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This talk 1s about
Physics for Machine Learning



Physicists’ gifts to Machine Learning

Mean Field Theory Tensor Networks
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“Quantising” Machine Learning with Tensor Networks
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Quantum circuits
architecture and initialization
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Neural networks and
Graphical probabilistic models

Glasser, Clark, Deng, Gao, Kim, Swingle, Huggins,
Chen, Cichocki, Levine ... Stoudenmire, ...




Deep learning is more than function fitting

Discriminative (Generative

y = f(%) (xly) = P&
or p(ylx) p(y)




Interpolating the “smile vector”

White, 1609.04468
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Probabilistic Generative Modeling

p(x)

How to express, learn, and sample from a
high-dimensional probability distribution 2

generated distribution true data distribution
N\
p(X)
unit gaussiar/
generative
Q model .
_ || (neural net) «._|loss|

Image space

https://blog.openai.com/generative-models/




Boltzmann Machines

e—E(x)

(X) =

statistical physics



Reducing the Dimensionality of

= D ith N | N k
--------------------------------- ata with Neural Networks
________________________________________ G. E. Hinton*™ and R. R. Salakhutdinov

200 High-dimensional data can be converted to low-dimensional codes by training a multilayer neural

I W network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent
1000 can be used for fine-tuning the weights in such “autoencoder” networks, but this works well only if
--------------------------------- the initial weights are close to a good solution. We describe an effective way of initializing the
weights that allows deep autoencoder networks to learn low-dimensional codes that work much
........................................ better than principal components analysis as a tool to reduce the dimensionality of data.
1000
I imensionality reduction facilitates the finds the directions of greatest variance in the
W, Dclassiﬁcation, visualization, communi- data set and represents each data point by its

2000 cation, and storage of high-dimensional  coordinates along each of these directions. We
""""""""""""""""""" data. A simple and widely used method 1s  describe a nonlinear generalization of PCA that

principal components analysis (PCA), which uses an adaptive, multilayer “encoder” network

2000 2006 VOL 313 SCIENCE www.sciencemag.org

Pretraining

Renaissance of deep learning

Feedback Wavefunctions ansatz Quantum error correction
to physics Quantum state tomography Renormalization group. ..




Generative Modeling using
Boltzmann Machines
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Generative Modeling using
Boltzmann Machines

L = Z Inp(x) Negative log-likelihood loss
|T‘ xeT




Generative Modeling using
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Generative Modeling using
Boltzmann Machines

L = Z Inp(x) Negative log-likelihood loss
|T‘ xeT
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Born Machines

%P ()l
Z

p(x) =

quantum physics



Hilbert Space

Area Law
s Entanglement
@

Born Machines
2
)= 12

quantum physics




Quantum inspired generative modeling

Han, Wang, Fan, LW, Zhang, 1709.01662, PRX In press
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Quantum inspired generative modeling

“Teach a guantum state to write digits”
Han, Wang, Fan, LW, Zhang, 1709.01662, PRX In press



Generative modeling using

Tensor Network States

Stoudenmire, Schwab NIPS 2016
Stoudenmire Q. Sci. Tech. 2018

U et a

U et a

1710.04833 Hallam et al 1711.03357 Gallego, Orus 1708.01525

1803.09111 (Glasser et al 1806.05964

Pestun etal 1711.01416



Generative modeling using
Tensor Network States

Stoudenmire, Schwab N OverVieW ta"( by Miles on 29th go, Orus 1708.01525
Stoudenmire Q. Sci. Tec stunetal 1711.01416




What does it learn ?
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Captures longer range correlations with larger bond dimensions



What does it learn ?

Test

Training

#loops

Captures longer range correlations with larger bond dimensions



Why bother ?

Representability Learning Inference Sampling

Glasser, Clark, Deng,



Feature-l: lTractable Likellnood
z- &0 2
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Efficient & Unblased learning compared to
models with intractable partition functions

tractable via
efficient tensor contraction



~eature-Il: Agaptive Learning

Training Images Bond dimensions
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Adaptively grows the bond dimensions, thus
dynamically tuning the expressibility instead of fixed the # of params




Feature-lll: Direct Generation

p(X<is1) _ .
(X) = = | | p(xilx<;) Ferris & Vidal 2012
& p(x;) i e
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No thermalization issue compared to
slow mixing Gibbs sampling of Boltzmann Machines
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Feature-lll: Direct Generation

p(X<is1) _ .
(X) = = | | p(xilx<;) Ferris & Vidal 2012
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pP(X<iy2) =

No thermalization issue compared to
slow mixing Gibbs sampling of Boltzmann Machines



Feature-lll: Direct Generation

(X<it+1) o
p(x) = ]—l pp(;;) = ]jl p(xilx<;) Ferris & Vidal 2012

l

pP(X<iy2) =

| "Zipper Sampling”

No thermalization issue compared to
slow mixing Gibbs sampling of Boltzmann Machines



These advantages hold true for
Tree tensor networks and MERA



Image Restoration

Han, Wang, Fan, LW, Zhang, 17/09.01662, PRX In press
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Image Restoration

Han, Wang, Fan, LW, Zhang, 1709.01662, PRX In press
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Quantum Perspective on Deep Learning




Quantum Perspective on Deep Learning

Q: How to quantify our prior knowledge on the data distribution?

A: Information pattern of the target probability functions
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Quantum Perspective on Deep Learning




Quantum Perspective on Deep Learning

Classical mutual information

/ /
I 1n<p(f><:;'y /)p(X ,y)>
p(X', Y )P(X,¥) [ s o .
Quantum Renyi entanglement entropy

U(x,y)¥(x',y) >
S=—1In
<<\IJ(X/7y/)\IJ(X,Y) x v’ .y
Striking similarity implies common inductive bias

+Quantitative & interpretable approaches Cheng, Chen, LW,
+Principled structure design & learning 1712.04144
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Deep Learning and Quantum Entanglement:
Fundamental Connections with Implications to Network Design

Yoav Levine YOAVLEVINE@ CS.HUJI.AC.IL
David Yakira DAVIDYAKIRA @CS.HUJI.AC.IL
Nadav Cohen COHENNADAV @ CS.HUJI.AC.IL
Amnon Shashua SHASHUA @CS.HUJI.AC.IL

The Hebrew University of Jerusalem

Abstract

Deep convolutional networks have witnessed unprecedented success in various machine learning
applications. Formal understanding on what makes these networks so successful is gradually un-
folding, but for the most part there are still significant mysteries to unravel. The inductive bias,
which reflects prior knowledge embedded in the network architecture, 1s one of them. In this work,
we establish a fundamental connection between the fields of quantum physics and deep learning.
We use this connection for asserting novel theoretical observations regarding the role that the num-
ber of channels in each layer of the convolutional network fulfills in the overall inductive bias.
Specifically, we show an equivalence between the function realized by a deep convolutional arith-
metic circuit (ConvAC) and a quantum many-body wave function, which relies on their common
underlying tensorial structure. This facilitates the use of quantum entanglement measures as well-
defined quantifiers of a deep network’s expressive ability to model intricate correlation structures
of its inputs. Most importantly, the construction of a deep convolutional arithmetic circuit in terms
of a Tensor Network is made available. This description enables us to carry a graph-theoretic
analysis of a convolutional network, tying its expressiveness to a min-cut in the graph which char-
acterizes it. Thus, we demonstrate a direct control over the inductive bias of the designed deep
convolutional network via its channel numbers, which we show to be related to the min-cut in the
underlying graph. This result is relevant to any practitioner designing a convolutional network for
a specific task. We theoretically analyze convolutional arithmetic circuits, and empirically validate
our findings on more common convolutional networks which involve ReLLU activations and max
pooling. Beyond the results described above, the description of a deep convolutional network in
well-defined graph-theoretic tools and the formal structural connection to quantum entanglement,
are two interdisciplinary bridges that are brought forth by this work.




Deep Learning and Quantum Entanglement:
Fundamental Connections with Implications to Network Design
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our findings on more common convolutional networks which involve ReLLU activations and max
pooling. Beyond the results described above, the description of a deep convolutional network in
well-defined graph-theoretic tools and the formal structural connection to quantum entanglement,
are two interdisciplinary bridges that are brought forth by this work.




Physics genes of generative models

Goodfellow, Direct
NIPS tutorial, 1701.00160 p(x) |
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Physics genes of generative models

Goodfellow, Direct
NIPS tutorial, 1701.00160 p(x)
\ GAN

Explicit density Implicit density

. . . Maykov Chai
Tractabledensity || Approximate density ROV Al

e belief nets / \ GSN

Variational | | Markov Chain

Variational autoencoder Boltzmann machine ‘
e —H U
Quantum Circuits

ixelRNN
-Change of variables

models (nonlinear ICA)




Quantum Circuit Born Machine

J. G. Liu, LW, 1804.04168
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AB i

classical loss & gradient

e . < ]
optimizer ' classical data

Train the quantum circuit as a probabilistic generative model
Quantum sampling complexity underlines the “quantum supremacy”



_earning the Quantum Circuit

J. G. Liu, LW, 1804.04168

e Objectivity function for the quantum implicit model: maximum mean
discrepancy

o Differentiable learning of the circuit parameters: unbiased gradient estimator
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_earning the Quantum Circuit

J. G. Liu, LW, 1804.04168

e Objectivity function for the quantum implicit model: maximum mean

discrepancy

o Differentiable learning of the circuit parameters: unbiased gradient estimator
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Born Machine experiment

TNS inspired circuit architecture

Quantum generative model
Quantum adversarial training
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Benedetti, Garcia-Pintos, Nam, Perdomo-Ortiz, 1801.07686

Huggins, Patel, Whaley, Stoudenmire, 1803.11537

Gao, Zhang, Duan, 1711.02038

Dallaire-Demers, Lloyd, Benedetti 1804.08641,1804.09139, 1806.00463



discrepancy

_earning the Quantum Circuit

J. G. Liu, LW, 1804.04168
e Objectivity function for the quantum implicit model: maximum mean

o Differentiable learning of the circuit parameters: unbiased gradient estimator
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Quantum Software 2.0

Karpathy, Medium 2017
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Try 1t yourselt!

http://lib.itp.ac.cn/html/panzhang/mps/tutorial/

|- @ L  hitps:/github.com/Gigglel iu/QuantumCircuitBornMachine

@ hitps://github.com/QuantumBES/Yao.jl/blob/master/examples/QCBM.ipynb

Thank You!


https://github.com/ProjectQ-Framework/ProjectQ

Try 1t yourselt!

http://lib.itp.ac.cn/html/panzhang/mps/tutorial/

https://github.com/Giggleliu/QuantumCircuitBornMachine

“‘ @ https://github.com/QuantumBES/Yao.jl/blob/master/examples/QCBM.ipynb

Pan Zhang Zhao-Yu Han Jun Wang Jin-Guo Liu
Thank You!

Jing Chen Song Cheng RogerlLuo Tao Xiang


https://github.com/ProjectQ-Framework/ProjectQ

