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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51
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For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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Figure 2.D.3: VAEs can be used for image re-synthesis. In this example by
White [2016], an original image (left) is modified in a latent space in the
direction of a smile vector, producing a range of versions of the original, from
smiling to sadness. Notice how changing the image along a single vector in
latent space, modifies the image in many subtle and less-subtle ways in pixel
space.

of images in latent space along a "smile vector" in order to make them more
happy, or more sad looking. See figure 2.D.3 for an example.

Interpolating the “smile vector”

White, 1609.04468
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Probabilistic Generative Modeling

How to express, learn, and sample from a 
high-dimensional probability distribution ? 
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“… the images encountered in 
AI applications occupy a 
negligible proportion of

the volume of image space.”
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to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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The setup for measuring the SHG is described
in the supporting online material (22). We expect
that the SHG strongly depends on the resonance
that is excited. Obviously, the incident polariza-
tion and the detuning of the laser wavelength
from the resonance are of particular interest. One
possibility for controlling the detuning is to
change the laser wavelength for a given sample,
which is difficult because of the extremely broad
tuning range required. Thus, we follow an
alternative route, lithographic tuning (in which
the incident laser wavelength of 1.5 mm, as well
as the detection system, remains fixed), and tune
the resonance positions by changing the SRR
size. In this manner, we can also guarantee that
the optical properties of the SRR constituent
materials are identical for all configurations. The
blue bars in Fig. 1 summarize the measured SHG
signals. For excitation of the LC resonance in Fig.
1A (horizontal incident polarization), we find
an SHG signal that is 500 times above the noise
level. As expected for SHG, this signal closely
scales with the square of the incident power
(Fig. 2A). The polarization of the SHG emission
is nearly vertical (Fig. 2B). The small angle with
respect to the vertical is due to deviations from
perfect mirror symmetry of the SRRs (see
electron micrographs in Fig. 1). Small detuning
of the LC resonance toward smaller wavelength
(i.e., to 1.3-mm wavelength) reduces the SHG
signal strength from 100% to 20%. For ex-
citation of the Mie resonance with vertical
incident polarization in Fig. 1D, we find a small
signal just above the noise level. For excitation
of the Mie resonance with horizontal incident
polarization in Fig. 1C, a small but significant
SHG emission is found, which is again po-

larized nearly vertically. For completeness, Fig.
1B shows the off-resonant case for the smaller
SRRs for vertical incident polarization.

Although these results are compatible with
the known selection rules of surface SHG from
usual nonlinear optics (23), these selection rules
do not explain the mechanism of SHG. Follow-
ing our above argumentation on the magnetic
component of the Lorentz force, we numerically
calculate first the linear electric and magnet-
ic field distributions (22); from these fields,
we compute the electron velocities and the
Lorentz-force field (fig. S1). In the spirit of a
metamaterial, the transverse component of the
Lorentz-force field can be spatially averaged
over the volume of the unit cell of size aby a
by t. This procedure delivers the driving force
for the transverse SHG polarization. As usual,
the SHG intensity is proportional to the square
modulus of the nonlinear electron displacement.
Thus, the SHG strength is expected to be
proportional to the square modulus of the
driving force, and the SHG polarization is
directed along the driving-force vector. Cor-
responding results are summarized in Fig. 3 in
the same arrangement as Fig. 1 to allow for a
direct comparison between experiment and
theory. The agreement is generally good, both
for linear optics and for SHG. In particular, we
find a much larger SHG signal for excitation of
those two resonances (Fig. 3, A and C), which
are related to a finite magnetic-dipole moment
(perpendicular to the SRR plane) as compared
with the purely electric Mie resonance (Figs.
1D and 3D), despite the fact that its oscillator
strength in the linear spectrum is comparable.
The SHG polarization in the theory is strictly
vertical for all resonances. Quantitative devia-
tions between the SHG signal strengths of ex-
periment and theory, respectively, are probably
due to the simplified SRR shape assumed in
our calculations and/or due to the simplicity of
our modeling. A systematic microscopic theory
of the nonlinear optical properties of metallic

metamaterials would be highly desirable but is
currently not available.
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Reducing the Dimensionality of
Data with Neural Networks
G. E. Hinton* and R. R. Salakhutdinov

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural
network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent
can be used for fine-tuning the weights in such ‘‘autoencoder’’ networks, but this works well only if
the initial weights are close to a good solution. We describe an effective way of initializing the
weights that allows deep autoencoder networks to learn low-dimensional codes that work much
better than principal components analysis as a tool to reduce the dimensionality of data.

D
imensionality reduction facilitates the
classification, visualization, communi-
cation, and storage of high-dimensional

data. A simple and widely used method is
principal components analysis (PCA), which

finds the directions of greatest variance in the
data set and represents each data point by its
coordinates along each of these directions. We
describe a nonlinear generalization of PCA that
uses an adaptive, multilayer Bencoder[ network

Fig. 3. Theory, presented as the experiment (see
Fig. 1). The SHG source is the magnetic compo-
nent of the Lorentz force on metal electrons in
the SRRs.
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Stoudenmire Q. Sci. Tech. 2018

Liu et al 1710.04833 
Liu et al 1803.09111 Glasser et al 1806.05964

Hallam et al 1711.03357 Gallego, Orus 1708.01525
Pestun et al 1711.01416

Overview talk by Miles on 29th



What does it learn ?
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Why bother ?

Representability Learning Inference Sampling
Glasser, Clark, Deng,  

Gao, Chen, Huang… 2017



Feature-I: Tractable Likelihood

Efficient & Unbiased learning compared to  
models with intractable partition functions

@Z
�
@
✓ ◆

= 2⇥
<latexit sha1_base64="Fr1yMbCFpMhyUda7Xy7wzFWyBas="></latexit><latexit sha1_base64="Fr1yMbCFpMhyUda7Xy7wzFWyBas="></latexit><latexit sha1_base64="Fr1yMbCFpMhyUda7Xy7wzFWyBas="></latexit>

Z =
<latexit sha1_base64="weLYLvVFSb6eJ+2u0TlRWK1dNMQ=">AAACCXicbVDLSsNAFJ34rPVVdelmsAiuSiKCuhCKblxWMLbYxjKZTtqhk0mYuRFLyB/4AW71E1yJW7/CL/A3nLRZ2NYDFw7n3Ms9HD8WXINtf1sLi0vLK6ultfL6xubWdmVn905HiaLMpZGIVMsnmgkumQscBGvFipHQF6zpD69yv/nIlOaRvIVRzLyQ9CUPOCVgpIdOSGBAiUjvM3yBu5WqXbPHwPPEKUgVFWh0Kz+dXkSTkEmggmjdduwYvJQo4FSwrNxJNIsJHZI+axsqSci0l45TZ/jQKD0cRMqMBDxW/16kJNR6FPpmM0+pZ71c/M9rJxCceSmXcQJM0smjIBEYIpxXgHtcMQpiZAihipusmA6IIhRMUVNf4CmPprOyacaZ7WGeuMe185p9c1KtXxYVldA+OkBHyEGnqI6uUQO5iCKFXtArerOerXfrw/qcrC5Yxc0emoL19Qt+fZrp</latexit><latexit sha1_base64="weLYLvVFSb6eJ+2u0TlRWK1dNMQ=">AAACCXicbVDLSsNAFJ34rPVVdelmsAiuSiKCuhCKblxWMLbYxjKZTtqhk0mYuRFLyB/4AW71E1yJW7/CL/A3nLRZ2NYDFw7n3Ms9HD8WXINtf1sLi0vLK6ultfL6xubWdmVn905HiaLMpZGIVMsnmgkumQscBGvFipHQF6zpD69yv/nIlOaRvIVRzLyQ9CUPOCVgpIdOSGBAiUjvM3yBu5WqXbPHwPPEKUgVFWh0Kz+dXkSTkEmggmjdduwYvJQo4FSwrNxJNIsJHZI+axsqSci0l45TZ/jQKD0cRMqMBDxW/16kJNR6FPpmM0+pZ71c/M9rJxCceSmXcQJM0smjIBEYIpxXgHtcMQpiZAihipusmA6IIhRMUVNf4CmPprOyacaZ7WGeuMe185p9c1KtXxYVldA+OkBHyEGnqI6uUQO5iCKFXtArerOerXfrw/qcrC5Yxc0emoL19Qt+fZrp</latexit><latexit sha1_base64="weLYLvVFSb6eJ+2u0TlRWK1dNMQ=">AAACCXicbVDLSsNAFJ34rPVVdelmsAiuSiKCuhCKblxWMLbYxjKZTtqhk0mYuRFLyB/4AW71E1yJW7/CL/A3nLRZ2NYDFw7n3Ms9HD8WXINtf1sLi0vLK6ultfL6xubWdmVn905HiaLMpZGIVMsnmgkumQscBGvFipHQF6zpD69yv/nIlOaRvIVRzLyQ9CUPOCVgpIdOSGBAiUjvM3yBu5WqXbPHwPPEKUgVFWh0Kz+dXkSTkEmggmjdduwYvJQo4FSwrNxJNIsJHZI+axsqSci0l45TZ/jQKD0cRMqMBDxW/16kJNR6FPpmM0+pZ71c/M9rJxCceSmXcQJM0smjIBEYIpxXgHtcMQpiZAihipusmA6IIhRMUVNf4CmPprOyacaZ7WGeuMe185p9c1KtXxYVldA+OkBHyEGnqI6uUQO5iCKFXtArerOerXfrw/qcrC5Yxc0emoL19Qt+fZrp</latexit>

tractable via  
efficient tensor contraction



Feature-II: Adaptive Learning

Adaptively grows the bond dimensions, thus 
dynamically tuning the expressibility instead of fixed the # of params

8

FIG. 5: Bond dimensions of the learnt MPS. Each pixel in
this figure corresponds to bond dimension of the right leg of

the tensor associated to the identical coordinate in the
original image.

pects of the result are worth mentioning. Firstly, the MPS
learnt to leave margin blank with width 4 pixels, which is the
most obvious common feature in MNIST database. Secondly,
the activated pixels compose kinds of pen strokes that can be
extracted from the digits. Finally, a few of the samples al-
ready be recognized as digits. We expect as one increases
the maximal bond dimension and keeps on training the MPS
will produce more realistic images. Unlike the discrimina-
tive learning task carried out in [30], it seems we need to use
much larger bond dimensions to achieve a good performance
in the unsupervised learning. We think the reason is that in
the classification task, local features of an image are used for
predicting label of the image. Those local features, such as
presence of loop for label “6”, usually span a shorter range
of pixes, thus do not require MPS to remember longer-range
correlation between pixels. However it is necessary for gener-
ative modeling because learning the joint distribution from the

(a) Generated (b) Original

FIG. 6: (a) Images generated from a MPS trained on the
1000-image training set over 251 loops, achieving a final
average NLL 16.8. (b) Original images randomly selected

from the training set.

(a) column reconstruction on
training images

(b) row reconstruction on training
images

(c) column reconstruction on
testing images

(d) row reconstruction on testing
images

FIG. 7: Image reconstruction from partial images by direct
sampling of a MPS that has been trained on the 1000-image

training set over 251 loops. (a,b) Restoration of images in the
training set, e.g. those shown in Fig. 6(b). (c,d)

Reconstruction of 16 images chosen from the test set. The
test set contains images from the MNIST database that were

not used for training. The given parts are in black and the
reconstructed parts are in gray. The reconstructed parts are:
(a,c) 12 columns from either the left or the right; (b,d) 12

rows from either the top or the bottom.

data consists of (but not limited to) learning two-point corre-
lations between pairs of variables that could be far from each
other.

Thirdly we carried out image restoration experiment on the
MPS trained on 1000 images. As shown in Fig. 7 we first
remove part of images from the samples in Fig. 6 (b) then re-
construct ungiven pixels (in gray) using direct sampling con-
ditioning on given parts. For column reconstruction, its per-
formance is remarkable. The reconstructed images in Fig. 7(a)
are almost identical with the original ones in Fig. 6(b). On the
other hand, for row reconstruction in Fig. 7(b), it made inter-
esting but reasonable deviations. For instance, the rightmost
on the first row, an “1” has been bent to “7”. We also checked
its ability to reconstruct MNIST images other than the training
images, as shown in Fig. 7(c,d). These indicates that the MPS
has learned crucial features of the dataset, rather than merely
memorizing the training instances. In fact, even as early as
when trained over only 11 loops, the MPS could perform col-
umn reconstruction with similar image quality, but its row re-
construction performance was much worse than later when

Bond dimensionsTraining images



Feature-III: Direct Generation

p(x<i) =
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No thermalization issue compared to  
slow mixing Gibbs sampling of Boltzmann Machines

Ferris & Vidal 2012



Feature-III: Direct Generation

p(x<i+1) =
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No thermalization issue compared to  
slow mixing Gibbs sampling of Boltzmann Machines

Ferris & Vidal 2012



Feature-III: Direct Generation

p(x<i+2) =
<latexit sha1_base64="CgXMFVcs2dVE/GD4ia9sQJiqRn0=">AAACGXicbVDLSsNAFJ3UV62vqEtdDBahIpSkCCooFN24rGBsoQ1hMpm0QycPZibSErLxO/wAt/oJrsStK7/A33DSZmGrF4Y5nHMv99zjxowKaRhfWmlhcWl5pbxaWVvf2NzSt3fuRZRwTCwcsYh3XCQIoyGxJJWMdGJOUOAy0naH17nefiBc0Ci8k+OY2AHqh9SnGElFOfo+jGs9N2KeGAfqS0eZk17Q40Z2BC+ho1eNujEp+BeYBaiColqO/t3zIpwEJJSYISG6phFLO0VcUsxIVuklgsQID1GfdBUMUUCEnU6uyOChYjzoR1y9UMIJ+3siRYHIXarOAMmBmNdy8j+tm0j/zE5pGCeShHi6yE8YlBHMI4Ee5QRLNlYAYU6VV4gHiCMsVXAzW+QotyayikrGnM/hL7Aa9fO6cXtSbV4VEZXBHjgANWCCU9AEN6AFLIDBI3gGL+BVe9LetHftY9pa0oqZXTBT2ucP6s+gWw==</latexit><latexit sha1_base64="CgXMFVcs2dVE/GD4ia9sQJiqRn0=">AAACGXicbVDLSsNAFJ3UV62vqEtdDBahIpSkCCooFN24rGBsoQ1hMpm0QycPZibSErLxO/wAt/oJrsStK7/A33DSZmGrF4Y5nHMv99zjxowKaRhfWmlhcWl5pbxaWVvf2NzSt3fuRZRwTCwcsYh3XCQIoyGxJJWMdGJOUOAy0naH17nefiBc0Ci8k+OY2AHqh9SnGElFOfo+jGs9N2KeGAfqS0eZk17Q40Z2BC+ho1eNujEp+BeYBaiColqO/t3zIpwEJJSYISG6phFLO0VcUsxIVuklgsQID1GfdBUMUUCEnU6uyOChYjzoR1y9UMIJ+3siRYHIXarOAMmBmNdy8j+tm0j/zE5pGCeShHi6yE8YlBHMI4Ee5QRLNlYAYU6VV4gHiCMsVXAzW+QotyayikrGnM/hL7Aa9fO6cXtSbV4VEZXBHjgANWCCU9AEN6AFLIDBI3gGL+BVe9LetHftY9pa0oqZXTBT2ucP6s+gWw==</latexit><latexit sha1_base64="CgXMFVcs2dVE/GD4ia9sQJiqRn0=">AAACGXicbVDLSsNAFJ3UV62vqEtdDBahIpSkCCooFN24rGBsoQ1hMpm0QycPZibSErLxO/wAt/oJrsStK7/A33DSZmGrF4Y5nHMv99zjxowKaRhfWmlhcWl5pbxaWVvf2NzSt3fuRZRwTCwcsYh3XCQIoyGxJJWMdGJOUOAy0naH17nefiBc0Ci8k+OY2AHqh9SnGElFOfo+jGs9N2KeGAfqS0eZk17Q40Z2BC+ho1eNujEp+BeYBaiColqO/t3zIpwEJJSYISG6phFLO0VcUsxIVuklgsQID1GfdBUMUUCEnU6uyOChYjzoR1y9UMIJ+3siRYHIXarOAMmBmNdy8j+tm0j/zE5pGCeShHi6yE8YlBHMI4Ee5QRLNlYAYU6VV4gHiCMsVXAzW+QotyayikrGnM/hL7Aa9fO6cXtSbV4VEZXBHjgANWCCU9AEN6AFLIDBI3gGL+BVe9LetHftY9pa0oqZXTBT2ucP6s+gWw==</latexit><latexit sha1_base64="pBqueQR2QKJA0h8T342m+OG4y9E=">AAAB7XicbVDLSsNAFL2prxqr1rWbwSK4KokbdSe4cVnB2EINZTKZtEMnkzBzI5aQH3DrJ7gSv8gv8DectF3Y1gMDh3Pu5Z45US6FQc/7dhpb2zu7e81996DlHh4dt1tPJis04wHLZKYHETVcCsUDFCj5INecppHk/Wh6V/v9F66NyNQjznIepnSsRCIYRSv1Ru2O1/XmIJvEX5IOLDFq/zzHGStSrpBJaszQ93IMS6pRMMkr97kwPKdsSsd8aKmiKTdhOY9ZkXOrxCTJtH0KyVz9u1HS1JhZGtnJlOLErHu1+J83LDC5Dkuh8gK5YotDSSEJZqT+M4mF5gzlzBLKtLBZCZtQTRnaZlau4GsdzVSuLcZfr2GTBJfdm6734EETTuEMLsCHK7iFe+hBAAxieIN3p3I+nM9Ffw1nWeQJrMD5+gUIeZMC</latexit><latexit sha1_base64="nTJ+XvHptU8v/H8DjngZ49OftYc=">AAACDnicbVDNSgMxGPzW31qrrl71ECxCRSjbXlRQELx4rODaQrss2Wy2Dc3+kGSlZdmLz+EDeNVH8CS+gU/ga5hte7CtAyHDTD6+yXgJZ1JZ1rexsrq2vrFZ2ipvV3Z298z9yqOMU0GoTWIei46HJeUsorZiitNOIigOPU7b3vC28NtPVEgWRw9qnFAnxP2IBYxgpSXXPEJJrefF3JfjUF/ZKHezK3bWzE/RNXLNqlW3JkDLpDEjVZih5Zo/PT8maUgjRTiWstuwEuVkWChGOM3LvVTSBJMh7tOuphEOqXSyyS9ydKIVHwWx0CdSaKL+nchwKIuU+mWI1UAueoX4n9dNVXDhZCxKUkUjMl0UpBypGBWVIJ8JShQfa4KJYDorIgMsMFG6uLktalREk3lZN9NY7GGZ2M36Zd26t6AEh3AMNWjAOdzAHbTABgLP8Apv8G68GB/G57TCFWPW5QHMwfj6BQckntc=</latexit><latexit sha1_base64="nTJ+XvHptU8v/H8DjngZ49OftYc=">AAACDnicbVDNSgMxGPzW31qrrl71ECxCRSjbXlRQELx4rODaQrss2Wy2Dc3+kGSlZdmLz+EDeNVH8CS+gU/ga5hte7CtAyHDTD6+yXgJZ1JZ1rexsrq2vrFZ2ipvV3Z298z9yqOMU0GoTWIei46HJeUsorZiitNOIigOPU7b3vC28NtPVEgWRw9qnFAnxP2IBYxgpSXXPEJJrefF3JfjUF/ZKHezK3bWzE/RNXLNqlW3JkDLpDEjVZih5Zo/PT8maUgjRTiWstuwEuVkWChGOM3LvVTSBJMh7tOuphEOqXSyyS9ydKIVHwWx0CdSaKL+nchwKIuU+mWI1UAueoX4n9dNVXDhZCxKUkUjMl0UpBypGBWVIJ8JShQfa4KJYDorIgMsMFG6uLktalREk3lZN9NY7GGZ2M36Zd26t6AEh3AMNWjAOdzAHbTABgLP8Apv8G68GB/G57TCFWPW5QHMwfj6BQckntc=</latexit><latexit sha1_base64="oXO/t88//o6sZTWbRfvx+OxMSLk=">AAACGXicbVDLSsNAFJ3UV62vqEtdDBahIpSkGxUUim5cVjC20IYwmUzaoZMHMxNpCdn4HX6AW/0EV+LWlV/gbzhps7CtF4Y5nHMv99zjxowKaRjfWmlpeWV1rbxe2djc2t7Rd/ceRJRwTCwcsYh3XCQIoyGxJJWMdGJOUOAy0naHN7nefiRc0Ci8l+OY2AHqh9SnGElFOfohjGs9N2KeGAfqS0eZk17S00Z2Aq+go1eNujEpuAjMAlRBUS1H/+l5EU4CEkrMkBBd04ilnSIuKWYkq/QSQWKEh6hPugqGKCDCTidXZPBYMR70I65eKOGE/TuRokDkLlVngORAzGs5+Z/WTaR/bqc0jBNJQjxd5CcMygjmkUCPcoIlGyuAMKfKK8QDxBGWKriZLXKUWxNZRSVjzuewCKxG/aJu3BnV5nURURkcgCNQAyY4A01wC1rAAhg8gRfwCt60Z+1d+9A+p60lrZjZBzOlff0C6Y+gVw==</latexit><latexit sha1_base64="CgXMFVcs2dVE/GD4ia9sQJiqRn0=">AAACGXicbVDLSsNAFJ3UV62vqEtdDBahIpSkCCooFN24rGBsoQ1hMpm0QycPZibSErLxO/wAt/oJrsStK7/A33DSZmGrF4Y5nHMv99zjxowKaRhfWmlhcWl5pbxaWVvf2NzSt3fuRZRwTCwcsYh3XCQIoyGxJJWMdGJOUOAy0naH17nefiBc0Ci8k+OY2AHqh9SnGElFOfo+jGs9N2KeGAfqS0eZk17Q40Z2BC+ho1eNujEp+BeYBaiColqO/t3zIpwEJJSYISG6phFLO0VcUsxIVuklgsQID1GfdBUMUUCEnU6uyOChYjzoR1y9UMIJ+3siRYHIXarOAMmBmNdy8j+tm0j/zE5pGCeShHi6yE8YlBHMI4Ee5QRLNlYAYU6VV4gHiCMsVXAzW+QotyayikrGnM/hL7Aa9fO6cXtSbV4VEZXBHjgANWCCU9AEN6AFLIDBI3gGL+BVe9LetHftY9pa0oqZXTBT2ucP6s+gWw==</latexit><latexit sha1_base64="CgXMFVcs2dVE/GD4ia9sQJiqRn0=">AAACGXicbVDLSsNAFJ3UV62vqEtdDBahIpSkCCooFN24rGBsoQ1hMpm0QycPZibSErLxO/wAt/oJrsStK7/A33DSZmGrF4Y5nHMv99zjxowKaRhfWmlhcWl5pbxaWVvf2NzSt3fuRZRwTCwcsYh3XCQIoyGxJJWMdGJOUOAy0naH17nefiBc0Ci8k+OY2AHqh9SnGElFOfo+jGs9N2KeGAfqS0eZk17Q40Z2BC+ho1eNujEp+BeYBaiColqO/t3zIpwEJJSYISG6phFLO0VcUsxIVuklgsQID1GfdBUMUUCEnU6uyOChYjzoR1y9UMIJ+3siRYHIXarOAMmBmNdy8j+tm0j/zE5pGCeShHi6yE8YlBHMI4Ee5QRLNlYAYU6VV4gHiCMsVXAzW+QotyayikrGnM/hL7Aa9fO6cXtSbV4VEZXBHjgANWCCU9AEN6AFLIDBI3gGL+BVe9LetHftY9pa0oqZXTBT2ucP6s+gWw==</latexit><latexit sha1_base64="CgXMFVcs2dVE/GD4ia9sQJiqRn0=">AAACGXicbVDLSsNAFJ3UV62vqEtdDBahIpSkCCooFN24rGBsoQ1hMpm0QycPZibSErLxO/wAt/oJrsStK7/A33DSZmGrF4Y5nHMv99zjxowKaRhfWmlhcWl5pbxaWVvf2NzSt3fuRZRwTCwcsYh3XCQIoyGxJJWMdGJOUOAy0naH17nefiBc0Ci8k+OY2AHqh9SnGElFOfo+jGs9N2KeGAfqS0eZk17Q40Z2BC+ho1eNujEp+BeYBaiColqO/t3zIpwEJJSYISG6phFLO0VcUsxIVuklgsQID1GfdBUMUUCEnU6uyOChYjzoR1y9UMIJ+3siRYHIXarOAMmBmNdy8j+tm0j/zE5pGCeShHi6yE8YlBHMI4Ee5QRLNlYAYU6VV4gHiCMsVXAzW+QotyayikrGnM/hL7Aa9fO6cXtSbV4VEZXBHjgANWCCU9AEN6AFLIDBI3gGL+BVe9LetHftY9pa0oqZXTBT2ucP6s+gWw==</latexit><latexit sha1_base64="CgXMFVcs2dVE/GD4ia9sQJiqRn0=">AAACGXicbVDLSsNAFJ3UV62vqEtdDBahIpSkCCooFN24rGBsoQ1hMpm0QycPZibSErLxO/wAt/oJrsStK7/A33DSZmGrF4Y5nHMv99zjxowKaRhfWmlhcWl5pbxaWVvf2NzSt3fuRZRwTCwcsYh3XCQIoyGxJJWMdGJOUOAy0naH17nefiBc0Ci8k+OY2AHqh9SnGElFOfo+jGs9N2KeGAfqS0eZk17Q40Z2BC+ho1eNujEp+BeYBaiColqO/t3zIpwEJJSYISG6phFLO0VcUsxIVuklgsQID1GfdBUMUUCEnU6uyOChYjzoR1y9UMIJ+3siRYHIXarOAMmBmNdy8j+tm0j/zE5pGCeShHi6yE8YlBHMI4Ee5QRLNlYAYU6VV4gHiCMsVXAzW+QotyayikrGnM/hL7Aa9fO6cXtSbV4VEZXBHjgANWCCU9AEN6AFLIDBI3gGL+BVe9LetHftY9pa0oqZXTBT2ucP6s+gWw==</latexit><latexit sha1_base64="CgXMFVcs2dVE/GD4ia9sQJiqRn0=">AAACGXicbVDLSsNAFJ3UV62vqEtdDBahIpSkCCooFN24rGBsoQ1hMpm0QycPZibSErLxO/wAt/oJrsStK7/A33DSZmGrF4Y5nHMv99zjxowKaRhfWmlhcWl5pbxaWVvf2NzSt3fuRZRwTCwcsYh3XCQIoyGxJJWMdGJOUOAy0naH17nefiBc0Ci8k+OY2AHqh9SnGElFOfo+jGs9N2KeGAfqS0eZk17Q40Z2BC+ho1eNujEp+BeYBaiColqO/t3zIpwEJJSYISG6phFLO0VcUsxIVuklgsQID1GfdBUMUUCEnU6uyOChYjzoR1y9UMIJ+3siRYHIXarOAMmBmNdy8j+tm0j/zE5pGCeShHi6yE8YlBHMI4Ee5QRLNlYAYU6VV4gHiCMsVXAzW+QotyayikrGnM/hL7Aa9fO6cXtSbV4VEZXBHjgANWCCU9AEN6AFLIDBI3gGL+BVe9LetHftY9pa0oqZXTBT2ucP6s+gWw==</latexit>

No thermalization issue compared to  
slow mixing Gibbs sampling of Boltzmann Machines

Ferris & Vidal 2012
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“Zipper Sampling”

No thermalization issue compared to  
slow mixing Gibbs sampling of Boltzmann Machines

Ferris & Vidal 2012



These advantages hold true for 
Tree tensor networks and MERA



Image Restoration
Han, Wang, Fan, LW, Zhang, 1709.01662, PRX in press



Image Restoration

Arbitrary order compared to autoregressive models (state-of-the-art)

Han, Wang, Fan, LW, Zhang, 1709.01662, PRX in press

PixelCNN 
PixelRNN
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(a) (b) (c)

Figure 1. Illustration of the swap operation in Eq. (5) and Eq. (6)
using handwritten digits from the MNIST dataset. (a) Two original
images. (b) Swapped images for up/down bipartition. (c) Swapped
images for checkerboard bipartition of the pixels. The blue and red
colors indicate the regions of the bipartition X and Y respectively.

Finally, Section V summarizes our main points and outlook
for future directions.

II. COMPLEXITY OF DATASET: CLASSICAL MUTUAL
INFORMATION AND QUANTUM ENTANGLEMENT

ENTROPY

Modeling data probability using an energy based model
(1) calls for a classical information theoretical analysis. Mu-
tual information (MI) is a fundamental information theoretical
concept which quantifies the complexity of probability distri-
bution ⇡(v) associated with the dataset. Assuming x 2 X and
y 2 Y are two subset of the variables and v = x [ y, their
marginal probability distributions are ⇡(x) =

P
y2Y ⇡(x, y),

and ⇡(y) =
P

x2X ⇡(x, y) respectively. The MI reads

I(X : Y) =
X

x2X,y2Y
⇡(x, y) ln

"
⇡(x, y)
⇡(x)⇡(y)

#
. (3)

The MI measures the amount of information shared between
the two sets of variables. MI is zero only for independent
variables. In this sense, the MI is a stronger criterion than the
correlation of variables since having zero correlation does not
necessarily imply vanishing MI. The MI can be used as the
objective functions in machine learning applications [32–34].
Here we adopt a di↵erent point view, which treats MI as a
complexity measure of the dataset to be modeled.

On the other hand, if we view the target dataset as snapshots
of the same quantum state collapsed on a fixed basis (2), it
is natural to measure its complexity using the second Rényi
entanglement entropy

S R = � ln Tr(⇢2
X), (4)

where (⇢X)x,x0 =
P

y2Y  (x, y) (x0, y) is the reduced density
matrix, and  (v = x [ y) is the probability amplitude associ-

ated with the probability, such that p(v) in Eq. (2) approaches
to the data probability distribution ⇡(v). The second Rényi
entanglement entropy is a lower bound of the von Neumann
entanglement entropy S vN = �Tr[⇢X ln(⇢X)].

To reveal connection of the classical and quantum informa-
tion theoretical measures, we write the MI as

I(X : Y) = �
*
ln
*
⇡(x, y0)⇡(x0, y)
⇡(x0, y0)⇡(x, y)

+

x0,y0

+

x,y
, (5)

and the second Rényi entropy as

S R = � ln
**
 (x, y0) (x0, y)
 (x0, y0) (x, y)

+

x0,y0

+

x,y
, (6)

where the expected value h· · · ix,y is with respect to the dataset
probability ⇡(x, y).

There are apparent similarities between Eqs. (5) and (6).
Both equations contain swap ratios of probability or probabil-
ity amplitude [35, 36]. To illustrated the e↵ect of the swap
ratio, Figure 1(a) shows two samples from the MNIST data
set [(x, y) and (x0, y0)] and Fig. 1(b,c) show the corresponding
swapped images [(x0, y) and (x, y0)] for up/down and checker-
board bipartitions. The ratio in Eq. (5) and Eq. (6) would be
smaller if the swapped images are less likely to appear in the
original dataset ⇡(v), therefore makes larger contribution to
the mutual information or the entanglement entropy. Refer-
ence [37] argues that the dominant correlations in the natural
datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
di�culty one may consider to compute alternative quantities
such as the Rényi mutual information [80].
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using handwritten digits from the MNIST dataset. (a) Two original
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images for checkerboard bipartition of the pixels. The blue and red
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variables. In this sense, the MI is a stronger criterion than the
correlation of variables since having zero correlation does not
necessarily imply vanishing MI. The MI can be used as the
objective functions in machine learning applications [32–34].
Here we adopt a di↵erent point view, which treats MI as a
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There are apparent similarities between Eqs. (5) and (6).
Both equations contain swap ratios of probability or probabil-
ity amplitude [35, 36]. To illustrated the e↵ect of the swap
ratio, Figure 1(a) shows two samples from the MNIST data
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tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
di�culty one may consider to compute alternative quantities
such as the Rényi mutual information [80].
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Here we adopt a di↵erent point view, which treats MI as a
complexity measure of the dataset to be modeled.

On the other hand, if we view the target dataset as snapshots
of the same quantum state collapsed on a fixed basis (2), it
is natural to measure its complexity using the second Rényi
entanglement entropy

S R = � ln Tr(⇢2
X), (4)

where (⇢X)x,x0 =
P

y2Y  (x, y) (x0, y) is the reduced density
matrix, and  (v = x [ y) is the probability amplitude associ-

ated with the probability, such that p(v) in Eq. (2) approaches
to the data probability distribution ⇡(v). The second Rényi
entanglement entropy is a lower bound of the von Neumann
entanglement entropy S vN = �Tr[⇢X ln(⇢X)].

To reveal connection of the classical and quantum informa-
tion theoretical measures, we write the MI as
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where the expected value h· · · ix,y is with respect to the dataset
probability ⇡(x, y).

There are apparent similarities between Eqs. (5) and (6).
Both equations contain swap ratios of probability or probabil-
ity amplitude [35, 36]. To illustrated the e↵ect of the swap
ratio, Figure 1(a) shows two samples from the MNIST data
set [(x, y) and (x0, y0)] and Fig. 1(b,c) show the corresponding
swapped images [(x0, y) and (x, y0)] for up/down and checker-
board bipartitions. The ratio in Eq. (5) and Eq. (6) would be
smaller if the swapped images are less likely to appear in the
original dataset ⇡(v), therefore makes larger contribution to
the mutual information or the entanglement entropy. Refer-
ence [37] argues that the dominant correlations in the natural
datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
di�culty one may consider to compute alternative quantities
such as the Rényi mutual information [80].
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Figure 1. Illustration of the swap operation in Eq. (5) and Eq. (6)
using handwritten digits from the MNIST dataset. (a) Two original
images. (b) Swapped images for up/down bipartition. (c) Swapped
images for checkerboard bipartition of the pixels. The blue and red
colors indicate the regions of the bipartition X and Y respectively.
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is not merely a “metaphorical vehicle” to measure the com-
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if one models the data using the quantum approach Eq. (2).
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scaling for various quantum states [31] are very instructive
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There are nevertheless di↵erences in the two information
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swapped images [(x0, y) and (x, y0)] for up/down and checker-
board bipartitions. The ratio in Eq. (5) and Eq. (6) would be
smaller if the swapped images are less likely to appear in the
original dataset ⇡(v), therefore makes larger contribution to
the mutual information or the entanglement entropy. Refer-
ence [37] argues that the dominant correlations in the natural
datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
di�culty one may consider to compute alternative quantities
such as the Rényi mutual information [80].
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(a) (b) (c)

Figure 1. Illustration of the swap operation in Eq. (5) and Eq. (6)
using handwritten digits from the MNIST dataset. (a) Two original
images. (b) Swapped images for up/down bipartition. (c) Swapped
images for checkerboard bipartition of the pixels. The blue and red
colors indicate the regions of the bipartition X and Y respectively.

Finally, Section V summarizes our main points and outlook
for future directions.

II. COMPLEXITY OF DATASET: CLASSICAL MUTUAL
INFORMATION AND QUANTUM ENTANGLEMENT

ENTROPY
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P
y2Y ⇡(x, y),

and ⇡(y) =
P

x2X ⇡(x, y) respectively. The MI reads

I(X : Y) =
X

x2X,y2Y
⇡(x, y) ln

"
⇡(x, y)
⇡(x)⇡(y)

#
. (3)
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the two sets of variables. MI is zero only for independent
variables. In this sense, the MI is a stronger criterion than the
correlation of variables since having zero correlation does not
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S R = � ln Tr(⇢2
X), (4)

where (⇢X)x,x0 =
P

y2Y  (x, y) (x0, y) is the reduced density
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+

x0,y0

+

x,y
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S R = � ln
**
 (x, y0) (x0, y)
 (x0, y0) (x, y)

+

x0,y0
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x,y
, (6)

where the expected value h· · · ix,y is with respect to the dataset
probability ⇡(x, y).

There are apparent similarities between Eqs. (5) and (6).
Both equations contain swap ratios of probability or probabil-
ity amplitude [35, 36]. To illustrated the e↵ect of the swap
ratio, Figure 1(a) shows two samples from the MNIST data
set [(x, y) and (x0, y0)] and Fig. 1(b,c) show the corresponding
swapped images [(x0, y) and (x, y0)] for up/down and checker-
board bipartitions. The ratio in Eq. (5) and Eq. (6) would be
smaller if the swapped images are less likely to appear in the
original dataset ⇡(v), therefore makes larger contribution to
the mutual information or the entanglement entropy. Refer-
ence [37] argues that the dominant correlations in the natural
datasets encountered in physics and machine learning applica-
tions are the local ones due to the physical law of the nature.
Therefore, it is natural to expect that the checkerboard biparti-
tion [Fig. 1(c)] has higher MI and entanglement entropy com-
pared to the up/down bipartition [Fig. 1(b)] because of strong
local correlations between nearby pixels of natural images.
Similar discussions on the information measures of di↵erent
bipartitions were also considered in machine learning [17] and
in quantum physics [38, 39] studies.

The formal similarity between Eq. (5) and Eq. (6) under-
lines the analogy between modeling classical data and model-
ing quantum states [15–22]. Quantum entanglement entropy
is not merely a “metaphorical vehicle” to measure the com-
plexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach Eq. (2).
Since the general theories about the entanglement entropy
scaling for various quantum states [31] are very instructive
for estimating required resources to model the target quantum
states, developing of similar theory for typical datasets in ma-
chine learning would be very helpful for selecting generative
models.

There are nevertheless di↵erences in the two information
measures Eq. (5) and Eq. (6). First, the swap operation in
Eq. (5) is defined for the probability density other than the
quantum wavefunction. The probability amplitude may con-
tain phase information which is however irrelevant to proba-
bilistic modeling of the dataset [18]. Second, the logarithmic
functions is sandwiched between two expectations in Eq. (5),
which hiders direct Monte Carlo estimate of the MI similar to
the Rényi entanglement entropy [35, 36]. To circumvent this
di�culty one may consider to compute alternative quantities
such as the Rényi mutual information [80].
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Abstract

Deep convolutional networks have witnessed unprecedented success in various machine learning
applications. Formal understanding on what makes these networks so successful is gradually un-
folding, but for the most part there are still significant mysteries to unravel. The inductive bias,
which reflects prior knowledge embedded in the network architecture, is one of them. In this work,
we establish a fundamental connection between the fields of quantum physics and deep learning.
We use this connection for asserting novel theoretical observations regarding the role that the num-
ber of channels in each layer of the convolutional network fulfills in the overall inductive bias.
Specifically, we show an equivalence between the function realized by a deep convolutional arith-
metic circuit (ConvAC) and a quantum many-body wave function, which relies on their common
underlying tensorial structure. This facilitates the use of quantum entanglement measures as well-
defined quantifiers of a deep network’s expressive ability to model intricate correlation structures
of its inputs. Most importantly, the construction of a deep convolutional arithmetic circuit in terms
of a Tensor Network is made available. This description enables us to carry a graph-theoretic
analysis of a convolutional network, tying its expressiveness to a min-cut in the graph which char-
acterizes it. Thus, we demonstrate a direct control over the inductive bias of the designed deep
convolutional network via its channel numbers, which we show to be related to the min-cut in the
underlying graph. This result is relevant to any practitioner designing a convolutional network for
a specific task. We theoretically analyze convolutional arithmetic circuits, and empirically validate
our findings on more common convolutional networks which involve ReLU activations and max
pooling. Beyond the results described above, the description of a deep convolutional network in
well-defined graph-theoretic tools and the formal structural connection to quantum entanglement,
are two interdisciplinary bridges that are brought forth by this work.

1. Introduction

A central factor in the application of machine learning to a given task is the restriction of the hy-
pothesis space of learned functions known as inductive bias. The restriction posed by the inductive
bias is necessary for practical learning, and reflects prior knowledge regarding the task at hand. In
deep convolutional networks, prior knowledge is embedded in architectural features such as num-
ber of layers, number of channels per layer, the pattern of pooling, various schemes of connectivity
and convolution kernel defined by size and stride (see LeCun et al. (2015) for an overview). For-
mal understanding of the inductive bias behind convolutional networks is limited – the assumptions
encoded into these models, which seem to form an excellent prior knowledge for imagery data
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).
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transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:
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The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as
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For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads
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site and its adjacent bonds.
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in deep learning, in which deep neural networks can even
reach billions of parameters [33]. In the history of machine
learning, gradient-free algorithms were employed to optimize
small-scale neural networks [34]. However, they failed to
scale up to a larger number of parameters. It is the back-
propagation algorithm [35] which can e�ciently compute the
gradient of the neural network output with respect to the
network parameters enables scalable training of deep neural
nets. It is thus highly demanded to have scalable quantum al-
gorithms for estimating gradients on actual quantum circuits.

Recently, gradient-based learning of quantum circuits has
been devised for quantum control [36] and discriminative
tasks [37, 38]. Although they are still less e�cient compared
to the back-propagation algorithm for neural networks, these
unbiased gradient algorithms can already greatly accelerate
the quantum circuit learning. Unfortunately, direct application
of these gradient algorithms [36–38] to QCBM training is still
non-trivial since the output of the generative model is gen-
uinely bit strings which follow high-dimensional probability
distributions. In fact, it is even an ongoing research topic
in deep learning to perform di↵erentiable learning of implicit
generative model with discrete outputs [24, 39].

In this paper, we develop an e�cient gradient-based learn-
ing algorithm to train the QCBM. In what follows, we first
present a practical quantum-classical hybrid algorithm to train
the quantum circuit as a generative model in Sec. II, thus
realize a Born machine. Then we apply the algorithm on
3 ⇥ 3 Bars-and-Stripes and double Gaussian peaks datasets
in Sec. III. We show that the training is robust to moderate
sampling noise, and is scalable in circuit depth. Increasing
the circuit depth significantly improves the representational
power for generative tasks. Finally, we conclude and discuss
caveats and future research directions about the QCBM in
Sec. IV.

II. MODEL AND LEARNING ALGORITHM

Given a dataset D = {x} containing independent and iden-
tically distributed (i.i.d.) samples from a target distribution
⇡(x), we set up a QCBM to generate samples close to the
unknown target distribution. As shown in Fig. 1, the QCBM
takes the product state |0i as an input and evolves it to a
final state | ✓i by a sequence of unitary gates. Then we can
measure this output state on computation basis to obtain a
sample of bits x ⇠ p✓(x) = |hx| ✓i|2. The goal of the training
is to let the model probability distribution p✓ approach to ⇡.

We employ a classical-quantum hybrid feedback loop as
the training strategy. The setup is similar to the Quantum
Approximate Optimization Algorithm (QAOA) [40–42] and
the Variational Quantum Eigensolver (VQE) [43–45]. By
constructing the circuits and performing measurements re-
peatedly we collect a batch of samples from the QCBM.
Then we introduce two-sample test as a measure of distance
between generated samples and training set, which is used
as our di↵erentiable loss. Using a classical optimizer which
takes the gradient information of the loss function, we can
push the generated sample distribution towards the target

Figure 1. Illustration of the di↵erentiable QCBM training scheme.
Top left is the quantum circuit which produce bit string samples. The
dashed box on the right denotes two-sample test on the generated
samples and training samples, with the loss function (Eq. (1)) and
corresponding gradients (Eq. (2)) as outputs. �✓ is the amount of
updated to be applied to the circuit parameters, which are computed
by a classical optimizer. The outcome of the training is to produce
a quantum circuit which generates samples according to the learned
probability distribution on the computational basis.

distribution.

A. Quantum Circuit Architecture Design

The overall circuit layout is similar to the IBM variational
quantum eigensolver [45], where one interweaves single qubit
rotation layers and entangler layers shown in Fig. 1. The
rotation layers are parameterized by rotation angles ✓ = {✓↵

l
},

where the layer index l runs from 0 to d, with d the maximum
depth of the circuit. ↵ is a combination of qubit index j and
arbitrary rotation gate index, where the arbitrary rotation gate
has the form U(✓ j

l
) = Rz(✓

j,1
l

)Rx(✓ j,2
l

)Rz(✓
j,3
l

) with Rm(✓) ⌘
exp
⇣�i✓�m

2

⌘
. The total number of parameters in this QCBM

is (3d + 1)n, with n the number of qubits [46].
We employ CNOT gates with no learnable parameters for

the entangle layers to induce correlations between qubits. In
light of experimental constraints on the connectivity of the
circuits, we make the connection of the entangle layers to be
sparse by requiring its topology as a tree (i.e. the simplest
connected graph). From the classical probabilistic graph-
ical model’s perspective [13], the tree graph that captures
information content of the dataset most e�ciently is Chow-
Liu tree [47]. Since controlled unitary gates have a close
relation with classical probability graphical models [48], we
employ the same Chow-Liu tree as the topology of CNOT
gates. To construct the Chow-Liu tree we first compute mutual
information between all pairs of the bits for samples in the
training set as weights, and then construct the maximum
spanning tree using, for example, the Kruskal’s algorithm.
The assignment of the control bit and the target bit on a bond
is random, since the Chow-Liu algorithm treated directed
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Figure 2. (a) Connectivity of the CNOT gates for 3 ⇥ 3 Bars-and-
Stripes dataset generated via the chow-Liu tree algorithm. The qubits
are arranged on a 3 ⇥ 3 grid, with some of them shifted a bit in order
to visualize the edges clearly. (b) Chow-Liu tree for double Gaussian
peak model, the numbers represent the position of a bit in the digit,
0 for the big end and 9 for the little end. In this plot, the darkness of
edges indicates the amount of mutual information between two sites.

same row/column index are dominant in this dataset. The
bandwidths used in Gaussian kernels of MMD loss are � =
0.5, 1, 2, 4.

For circuit depth d = 10, our gradient-based training is
able to reduce the MMD loss e�ciently. The loss function for
di↵erent iteration steps is shown in Fig. 3(a). We first perform
L-BFGS-B [62] optimization (black dashed line) using the
exact gradient computed via the wavefunction (N = 1) to test
the expressibility of the quantum circuit. A loss of 2.4 ⇥ 10�7

can be achieved, showing that the circuit is quite expressive in
terms of the two-sample test.

In practice, one has to perform projective measurements
on the qubits to collect statistics of the gradient since the
wavefunction is inaccessible. This situation is similar to the
mini-batch estimate of the gradient in deep learning [1]. As
is well known in the deep learning applications [1], the L-
BFGS-B algorithm is not noise tolerant. Thus, it is unsuitable
for quantum circuit learning in realistic situation. One needs
to employ an alternate optimizer which is robust to the
sampling noise to train the quantum circuit with noisy gradient
estimator.

We employ the stochastic gradient optimizer Adam [63]
with the learning rate 0.1. The sampling noise in the gradients
can be controlled by tuning the batch size N = 2000, 20000,1
of the measurements. The solid lines in Fig. 3 (a) show that
as the sample size increases, the final MMD loss reduces
systematically. The scatters in the inset confirmed that the
model probability of learned quantum circuit and the target
probability aligns better with lower MMD loss.

To visualize the quality of the samples, we generated a few
samples from the QCBM trained under di↵erent measurement
batch size N in Fig. 4. Here, we define a valid rate � ⌘
p(x is a bar or a stripe) as a measure of generation quality.
The valid rate increases as the batch size increases. However,
even with a moderate number of measurement N = 2000 one
can achieve a valid rate � = 88.6%. Here, we should mention
that the best valid rate of d = 10 layer circuit is achieved by
L-BFGS-B optimizer with N = 1, which is � = 99.9%.

To highlight the importance of using a gradient-based
optimizer, we compare our approach to the covariance matrix
adaptation evolution strategy (CMA-ES) [64, 65], a state-of-

Figure 3. The MMD loss (Eq. (1)) as a function of training
steps under di↵erent sampling errors that governed by batch size
N. (a) Gradient based training, solid colored lines are for Adam,
and the dashed black line is for L-BFGS-B with N = 1. Inset
is a comparison of probability distribution between the training set
and QCBM output, points on dashed line means exact match. (b)
Gradient free CMA-ES training counterpart, where each point in the
graph represents a mean loss of its population.

the-art gradient-free stochastic optimizer. The input of CMA-
ES is the scalar loss function measured on the circuit instead
of the vector gradient information. The CMA-ES optimizer
is able to optimize non-smooth non-convex loss functions
e�ciently [65], thus in general performs better than other
gradient-free methods such as the SPSA [58] in training noisy
quantum circuits. We have confirmed this in our simulation.

In the absence of sampling noise N = 1 in Fig. 3 (b),
we do observe that the CMA-ES optimizer is able to achieve
similar performance as the Adam optimizer after 104 steps of
optimization with a population size of 50. The total number
of generated samples is 104 ⇥ 50 ⇥ N, which is comparable to
the Adam training in Fig. 3 (a) [66].

However, the performance of CMA-ES deteriorates sig-
nificantly once taking sampling noise into consideration, as
shown for N = 2000 and N = 20000 in Fig. 3 (b). A possible
explanation is that in each step of CMA-ES, its evolution
strategy chooses the direction to go by inspecting the center
of top 20% instances. This process can be understood
as an e↵ective finite di↵erence gradient estimation base on
the losses of its population. However, extracting gradient
information from noisy losses is di�cult, even one has plenty
of them.

Another advantage of using gradient-based learning is the
e�ciency comparing with gradient-free methods, which gets
particularly significant when circuits get deeper and the num-
ber of parameters increases. In the following, we address the
necessity of using deep circuits. Fig. 5 (a) shows the MMD
loss as a function of L-BFGS-B training steps for di↵erent
circuit depth. One obtains lower loss for deeper quantum
circuit after 500 optimization steps. Fig. 5 (b) shows the
Kullback-Leibler (KL) divergence [67] calculated using the
circuit parameters in (a) at di↵erent training steps. Note that
this quantity is inaccessible for large-scale problems since one
has no access to the target nor the output probability. We
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Figure 4. 3 ⇥ 3 Bars-and-Stripes samples generated from QCBMs.
Circuit parameters used here are from the final stages of Adam
training with di↵erent batch sizes N in Fig. 3 (a). � is the rate
of generating valid samples in the training dataset. For illustrative
purpose, we only show 12 samples for each situation with batch size
N.

Figure 5. Losses as a function of training step for circuit depth d =
1, . . . , 10. (a) The MMD loss Eq. (1), and (b) the corresponding KL
divergence. Here, we use L-BFGS-B optimizer with exact gradient.

compute the KL divergence for the toy model to demonstrate
that the MMD loss is a good surrogate for practical training.
The result indeed shows a consistency between MMD loss and
KL divergence. And it also supports the observation that deep
circuits have stronger representational power. Similar to deep
neural networks, deep circuits can achieve better performance
also due to that one is less prone to be trapped in a poor local
minima with larger amount of parameters [68].

Another advantage of the QCBM over traditional deep
neural networks is that its training not su↵er from gradi-
ent vanishing/exploding problem as the circuit goes deeper.
Gradient vanishing/exploding is a common problem for a
traditional deep neural network [69] which originates from
multiplications of a long chain of matrices in the back-
propagation algorithm. Training of the deep quantum circuits

Figure 6. (a) The MMD loss as a function of Adam training step.
(b) Histogram for samples generated by a trained QCBM with a
bin width 20 (green bars), in comparison with the exact probability
density function (black dashed line).

naturally circumvented this problem by due to the unitary
property of the time evolution. Similar idea was exploited in
constructing classical recurrent neural networks with unitary
building blocks [70]. More numerical simulation and analyti-
cal explanations can be found in Appendix B.

B. Mixture of Gaussians

Next, we train a QCBM to model a mixture of Gaussians
distribution
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Here, x = 1, . . . , xmax is an integer encoded by the qubits,
with xmax = 2n and n is the number of qubits. It is di↵erent
from Bars-and-Stripes dataset, in which case a sample x is
represented as a bit string. We choose ⌫ = 1

8 xmax, the centers
µ1 =

2
7 xmax and µ2 =

5
7 xmax. The distribution is shown as the

dashed line in Fig. 6(b).
In the following discussion, we use n = 10 qubits and set

circuit depth d = 10. Unlike the case of Bars-and-Stripes
, the Gaussian mixture distribution is smooth and non-zero
for all basis state. Here, we generate 105 i.i.d. samples
from the target distribution as the training set. Its Chow-Liu
tree is shown in Fig. 2(b). In this graph, we see the main
contributions of mutual information are from bits near the big
end (most significant bits labeled by small indices). This is
because the bit near the little end only determines the local
translation of the probability on data axis. But for a smooth
probability distribution, the value of the little end is nearly
independent from values of the rest bits. For example, the
value of the big-end 0-th bit being 0/1 corresponds to the
global left/right peak in Fig. 6 (b). While the probability for
the little end being 0/1 corresponds to x being even/odd.

We use mixture of three Gaussian kernels with bandwidths
� = 0.25, 10, 1000. � = 0.25 captures the local di↵erence
in distribution, and � = 1000, which has the same scale as
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Figure 2. (a) Connectivity of the CNOT gates for 3 ⇥ 3 Bars-and-
Stripes dataset generated via the chow-Liu tree algorithm. The qubits
are arranged on a 3 ⇥ 3 grid, with some of them shifted a bit in order
to visualize the edges clearly. (b) Chow-Liu tree for double Gaussian
peak model, the numbers represent the position of a bit in the digit,
0 for the big end and 9 for the little end. In this plot, the darkness of
edges indicates the amount of mutual information between two sites.

same row/column index are dominant in this dataset. The
bandwidths used in Gaussian kernels of MMD loss are � =
0.5, 1, 2, 4.

For circuit depth d = 10, our gradient-based training is
able to reduce the MMD loss e�ciently. The loss function for
di↵erent iteration steps is shown in Fig. 3(a). We first perform
L-BFGS-B [62] optimization (black dashed line) using the
exact gradient computed via the wavefunction (N = 1) to test
the expressibility of the quantum circuit. A loss of 2.4 ⇥ 10�7

can be achieved, showing that the circuit is quite expressive in
terms of the two-sample test.

In practice, one has to perform projective measurements
on the qubits to collect statistics of the gradient since the
wavefunction is inaccessible. This situation is similar to the
mini-batch estimate of the gradient in deep learning [1]. As
is well known in the deep learning applications [1], the L-
BFGS-B algorithm is not noise tolerant. Thus, it is unsuitable
for quantum circuit learning in realistic situation. One needs
to employ an alternate optimizer which is robust to the
sampling noise to train the quantum circuit with noisy gradient
estimator.

We employ the stochastic gradient optimizer Adam [63]
with the learning rate 0.1. The sampling noise in the gradients
can be controlled by tuning the batch size N = 2000, 20000,1
of the measurements. The solid lines in Fig. 3 (a) show that
as the sample size increases, the final MMD loss reduces
systematically. The scatters in the inset confirmed that the
model probability of learned quantum circuit and the target
probability aligns better with lower MMD loss.

To visualize the quality of the samples, we generated a few
samples from the QCBM trained under di↵erent measurement
batch size N in Fig. 4. Here, we define a valid rate � ⌘
p(x is a bar or a stripe) as a measure of generation quality.
The valid rate increases as the batch size increases. However,
even with a moderate number of measurement N = 2000 one
can achieve a valid rate � = 88.6%. Here, we should mention
that the best valid rate of d = 10 layer circuit is achieved by
L-BFGS-B optimizer with N = 1, which is � = 99.9%.

To highlight the importance of using a gradient-based
optimizer, we compare our approach to the covariance matrix
adaptation evolution strategy (CMA-ES) [64, 65], a state-of-

Figure 3. The MMD loss (Eq. (1)) as a function of training
steps under di↵erent sampling errors that governed by batch size
N. (a) Gradient based training, solid colored lines are for Adam,
and the dashed black line is for L-BFGS-B with N = 1. Inset
is a comparison of probability distribution between the training set
and QCBM output, points on dashed line means exact match. (b)
Gradient free CMA-ES training counterpart, where each point in the
graph represents a mean loss of its population.

the-art gradient-free stochastic optimizer. The input of CMA-
ES is the scalar loss function measured on the circuit instead
of the vector gradient information. The CMA-ES optimizer
is able to optimize non-smooth non-convex loss functions
e�ciently [65], thus in general performs better than other
gradient-free methods such as the SPSA [58] in training noisy
quantum circuits. We have confirmed this in our simulation.

In the absence of sampling noise N = 1 in Fig. 3 (b),
we do observe that the CMA-ES optimizer is able to achieve
similar performance as the Adam optimizer after 104 steps of
optimization with a population size of 50. The total number
of generated samples is 104 ⇥ 50 ⇥ N, which is comparable to
the Adam training in Fig. 3 (a) [66].

However, the performance of CMA-ES deteriorates sig-
nificantly once taking sampling noise into consideration, as
shown for N = 2000 and N = 20000 in Fig. 3 (b). A possible
explanation is that in each step of CMA-ES, its evolution
strategy chooses the direction to go by inspecting the center
of top 20% instances. This process can be understood
as an e↵ective finite di↵erence gradient estimation base on
the losses of its population. However, extracting gradient
information from noisy losses is di�cult, even one has plenty
of them.

Another advantage of using gradient-based learning is the
e�ciency comparing with gradient-free methods, which gets
particularly significant when circuits get deeper and the num-
ber of parameters increases. In the following, we address the
necessity of using deep circuits. Fig. 5 (a) shows the MMD
loss as a function of L-BFGS-B training steps for di↵erent
circuit depth. One obtains lower loss for deeper quantum
circuit after 500 optimization steps. Fig. 5 (b) shows the
Kullback-Leibler (KL) divergence [67] calculated using the
circuit parameters in (a) at di↵erent training steps. Note that
this quantity is inaccessible for large-scale problems since one
has no access to the target nor the output probability. We

5

Figure 4. 3 ⇥ 3 Bars-and-Stripes samples generated from QCBMs.
Circuit parameters used here are from the final stages of Adam
training with di↵erent batch sizes N in Fig. 3 (a). � is the rate
of generating valid samples in the training dataset. For illustrative
purpose, we only show 12 samples for each situation with batch size
N.

Figure 5. Losses as a function of training step for circuit depth d =
1, . . . , 10. (a) The MMD loss Eq. (1), and (b) the corresponding KL
divergence. Here, we use L-BFGS-B optimizer with exact gradient.

compute the KL divergence for the toy model to demonstrate
that the MMD loss is a good surrogate for practical training.
The result indeed shows a consistency between MMD loss and
KL divergence. And it also supports the observation that deep
circuits have stronger representational power. Similar to deep
neural networks, deep circuits can achieve better performance
also due to that one is less prone to be trapped in a poor local
minima with larger amount of parameters [68].

Another advantage of the QCBM over traditional deep
neural networks is that its training not su↵er from gradi-
ent vanishing/exploding problem as the circuit goes deeper.
Gradient vanishing/exploding is a common problem for a
traditional deep neural network [69] which originates from
multiplications of a long chain of matrices in the back-
propagation algorithm. Training of the deep quantum circuits

Figure 6. (a) The MMD loss as a function of Adam training step.
(b) Histogram for samples generated by a trained QCBM with a
bin width 20 (green bars), in comparison with the exact probability
density function (black dashed line).

naturally circumvented this problem by due to the unitary
property of the time evolution. Similar idea was exploited in
constructing classical recurrent neural networks with unitary
building blocks [70]. More numerical simulation and analyti-
cal explanations can be found in Appendix B.

B. Mixture of Gaussians

Next, we train a QCBM to model a mixture of Gaussians
distribution
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Here, x = 1, . . . , xmax is an integer encoded by the qubits,
with xmax = 2n and n is the number of qubits. It is di↵erent
from Bars-and-Stripes dataset, in which case a sample x is
represented as a bit string. We choose ⌫ = 1

8 xmax, the centers
µ1 =

2
7 xmax and µ2 =

5
7 xmax. The distribution is shown as the

dashed line in Fig. 6(b).
In the following discussion, we use n = 10 qubits and set

circuit depth d = 10. Unlike the case of Bars-and-Stripes
, the Gaussian mixture distribution is smooth and non-zero
for all basis state. Here, we generate 105 i.i.d. samples
from the target distribution as the training set. Its Chow-Liu
tree is shown in Fig. 2(b). In this graph, we see the main
contributions of mutual information are from bits near the big
end (most significant bits labeled by small indices). This is
because the bit near the little end only determines the local
translation of the probability on data axis. But for a smooth
probability distribution, the value of the little end is nearly
independent from values of the rest bits. For example, the
value of the big-end 0-th bit being 0/1 corresponds to the
global left/right peak in Fig. 6 (b). While the probability for
the little end being 0/1 corresponds to x being even/odd.

We use mixture of three Gaussian kernels with bandwidths
� = 0.25, 10, 1000. � = 0.25 captures the local di↵erence
in distribution, and � = 1000, which has the same scale as
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Figure 2. (a) Connectivity of the CNOT gates for 3 ⇥ 3 Bars-and-
Stripes dataset generated via the chow-Liu tree algorithm. The qubits
are arranged on a 3 ⇥ 3 grid, with some of them shifted a bit in order
to visualize the edges clearly. (b) Chow-Liu tree for double Gaussian
peak model, the numbers represent the position of a bit in the digit,
0 for the big end and 9 for the little end. In this plot, the darkness of
edges indicates the amount of mutual information between two sites.

same row/column index are dominant in this dataset. The
bandwidths used in Gaussian kernels of MMD loss are � =
0.5, 1, 2, 4.

For circuit depth d = 10, our gradient-based training is
able to reduce the MMD loss e�ciently. The loss function for
di↵erent iteration steps is shown in Fig. 3(a). We first perform
L-BFGS-B [62] optimization (black dashed line) using the
exact gradient computed via the wavefunction (N = 1) to test
the expressibility of the quantum circuit. A loss of 2.4 ⇥ 10�7

can be achieved, showing that the circuit is quite expressive in
terms of the two-sample test.

In practice, one has to perform projective measurements
on the qubits to collect statistics of the gradient since the
wavefunction is inaccessible. This situation is similar to the
mini-batch estimate of the gradient in deep learning [1]. As
is well known in the deep learning applications [1], the L-
BFGS-B algorithm is not noise tolerant. Thus, it is unsuitable
for quantum circuit learning in realistic situation. One needs
to employ an alternate optimizer which is robust to the
sampling noise to train the quantum circuit with noisy gradient
estimator.

We employ the stochastic gradient optimizer Adam [63]
with the learning rate 0.1. The sampling noise in the gradients
can be controlled by tuning the batch size N = 2000, 20000,1
of the measurements. The solid lines in Fig. 3 (a) show that
as the sample size increases, the final MMD loss reduces
systematically. The scatters in the inset confirmed that the
model probability of learned quantum circuit and the target
probability aligns better with lower MMD loss.

To visualize the quality of the samples, we generated a few
samples from the QCBM trained under di↵erent measurement
batch size N in Fig. 4. Here, we define a valid rate � ⌘
p(x is a bar or a stripe) as a measure of generation quality.
The valid rate increases as the batch size increases. However,
even with a moderate number of measurement N = 2000 one
can achieve a valid rate � = 88.6%. Here, we should mention
that the best valid rate of d = 10 layer circuit is achieved by
L-BFGS-B optimizer with N = 1, which is � = 99.9%.

To highlight the importance of using a gradient-based
optimizer, we compare our approach to the covariance matrix
adaptation evolution strategy (CMA-ES) [64, 65], a state-of-

Figure 3. The MMD loss (Eq. (1)) as a function of training
steps under di↵erent sampling errors that governed by batch size
N. (a) Gradient based training, solid colored lines are for Adam,
and the dashed black line is for L-BFGS-B with N = 1. Inset
is a comparison of probability distribution between the training set
and QCBM output, points on dashed line means exact match. (b)
Gradient free CMA-ES training counterpart, where each point in the
graph represents a mean loss of its population.

the-art gradient-free stochastic optimizer. The input of CMA-
ES is the scalar loss function measured on the circuit instead
of the vector gradient information. The CMA-ES optimizer
is able to optimize non-smooth non-convex loss functions
e�ciently [65], thus in general performs better than other
gradient-free methods such as the SPSA [58] in training noisy
quantum circuits. We have confirmed this in our simulation.

In the absence of sampling noise N = 1 in Fig. 3 (b),
we do observe that the CMA-ES optimizer is able to achieve
similar performance as the Adam optimizer after 104 steps of
optimization with a population size of 50. The total number
of generated samples is 104 ⇥ 50 ⇥ N, which is comparable to
the Adam training in Fig. 3 (a) [66].

However, the performance of CMA-ES deteriorates sig-
nificantly once taking sampling noise into consideration, as
shown for N = 2000 and N = 20000 in Fig. 3 (b). A possible
explanation is that in each step of CMA-ES, its evolution
strategy chooses the direction to go by inspecting the center
of top 20% instances. This process can be understood
as an e↵ective finite di↵erence gradient estimation base on
the losses of its population. However, extracting gradient
information from noisy losses is di�cult, even one has plenty
of them.

Another advantage of using gradient-based learning is the
e�ciency comparing with gradient-free methods, which gets
particularly significant when circuits get deeper and the num-
ber of parameters increases. In the following, we address the
necessity of using deep circuits. Fig. 5 (a) shows the MMD
loss as a function of L-BFGS-B training steps for di↵erent
circuit depth. One obtains lower loss for deeper quantum
circuit after 500 optimization steps. Fig. 5 (b) shows the
Kullback-Leibler (KL) divergence [67] calculated using the
circuit parameters in (a) at di↵erent training steps. Note that
this quantity is inaccessible for large-scale problems since one
has no access to the target nor the output probability. We
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Figure 4. 3 ⇥ 3 Bars-and-Stripes samples generated from QCBMs.
Circuit parameters used here are from the final stages of Adam
training with di↵erent batch sizes N in Fig. 3 (a). � is the rate
of generating valid samples in the training dataset. For illustrative
purpose, we only show 12 samples for each situation with batch size
N.

Figure 5. Losses as a function of training step for circuit depth d =
1, . . . , 10. (a) The MMD loss Eq. (1), and (b) the corresponding KL
divergence. Here, we use L-BFGS-B optimizer with exact gradient.

compute the KL divergence for the toy model to demonstrate
that the MMD loss is a good surrogate for practical training.
The result indeed shows a consistency between MMD loss and
KL divergence. And it also supports the observation that deep
circuits have stronger representational power. Similar to deep
neural networks, deep circuits can achieve better performance
also due to that one is less prone to be trapped in a poor local
minima with larger amount of parameters [68].

Another advantage of the QCBM over traditional deep
neural networks is that its training not su↵er from gradi-
ent vanishing/exploding problem as the circuit goes deeper.
Gradient vanishing/exploding is a common problem for a
traditional deep neural network [69] which originates from
multiplications of a long chain of matrices in the back-
propagation algorithm. Training of the deep quantum circuits

Figure 6. (a) The MMD loss as a function of Adam training step.
(b) Histogram for samples generated by a trained QCBM with a
bin width 20 (green bars), in comparison with the exact probability
density function (black dashed line).

naturally circumvented this problem by due to the unitary
property of the time evolution. Similar idea was exploited in
constructing classical recurrent neural networks with unitary
building blocks [70]. More numerical simulation and analyti-
cal explanations can be found in Appendix B.

B. Mixture of Gaussians

Next, we train a QCBM to model a mixture of Gaussians
distribution
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Here, x = 1, . . . , xmax is an integer encoded by the qubits,
with xmax = 2n and n is the number of qubits. It is di↵erent
from Bars-and-Stripes dataset, in which case a sample x is
represented as a bit string. We choose ⌫ = 1

8 xmax, the centers
µ1 =

2
7 xmax and µ2 =

5
7 xmax. The distribution is shown as the

dashed line in Fig. 6(b).
In the following discussion, we use n = 10 qubits and set

circuit depth d = 10. Unlike the case of Bars-and-Stripes
, the Gaussian mixture distribution is smooth and non-zero
for all basis state. Here, we generate 105 i.i.d. samples
from the target distribution as the training set. Its Chow-Liu
tree is shown in Fig. 2(b). In this graph, we see the main
contributions of mutual information are from bits near the big
end (most significant bits labeled by small indices). This is
because the bit near the little end only determines the local
translation of the probability on data axis. But for a smooth
probability distribution, the value of the little end is nearly
independent from values of the rest bits. For example, the
value of the big-end 0-th bit being 0/1 corresponds to the
global left/right peak in Fig. 6 (b). While the probability for
the little end being 0/1 corresponds to x being even/odd.

We use mixture of three Gaussian kernels with bandwidths
� = 0.25, 10, 1000. � = 0.25 captures the local di↵erence
in distribution, and � = 1000, which has the same scale as
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