Artificial Intelligence and Quantum Physics

Lei Wang (王磊) Institute of Physics, CAS <u>https://wangleiphy.github.io</u> What is common of AI and quantum physics researches?

We both love cats!

Q: Why does deep learning work?

Q: Why does deep learning work?

A: Law of physics: symmetry, locality, compositionality, renormalization group, and quantum entanglement.

Lin, Tegmark, Rolnick ,1608.08225 Mehta, Schwab, 1410.3831 Levine et al, 1704.01552 ...

Deep learning is more than function fitting

Deep learning is more than function fitting

What I cannot create, Why coust × Sort . Po I do not understand. To DEARN: Bethe Ansitz Prob. Why const × sort. Po Know how to solve every problem that has been solved necel. Temps Non Linear Opriscal

"What I can not create, I do not understand"

Deep learning is more than function fitting

What I cannot reate, Why coust × Sort .PC I do not understand. To DEARN. Bethe Ansitz Prob. Know how to solve every problem that has been solved Non Linear Opinical

To recognize shapes, first learn to generate images

Geoffrey E. Hinton 📥 🕅

Department of Computer Science, University of Toronto, 10 Kings College Road, Toronto, M5S 3G4 Canada

Generative Learning

"Auto-Encoding Variational Bayes", Kingma and Welling, 1312.6114

Generative Learning

"Auto-Encoding Variational Bayes", Kingma and Welling, 1312.6114

Interpolate between faces

Hou, Shen, Sun, Qiu, 1610.00291

Interpolate between faces

Subtract Smiling vector

Hou, Shen, Sun, Qiu, 1610.00291

Probabilistic Generative Modeling $p(\mathbf{x})$

How to express, learn, and sample from a probability distribution of enormous size ?

"random" images

"natural" images

Proba

DEEP LEARNING

Ian Goodfellow, Yoshua Bengio, and Aaron Courville

How to probab

Page 159

"... the images encountered in Al applications occupy a negligible proportion of the volume of image space." from a size ?

Jeling

"random"

Probabilistic Generative Modeling $p(\mathbf{x})$

How to express, learn, and sample from a probability distribution of enormous size ?

https://blog.openai.com/generative-models/

Generative Modeling and Physics

Boltzmann Machines

$$p(\mathbf{x}) = \frac{e^{-E(\mathbf{x})}}{\mathcal{Z}}$$

statistical physics

"Born" Machines

$$p(\mathbf{x}) = \frac{|\Psi(\mathbf{x})|^2}{\mathcal{N}}$$

quantum physics

Generative Modeling and Physics

Boltzmann Machines

$$p(\mathbf{x}) = \frac{|\Psi(\mathbf{x})|^2}{\mathcal{N}}$$

statistical physics

 $p(\mathbf{x}) = \frac{e^{-E(\mathbf{x})}}{z}$

quantum physics

Image space versus Hilbert space

"ordinary" metal

"exotic" superconductors

Quantum "Phase" Recognition

Microscopic

Configurations

Classify quantum states of matter

LW, PRB 2016, Carrasquilla, Melko, Nat. Phys. 2017 Nieuwenburg, Liu, Huber, Nat. Phys. 2017

and many others

Boltzmann machines as a wavefunction

- Train the network with variational principle
- Feature discovery and abstraction power of deep hierarchical structure

"Teach a neural network quantum physics"

Carleo, Troyer, Science 2017 Deng, Li, Gao, Chen, Cheng, Xiang, Cai, LW... 2017

"Teach a quantum state to write digits"

Quantum Machine Learning

- Search
- Sampling
- Clustering
- Optimization
- Linear system solver
- Support vector machines
- Principal component analysis

Cai et al, PRL 114, 110504 (2015)

	¹³ C	F ₁	F ₂	F ₃
¹³ C	15479.9Hz			F_3
<i>F</i> ₁	-297.7Hz	-33130.1Hz	I	13C
<i>F</i> ₂	-275.7Hz	64.6Hz	-42681.4Hz	
<i>F</i> ₃	39.1Hz	51.5Hz	-129.0Hz	-56443.5Hz
T_2^*	1.22s	0.66s	0.63s	0.61s
<i>T</i> ₂	7.9s	4.4s	6.8s	4.8s

Li et al, PRL 114, 140504 (2015)

few qubits demo

"Use a quantum computer to speed up ML subroutines"

Review "Quantum machine learning", Biamonte et al, Nature 2017

Quantum Boltzmann Machines

\$15 million "analog quantum device"

II. THE CHIMERA GRAPH OF THE D-WAVE DEVICE. Is there any advantage of this FIGUARDING architecture of the qubits and couplers in the D-Wave device can be thought of as the vertices and edges, respectively, of a hipartite graph called for "thince graph", a Showd in figure 1. This graph is built from unit cells containing eight qubits each. Within each unit cell the qubits and

