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generative model for
sampling (and more)
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Al for science, 24 years ago

Lecture Notes in Physics

John W.Clark Thomas Lindenau
Manfred L. Ristig (Eds.)

Scientific
Applications

of Neural Nets

Proceedings

Bad Honnel!
Germany 1998

8 Doing Science With Neural Nets: Pride and
Prejudice

When neural networks re-emerged on the scene in the mid-80s as a new
and glamorous computational paradigm, the initial reaction in some sectors
of the scientific community was perhaps too enthusiastic and not sufficiently
critical. There was a tendency on the part of practitioners to oversell the
powers of neural-network or “connectionist” solutions relative to conven-
tional techniques — where conventional techniques can include both tradi-
tional theory-rich modeling and established statistical methods. The last five
years have seen a correction phase, as some of the practical limitations of
neural-network approaches have become apparent, and as scientists have be-
come better acquainted with the wide array of advanced statistical tools that
are currently available.

Why now, again ?
What has changed ?
What has not ?



A hint from the Deep Learning Book

1. Introduction

Li

Part I: Applied Math and Machine Learning Basics

2. Linear Algebra

¥

3. Probability and
Information Theory

4. Numerical
Computation

4

“Part Il is the most important for a researcher
—someone who wants to understand the
breadth of perspectives that have been
brought to the field of deep learning, and
push the field forward towards true artificial

7. Regularization

Part II: Deep Networks: Modern Practices

6. Deep Feedforward
Networks

/

8. Optimization

9. CNNs

4

11. Practical
Methodology

12. Applications

intelligence.”

Part III: Deep Learning Research
13. Linear Fact 15. tati
3. Linear Factor o 14 Autoencoders s 5 Repres?n ation
Models Learning

16. Structured 17. Monte Carlo
Probabilistic Models Methods

v v

18. Partition
Function

19. Inference

20. Deep Generative
Models




Deep learning is more than fitting!

Discriminative learning Generative learning
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Computational Neuroscience: Theoretical Insights into Brain Function

To recognize shapes, first learn to generate images

Geoffrey E. Hinton -

Department of Computer Science, University of Toronto, 10 Kings College Road, Toronto, M5S 3G4
Canada




Generated arts
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Generating molecules

Latent Physical
attributes configurations
Simple Generate Complex
—

Distributions Distribution

Inference
Sanchez-Lengeling & Aspuru-Guzik,

Inverse molecular design using machine learning:

Generative models for matter engineering, Science ‘18



So, what is the fuss ?

Normalization ? Sampling ?

dep(x) =1

X~p(x)



Generative models and their physics genes

Tensor
Networks

Goodfellow,

NIPS tutorial, 1701.00160

) Explicit density
O\

Tractable density

(x) Direct
o < em

Imphclt densrcy

N

Approx1mate densﬂ:y

Markov Chain

GSN
-Fully visible belief nets
NADE / \
MADE Variational 'Markov Chain
-PixelRNN Variational antcencoder Bolizmarn machine

-Change of variables
models (nonlinear ICA)
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Quantum
Circuits




Lecture Note http:/wangleiphy.github.io/lectures/PlLtutorial.pdf

Generative Models for Physicists

CONTENTS
Lei Wang®
1 GENERATIVE MODELING 2
Institute of Physics, Chinese Academy of Sciences 1.1 Probabilistic Generative Modeling -
Beijing 100190, China ' ,
1.2 Generative Model Zoo 4
Octoh 1.2.1  Boltzmann Machines 5
ctober 28, 2018 :
1.2.2 Autoregressive Models 8
1.2.3 Normalizing Flow 9
Abstract 1.2.4 Variational Autoencoders 13
1.2.5 Tensor Networks 15
Generative models generate unseen samples according . .
to a learned joint probability distribution in the high- 1.2.6 Generative Adversarial Networks 17
dimensional space. They find wide applications in density 1.2.7 Generative Moment Matching Networks 18
estimation, variational inference, representation learning
and more. Deep generative models and associated tech- 1.3 Summal‘y 20
niques (sqch as dlffer(‘entlable programing and repljesenta- 5 PHYSICS APPLICATIONS 21
tion learning) are cutting-edge technologies physicists can
learn from deep learning. 2.1 Variational Ansatz 21
This note introduces the concept and principles of gen- R 1; . G

erative modeling, together with applications of modern 2.2 enormalization Gr oup 22
generative models (autoregressive models, normalizing . 3 Monte C arlo Upd ate PI'OpOS als 29
flows, variational autoencoders etc) as well as the old ones ) ) )
(Boltzmann machines) to physics problems. As a bonus, 2.4 Chemical and Material D681gn 23
this note puts some emphasize on physics-inspired gen- : :
erative models which take insights from statistical, quan- 25 Quantum Information Science and Beyond 24
tum, and fluid mechanics. 3 RESOURCES 25

The latest version of the note is at
http://wangleiphy.github.io/. Please send comments,

suggestions and corrections to the email address in below. BIBLIOGRAPHY 26



Ab-initio study of quantum matters at finite T
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The classical variational free-energy approach

Gibbs-Bogolyubov-Feynman variational principle

F = de p(x) [kBT Inp(x) + H(x)] > —kzTInZ
| |

@ entropy Cnergy

Difficulties in Applying the Variational
deep

generative
models !

Principle to Quantum Field Theories!

Richard P. Feynman

itranscript of Professor Feynman's talk in 1987



Generative modelin Statistical physics
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Known: samples Known: energy function
Unknown: generating distribution Unknown: samples, partition function
Maximum likelihood estimation Variational free energy
‘learn from data” “learn from Hamiltonian”
Z = - —x~dataset lnp(x)] F = [kBT In p(x) -I-H(.X’)]

x~p(x)



Deep variational free-energy approach

Use deep generative models as the variational density

F= E |kgTInp(x)+ H(x)

xX~p(x)
| |
= entropy energy
\/ Tractable entropy \/ Direct sampling

\/ Turning sampling problem to an optimization problem

Y /4

”"‘“‘0"‘9""0

leverages the deep learning engine:




Variational free-energy in the context

E, Han,Zhang, Physics Today 2020

Macroscopic ' Turbulence models !
i Reynolds stress |
h o __IfZTZTZZZZZZ;-~°
| Continuum mechanics |
! Constitutive relation |
Mesoscopic ' Boltzmann equation:
S 1 Moment closure
' Coarse-grained !
' molecular dynamics !
ms ' Free-energy surface,
| . . |
| kinetic operator !
< Microscopic Classical molecular
H dynamics
. Potential energy surface, .
. nuclear quantum dynamics,
ns . Density functional theory .
Hartree—Fock method
Density or orbital .
functional approximation !
PS | ro-7- - 'L: ------------------- ST
. Schrodinger equation |
: Many-electron '
: wavefunction :
fS _____________________
A nm um mm m km

Application Model Data Obijective
MD potential 3N-dim DFT energy/
energy surface| function force
Generalization
DFT xc 3-dim QMC/
functional functional CCSD/...
Variational N-di
arlationa 3 , . No Optimization
free-energy functional

more fundamental, more difficult, more limited




Generative models and their physics genes

Tensor
Networks

Goodfellow,

NIPS tutorial, 1701.00160
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Generative modeling with normalizing flows

Q WaveNet 1600.03490 1711.10433

https:/deepmind.com/blog/wavenet-generative-model-raw-audio/ .
https:/deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/ https:/blog.openai.com/glow



https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/

Normalizing flow in a nutshell

latent space | /' (z)

K physical

p(x)

\/

v .

V/ >

. \/ >
with 1 neuron / space

Y >

/ -

\ X :

“neural net”




Normalizing Flows

Change of variables X < Z with deep neural nets

oz Review article 1012.02762

p(x) — ./V(Z) det (E) ‘ Tutorialm@mmmm@m

composable, differentiable, and invertible mapping between manifolds

4 )

z~ N(Z)

=
Neural Net

\_ J

Learn probability transformations with normalizing flows

Got this name in Tabak & Vanden-Eijnden, Commun. Math. Sci. ‘10



Architecture design principle

Composability

Balanced

inductive bias C ll.'l'

det (Z—i) Autoregressive Neural RG Continuous flow




Example of a building block

Forward arbitrary Z< Z>
neural nets
RPN -~ N
Xs =250 e’%<) 4 1H(zZ<) @
Inverse C

®

Z> = (X¥s — Hx<)) O e~ S¥<) K /

{ ©

LLog-Abs-Jacobian-Det X X

In |det (?9_;) = Zi [S(Z<)]i Real NVP, Dinh et al,1605.08803

Turns out to have surprising connection Stormer—Verlet integration (later)



Normalizing flow in physics

Qo center-of-mass
E motion
o
Q coupled = <
oscillators E ‘_O_
=5 hs
relative N(z
px) Z motion ()




Neural Network Renormalization Group
() L LW, PRL 58

Z = g_l(x) [ J ¥ lio12589/NeuralRG
x x Collective
A f ot '/ variables
Probabilitv Transformation [ atent

0 :
hlp(x) =InA(z) — In |[det (a—x) ‘ variables
Z

—
{ M M M J\ Bijective

x = 2(2) neural nets

Inference
9] BIDUDS)

Correlated classical variables



Neural network renormalization group

githu

Li, LW, PRL 18

b.com/lio12589/NeuralRG

/

Bijective
neural net

L per site

Exact free energy lower bound

Onsager 1044

O
5

o
N

-
N

spin structure factor
o =
= w

O
o

T**

10 102 103

epochs

<4 ®Wm & A A N W Em & E HE =Em N u N

Accelerated sampling w/
learned collective variables

¢ HMC in physical space
HMC in latent space

10 20 30 40
HMC steps

50



Quantum origin of the architecture

0) Multi-Scale
. . Entanglement

Renormalization

Ansatz

Entangled qubits



Connection to wavelets

Nonlinear & adaptive generalizations of wavelets
Guy, Wavelets & RG19g9g+ White, Evenbly, Qi, Wavelets, MERA, and holographic mapping 2013+



Normalizing flow in physics

Molecular simulation Lattice field theory Gravitational wave detection

T

W acabyihr i1 Wa
SN ..,‘ R T,
AERF TN, | »
oo o) Celin
‘ Y B2 Y A

Noe et al, Science ‘19 Albergo et al, PRD ‘19 Green et al, MLST "1
Wirnsberger et al, JCP ‘20 Kanwar et al, PRL 20 Dex et al, PRL ‘21



Continuous normalizing flows

( 8x) ‘
det [ —
974

Consider infinitesimal change-of-variables Chen et al1806.07366

Inp(x) =InA(z) — In

ov
X=ZT¢&y lnp(x)_hl/’/(Z)z—hl d@t(1+€a—)‘
<,
e — 0 t:\/t=()
dx dl 1
— =V np(x):—v.v



Fluid physics behind flows

Q Zhang, E, LW 1800.10188
— v ¥ ¥ wangleiphy/MongeAmpereFlow
. /
S o dlInp(x,1) d 0 “material
e o~ — — V - VY — =—4v- V . .
P . ~ dt dt ot derivative”
op(x, 1)

——+V; e, Hv| =0

D EE——

Simple density Complex density



Neural Ordinary Differential Equations

Residual network ODE integration

LY. $-|
O O
O +H
a v
o)
— d
: :
O =
o
; :
M @)

X, =X,+vx,) dx/dt = v(x)
Harbor el al 1705.03341
Lu et al 1710.10121,

Chen et al, 1806°O7366 E Commun. Math. Stat 17'...



Neural Ordinary Differential Equations

Residual network ODE integration

144 /

1 '
0= =570 5 0=—¢ 0 5
Input/Hidden/Output Input/Hidden/Output
X =X, T+ VX —
t+1 t ( t) dx/dt = v(x) Harbor el al 1705.03341

Lu et al 1710.10121,

Chen et al, 1806.07306 E Commun. Math. Stat 17'...



Continuous normalizing flows
implemented with NeuralODE

Chen et al, 1806.07366, Grathwohl et al 1810.01367

Target Densit Samples Vector Fleld
f;\“
e 77 i)
~ A

Continuous normalizing flow have no structural

=

constraints on the transformation Jacobian



Tutorial: Classical Coulomb gas in a harmonic trap

1 N
Z 2 : 2
— ‘xi — xj | .
1<J !
304 ___
2
Bolton et al, Sup. Micro '93
28 171
X 3 e ‘ﬁ“}
P e._o
26 -

17.0 Lo~

f Efof

163+,

N
N

variational free energy
N
N

. s e ey s ———— — ——
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20 -

18 -

0 100 200 300 400 500
epochs

https:/github.com/fermiflow/FermiFlow/blob/github/classical_coulomb_gas.ipynb




Training: Monte Carlo Gradient Estimators

Review: 1000.10052

V 0 |= X~pg [f(x )] Reinforcement learning

Variational inference
Variational Monte Carlo

Score function estimator (REINFORCE) Variational quantum algorithms

VoExp, f)| = Ex~py fx) Veln];@(x)]

Pathwise estimator (Reparametrization trick) X = gg(Z)

Vg-:x,vpe [f(x)] — -:ZN/V(Z) [Vef (89(1))]




10.1 Guidance in Choosing Gradient Estimators

With so many competing approaches, we offer our rules of thumb in choosing an estimator, which
follow the intuition we developed throughout the paper:

If our estimation problem involves continuous functions and measures that are continuous
in the domain, then using the[pathwise estimator }s a good default. It is relatively easy to
implement and a default implemenftation, one without other variance reduction, will typically
have variance that is low enough so as not to interfere with the optimisation.

If the cost function is not differentiable or a black-box function then the score-function or the

measure-valued gradients qre available. If the number of parameters is low, then the measure-

valued gradient will typically have lower variance and would be preferred. But if we have a
high-dimensional parameter set, then the(score function estimator]should be used.

If we have no control over the number of times we can evaluate a black-box cost function,
effectively only allowing a single evaluation of it, then the score function is the only estimator
of the three we reviewed that is applicable.

The score function estimator should, by default, always be implemented with at least a basic
variance reduction. The simplest option is to use a baseline control variate estimated with a
running average of the cost value.

When using the score-function estimator, some attention should be paid to the dynamic range
of the cost function and its variance, and to find ways to keep its value bounded within a
reasonable range, e.g., transforming the cost so that it is zero mean, or using a baseline.

For all estimators, track the variance of the gradients if possible and address high variance by
using a larger number of samples from the measure, decreasing the learning rate, or clipping
the gradient values. It may also be useful to restrict the range of some parameters to avoid
extreme values, e.g., by clipping them to a desired interval.

The measure-valued gradient should be used with some coupling method for variance reduc-
tion. Coupling strategies that exploit relationships between the positive and negative compo-
nents of the density decomposition, and which have shared sampling paths, are known for the
commonly-used distributions.

If we have several unbiased gradient estimators, a convex combination of them might have
lower variance than any of the individual estimators.

If the measure is discrete on its domain then the score-function or measure-valued gradient
are available. The choice will again depend on the dimensionality of the parameter space.

In all cases, we strongly recommend having a broad set of tests to verify the unbiasedness of
the gradient estimator when implemented.

1000.10052
VH [EXNPH [f(X)]

When to use which ?

More discussions

Roeder et al, 1703.009194
Vaitl et al 2206.09016, 2207.08219



A few words about tooling

€% Zygote

O PyTO rch TensllrFlow D SciML fj/ j

HIPS/autograd theano

Y.

'\ ‘.
' /V /[ 4

V' / [/ ,
WY W

Keras

Differentiable programming frameworks



Autoregressive model
p(x) = p(x)pOe | x)p(x3 | X1, X))+
Language: Casual transformer 1706.03762 Speech: WaveNet 1609.034909

“... quick brown fox jumps..”

\\\:i\\li;;;;?/;gmmmL.J

Image: Pixel CNN 1601.06759

O O

020 090
iy e 0,0
- G-—-——90 O

O O
0% 0209
ohde 0,0
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k. xercise

Wait, Isn’t WaveNet a normalizing flow?

~
0

¥

Hint: read Papamakarios et al,1705.07057
and van den Oord et al,1711.10433
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Free Energy
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Variational autoregressive networks

Sherrington-Kirkpatrick spin glass

— Exact

NMF
O Bethe
e VAN

Conventional approaches

Naive mean-field

factorized probability ¥ (%) = Hp (x;)
l

Bethe approximation
pairwise interaction

plx) = Hp(x) M=

(i J)EE

Variational autoregressive network

pe) = | | ptx1x.)

l
Wu, LW, Zhang, PRL 19

i

thub.com/wdphyvi6/stat-mech-van

(x )p(x )



Implementation: autoregressive masks

O— X,

A Masked Autoencoder
Xy |
Germain et al, 1502.03500
A3
p(x;) = Bern(x,) p(x, | x;) = Bern(x,) p(x3]x1,x,) = Bern(x;)

Other examples: Pixel CNN, van den Oord et al, 1601.06759 Casual transformer, 1706.03762
Other ways to implement autoregressive models: recurrent networks



How about quantum systems ¢



Quantum-to-classical mapping

EEEEEEEEEEEEEE ) di1-dim
uuam““_l spacetime integral
Mechanics

and Path 2= = [t

Integrais

|11Lﬁ\“

However, the “weight”
may not be positive definite.

Sign problem!




The quantum variational free-energy approach

Gibbs-Bogolyubov-Feynman-Delbriick-Moliere variational principle

min Flp] = kzT Tr(pInp) + Tr(Hp) @& @ @

s.t. Tip=1 p>0 pi=p (x|plx)=(—)(Px|p|x)

E.xercise Exercise

Prove Flpl > —kzgT'InZ Think about how to solve the

where Z = Tr(eHkT) quantum Coulomb gas problem
using this principle.

Search “Quantum relative entropy” on wikipedia



Density matrix

p= ) u,| ¥, (¥,
e ~

Quantum states ¥ (x) = (x|¥,) Classical probability 0 < pu, < 1

How to represent them ??
Use two deep generative models !!



“Square root” of a normalizing flow

4P

VY (x) = () |det 8_
ox

Base Jacobian of
states the flow

Particle
coordinates

The flow implements a learnable many-body unitary transformation

hence the name “neural canonical transformation” a classical generalization of Li, Dong, Zhang, LW, PRX ‘20



Feynman’s backflow in the deep learning era
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wavefunction for liquid Helium

— xi+ Z 7]( ‘xi _ xj ‘ ) (xj _ xi) Feynman & Cohen 1956
JFI

@ Backflow can be made unitary (f we track its Jacobian)

Behrmann et al, 1811.009935
Chen et al, 1006.02735

@ Backflow is an equivariant residual flow

Equivariant
neural net



Feynman’s backflow in the deep learning era

Equivariant
neural network
Equivariant
neural network

-
H;"
:O
¢ 2
= Q)
C =
= 3

=

Deep residual networks can be regarded as
discretization of a continuous dynamics

Taddei et al, PRB ‘15 E Commun. Math. Stat 17, Harbor el al 1705.03341, Lu et al 1710.10121, Chen et al, 1806.07366



Fermi Flow

Xie, Zhang, LW, 2105.08644, JML "22

github.com/fermiflow

Continuous flow of electron density in a quantum dot


http://github.com/fermiflow/

E.xercise

a

Tr(plnp) = [E n [ln ,un]

n~u



Applications

Uniform electron gas Dense hydrogen
Hedin Phys. Rev. 1965 Radiat et al, Extremes, 2020
” 1200 ; ; T
g 1.20  g015 Molecular \
5 1000 Fluid \
> 115 c
8 soof
O <
S — o
'ooﬁ 4’,‘. glq_') E
<« @@ o9 ® 600}
‘-.9 .‘99' D) : :q_,
wast particle " o
% P s £
"(";_3, | F 400 |
g 0.85
7 200
0" S Il
% | " |
0 100 200 300 400 500

Pressure (GPa)

Xie, Zhang, LW, arXiv '22

1 to 1000: model architecture based on physics, pretraining, large scale optimization...



Triumph of condensed matter physics

Semiconductors

Metal

Insulators



Uniform electron gas

Why metal is metal ?

N 2\72 r ¢
h Vl € \) f O

H=— + Y ———— /e,

=1

r, of typical metals, Richard Martin, Electronic structure

Z = Z=2 Z=1 Z=2 Z=3 Z=4
Li 3.23 Be 1.88 B C 131
Na 3.93 Mg 2.65 Al 2.07 Si 2.00
K 4.86 Ca 3.27 Cu 2.67 Zn 231 Ga 2.19 Ge 2.08
Rb 5.20 St 3.56 Ag 3.02 Cd 2.59 In 2.41 Sn 2.39
Cs 5.63 Ba 3.69 Au 3.01 Hg 2.15 Tl Pb 2.30

Metal density 2 < r, < 6: Coulomb repulsion
is nonperturbative compared to kinetic energy
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Landau fermi liquid theory

62

Vs

Low energy excited states labeled in
° the same way as the ideal Fermi gas

K — {kl’kZ’ ,kN}

Physics happens around the Fermi surface with strongly constrained phase-space



Have we known everything about a Fermi liquid ?

No!



Quasi-particles effective mass
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A fundamental quantity appears in nearly all physical properties of a Fermi liquid

N(0) S Cy A

Density of states entropy specific heat magnetic susceptibility



Quasi-particles effective mass of 3d electron gas

Hedin Phy. Rev. 1965 Azadi, Drummond, Foulkes, PRL 2021
1.2 -@- GWpsa(RPA)
ﬁ @ -« GWp(RPA)
| ’ -~ GWosa(Gy)
1.1 GWp(G)
: —8— GWp(G.&G-)
] — GWOSA(G+&G—)
1.0 -¥-- GW-SS
| M- GW-SRPA
X | X VDMC-Para)
S * 09 ® DMC-Para
1.05 E | Y DMC-Ferro
0.8-
0.7
0.6

o O 1 2 3 4 5 6 7 8 9 10
r re

> 50 years of conflicting results !



Two-dimensional electron gas experiments

week ending
VOLUME 91, NUMBER 4 PHYSICAL REVIEW LETTERS 25 JULY 2003

Spin-Independent Origin of the Strongly Enhanced Effective Mass
in a Dilute 2D Electron System

m*/m> 1
A. A. Shashkin,* Maryam Rahimi, S. Anissimova, and S.V. Kravchenko

Physics Department, Northeastern University, Boston, Massachusetts 02115, USA

V.T. Dolgopolov
Institute of Solid State Physics, Chernogolovka, Moscow District 142432, Russia

) - 0 0 |
T. M. Klapwijk
Department of Applied Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands \ o~

(Received 13 January 2003; published 24 July 2003)

k endi
PRL 101, 026402 (2008) PHYSICAL REVIEW LETTERS 11 JULY 2008
Effective Mass Suppression in Dilute, Spin-Polarized Two-Dimensional Electron Systems m=*/m< 1

Medini Padmanabhan, T. Gokmen, N. C. Bishop, and M. Shayegan

Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
(Received 19 September 2007; published 7 July 2008)

Layer thickness, valley, disorder, spin-orbit coupling...



m*/m =

)3
0w

m* from low temperature entropy

Eich, Holzmann, Vignale, PRB ‘17

kg m* T
S = —_—
_ 3 m Ty
T ok
C & - interacting electrons
m \)
$ — T —
144/ SO ~

noninteracting electrons

Not an easy task due to the lack of reliable methods
for low-temperature electron gases with intermediate density

computing specific heat also works, but that often requires differentiating (noisy) energies



Deep generative models for
the variational density matrix

p = ZP(K)|‘PK><‘PK|

K\

Normalized probability Orthonormal
distribution many-electron basis

@ ZP(K) =1 @ (P | ¥g) = 51{,1('
K

There will also be interesting twists for physics considerations



@ Autoregressive model for p(K)
Fermionic p(K) = p(kl)p(k2 | kl)p(k3 | kl’ k2)

occupation Wu, LW, Zhang, PRL ‘19
in k-space “... quick brown fox jumps ...”

K = {ky.ky, ....ky) '\\%mes\ )

# of particles # of words qu iC k
Momentum cutoff Vocabulary brown f OX
Ent Negative log- Jumps

HHOPY likelihood

Twist: we are modeling a set of words with no repetitions and no order

We use masked casual self-attention Vaswani et al 1706.03762; Alternative solution: Hibat-Allah et al, 2002.02793, Barrett et al, 2109.12606



@® Normalizing flow for | W)

Electron Y C D

coordinates

1
: 2
det(e™i )
(Y K(x) — det —
N! ox
Jacobian of the
Orthonormal many-body states transformation

Twist: the flow should be permutation equivariant for fermionic coordinates

we use FermiNet layer Pfau et al, 1009.02487



The objective function

1 [ (x| H|W¥g) ]
F= [E —Inp(K) + -
K~p(K) ﬁ X~ ‘ (x| V) ‘ ’ <x ‘ ‘PK>
Boltzmann Born
distribution rule

Jointly optimize | W) and p(K) to minimize the variational free energy



Limiting case 1: Interacting electrons at T=0

K = (k) L =

l<x|H\TK>]
x~|‘I’K(x)|2 (x| Pk)

2(K) = 1 only for the dlosed Reduces to ground state variational Monte Carlo

shell momentum configuration

with a single normalizing flow wavefunction

c.f. neural network states for uniform electron gases: Wilson et al 2202.04622, Cassella et al 2202.05183, Li et al, 2203.15472



Limiting case 2: Noninteracting electrons at T>0
R =

] hk?
F= [ l—lnp(K) + Z ]
K~p(K) | p
K = {ki}

A classical statistical mechanics problem:

Noninteracting fermions in canonical ensemble

(Not as trivial as you might think) Borrmann & Franke, J. Chem. Phys. 1993

Distribute N fermions in M momenta to minimize the free energy



Benchmarks on spin-polarized electron gases

3D electron gas T/ Tr=0.0625 2D electron gas T=0
—0.085
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> >
&= £5 —0.275-
~ —0.095 ~
—0.280-
—0.100 1 Brown et al, PRL ‘13 —0.285- Tanatar, Ceperley, PRB, ‘89
restricted PIMC N=33, rs=10 Slater-Jastrow VMC N=37, rs=5

10!
epochs epochs




37 spin-polarized electrons in 2D @ T/ Tr=0.15
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Effective mass of spin-polarized 2DEG

1.0

0.9-

0.3~

0.2

k
!
|
!
\

Perturbative theory
valid for r, < 1

Diffusion Monte Carlo

extrapolated to N = oo
Drummond, Needs, PRB 13

More pronounced suppression of m*in the low-density strong-coupling region



Experiments on spin-polarized 2DEG

Asgari et al, PRB ‘09

i

G*+/Dyson ——
G't/OSA ——

] |

5 10 15

m* (a.u.)

Drommond, Needs, PRB’13

e = GW,KO, SC [31]

I ' I ¥
x DMC (pres. work)
+ DMC [20]
Exp. [1]
- = GW, KO, OSA [31]

Quantum osci
Padmana

Go

lation experiments
ohan et al, PRL 08

<men et al, PRB ‘o9



Entropy measurement of 2DEG

ARTICLE

Received 16 May 2014 | Accepted 27 Apr 2015 | Published 23 Jun 2015

Strongly correlated two-dimensional plasma
explored from entropy measurements

A.Y. Kuntsevich?, Y.V. Tupikov3, V.M. Pudalov"? & L.S. Burmistrov®*

05 o |
Maxwell relation — | =—\|— e o
an T a T 7 1 \@f_\j&g\%& *A*A-u«‘.“ v L ?7};3 K

Electron density (10" cm™)

0S/on
N
/!ZI

Next, directly compare computed entropy with the experiment



Why now ?

Variational free-energy is a fundamental principle for T>0
quantum systems

However, it was under-exploited for solving practical problems
(mostly due to intractable entropy for nontrivial density matrices)

Now, it is has became possible by integrating recent advances in
generative machine learning



FAQS

Where to get training data ?
No training data. Data are self-generated from the generative model.

How do we know 1t is correct ?

Variational principle: lower free-energy is better.

Do I understand the “black box” model ?

a) I don’t care (as long as it is sufficiently accurate).

1
' : Elom] = E €Oy + — S dmy,
b) In p(K) contains the Landau energy functional = Eot 2,60+ 2, fuadmon,

< x illustrates adiabatic continuity.



Discussions

Can machines discover physical law ?

Distilling Free-Form Natural Laws . ... Machines Fall Short of
from Experimental Data Science ‘09 Revolutionary Science

C

Detected Invariance:

In the Report by Schmidt and Lipson, a
machine deduces the equation behind a sample
of chaotic motion. The discovery of determinis-

LIZ(T. C m,)®,* +('23Lz;f'))f i tic chaos 1s an example of true Kuhnian revolu-

m,L L @ @, cos(f, —6,) - . : C

19,61, (. +m, )cos 8 — tl.OIl, 01Ehers were 1ts application to }mexpected
19.6m,L.cos 0, tields like meteorology and population biology.

In the constrained problem 1n the Report, the

relevant physical law and variables are known

in advance; 1t 1s hardly a template for the
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1. P. W. Anderson, Science 177, 393 (1972). Creatlve, eXPIOTatOI'y nature Oftrue SCICNCC.

2. E. Noether, Nachr. d. Konig Gesellsch. d. Wiss. zu PHILIP W. AN DERSONl* AND ELIHU ABRAHAMSZ
Gottingen, Math-Phys. Klasse 235 (1918).

i le - fE2022R A RElg < ERYPEE: "< TAl tor Sciencei] JL)Z E
https:/mp.weixin.qg.com/s/0L.7G7ByazbnsgrXDToPyrw




Discussions

Can machines discover mathematics?

@ Timothy Gowers

An interesting paper by Adam Wagner appeared on
arXiv a couple of days ago (thanks to Imre Leader for

drawing my attention to it), which uses reinforcement

learning to find non-trivial counterexamples to several
conjectures in graph theory. 1/

o n = o R - I P — -
. / i ' ¥ \ of ; \ | | o f o
a a - s ol [ om ol F O ) f 3 | g Y A
[ MU JL ML T . \ J£&L | £ )1 0)
u : Wl i J dam Moz i e 1 I W I\ eee

Search counter-examples to
reject conjectures

Nature 600, 70 (2021)

Advancing mathematics by guiding human
intuition with Al

Alex Davies & Petar Veli€ékovié, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad

Tomaseyv, Richard Tanburn, Peter Battaglia, Charles Blundell, Andras Juhasz, Marc

Lackenby, Geordie Williamson, Demis Hassabis & Pushmeet Kohli

Guide human mathematician
to propose conjectures



2204.01467

On scientific understanding with artificial intelligence
Mario Krenn,'' % 3:% * Robert Pollice,? 3 Si Yue Guo,? Matteo Aldeghi, 3% Alba

Cervera-Lierta,> 3 Pascal Friederich,? 3 ° Gabriel dos Passos Gomes,? 3 Florian Hise,? 346
Adrian Jinich,” AkshatKumar Nigam,? 3 Zhenpeng Yao,2 %210 and Aldn Aspuru-Guzik® 34 111

Three Dimensions of Computer-Assisted Scientific Understanding

Computational Resource of Agent of
Microscope Inspiration Understanding
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Discussions

Do we understand what is the machine doing ?

.................
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Yes/No/Well, do | have to ?/I don’t care...



Discussions

David J. C. MacKay

Is this all fitting ?

Information Theory, Inference,
and Learning Algorithms

AL IR '3@‘{ !

N g\ e s One of my students, Robert, asked:
\ ,' ". Q‘\ﬂ‘» / #
) ’1\ ’ ’/ ". : *‘ f Maybe I'm missing something fundamental, but supervised neural
* "f i ‘9 ¢ 4 : . .
| ,s,,- networks seem equivalent to fitting a pre-defined function to some

ogiven data, then extrapolating — what’s the difference?

I agree with Robert. The supervised neural networks we have studied so far
are simply parameterized nonlinear functions which can be fitted to data.

True for supervised learning, which is hugely successful for real-world applications.
But that is not the whole story, especially for scientific applications.



“Using Al to accelerate scientific discovery” 2021, by Demis Hassabis, co-founder and CEO of DeepMind

E

What makes for a suitable probl

Massive combinatorial Clear objective function Either lots of data

search space (metric) to optimise and/or an accurate and
against efficient simulator




Thank you!

Deep generative model-based variational free-energy calculations

Dian Wu Pan Zhang Hao Xie Linfeng Zhang

1802.02840, PRL 18
1809.10000, PRL ‘19
2105.08044, JML "22
2201.031560

lio12589/NeuralRG
wdphy16/stat-mech-van
fermiflow/fermiflow

fermiflow/CoulombGas




