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Q: Why does deep learning work? 

Lin, Tegmark, Rolnick ,1608.08225

Depth appears to be important!

Levine et al, 1704.01552 …Mehta, Schwab, 1410.3831

A: Law of  physics: symmetry, locality, compositionality, 
renormalization group, and quantum entanglement.
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http://arxiv.org/abs/1410.3831


Deep learning is more than 
function fitting



Deep learning is more than 
function fitting

“What I can not create, I do not understand”



Deep learning is more than 
function fitting



Generative Learning

“Auto-Encoding Variational Bayes", Kingma and Welling,1312.6114

data encoder decoder data



Generative Learning

“Auto-Encoding Variational Bayes", Kingma and Welling,1312.6114

data encoder decoder data
latent vector



cial parts such as eyes and noses, this is because it tries to
minimize the pixel-by-pixel loss between two images. The
pixel-based loss does not contain the perceptual and spatial
correlation information. DCGAN can generate clean and
sharp face images containing clearer facial features, how-
ever it has the facial distortion problem and sometimes gen-
erates weird faces. Our method based on feature perceptual
loss can achieve better results. VAE-123 can generate faces
of different genders, ages with clear noses, eyes and teeth,
which are better than VAE-345. However, VAE-345 is bet-
ter at generating hair with different textures.

We also compare the reconstruction results (shown in
Figure 4) between plain VAE and our two models, and DC-
GAN is not compared because of no input image in their
model. We can get similar conclusion as above. In addition,
VAE-123 is better at keeping the original color of input im-
ages and generating clearer eyes and teeth. The VAE-345
can generate face images with more realistic hair, but the
color could be different from the original in the input im-
ages.

VAE-345 is trained with higher hidden layers of VG-
GNet and captures spatial correlation on a coarser scale
than VAE-123, hence the images generated by VAE-345 are
more blurry than those of VAE-123. Additionally as tex-
tures such as hair reflects larger area correlations, this may
explain why VAE-345 generates better textures than VAE-
123. The other way around, local patterns like eyes and
noses reflect smaller area correlations, thus VAE-123 can
generate clearer eyes and noses than VAE-345.

4.3. The Learned Latent Space

In order to get a better understanding of what our model
has learned, we investigate the property of the z represen-
tation in the latent space, and the relationship between dif-
ferent learned latent vectors. The following experiments are
based on our trained VAE-123 model.

4.3.1 Linear Interpolation of Latent Space

As shown in Figure 5, we investigate the linear interpola-
tion between the generated images from two latent vectors
denoted as z

left

and z
right

. The interpolation is defined by
linear transformation z = (1 � ↵)z

left

+ ↵z
right

, where
↵ = 0, 0.1, . . . , 1, and then z is fed to the decoder net-
work to generate new face images. Here we show three ex-
amples for latent vector z encoded from input images and
one example for z randomly drawn from N (0, 1). From
the first row in Figure 5, we can see the smooth transitions
between vector(”Woman without smiling and short hair”)
and vector(”Woman with smiling and long hair”). Little
by little the hair becomes longer, the distance between lips
becomes larger and teeth is shown in the end as smiling,
and pose turns from looking slightly right to looking front.

α=0

z ~
 !(0, 1)

α=1

z ~
 !(0, 1)

Figure 5. Linear interpolation for latent vector. Each row is the in-
terpolation from left latent vector zleft to right latent vector zright.
e.g. (1 � ↵)zleft + ↵zright. The first row is the transition from
a non-smiling woman to a smiling woman, the second row is the
transition from a man without eyeglass to a man with eyeglass,
the third row is the transition from a man to a woman, and the
last row is the transition between two fake faces decoded from
z ⇠ N (0, 1).
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Figure 6. Vector arithmetic for visual attributes. Each row is the
generated faces from latent vector zleft by adding or subtract-
ing an attribute-specific vector, i.e., zleft + ↵ zsmiling , where
↵ = 0, 0.1, . . . , 1. The first row is the transition by adding a
smiling vector with a linear factor ↵ from left to right, the second
row is the transition by subtracting a smiling vector, the third and
fourth row are the results by adding a eyeglass vector to the la-
tent representation for a man and women, and the last row shows
results by subtracting an eyeglass vector.

Additionally we provide examples of transitions between
vector(”Man without eyeglass”) and vector(”Man with
eyeglass”), and vector(”Man”) and vector(”Woman”).

4.3.2 Facial Attribute Manipulation

The experiments above demonstrate interesting smooth
transitional property between two learned latent vectors. In
this part, instead of manipulating the overall face images,
we seek to find a way to control a specific attribute of face
images. In previous works, [22] shows that vector(”King”)
- vector(”Man”) + vector(”Woman”) generates a vector
whose nearest neighbor is the vector(”Queen”) when eval-
uating learned representation of words. [24] demonstrates
that visual concepts such as face pose and gender could be
manipulated by simple vector arithmetic. In this paper, we
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Probabilistic Generative Modeling

How to express, learn, and sample from a 
probability distribution of enormous size ?
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“… the images encountered in 
AI applications occupy a 
negligible proportion of

the volume of image space.”
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https://blog.openai.com/generative-models/



Boltzmann Machines “Born” Machines

Generative Modeling and Physics

statistical physics

p(x) =
e�E(x)

Z

quantum physics

p(x) =
| (x)|2

N



Boltzmann Machines “Born” Machines
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statistical physics

p(x) =
e�E(x)
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p(x) =
| (x)|2
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Hilbert Space

Area law  
Entanglement



Image space versus Hilbert space
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“ordinary” metal

“exotic” superconductors



Carrasquilla, Melko, Nat. Phys. 2017 
Nieuwenburg, Liu, Huber, Nat. Phys. 2017

Quantum “Phase” Recognition

magnetic
non-magnetic

Microscopic 
Configurations

LW, PRB 2016, 
and many others

Classify quantum states of  matter



“Teach a neural network quantum physics”

Boltzmann machines as a wavefunction

• Train the network with variational principle 

• Feature discovery and abstraction power of deep 
hierarchical structure

Carleo, Troyer, Science 2017

  

Deng, Li, Gao, Chen, Cheng, Xiang, Cai, LW… 2017

 (x)qubits

https://arxiv.org/abs/1704.05148


Quantum inspired generative modeling 

Han, Wang, LW, Zhang, arXiv 2017 cf. Stoudenmire and Schwab, NIPS 2016

 



Learn

Quantum inspired generative modeling 

Han, Wang, LW, Zhang, arXiv 2017 cf. Stoudenmire and Schwab, NIPS 2016

 



Learn Generate

Quantum inspired generative modeling 

Han, Wang, LW, Zhang, arXiv 2017 cf. Stoudenmire and Schwab, NIPS 2016

 



“Teach a quantum state to write digits”

Learn Generate

Quantum inspired generative modeling 

Han, Wang, LW, Zhang, arXiv 2017 cf. Stoudenmire and Schwab, NIPS 2016

 



Quantum Machine Learning

Next, a single-qubit measurement is made on the
ancillary qubit alone (the other qubits are simply ignored),
projecting it onto the state

jϕi ¼ ðjujj0i − jvjj1iÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj2 þ jvj2

q
: ð2Þ

The success probability p of this projective measurement
can be estimated by repeated measurements. Remarkably,
the inner product between jui and jvi can be directly
calculated from the p:

hujvi ¼ ð0.5 − pÞðjuj2 þ jvj2Þ=jujjvj; ð3Þ

and the distance between ~u and ~v can then be obtained:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðjuj2 þ jvj2Þ

q
: ð4Þ

It is important to note that such an estimation can achieve a
desired statistical accuracy simply by a sufficient number of
repeated measurements, but is independent of the size (N)
of the vectors, which gives a quantum speed-up.
This algorithm can be understood intuitively; the more

difference between the pure states jui and jvi, the more
entangled the Eq. (1) is. For examples, if jui and jvi are
identical, then the ancillary qubit is in the state ðj0iþ j1iÞ=ffiffiffi
2

p
, separable from the vector qubits, and p ¼ 0, D ¼ 0.

If jui and jvi are orthogonal, then the Eq. (1) is maximally
entangled, and p ¼ 0.5, D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj2 þ jvj2

p
.

In our experiment, we use single photons as qubits,
where j0i and j1i are encoded with the photon’s horizontal
(H) and vertical (V) polarization, respectively. A schematic
drawing of the experimental setup is illustrated in Fig. 1.
Polarization-entangled photon pairs are generated by spon-
taneous parametric down-conversion [17] and prepared in
the state

ðj0iancj0ivec þ j1iancj1ivecÞ=
ffiffiffi
2

p
: ð5Þ

One photon (anc) is used as the ancillary qubit, and the other
one (vec) will be used to encode the reference and incoming
vectors using Sagnac-like interferometers (see Fig. 1).
To generate three- and four-photon entanglement

resource states, we create two entangled photon pairs.
Two single photons, one from each pair, are temporally and
spatially superposed on a polarizing beam splitter (PBS).
We select the events where one and only one single photon
emits from each output. It can be concluded that the four
photons are either all H polarized or V polarized, two cases
that are quantum mechanically indistinguishable when all
the other degrees of freedom of the photons are erased
(see the caption of Fig. 1), thus projecting the four photons
into the Greenberger-Horne-Zeilinger entangled state [18]:

anc123

DT

DRD1D2D3

BBO BBO

HWP

PBS

PBS
NBS

PBS
NBS

PBS
NBS

Prism

PBS
HWPHWP

HWPHWPHWP

HWP

BBO HWP
BBO

HWP
BBO

HWP

BBO

PrismPrism

FIG. 1 (color). Experimental setup for quantum machine learning with photonic qubits. Ultraviolet laser pulses with a central
wavelength of 394 nm, pulse duration of 120 fs, and a repetition rate of 76 MHz pass through two type-II β-barium borate (BBO)
crystals with a thickness of 2 mm to produce two entangled photon pairs. The photons pass through pairs of birefringent compensators
consisting of a 1-mm BBO crystal and a HWP to compensate the walk-off between horizontal and vertical polarization, and are prepared
in the quantum state: ðjHijViþ jVijHiÞ=

ffiffiffi
2

p
. Two extra HWPs placed in arm 3 and anc are used to transform the state into

ðjHijHiþ jVijViÞ=
ffiffiffi
2

p
. Two single photons, one from each pair, are temporally and spatially superposed on a PBS to generate a four-

photon entangled state: ðjHijHijHijHiþ jVijVijVijViÞ=
ffiffiffi
2

p
. The photons 1, 2, and 3 are sent to Sagnac-like interferometers, where

each single photon splits into two spatial modes by the PBS with regard to its polarization, and recombines on a nonpolarizing beam
splitter (NBS). Various vectors are independently encoded into the two spatial modes using HWPs. The specially designed beam splitter
cube is half-PBS coated and half-NBS coated. High-precision small-angle prisms are inserted for fine adjustments of the relative delay
of the two different paths. The photons are detected by five single-photon detectors (quantum efficiency > 60%), and the two four-
photon coincidence events, D3D2D1DT and D3D2D1DR, are simultaneously registered by a homemade FPGA-based coincidence unit.

PRL 114, 110504 (2015) P HY S I CA L R EV I EW LE T T ER S
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4

FIG. 2. (Color online) The schematic diagram of the quantum SVM. An ancillary qubit is added here to readout the classification
result. The auxiliary registers for matrix inversion are not shown here.
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FIG. 3. (Color online)(a) Properties of the 13C-iodotrifluroethylene. The chemical shifts ⌫
i

and scalar coupling constants (J
jk

)
are on the lower diagonal in the table, respectively. The chemical shifts are given with respect to reference frequencies of 100.62
MHz (Carbon) and 376.48 MHz (Fluorines). (b) The quantum circuit for building the kernel matrix K. After discarding the
training-data register (the second qubit), the desired kernel matrix K is obtained as the quantum density matrix of the first
qubit. (c) The quantum circuit for classification. Here H and S are the Hadamard and phase gate, respectively.

realized [15, 16], with an exponentially speedup. Using the same method, the hyperplane parameters are determined

by
�
b, ~↵T

�
T

= F̃�1
�
0, ~yT

�
T

, where the vectors here represent quantum states.

The classification results in Eq. (2) could be reproduced by the overlap of two quantum states : y(~x) = sign(hx̃0 |ũ i),
with the training-data state |ũi = 1p

N

ũ

(b|0i|0i +
P

M

k=1 abs(~xk

)↵
k

|ki|~x
k

i) and the query-state |x̃0i = 1p
N

x̃0

(|0i|0i +
P

M

k=1 abs(~x0)|ki| ~x0i). Here the training-data state |ũi could be easily obtained by calling the training-data oracle

on
�
b, ~↵T

�
T

. By applying a inverse operation U
x0 = |00i hx̃0|, the expansion coe�cients h00|U

x0 |ũi = hx̃0| |ũi will
produce the classification result y(~x) [17]. A schematic diagram of this part is shown in Fig. 2. Note that the
unitary operations are conditional operations here, controlled by an ancillary qubit. Hence the final state will be
| i = |�i |1i

A

+ |00i |0i
A

, where |�i = U
x0 |ũi and the subscript ”A” indicates the state of ancillary qubit. By

measuring the expectation value of coherent term O ⌘ |00i h00| ⌦ (|0i h1|)
A

, the classification result will be revealed

Li et al, PRL 114, 140504 (2015) 

Review “Quantum machine learning”, Biamonte et al, Nature 2017

“Use a quantum computer to speed up 
ML subroutines”

• Search 
• Sampling 
• Clustering 
• Optimization 
• Linear system solver 
• Support vector machines 
• Principal component analysis 

few qubits demo



Quantum Boltzmann Machines

Amin et al, 1601.02036

$15 million “analog quantum device”

Evidence for quantum annealing with more than
one hundred qubits

Supplementary material for “Evidence for quantum annealing with more than one
hundred qubits”
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I. OVERVIEW

Here we provide additional details in support of the
main text. Section II shows details of the chimera graph
used in our study and the choice of graphs for our simula-
tions. Section III expands upon the algorithms employed
in our study. Section IV presents additional success prob-
ability histograms for different numbers of qubits and for
instances with magnetic fields, explains the origin of easy
and hard instances, and explains how the final state can
be improved via a simple error reduction scheme. Section
V presents further correlation plots and provide more
details on gauge averaging. Section VI gives details on
how we determined the scaling plots and how quantum
speedup can be detected on future devices. Finally, sec-
tion VII explains how the spectral gaps were calculated
by quantum Monte Carlo (QMC) simulations.

II. THE CHIMERA GRAPH OF THE D-WAVE
DEVICE.

The qubits and couplers in the D-Wave device can be
thought of as the vertices and edges, respectively, of a
bipartite graph, called the “chimera graph”, as shown in
figure 1. This graph is built from unit cells containing
eight qubits each. Within each unit cell the qubits and
couplers realise a complete bipartite graph K4,4 where
each of the four qubits on the left is coupled to all of the
four on the right and vice versa. Each qubit on the left
is furthermore coupled to the corresponding qubit in the
unit cell above and below, while each of the ones on the
right is horizontally coupled to the corresponding qubits
in the unit cells to the left and right (with appropriate
modifications for the boundary qubits). Of the 128 qubits
in the device, the 108 working qubits used in our tests of
the device are shown in green, and the couplers between
them are marked as black lines.
For our scaling analysis we follow the standard pro-

cedure for scaling of finite dimensional models by con-
sidering the chimera graph as an L × L square lattice
with an eight-site unit cell and open boundary condi-
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FIG. 1: Qubits and couplers in the D-Wave device.
The D-Wave One Rainer chip consists of 4 × 4 unit cells of
eight qubits, connected by programmable inductive couplers
as shown by lines.

tions. The sizes we typically used in our numerical sim-
ulations are L = 1, . . . , 8 corresponding to N = 8L2 =
8, 32, 72, 128, 200, 288, 392 or 512 spins. For the simu-
lated annealers and exact solvers on sizes of 128 and
above we used a perfect chimera graph. For sizes below
128 where we compare to the device we use the working
qubits within selections of L×L eight-site unit cells from
the graph shown in figure 1.

In references [1, 2] it was shown that an optimisation
problem on a complete graph with

√
N vertices can be

mapped to an equivalent problem on a chimera graph
with N vertices through minor-embedding. The tree
width of

√
N mentioned in the main text arises from this

mapping. See Section VIA for additional details about
the tree width and tree decomposition of a graph.
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instances with magnetic fields, explains the origin of easy
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tion VII explains how the spectral gaps were calculated
by quantum Monte Carlo (QMC) simulations.
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DEVICE.
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bipartite graph, called the “chimera graph”, as shown in
figure 1. This graph is built from unit cells containing
eight qubits each. Within each unit cell the qubits and
couplers realise a complete bipartite graph K4,4 where
each of the four qubits on the left is coupled to all of the
four on the right and vice versa. Each qubit on the left
is furthermore coupled to the corresponding qubit in the
unit cell above and below, while each of the ones on the
right is horizontally coupled to the corresponding qubits
in the unit cells to the left and right (with appropriate
modifications for the boundary qubits). Of the 128 qubits
in the device, the 108 working qubits used in our tests of
the device are shown in green, and the couplers between
them are marked as black lines.
For our scaling analysis we follow the standard pro-

cedure for scaling of finite dimensional models by con-
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FIG. 1: Qubits and couplers in the D-Wave device.
The D-Wave One Rainer chip consists of 4 × 4 unit cells of
eight qubits, connected by programmable inductive couplers
as shown by lines.

tions. The sizes we typically used in our numerical sim-
ulations are L = 1, . . . , 8 corresponding to N = 8L2 =
8, 32, 72, 128, 200, 288, 392 or 512 spins. For the simu-
lated annealers and exact solvers on sizes of 128 and
above we used a perfect chimera graph. For sizes below
128 where we compare to the device we use the working
qubits within selections of L×L eight-site unit cells from
the graph shown in figure 1.

In references [1, 2] it was shown that an optimisation
problem on a complete graph with

√
N vertices can be

mapped to an equivalent problem on a chimera graph
with N vertices through minor-embedding. The tree
width of

√
N mentioned in the main text arises from this

mapping. See Section VIA for additional details about
the tree width and tree decomposition of a graph.

SUPPLEMENTARY INFORMATION
DOI: 10.1038/NPHYS2900

NATURE PHYSICS | www.nature.com/naturephysics 1

Is there any advantage of  this quantum architecture?

Perdomo-Ortiz et al, 1708.09757

~2000  
“qubits”

https://arxiv.org/abs/1708.09757


Thank you!

Do Androids dream of 
Schrödinger's cat ?


