracy is compa-
rable to the results from training without noise. Note that it
was necessary to choose a di↵erent set of hyper-parameters to
enable successful training under noise.

see also Cramer et al, Nat. Comm. 2010
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ical qubits, a key advantage of implementing a discrim-
inative or generative tensor network model based on an
MPS is that for a model with V virtual qubits, an arbi-
trary number of inputs or outputs can be processed by
using only V +1 physical qubits. The circuits illustrating
how this can be done are shown in Fig. 11.
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shown in Fig. 11(a) begins by preparing and entangling
V input qubit states. One of the qubits is measured and
reset to the next input state. Then all V + 1 qubits are
entangled and a single qubit measured and re-prepared.
Continuing in this way, one can process all of the inputs.
Once all inputs are processed, the model output is ob-
tained by sampling one or more of the physical qubits.

To implement the generative MPS algorithm shown in
Fig. 11(b), one prepares all qubits to a reference state

|0i⌦V +1 and after entangling the qubits, one measures
and records a single qubit to generate the first output
value. This qubit is reset to the state |0i and all the
qubits are then acted on by another (V + 1) qubit uni-
tary. A single qubit is again measured to generate the
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N outputs have been generated.

To understand the equivalence of the generative circuit
of Fig. 11(b) to conventional tensor diagram notation for
an MPS, interpret the circuit diagram Fig. 12(a) as a ten-
sor network diagram, treating elements such as reference
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or sum over the reference state indices and merge any V

qubit indices into a single index of dimension D = 2V .
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a significant level of noise due to qubit and gate imper-
fections. But one intuition about noise e↵ects in our
tree models is that an error which corrupts a qubit only
scrambles the information coming from the patch of in-
puts belonging to the past “causal cone” of that qubit.
And because the vast majority of the operations occur
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of the input, and, in fact, adding various kinds of noise
during training is a commonly used strategy in classical
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our circuits could demonstrate a high level of tolerance
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Figure 4. Visualization of the input-to-state and state-to-state
mappings for the three proposed architectures.

3.2. Diagonal BiLSTM

The Diagonal BiLSTM is designed to both parallelize the
computation and to capture the entire available context for
any image size. Each of the two directions of the layer
scans the image in a diagonal fashion starting from a cor-
ner at the top and reaching the opposite corner at the bot-
tom. Each step in the computation computes at once the
LSTM state along a diagonal in the image. Figure 4 (right)
illustrates the computation and the resulting receptive field.

The diagonal computation proceeds as follows. We first
skew the input map into a space that makes it easy to ap-
ply convolutions along diagonals. The skewing operation
offsets each row of the input map by one position with re-
spect to the previous row, as illustrated in Figure 3; this
results in a map of size n ⇥ (2n � 1). At this point we can
compute the input-to-state and state-to-state components of
the Diagonal BiLSTM. For each of the two directions, the
input-to-state component is simply a 1⇥1 convolution Kis

that contributes to the four gates in the LSTM core; the op-
eration generates a 4h ⇥ n ⇥ n tensor. The state-to-state
recurrent component is then computed with a column-wise
convolution Kss that has a kernel of size 2 ⇥ 1. The step
takes the previous hidden and cell states, combines the con-
tribution of the input-to-state component and produces the
next hidden and cell states, as defined in Equation 3. The
output feature map is then skewed back into an n ⇥ n map
by removing the offset positions. This computation is re-
peated for each of the two directions. Given the two out-
put maps, to prevent the layer from seeing future pixels,
the right output map is then shifted down by one row and
added to the left output map.

Besides reaching the full dependency field, the Diagonal
BiLSTM has the additional advantage that it uses a con-
volutional kernel of size 2 ⇥ 1 that processes a minimal
amount of information at each step yielding a highly non-
linear computation. Kernel sizes larger than 2 ⇥ 1 are not
particularly useful as they do not broaden the already global
receptive field of the Diagonal BiLSTM.

3.3. Residual Connections

We train PixelRNNs of up to twelve layers of depth. As
a means to both increase convergence speed and propagate
signals more directly through the network, we deploy resid-
ual connections (He et al., 2015) from one LSTM layer to
the next. Figure 5 shows a diagram of the residual blocks.
The input map to the PixelRNN LSTM layer has 2h fea-
tures. The input-to-state component reduces the number of
features by producing h features per gate. After applying
the recurrent layer, the output map is upsampled back to 2h
features per position via a 1 ⇥ 1 convolution and the input
map is added to the output map. This method is related to
previous approaches that use gating along the depth of the
recurrent network (Kalchbrenner et al., 2015; Zhang et al.,
2016), but has the advantage of not requiring additional
gates. Apart from residual connections, one can also use
learnable skip connections from each layer to the output.
In the experiments we evaluate the relative effectiveness of
residual and layer-to-output skip connections.
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Figure 5. Residual blocks for a PixelCNN (left) and PixelRNNs.

3.4. Masked Convolution

The h features for each input position at every layer in the
network are split into three parts, each corresponding to
one of the RGB channels. When predicting the R chan-
nel for the current pixel xi, only the generated pixels left
and above of xi can be used as context. When predicting
the G channel, the value of the R channel can also be used
as context in addition to the previously generated pixels.
Likewise, for the B channel, the values of both the R and
G channels can be used. To restrict connections in the net-
work to these dependencies, we apply a mask to the input-
to-state convolutions and to other purely convolutional lay-
ers in a PixelRNN.

We use two types of masks that we indicate with mask A
and mask B, as shown in Figure 2 (Right). Mask A is ap-
plied only to the first convolutional layer in a PixelRNN
and restricts the connections to those neighboring pixels
and to those colors in the current pixels that have already
been predicted. On the other hand, mask B is applied to
all the subsequent input-to-state convolutional transitions
and relaxes the restrictions of mask A by also allowing the
connection from a color to itself. The masks can be eas-
ily implemented by zeroing out the corresponding weights
in the input-to-state convolutions after each update. Simi-

x1 x2 . . . xN

h1 h2 h3 . . . hM

*Lower test NLL may not imply better sample quality, Theis et al, 1511.01844 
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3.2. Diagonal BiLSTM
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computation and to capture the entire available context for
any image size. Each of the two directions of the layer
scans the image in a diagonal fashion starting from a cor-
ner at the top and reaching the opposite corner at the bot-
tom. Each step in the computation computes at once the
LSTM state along a diagonal in the image. Figure 4 (right)
illustrates the computation and the resulting receptive field.

The diagonal computation proceeds as follows. We first
skew the input map into a space that makes it easy to ap-
ply convolutions along diagonals. The skewing operation
offsets each row of the input map by one position with re-
spect to the previous row, as illustrated in Figure 3; this
results in a map of size n ⇥ (2n � 1). At this point we can
compute the input-to-state and state-to-state components of
the Diagonal BiLSTM. For each of the two directions, the
input-to-state component is simply a 1⇥1 convolution Kis

that contributes to the four gates in the LSTM core; the op-
eration generates a 4h ⇥ n ⇥ n tensor. The state-to-state
recurrent component is then computed with a column-wise
convolution Kss that has a kernel of size 2 ⇥ 1. The step
takes the previous hidden and cell states, combines the con-
tribution of the input-to-state component and produces the
next hidden and cell states, as defined in Equation 3. The
output feature map is then skewed back into an n ⇥ n map
by removing the offset positions. This computation is re-
peated for each of the two directions. Given the two out-
put maps, to prevent the layer from seeing future pixels,
the right output map is then shifted down by one row and
added to the left output map.

Besides reaching the full dependency field, the Diagonal
BiLSTM has the additional advantage that it uses a con-
volutional kernel of size 2 ⇥ 1 that processes a minimal
amount of information at each step yielding a highly non-
linear computation. Kernel sizes larger than 2 ⇥ 1 are not
particularly useful as they do not broaden the already global
receptive field of the Diagonal BiLSTM.

3.3. Residual Connections

We train PixelRNNs of up to twelve layers of depth. As
a means to both increase convergence speed and propagate
signals more directly through the network, we deploy resid-
ual connections (He et al., 2015) from one LSTM layer to
the next. Figure 5 shows a diagram of the residual blocks.
The input map to the PixelRNN LSTM layer has 2h fea-
tures. The input-to-state component reduces the number of
features by producing h features per gate. After applying
the recurrent layer, the output map is upsampled back to 2h
features per position via a 1 ⇥ 1 convolution and the input
map is added to the output map. This method is related to
previous approaches that use gating along the depth of the
recurrent network (Kalchbrenner et al., 2015; Zhang et al.,
2016), but has the advantage of not requiring additional
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In the experiments we evaluate the relative effectiveness of
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3.4. Masked Convolution

The h features for each input position at every layer in the
network are split into three parts, each corresponding to
one of the RGB channels. When predicting the R chan-
nel for the current pixel xi, only the generated pixels left
and above of xi can be used as context. When predicting
the G channel, the value of the R channel can also be used
as context in addition to the previously generated pixels.
Likewise, for the B channel, the values of both the R and
G channels can be used. To restrict connections in the net-
work to these dependencies, we apply a mask to the input-
to-state convolutions and to other purely convolutional lay-
ers in a PixelRNN.
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plied only to the first convolutional layer in a PixelRNN
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any image size. Each of the two directions of the layer
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skew the input map into a space that makes it easy to ap-
ply convolutions along diagonals. The skewing operation
offsets each row of the input map by one position with re-
spect to the previous row, as illustrated in Figure 3; this
results in a map of size n ⇥ (2n � 1). At this point we can
compute the input-to-state and state-to-state components of
the Diagonal BiLSTM. For each of the two directions, the
input-to-state component is simply a 1⇥1 convolution Kis

that contributes to the four gates in the LSTM core; the op-
eration generates a 4h ⇥ n ⇥ n tensor. The state-to-state
recurrent component is then computed with a column-wise
convolution Kss that has a kernel of size 2 ⇥ 1. The step
takes the previous hidden and cell states, combines the con-
tribution of the input-to-state component and produces the
next hidden and cell states, as defined in Equation 3. The
output feature map is then skewed back into an n ⇥ n map
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particularly useful as they do not broaden the already global
receptive field of the Diagonal BiLSTM.

3.3. Residual Connections

We train PixelRNNs of up to twelve layers of depth. As
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signals more directly through the network, we deploy resid-
ual connections (He et al., 2015) from one LSTM layer to
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recurrent network (Kalchbrenner et al., 2015; Zhang et al.,
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3.4. Masked Convolution

The h features for each input position at every layer in the
network are split into three parts, each corresponding to
one of the RGB channels. When predicting the R chan-
nel for the current pixel xi, only the generated pixels left
and above of xi can be used as context. When predicting
the G channel, the value of the R channel can also be used
as context in addition to the previously generated pixels.
Likewise, for the B channel, the values of both the R and
G channels can be used. To restrict connections in the net-
work to these dependencies, we apply a mask to the input-
to-state convolutions and to other purely convolutional lay-
ers in a PixelRNN.

We use two types of masks that we indicate with mask A
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and restricts the connections to those neighboring pixels
and to those colors in the current pixels that have already
been predicted. On the other hand, mask B is applied to
all the subsequent input-to-state convolutional transitions
and relaxes the restrictions of mask A by also allowing the
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Direct Sampling PEPS+

p(x) = ∏
i

p(xi |x<i) = ∏
i
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p(x1) ∼

p(x1, x2) ∼

p(x1, x2, x3) ∼

See also Rams et al, 1811.06518



Bonus:
What does deep learning offer to 

tensor network states & algorithms?

Differentiable tensor libraries with GPU/TPU/FPGA/… support



ℒLoss

∂ℒ
∂xℓ

=
∂ℒ

∂xℓ+1 ( ∂xℓ+1

∂xℓ )

……

The engine of deep learning: 
Back-Propagation algorithm 

Jacobian-Vector Product

Computes gradients efficiently & accurately 
Via reverse mode automatic differentiation

f` f`+1
x` x`+1 x`+2

computation graph



https://medium.com/@karpathy/software-2-0-a64152b37c35
• Computationally homogeneous

Benefits 

• Simple to bake into silicon

• Constant running time

• Constant memory usage

• Highly portable & agile

• Modules can meld into an optimal whole

• Better than humans 

Andrej Karpathy
Director of AI at Tesla. Previously Research Scientist at OpenAI and PhD student 
at Stanford. I like to train deep neural nets on large datasets.

Differentiable Programming

Writing software 2.0 by gradient search in the program space 



Differentiable Scientific Programming
•  Most linear algebra operations (Eigen, SVD!) are differentiable 

•  Loop/Condition/Sort/Permutations are also differentiable 

•  Differentiable ray tracer

•  Differentiable Monte Carlo/Tensor Network/Functional RG/
Dynamical Mean Field Theory/Density Functional Theory…

•  ODE integrators are differentiable with O(1) memory 

Differentiable fluid simulationsand

Differentiable programming is more than training neural networks

https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
https://people.csail.mit.edu/tzumao/diffrt/
https://arxiv.org/abs/1806.07366
https://rse-lab.cs.washington.edu/papers/spnets2018.pdf


Differentiable Eigensolver

H Ψ = ΨΛ

Forward mode: What happen if H = H + dH Perturbation theory

Reverse mode: How should I change 

?

∂ℒ/∂Ψ ∂ℒ/∂Λand ?
Inverse

perturbation theory
H given

Hamiltonian engineering via differentiable programming 

https://github.com/wangleiphy/DL4CSRC/tree/master/2-ising



Differentiable Levin-Nave TRG
computation graph

ln Zβ

https://github.com/
wangleiphy/TRG

SVD w/ 
truncation contraction

Automatic differentiation for high order gradients

• Exact gradient 
• Not finite-difference 
• No additional codes 
• Efforts comparable 

to the forward pass

https://github.com/wangleiphy/TRG
https://github.com/wangleiphy/TRG


Z = ∑
{σ}

exp ( 1
2

Kijσiσj)
Contraction

ln Z

Differentiable spin glass solver

random couplingsKij

Wang, Qin, Zhou, PRB 2014 Rams et al, 1811.06518TNS studies of Ising spin glasses:



Z = ∑
{σ}

exp ( 1
2

Kijσiσj)
Contraction

ln Z

Differentiable spin glass solver

random couplingsKij

Wang, Qin, Zhou, PRB 2014

d ln Z
dKij

= ⟨σiσj⟩

Differentiation

correlations

Rams et al, 1811.06518TNS studies of Ising spin glasses:



Z = ∑
{σ}

exp ( 1
2

Kijσiσj)
Contraction

ln Z

Differentiable spin glass solver

random couplingsKij

Wang, Qin, Zhou, PRB 2014

d ln Z
dKij

= ⟨σiσj⟩

Differentiation

correlations

Rams et al, 1811.06518TNS studies of Ising spin glasses:
Tensor network solver for inverse Ising problems

Gradient descend



Gradient based variational optimization

Human only cares about tensor contraction 
Differentiable programing takes care of  the gradients

Vanderstraeten et al,  
PRB 16’ℒ = ln⟨Ψ | Ĥ |Ψ⟩ − ln ⟨Ψ |Ψ⟩

ℒ = ⟨E(x)⟩x∼𝒟 + ln Z
Gradient optimization works fine

Generative Modeling

Variational ground state, why not ? 

GRADIENT METHODS FOR VARIATIONAL OPTIMIZATION . . . PHYSICAL REVIEW B 94, 155123 (2016)

A. Computing the gradient

The objective function f that we want to minimize [see
Eq. (6)] is a real function of the complex-valued A, or,
equivalently, the independent variables A and Ā. The gradient
is then obtained by differentiating f (Ā,A) with respect to Ā,

grad = 2 × ∂f (Ā,A)
∂Ā

= 2 × ∂Ā ⟨"(Ā)| H |"(A)⟩
⟨"(Ā)|"(A)⟩

− 2 × ⟨"(Ā)| H |"(A)⟩
⟨"(Ā)|"(A)⟩2 ∂Ā⟨"(Ā)|"(A)⟩,

where we have clearly indicated A and Ā as independent
variables. In the implementation we will always make sure
the PEPS is properly normalized, such that the numerators
drop out. By subtracting from every term in the Hamiltonian
its expectation value, the full Hamiltonian can be redefined as

H → H − ⟨"(Ā)|H |"(A)⟩, (7)

such that the gradient takes on the simple form

grad = 2 × ∂Ā⟨"(Ā)|H |"(A)⟩.
The gradient is thus obtained by differentiating the energy
expectation value ⟨"(Ā)| H |"(A)⟩ with respect to every Ā
tensor in the bra level and taking the sum of all contributions.
Every term in this infinite sum is obtained by omitting one
Ā tensor and leaving the indices open. The full infinite

summation is then obtained by letting the Hamiltonian operator
and this open spot in the network travel through the channels
separately, just as in the case of the structure factor in Sec. II D.

Let us first define a new tensor that captures the infinite sum
of Hamiltonian operators acting inside a channel,

= + + + . . .

= ,

where the big tensor is again the inverted channel operator of
Eq. (4) with momentum zero. Because we have redefined the
Hamiltonian in Eq. (7), the inversion of the channel operator
is well defined, because the vector on which the inverse acts
has a zero component along the channel fixed point ρL.

With this blue tensor all different relative positions of the
Hamiltonian terms and the tensor Ā that is being differentiated
(the open spot) can be explicitly summed, similarly to the
expression for the structure factor [Eq. (5)]. There are a few
more terms because every Hamiltonian term corresponds to a
two-site operator and has different orientations.

The full expression is

grad = + + +

+ + + +

+ + + +

+ + + +

+ + + +

+ + + + ,

155123-7



Pan ZhangSong Cheng Jing Chen Tao XiangZhiyuan XieJin-Guo Liu

Thank You!


