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What has changed ? 

What has not ?

AI for science, 24 years ago



A hint from the deep learning book

“Part III is the most important for a researcher
—someone who wants to understand the 
breadth of perspectives that have been 
brought to the field of deep learning, and 
push the field forward towards true artificial 
intelligence.” 

A hint from the Deep Learning Book



or
p(x, y)y = f(x)

p(y |x)

Deep learning is more than fitting!

Generative learningDiscriminative learning
Deep learning is more than fitting!





Generated arts

https://www.christies.com/Features/A-collaboration-between-two-artists-one-human-one-a-machine-9332-1.aspx

can deal practically with approximationmethods
for the graph isomorphism problem.
Additionally, improved sequence generation

models are possible with the ability to read and
write to memory (69). These approaches demon-
strate better ability for learning long- and short-
termpatterns.Morework is neededonRiemannian
optimization methods that exploit the geometry
of latent space. Structured architectures such as
multilevel VAE (85) offer newways of organizing
latent space and are promising research direc-
tions. New approaches also lie in inverse RL,
geared toward learning a reward or loss function
(86). Research in this direction will allow for the
discovery of reward functions associated with
different materials discovery tasks.

Outlook

Inverse design is an important component of the
complex framework required to designmatter at
an accelerated pace. The tools for inverse design,
especially those stemming from the field of ma-
chine learning, have shown rapid progress in
the last several years and have allowed chemical
space to be framed into probabilistic data-driven
models. Generativemodels produce large numbers
of candidate molecules, and the physical realiza-
tions of these candidates will require automated
high-throughput efforts to validate the genera-
tive approach. The community has yet has to
show more than a few examples of successful

closed-loop approaches for the design of matter
(87). The blurring of the barriers between theory
and experiment will lead to AI-enabled auto-
mated laboratories (88, 89).
The combination of inverse design tools with

active learning approaches such as Bayesian
optimization (90, 91) can enable a model that
adapts as it explores chemical space, which
allows for expanding a model in regions of
high uncertainty and enabling the discovery
of regions of molecular space with desirable
properties as a function of composition. Active
learning in the space of objective functions could
lead to a better understanding of the best rewards
to seek while carrying out machine learning.
As seen, central to machine learning meth-

odologies is the representation of molecules;
representations that encode the relevant physics
will tend to generalize better. Despite consider-
able progress, much work remains. Graph and
hierarchical representations of molecules are an
area requiring further study.
The integration of machine learning as a new

pillar of knowledge in the curricula of chemical,
biochemical, medicinal, and materials sciences
will allow for a more rapid adoption of themeth-
odologies summarized in this work.
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Fig. 4. Schematic representation of several architectures found in
generative models. RNNs are used for sequence generation. The VAE
shows the semi-supervised variant, jointly trained by molecules (x) and
properties (y). Latent space is denoted with Z, and latent vectors with z.
In the GAN setting, the noise eventually acquires structure via the

adversarial training. Reinforcement learning (RL) shows a policy
gradient with MTCS in the task of SMILES completion with
arbitrary rewards. Shown in the lower right are hybrid architectures
such as AAE (adversarial autoencoders) and ORGAN, which represents
GAN and RL.
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Fig. 4. Schematic representation of several architectures found in
generative models. RNNs are used for sequence generation. The VAE
shows the semi-supervised variant, jointly trained by molecules (x) and
properties (y). Latent space is denoted with Z, and latent vectors with z.
In the GAN setting, the noise eventually acquires structure via the

adversarial training. Reinforcement learning (RL) shows a policy
gradient with MTCS in the task of SMILES completion with
arbitrary rewards. Shown in the lower right are hybrid architectures
such as AAE (adversarial autoencoders) and ORGAN, which represents
GAN and RL.
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p(x) ≥ 0x

Normalization ? Sampling ?

∫ dx p(x) = 1 𝔼
x∼p(x)

So, why do we need “generative models” ?

So, what is the fuss ?
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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Ab-initio study of quantum matters at finite T

H = − ∑
i

ℏ2

2me
∇2

i − ∑
I,i

ZIe2

|RI − ri |
+

1
2 ∑

i≠j

e2

|ri − rj |
− ∑

I

ℏ2

2mI
∇2

I +
1
2 ∑

I≠J

ZIZJe2

|RI − RJ |

Hamburg, Germany;25,26 and the upcoming FAIR facility at GSI
Darmstadt, Germany.27,28 A particularly exciting application is inertial
confinement fusion18–20 where electronic quantum effects are impor-
tant during the initial phase. Aside from dense plasmas, many con-
densed matter systems exhibit WDM behavior – if they are subject to
strong excitation, e.g., by lasers or free electron lasers.29,30

The behavior of all these very diverse systems is characterized by,
among others, electronic quantum effects, moderate to strong
Coulomb correlations, and finite temperature (FT) effects. Quantum
effects of electrons are of relevance at a low temperature and/or if mat-
ter is very highly compressed, such that the temperature is of the order
of (or lower than) the Fermi temperature (for the relevant parameter
range, see Fig. 1 and, for the parameter definitions, see Sec. II).

An important role in the theoretical description of quantum plas-
mas is being played by the quantum kinetic theory.31–38 During the last
25years, improved and generalized quantum kinetic equations have been
derived starting from reduced density operators, e.g., Refs. 39 and 40, or
nonequilibrium Green functions (NEGFs);41–44 for text books, see Refs.
40 and 45–47 and references therein. Another direction in quantum
plasma theory is first principles computer simulations such as quantum
Monte Carlo (QMC),4,48–55 semiclassical molecular dynamics (SC-MD)
with quantum potentials, e.g., Ref. 56, electronic force fields,57,58 and vari-
ous variants of quantumMD, e.g., Refs. 59–63.

A recent breakthrough occurred with the application of
Kohn–Sham density functional theory (DFT) simulations because
they, for the first time, enabled the self-consistent simulation of realis-
tic warm dense matter that includes both plasma and condensed mat-
ter phases, e.g., Refs. 64–66. Further developments include orbital-free

DFT (OF-DFT) methods, e.g., Refs. 67 and 68, and time-dependent
DFT (TD-DFT), e.g., Ref. 69. In DFT simulations, however, a bottle-
neck is the exchange–correlation (XC) functional for which a variety
of options exist, the accuracy of which is often poorly known, what
limits the predictive power of the method. This requires tests against
independent methods such as quantum Monte Carlo simulations for
the electron component4 or against electron-ion quantum Monte
Carlo.70–72 Also, the use of finite-temperature functionals was shown
to be important73,74 when the XC-contribution is comparable to the
thermal energy, see Ref. 75 for a topical discussion and Ref. 76 for an
extensive investigation of hydrogen. One goal of this paper is to pre-
sent an overview of these results and discuss future research
directions.

Motivated by time-resolved experiments, e.g., Ref. 77, the theo-
retical description of the nonequilibrium dynamics of warm dense
matter is attracting increasing interest, e.g., Ref. 78. Time-dependent
x-ray Thomson scattering was modeled in Refs. 79 and 80. Here, the
powerful methods are quantum kinetic equations81,82 and nonequilib-
rium Green functions, e.g., Refs. 83 and 84.

All of the above-mentioned simulation approaches are complex
and require substantial amounts of computer time. At the same time,
the above-mentioned simulations are currently only feasible for small
length scales and simulation durations. Therefore, simplified models
that would allow to reach larger length and time scales are highly
desirable. Possible candidates are fluid models for quantum plasmas
that are obtained via a suitable coarse graining procedure, as in the
case of classical plasmas. Quantum hydrodynamics (QHD) models for
dense plasmas have experienced high activity since the work of
Manfredi and Haas.85,86 However, their version of QHD involved sev-
eral assumptions, the validity of which remained open for a long time.
Corrections of the coefficients in the QHD equations were recently
obtained in Refs. 87 and 88, and a systematic derivation of the QHD
equations from the time-dependent Kohn-Sham equations is given in
Ref. 89. We also mention a recent alternative approach that is based
on the computation of semiclassical Bohm trajectories.90

The goal of this paper is to present a summary of some of the
recent ab initio simulations of the electron gas under warm dense mat-
ter conditions, including thermodynamic functions and local field cor-
rections developments. Furthermore, we summarize recent progress in
the field of QHD for quantum plasmas. In addition to an overview of
recent developments, we present new results for (a) the application
of the finite-temperature exchange correlation free energy in DFT sim-
ulations of dense hydrogen and carbon (Sec. IV); (b) for the dynamic
density response function, vðx; qÞ (Sec. IIIC); (c) for the screened
potential of an ion in a correlated plasma, based on the ab initioQMC
input for the local field correction (Sec. VF); and (d) on the dispersion
of ion-acoustic modes in a correlated quantum plasma (Sec. VG).

This paper is organized as follows: in Sec. II, we recall the main
parameters of warm dense matter and the relevant temperature and
density range. Section III presents an overview on recent quantum
Monte Carlo simulations followed by finite-temperature DFT results
in Sec. IV. WDM out of equilibrium and its treatment via a QHD
model is discussed in Sec. V.

II. WARM DENSE MATTER PARAMETERS
Let us recall the basic parameters of warm dense matter:40,89 the

first are the electron degeneracy parameters h ¼ kBT=EF and

FIG. 1. Density-temperature plane with examples of plasmas and characteristic
plasma parameters. ICF denotes inertial confinement fusion. Metals (semicon-
ductors) refer to the electron gas in metals (electron–hole plasma in semicon-
ductors). Weak electronic coupling is found outside the line Ceff ¼ 0:1, cf.
Eq. (4). Electronic (ionic) quantum effects are observed to the right of the line
v ¼ 1 (vp ¼ 1). The coupling strength of quantum electrons increases with rs
(with decreasing density). Atomic ionization due to thermal effects (due to pres-
sure ionization) is dominant above (to the right of) the red line, aion ¼ 0:5, for
the case of an equilibrium hydrogen plasma.91 The values of vp and rs refer to
the case of hydrogen. Figure modified from Ref. 89.
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evolution of the walkers, as derived from Eq. (23), can be
found elsewhere.45,67 The form of q̂ is known exactly at infi-
nite temperature (b¼ 0, q̂ ¼ 1̂), providing an initial condi-
tion for Eq. (22). For the electron gas, however, it turns out
that simulating a differential equation that evolves a mean-
field density matrix at inverse temperature b to the exact
density matrix at inverse temperature b is much more effi-
cient than solving Eq. (22), an insight that leads to the
“interaction picture” version of DMQMC39,46 used through-
out this work.

The sign problem manifests itself in DMQMC as an
exponential growth in the number of walkers required for the
sampled density matrix to emerge from the statistical
noise.67–70 Working in a discrete Hilbert space helps to reduce
the noise by ensuring a more efficient cancellation of positive
and negative contributions, enabling larger systems and lower
temperatures to be treated than would otherwise be possible.
Nevertheless, at some point, the walker numbers required
become overwhelming and approximations are needed.
Recently, we have applied the initiator approximation71–73 to
DMQMC (i"DMQMC). In principle, at least, this allows a
systematic approach to the exact result with an increasing
walker number. More details on the use of the initiator
approximation in DMQMC and its limitations can be found in
Ref. 39.

F. Applicability of the QMC methods

To conclude the discussion of Quantum Monte Carlo, in
Fig. 2, we give a schematic overview of the parameter com-
binations where the different methods can be used to obtain
results in the thermodynamic limit (for a discussion of finite-
size corrections, see Sec. V) with a relative accuracy of
DV=V # 0:003. Standard PIMC (black) is only useful for
high temperatures and low densities where fermionic
exchange does not play an important role and, therefore,
does not give access to the WDM regime. PB-PIMC (green)
significantly extends the possible parameter combinations to

lower temperature (down to h ¼ 0:5 for rs $ 1) and is avail-
able over the entire density range for h ! 2. In contrast, both
CPIMC (red) and DMQMC (blue) are feasible for all h at
small rs and eventually break down with increasing rs due to
coupling effects. Despite their apparent similar range of
applicability, it turns out that CPIMC is significantly more
efficient at higher temperature, while DMQMC is superior at
low h.

IV. SIMULATION RESULTS FOR THE FINITE SYSTEM

The first step towards obtaining QMC results for the
warm dense electron gas in the thermodynamic limit is to
carry out accurate simulations of a finite model system. In
Fig. 3, we compare results for the density dependence of the
exchange correlation energy Exc of the UEG for N¼ 33 spin-
polarized electrons and two different temperatures. The first
results, shown as blue squares, were obtained with RPIMC31

for rs $ 1. Subsequently, Groth, Dornheim, and co-work-
ers44,51 showed that the combination of PB-PIMC (red
crosses) and CPIMC (red circles) allows for an accurate
description of this system for h $ 0:5. In addition, it was
revealed that RPIMC is afflicted with a systematic nodal error
for densities greater than the relatively low value at which
rs¼ 6. Nevertheless, the FSP precludes the use of PB-PIMC
at lower temperatures and, even at h ¼ 0:5 and rs¼ 2, the sta-
tistical uncertainty becomes large. The range of applicability
of DMQMC is similar to that of CPIMC, and the DMQMC
results (green diamonds) fully confirm the CPIMC results.39,46

Further, the introduction of the initiator approximation (i-
DMQMC) has made it possible to obtain results up to rs¼ 2
for h ¼ 0:5. Although i-DMQMC is, in principle, systemati-
cally improvable and controlled, the results suggest that the
initiator approximation may introduce a small systematic shift
at lower densities.

In summary, the recent progress in fermionic QMC
methods has resulted in a consensus regarding the finite-N
UEG for temperatures h $ 0:5. However, there remains a
gap at rs % 2" 6 and h < 0:5 where, at the moment, no reli-
able data are available.

FIG. 2. Density-temperature-plane around the WDM regime. Shown are the
parameter combinations where standard PIMC (black), PB-PIMC (green),
CPIMC (red), and DMQMC (blue) can be used to obtain data in the thermo-
dynamic limit with an accuracy of DV=V # 0:003.

FIG. 3. Exchange-correlation energy of N¼ 33 spin-polarized electrons as a
function of the density parameter rs for two isotherms. Shown are results
from CPIMC and PB-PIMC taken from Ref. 51, restricted PIMC from Ref.
31, and DMQMC from Ref. 39. For h ¼ 0:5, all data have been shifted by
0.05 Hartree. In the case of DMQMC, the initiator approximation is used.

056303-5 Dornheim et al. Phys. Plasmas 24, 056303 (2017)
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Application range 

of the workhorse 


quantum Monte Carlo 

Z = Tr(e−βH)



😱 entropy energy 

F = ∫ dx p(x)[kBT ln p(x) + H(x)]

Nature minimizes free energy

Gibbs–Bogolyubov-Feynman variational principle

Difficulties in Applying the Variational 
Principle to Quantum Field Theories1 

Richard P. Feynman 

California Institute of Technology 
Pasadena, California 91125, U.S.A. 

Introduction 
I'd like to talk on some work I did on the variational principle in field theory. At one 
time I thought that the brute force method of doing arithmetic on the machines will 
never get anywhere and we will probably end with something more old-fashioned, 
i.e. some analysis plus the machines to help us with the analytic equations, and 
so I tried to do something along these lines with quantum chromodynamics. So 
I'm talking on the subject of the application of the variational principle to field 
theoretic problems, but in particular to quantum chromodynamics. 

I'm going to give away what I want to say, which is that I didn't get anywhere! 
I got very discouraged and I think I can see why the variational principle is not 
very useful. So I want to take, for the sake of argument, a very strong view -
which is stronger than I really believe - and argue that it is no damn good at all! 

Let us review why the variational principle has gotten a good reputation. Let's 
say you apply it to something like atoms or to simple problems with a small number 
of variables, using the usual analytic methods to get a quantity called the total 
energy, a quantity which is of direct physical significance. The energy levels of 
atoms are very interesting, measurable quantities and they can be calculated with 
accuracy. It was noted that if one had a wave function which had some measure 
of error, say 10 percent, then the error in the energy would be of order 1 percent. 
The error in the energy is quadratic in the error in the wave function. So, by not 
having a perfect wave function, you can still get very good values for the energy 
and that's why the variational method has gotten a good reputation. But it has 
never been a powerful way of getting, with accuracy, the wave function itself. 

Now I want to turn to the other side, the application of the variational principle 
to quantum field theory in a more or less straightforward way. So you write down 
a Hamiltonian in some kind of scheme and then you try to find a wave functional 

1 Transcript of Professor Feynman's talk, taken by the Editors and corrected by the author 

28 

 V
ar

ia
tio

na
l C

al
cu

la
tio

ns
 in

 Q
ua

nt
um

 F
ie

ld
 T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 K

A
IN

A
N

 U
N

IV
ER

SI
TY

 o
n 

01
/1

1/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

1transcript of Professor Feynman's talk in 1987 

deep 
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The classical variational free-energy approach

≥ − kBT ln Z



F = 𝔼
x∼p(x)

[kBT ln p(x) + H(x)]

Known: samples

Unknown: generating distribution

Known: energy function

Unknown: samples, partition function

Statistical physicsGenerative modeling

Maximum likelihood estimation

ℒ = − 𝔼x∼dataset [ln p(x)]
“learn from data”

Variational free energy

“learn from Hamiltonian”

Two sides of the same coin



😁 entropy energy 

Use deep generative models as the variational density 

F = 𝔼
x∼p(x)

[kBT ln p(x) + H(x)]

A deep variational free energy approach

Direct samplingTractable entropy 

Turning sampling problem to an optimization problem

leverages the deep learning engine:

Deep variational free-energy approach



more fundamental, more difficult, more limited

Variational free-energy in the context

Application Model Data Objective

MD potential 

energy surface

3N-dim 
function

DFT energy/ 
force

Generalization
DFT xc 

functional
3-dim 

functional
QMC/

CCSD/… 
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free-energy

3N-dim 
functional

No Optimization

E, Han,Zhang, Physics Today 2020
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MACHINE-LEARNING-ASSISTED MODELING

 correlation effects.  Systematically developing efficient and accu-
rate  exchange- correlation functionals is still a challenging task.
Other difficult problems include implementing  coarse- grained
molecular dynamics (MD) for macromolecules, developing hy-
drodynamic models for  non- Newtonian fluids, modeling mo-
ment closure for rarified gases, and accurately representing the
potential energy surface (PES) that describes the interaction be-
tween the nuclei in the system of an MD model.

The list continues. Fluids can be modeled with the  Navier–
 Stokes equations, but what is the analogue for solids? Besides
linear elasticity models, researchers hardly agree on a set of
continuum models for solids, and plasticity in solids is even
more problematic to simulate. Another example is turbulence
models, which have faced challenges ever since the work of Os-
borne Reynolds in the 19th century. Physical scientists still lack
the tools to systematically and robustly simulate turbulent and
convective motions.

In all the identified problems, the most essential obstacle is
the curse of dimensionality. Without systematic approaches,
one has to resort to ad hoc procedures, which are neither effi-
cient nor reliable. Turbulence modeling is an excellent example
of the kind of pain one has to endure in order to address prac-
tical problems.

However, the problems that are made difficult by the curse
of dimensionality may be more tractable because of recent ad-
vances in machine learning, which offers an unprecedented ca-
pability for approximating functions of many variables.4,5 (See
the article by Sankar Das Sarma,  Dong- Ling Deng, and  Lu-
 Ming Duan, PHYSICS TODAY, March 2019, page 48.) As spectac-
ularly successful as machine learning is, it carries a label that
is particularly harmful to applications in the physical sciences:

It’s o#en described as functioning either as
black magic or in a black box. Researchers
have made substantial progress in under-
standing the magic behind machine learning.
This article focuses on how practitioners can
use machine learning to find new inter-
pretable and truly reliable physical models.
See the box on page 40 to learn more about the
process that underpins  neural- network- based
machine learning.

Accomplishing such a task entails meeting
a few requirements. First, the model should
satisfy the properties listed above for ideal
simplified models, although a model with only
a few externally supplied parameters isn’t nec-
essary. Second, the data set used to construct
the model should represent all the practical sit-
uations the model is intended for. Fi$ing some
data is relatively straightforward, but it is con-
siderably more difficult to construct reliable,
generalizable physical models that are accu-
rate for all practical situations. And third, to re-
duce the amount of ad hoc,  error- prone human
intervention, the construction of the model
should be automated end to end.

Concurrent machine learning
In standard approaches to supervised machine
learning, researchers first provide a labeled data

set to an algorithm. Then the  machine- learning model interprets
individual items of an unlabeled data set to, for example, recog-
nize pedestrians in an image of a busy city street. But when ma-
chine learning is used in connection with physical models, data
generation and training o#en become an interactive process in
which data are analyzed and labeled on the fly as the model train-
ing proceeds. Analogous to multiscale modeling,3 the standard
approach can be called sequential machine learning; and the in-
teractive process, concurrent machine learning.

For physical models derived from machine learning to be
reliable, they need to be fed reliable data. The data set should
ideally represent all the situations a model is intended for. For
example, a reliable model for a molecule’s PES should be accu-
rate for all the configurations that the molecule can have. But
generating training data typically involves solving the under-
lying microscale model, which is quite o#en computationally
expensive. Therefore, researchers usually aim to have the
smallest possible data set.

To generate such data adaptively and efficiently requires a
strategy such as the  exploration- examination- labeling- training
(EELT) algorithm. Illustrated in figure 2, it requires a macroscale
explorer, a criterion to decide whether a given state or configu-
ration should be labeled, a microscale model for labeling, and a
 machine- learning model for the quantities of interest.6 The
model is a slight modification of the exploration-labeling-train-
ing algorithm formulated in reference 6, though similar ideas
can be traced back further. Starting without data and only a mi-
croscale model, the EELT algorithm proceeds iteratively with the
following steps: (1) exploring the state or configuration space;
(2) examining which configurations need to be labeled; (3) com-
puting the microscale solutions for the states or configurations

Schrödinger equation
Many-electron
wavefunction

Density functional theory
Hartree‒Fock method

Density or orbital
functional approximation

Classical molecular
dynamics

Potential energy surface, 
nuclear quantum dynamics

Coarse-grained
molecular dynamics

Free-energy surface,
kinetic operator

Boltzmann equation
Moment closure

Continuum mechanics
Constitutive relation

Turbulence models
Reynolds stress
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FIGURE 1. REPRESENTATIVE MODELS for various systems (black text) span a range of
temporal and spatial scales. By combining their most important theoretical ingredients
(gray text) with  machine- learning algorithms, researchers are beginning to develop
more efficient, reliable, and interpretable physical models. (Image by Weinan E, Jiequn
Han, Linfeng Zhang, and Freddie Pagani.)
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.

21A. Georges et al.: Dynamical mean-field theory of . . .
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Intuition

If the mapping f is 1-to-1, then the total area (or volume) should

not change after the transformation from x to z .

Figure 1: Mapping from one probability density to another. Source:
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Normalizing Flows

p(x) = 𝒩(z) det ( ∂z
∂x )

Change of variables x ↔ z with deep neural nets  
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Learn probability transformations with normalizing flows
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Autoregressive Neural RG Continuous flow

Composability

∂ρ(x, t)
∂t

+ ∇ ⋅ [ρ(x, t)v] = 0

z = 𝒯(x)

𝒯 = 𝒯1 ∘ 𝒯2 ∘ 𝒯3 ∘ ⋯

det ( ∂z
∂x )



Example of a building block
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Neural Network Renormalization Group

Shuo-Hui Li1, 2 and Lei Wang1, ⇤

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China

We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det
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We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det
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Quantum origin of the architecture
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FIG. 1. (a) Basic construction of a k = 2 MERA (2 sites renormalized to 1). (b) The squares
represent disentanglers: unitary maps that, from the moving-upward perspective, remove entan-
glement between two adjacent sites. (c) The triangles represent isometries: linear maps that, again
from the moving-upward perspective, coarse-grain two sites into one. Moving downward, we may
think of isometries as unitary operators that, in the MERA, map a state in V ⌦ |0i into V ⌦ V .
The i and j labels in (b) and (c) represent the tensor indices of the disentangler and isometry.

attention to the case D = 1 + 1.

The MERA tensor network is shown in Fig. 1. The quantum system being modeled by

the MERA lives at the bottom of the diagram, henceforth “the boundary” in anticipation of

the AdS/MERA connection to be explored later. We can think of the tensor network as a

quantum circuit that either runs from the top down, starting with a simple input state and

constructing the boundary state, or from the bottom up, renormalizing a boundary state via

coarse-graining. One defining parameter of the MERA is the rescaling factor k, defining the

number of sites in a block to be coarse-grained; in Fig. 1 we have portrayed the case k = 2.

The squares and triangles are the tensors: multilinear maps between direct products of vector

spaces. Each line represents an index i of the corresponding tensor, ranging over values from

1 to the “bond dimension” �. The boundary Hilbert space Hboundary = V
⌦Nboundary is given

by a tensor product of Nboundary individual spaces V , each of dimension �. (In principle
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Lattice field theoryMolecular simulation

Although no reference for this free-energy dif-
ference in the given simulationmodel is known,
the temperature profile admits basic consistency
checks: The x-ray structure is identified as the
most stable structure at temperatures below
330 K. The internal energy and entropy terms of
the free-energy difference (Eq. 1) are both positive
across all temperatures. Therefore, the free-energy
decreases at high temperatures as the entropic

stabilization becomes stronger. A higher configu-
rational entropy of the “O” state is consistent with
its more open loop structure (compare Fig. 5, G
and H) and the higher degree of fluctuations in
the “O” state observed by the analysis in (30).

Discussion and conclusion

Boltzmann generators can overcome rare event-
sampling problems in many-body systems by

generating independent samples from different
metastable states in one shot. We have demon-
strated this for dense and unstructured many-
body systems with up to 892 atoms (over 2600
dimensions) that are placed simultaneously, with
most samples having globally and locally valid
structures and potential energies in the range of
the equilibrium distribution. In contrast to other
generative neural networks, Boltzmann generators

Noé et al., Science 365, eaaw1147 (2019) 6 September 2019 7 of 11

Fig. 5. One-shot sampling of all-atom structures in different
conformations of the BPTI protein. (A) Boltzmann generator for
macromolecules: Backbone atoms are whitened using PCA; side-chain
atoms are described in normalized internal coordinates (crds). (B) BPTI
x-ray crystal structure (PDB: 5PTI). Cysteine disulfide bridges and
aromatic residues are shown for orientation. (C) One-shot Boltzmann
generator sample of all 892 atoms (2670 dimensions) of the BPTI
protein similar to the x-ray structure. (D) Potential energy distribution
from MD simulation (gray) and Boltzmann generator one-shot samples

(blue). (E) Distribution of bonds and angles compared between
MD simulation (black) and Boltzmann generator (blue).
(F) Representative snapshots of four clusters of structures
generated with the Boltzmann generator. Backbone root mean
square deviation from the x-ray structure is given below the
structure (in angstroms). Marked are the x-ray–like structure
“X” and the open structure “O.” (G and H) Magnification of the
most variable parts of the Boltzmann-generated samples from the
“X” and “O” states. Side chains are shown in atomistic resolution.
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Normalizing flow in physics
Gravitational wave detection
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Continuous normalizing flows

x = z + εv

dx
dt

= v d ln ρ(x, t)
dt

= − ∇ ⋅ v

ln p(x) − ln 𝒩(z) = − ln det (1 + ε
∂v
∂z )

ln p(x) = ln 𝒩(z) − ln det ( ∂x
∂z )

Consider infinitesimal change-of-variables

ε → 0

Chen et al 1806.07366

t = 0t = T



Fluid physics behind flows

∂ρ(x, t)
∂t

+ ∇ ⋅ [ρ(x, t)v] = 0

Zhang, E, LW 1809.10188 

Simple density Complex density

d
dt

=
∂
∂t

+ v ⋅ ∇ “material 

derivative”

d ln ρ(x, t)
dt

= − ∇ ⋅ v

(a)

(b)

(c)

dx
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Neural Ordinary Differential Equations
Residual network ODE integration

xt+1 = xt + v(xt) dx/dt = v(x)
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Neural Ordinary Differential Equations
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Tutorial: Classical Coulomb gas in a harmonic trap
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Pathwise estimator (Reparametrization trick)

Score function estimator (REINFORCE)

Reinforcement learning

Variational inference

Variational Monte Carlo

Variational quantum algorithms

…

∇θ𝔼x∼pθ [f(x)] = 𝔼x∼pθ [f(x)∇θln pθ(x)]

∇θ𝔼x∼pθ [f(x)]

x = gθ(z)

∇θ𝔼x∼pθ [f(x)] = 𝔼z∼𝒩(z) [∇θ f(gθ(z))]
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Monte Carlo Gradient Estimation in Machine Learning

classes, gradients-of-measure or gradients-of-paths. We derived the score-function estimator and the
measure-valued gradient estimator as instances of gradients of measure, both of which exploit the
measure in the stochastic objective to derive the gradient. And we derived the pathwise estimator
that uses knowledge of the sampling path to obtain the gradient. All these methods benefit from
variance reduction techniques and we reviewed four approaches for variance reduction we might
consider in practice. We further explored the use of these estimators through a set of case studies,
and explored some of the other tools for gradient estimation that exist beyond the three principal
estimators.

10.1 Guidance in Choosing Gradient Estimators

With so many competing approaches, we o↵er our rules of thumb in choosing an estimator, which
follow the intuition we developed throughout the paper:

• If our estimation problem involves continuous functions and measures that are continuous
in the domain, then using the pathwise estimator is a good default. It is relatively easy to
implement and a default implementation, one without other variance reduction, will typically
have variance that is low enough so as not to interfere with the optimisation.

• If the cost function is not di↵erentiable or a black-box function then the score-function or the
measure-valued gradients are available. If the number of parameters is low, then the measure-
valued gradient will typically have lower variance and would be preferred. But if we have a
high-dimensional parameter set, then the score function estimator should be used.

• If we have no control over the number of times we can evaluate a black-box cost function,
e↵ectively only allowing a single evaluation of it, then the score function is the only estimator
of the three we reviewed that is applicable.

• The score function estimator should, by default, always be implemented with at least a basic
variance reduction. The simplest option is to use a baseline control variate estimated with a
running average of the cost value.

• When using the score-function estimator, some attention should be paid to the dynamic range
of the cost function and its variance, and to find ways to keep its value bounded within a
reasonable range, e.g., transforming the cost so that it is zero mean, or using a baseline.

• For all estimators, track the variance of the gradients if possible and address high variance by
using a larger number of samples from the measure, decreasing the learning rate, or clipping
the gradient values. It may also be useful to restrict the range of some parameters to avoid
extreme values, e.g., by clipping them to a desired interval.

• The measure-valued gradient should be used with some coupling method for variance reduc-
tion. Coupling strategies that exploit relationships between the positive and negative compo-
nents of the density decomposition, and which have shared sampling paths, are known for the
commonly-used distributions.

• If we have several unbiased gradient estimators, a convex combination of them might have
lower variance than any of the individual estimators.

• If the measure is discrete on its domain then the score-function or measure-valued gradient
are available. The choice will again depend on the dimensionality of the parameter space.

• In all cases, we strongly recommend having a broad set of tests to verify the unbiasedness of
the gradient estimator when implemented.
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p(x) = p(x1)p(x2 |x1)p(x3 |x1, x2)⋯
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been challenging to conventional MCMC and mean-field
approaches.
Next, to demonstrate the ability of capturing multiple

states at low temperature, we consider the Hopfield
model [32], where N spins are connected to each other.
The couplings composed of P random patterns,
Jij ¼ ð1=NÞ

PP
μ¼1 ξ

μ
i ξ

μ
j , with fξμg ∈ f$1gN denoting a

random pattern. At a low temperature with P small, the
system has a retrieval phase where all P patterns are
remembered by the system; hence there are P pure states
in the system [33,34]. The experiments are carried out on a
Hopfield network with N ¼ 100 spins and P ¼ 2 orthogo-
nal random patterns. At low temperature the energy
(probability) landscape contains four modes, corresponding
to two stored patterns and their mirrors (due to Z2

symmetry). As opposed to models defined on lattices,
there is no topology structure to apply convolution, so we
use a simplest VAN with only one layer and NðN − 1Þ=2
parameters. We start training our network at β ¼ 0.3 and
slowly anneal the temperature to β ¼ 1.5. At each temper-
ature, we sample configurations from the trained VAN, and
show their log probability in Fig. 3.
The figure shows that at high temperature with β ¼ 0.3,

samplings are not correlated with the two stored patterns,
and the system is in the paramagnetic state. The log
probability landscape is quite flat, as the Gibbs measure
is dominated by entropy. When β is increased to 1.5, four
peaks of probability emerge and dominate over other
configurations. These four peaks touch coordinates [1, 0],
[0, 1], ½−1; 0&, and ½0;−1& in the X-Y plane, which
correspond exactly to the two patterns and their mirrors.
This is an evidence that our approach avoids collapsing into
a single mode, and gives samplings capturing the features
of the whole landscape, despite that those modes are
separated by high barriers.
Compared with the landscape of Hopfield model in the

retrieval phase which exhibits several local minima in the
energy and probability landscape, models in the spin glass

phase are considerably more complex [35], because they
have an infinite number of pure states, in the picture of
replica symmetry breaking [36]. Here we apply our method
to the classic Sherrington-Kirkpatrick (SK) model [37],
where N spins are connected to each other by couplings Jij
drawn from Gaussian distribution with variance 1=N. So
far the tensor network approaches do not apply to this
model because of long range interactions and the disorder,
which causes negative Z issue [38]. On the thermodynamic
limit with N → ∞ where the free energy concentrates to its
mean value averaged over disorder, using for example
replica method and cavity method, and replica symmetry
breaking, i.e., the Parisi formula [36]. On a single instance
of SK model, the algorithm version of the cavity method,
belief propagation, or Thouless-Anderson-Paler [6] equa-
tions apply as message passing algorithms. On large
systems in the replica symmetry phase, the message
passing algorithms converge and the obtained Bethe free
energy is a good approximation, but in the replica sym-
metry breaking phase they fail to converge. Also notice that
even in the replica symmetry phase, Bethe free energy is
not an upper bound to the true free energy.
As a proof of concept, we use a small system size

N ¼ 20, so we can enumerate all 2N configurations,
compute the exact value of free energy, then evaluate the
performance of our approach. Again, we use a simple VAN
with only one layer.
In Fig. 4(a) we show the free energy obtained from VAN,

compared with NMF and Bethe approximations. The free
energy from VAN is much better than NMF and Bethe, and
even indistinguishable to the exact value. This is quite
remarkable considering that VAN adopts only NðN − 1Þ=2
parameters, which is even smaller than that used in the
belief propagation, NðN − 1Þ. We also checked that our
approach not only gives a good estimate on free energy, it
also obtains accurate energy, entropy, magnetizations, and
correlations.
The ability of solving ordinary statistical mechanics

problems also gives us the ability to solve inverse statistical
mechanics problems. A prototype problem is the inverse

FIG. 3. Log probability of sampled configurations from VAN
trained for a Hopfield model with N ¼ 100 spins, and P ¼ 2
orthogonal patterns. The sampled configurations are projected
onto the two-dimensional space spanned by the two patterns. X
axis (O1) and Y axis (O2) are the overlap (inner product,
normalized to ½−1; 1&) between each sampled configuration
and the two patterns, respectively. (a) β ¼ 0.3, and the system
is in the paramagnetic phase. (b) β ¼ 1.5, and the system is in the
retrieval phase. Note the different scales in the color bars.
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FIG. 4. (a) Free energy of SK model with N ¼ 20 spins. The
inset shows relative errors to exact values in a larger β regime.
Bethe converges only when β ≤ 1.5. (b) The reconstruction error
in the inverse Ising problem. The underlying model is an SK
model with N ¼ 20 spins. VAN uses a network with two layers (a
hidden layer and an output layer).
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factorized probability

Conventional approaches

Bethe approximation

pairwise interaction

p(x) = ∏
i

p(xi)

p(x) = ∏
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p(xi) ∏
(i,j)∈E

p(xi, xj)
p(xi)p(xj)

Variational autoregressive network

p(x) = ∏
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p(xi |x<i)

Variational autoregressive networks
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Solving Quantum Statistical Mechanics with
Variational Autoregressive Networks and Quantum Circuits

Jin-Guo Liu,1 Liang Mao,2 Pan Zhang,3 and Lei Wang1, 4

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Department of Physics, Tsinghua University, Beijing 100084, China
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4Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

We extend the ability of unitary quantum circuits by interfacing it with classical autoregressive neural net-
works. The combined model parametrizes a variational density matrix as a classical mixture of quantum pure
states, where the autoregressive network generates bitstring samples as input states to the quantum circuit. We
devise an e�cient variational algorithm to jointly optimize the classical neural network and the quantum circuit
for quantum statistical mechanics problems. One can obtain thermal observables such as the variational free
energy, entropy, and specific heat. As a by product, the algorithm also gives access to low energy excitation
states. We demonstrate applications to thermal properties and excitation spectra of the quantum Ising model
with resources that are feasible on near-term quantum computers.

Introduction– Quantum statistical mechanics poses two
sets of challenges to classical computational approaches. First
of all, classical algorithms generally encounter the di�culties
of diagonalzing exponentially large Hamiltonians or the sign
problem originates from the quantum nature of the problem.
Moreover, even on the eigenbasis one still faces intractable
partition function which involves summation of exponentially
large number of terms.

A straightforward way to address these di�culties is to di-
rectly realize the physical Hamiltonian on analog quantum de-
vices and study the system at thermal equilibrium, for exam-
ple, see Refs. [1, 2]. On the other hand, a potentially more
general approach would be to study thermal properties with a
universal gate model quantum computer. However, it calls for
algorithmic innovations to prepare thermal quantum states on
quantum circuits given their unitary nature. There have been
quantum algorithms to prepare thermal Gibbs states on quan-
tum computers [3–7]. Unfortunately, these approaches may
not be feasible on near-term noisy quantum computers with
limited circuit depth. While variational quantum algorithm
for preparing thermofield double states [8, 9] requires addi-
tional quantum resources such as ancilla qubits, as well as
measuring and extrapolating Renyi entropies. The quantum
imaginary-time evolution [10] relies on exponentially di�cult
tomography on a growing number of qubits and synthesize of
general multi-qubit unitaries.

Recently, Refs. [11, 12] proposed practical approaches to
prepare the thermal density matrix as a classical mixture of
quantum pure states in the eigenbasis. In these proposals,
the classical probabilistic model is either assumed to be fac-
torized or expressed as an energy-based model [13]. How-
ever, the factorized distribution is generally a crude approx-
imation for the Gibbs distribution in the eigenbasis. While
the energy-based model still faces the problem of intractable
partition function, which inhibits e�cient and unbiased sam-
pling, learning, or even evaluating the model likelihood.

Modern probabilistic generative models o↵er solutions to
the intractable partition function problem [15] since the goals
of generative modeling are exactly to represent, learn and

U�

(a)

p�

(b)

�x1
�x2
�x3

x1
x2
x3

Figure 1. (a) The autoregressive network shown in blue is a classi-
cal probabilistic model that parametrizes a joint distribution in the
form of Eq. (2). The model generates bit string as easy to prepare
input product states to the quantum circuit. The neural network and
the circuit produce a parametrized density matrix Eq. (1). (b) An
implementation of the autoregressive model p� using the masked au-
toencoder [14]. The neural network maps bit strings to real-valued
outputs which parametrizes the conditional probabilities in Eq. (2).

sample from complex high-dimensional probability distribu-
tions e�ciently. Popular generative models include autore-
gressive models [14, 16, 17], variational autoencoders [18],
generative adversarial networks [19], and flow-based mod-
els [20]. For the purpose of this study, the autoregressive mod-
els stand out since they support unbiased gradient estimator
for discrete variables, direct sampling, and tractable likelihood
at the same time. The autoregressive models have reached
state-of-the-art performance in modeling realistic data and
found real-world applications in synthesizing natural speech
and images [16, 17]. Variational optimization of the autore-
gressive network has been used for classical statistical physics
problems [21, 22]. Quantum generalization of the network
was also employed for ground state of quantum many-body
systems [23].

In this paper, we combine quantum circuits with autore-
gressive probabilistic models to solve problems in quantum
statistical mechanics. The resulting model allows one to per-
form variational free energy over density matrices e�ciently.
We demonstrate applications of the approach to thermal prop-
erties and excitations of quantum lattice model.
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p(x2 |x1) = Bern( ̂x2)p(x1) = Bern( ̂x1)

Other examples:

p(x3 |x1, x2) = Bern( ̂x3)

Other ways to implement autoregressive models: recurrent networks
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Quantum-to-classical mapping

d+1-dim 

spacetime integral
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a

β

0

b

β

0

Figure 1
Schematic world-line con!gurations in a (2+1)-dimensional space–time lattice. (a) The weight of the
world-line con!guration is negative when fermions exchange for odd times; (b) The weight of the world-line
con!guration is positive when fermions exchange for even times.

of nonpositive Boltzmann weights lies in the intrinsic difference between classical and quantum
systems. Because negative Boltzmann weight cannot be treated directly as probability, the minus
sign issue severely hampers the application of QMC to reliably study interacting quantum systems
with a large number of particles, which we shall illustrate below.

One straightforward way of dealing with the minus sign in Boltzmann weights is to employ the
absolute value of Boltzmann weight |w(c)| as the probability of sampling. The expectation value
of an observable represented by the operator Ô can be computed as follows:

〈Ô〉 =
∑

c w(c)O(c)∑
c w(c)

=
∑

c O(c)sign(c)|w(c)|/
∑

c |w(c)|∑
c sign(c)|w(c)|/

∑
c |w(c)|

= 〈Ô〉|w|〈
sign

〉
|w|

, 2.

where w(c) = sign(c)|w(c)|; namely sign(c) labels the sign of w(c). This procedure allows QMC
to be implemented even when the Boltzmann weights in question are not positive de!nite. How-
ever, the con!gurations with negative sign and positive sign nearly cancel with each other such
that

〈
sign

〉
|w| is exponentially small with the system size; this results in exponentially large statistical

errors in evaluating the observable 〈Ô〉. To be more explicit, we illustrate this using the world-line
representation. In the world-line algorithm, the sign average

〈
sign

〉
|w| decays exponentially with the

system’s particle number N and inverse temperature β:
〈
sign

〉
|w| = exp(−Nβ" f ), where "f > 0

represents the free-energy density difference between the fermionic quantum system under con-
sideration and the corresponding bosonic one (22). Consequently, the statistical errors generated
in evaluating 〈Ô〉 shall grow exponentially with the particle number N and inverse temperature
β and are proportional to 1√

M
exp(Nβ"f ), whereM represents the number of sampling steps in

Monte Carlo simulations (22). To achieve a given accuracy in evaluating 〈Ô〉, the required num-
ber of Monte Carlo sampling steps or equivalently the computational time grows exponentially
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evolution of the walkers, as derived from Eq. (23), can be
found elsewhere.45,67 The form of q̂ is known exactly at infi-
nite temperature (b¼ 0, q̂ ¼ 1̂), providing an initial condi-
tion for Eq. (22). For the electron gas, however, it turns out
that simulating a differential equation that evolves a mean-
field density matrix at inverse temperature b to the exact
density matrix at inverse temperature b is much more effi-
cient than solving Eq. (22), an insight that leads to the
“interaction picture” version of DMQMC39,46 used through-
out this work.

The sign problem manifests itself in DMQMC as an
exponential growth in the number of walkers required for the
sampled density matrix to emerge from the statistical
noise.67–70 Working in a discrete Hilbert space helps to reduce
the noise by ensuring a more efficient cancellation of positive
and negative contributions, enabling larger systems and lower
temperatures to be treated than would otherwise be possible.
Nevertheless, at some point, the walker numbers required
become overwhelming and approximations are needed.
Recently, we have applied the initiator approximation71–73 to
DMQMC (i"DMQMC). In principle, at least, this allows a
systematic approach to the exact result with an increasing
walker number. More details on the use of the initiator
approximation in DMQMC and its limitations can be found in
Ref. 39.

F. Applicability of the QMC methods

To conclude the discussion of Quantum Monte Carlo, in
Fig. 2, we give a schematic overview of the parameter com-
binations where the different methods can be used to obtain
results in the thermodynamic limit (for a discussion of finite-
size corrections, see Sec. V) with a relative accuracy of
DV=V # 0:003. Standard PIMC (black) is only useful for
high temperatures and low densities where fermionic
exchange does not play an important role and, therefore,
does not give access to the WDM regime. PB-PIMC (green)
significantly extends the possible parameter combinations to

lower temperature (down to h ¼ 0:5 for rs $ 1) and is avail-
able over the entire density range for h ! 2. In contrast, both
CPIMC (red) and DMQMC (blue) are feasible for all h at
small rs and eventually break down with increasing rs due to
coupling effects. Despite their apparent similar range of
applicability, it turns out that CPIMC is significantly more
efficient at higher temperature, while DMQMC is superior at
low h.

IV. SIMULATION RESULTS FOR THE FINITE SYSTEM

The first step towards obtaining QMC results for the
warm dense electron gas in the thermodynamic limit is to
carry out accurate simulations of a finite model system. In
Fig. 3, we compare results for the density dependence of the
exchange correlation energy Exc of the UEG for N¼ 33 spin-
polarized electrons and two different temperatures. The first
results, shown as blue squares, were obtained with RPIMC31

for rs $ 1. Subsequently, Groth, Dornheim, and co-work-
ers44,51 showed that the combination of PB-PIMC (red
crosses) and CPIMC (red circles) allows for an accurate
description of this system for h $ 0:5. In addition, it was
revealed that RPIMC is afflicted with a systematic nodal error
for densities greater than the relatively low value at which
rs¼ 6. Nevertheless, the FSP precludes the use of PB-PIMC
at lower temperatures and, even at h ¼ 0:5 and rs¼ 2, the sta-
tistical uncertainty becomes large. The range of applicability
of DMQMC is similar to that of CPIMC, and the DMQMC
results (green diamonds) fully confirm the CPIMC results.39,46

Further, the introduction of the initiator approximation (i-
DMQMC) has made it possible to obtain results up to rs¼ 2
for h ¼ 0:5. Although i-DMQMC is, in principle, systemati-
cally improvable and controlled, the results suggest that the
initiator approximation may introduce a small systematic shift
at lower densities.

In summary, the recent progress in fermionic QMC
methods has resulted in a consensus regarding the finite-N
UEG for temperatures h $ 0:5. However, there remains a
gap at rs % 2" 6 and h < 0:5 where, at the moment, no reli-
able data are available.

FIG. 2. Density-temperature-plane around the WDM regime. Shown are the
parameter combinations where standard PIMC (black), PB-PIMC (green),
CPIMC (red), and DMQMC (blue) can be used to obtain data in the thermo-
dynamic limit with an accuracy of DV=V # 0:003.

FIG. 3. Exchange-correlation energy of N¼ 33 spin-polarized electrons as a
function of the density parameter rs for two isotherms. Shown are results
from CPIMC and PB-PIMC taken from Ref. 51, restricted PIMC from Ref.
31, and DMQMC from Ref. 39. For h ¼ 0:5, all data have been shifted by
0.05 Hartree. In the case of DMQMC, the initiator approximation is used.
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However, the “weight” 

may not be positive definite.


Sign problem! 



Gibbs–Bogolyubov-Feynman-Delbrück–Molière variational principle

😱 😱 😱

The quantum variational free-energy approach

Trρ = 1 ρ ≻ 0 ρ† = ρ ⟨x |ρ |x′￼⟩ = ( − )𝒫⟨𝒫x |ρ |x′￼⟩s . t .

F[ρ] = kBT Tr(ρ ln ρ) + Tr(Hρ)min

Exercise

F[ρ] ≥ − kBT ln ZProve 

where Z = Tr(e−H/kBT)

Exercise

Think about how to solve the

quantum Coulomb gas problem 


using this principle. 
Search “Quantum relative entropy” on wikipedia



Quantum states Ψn(x) = ⟨x |Ψn⟩

ρ = ∑
n

μn |Ψn⟩⟨Ψn |

⟨Ψm |Ψn⟩ = δmn

How to represent them ??  

Use two deep generative models !! 

Density matrix

Classical probability 

∑
n

μn = 1

0 < μn < 1

Density matrix



Ψn(x) = Φn(z) ⋅ det ( ∂z
∂x )

1
2

Particle

coordinates

Quasi-particle 

coordinates

Jacobian of 

the flow

x z

Base 

states

“Square root” of a normalizing flow

The flow implements a learnable many-body unitary transformation
hence the name “neural canonical transformation” a classical generalization of Li, Dong, Zhang, LW, PRX ‘20



zi = xi+∑
j≠i

η( |xi − xj | ) (xj − xi)

Backflow is an equivariant residual flow 

Behrmann et al, 1811.00995

Chen et al, 1906.02735 
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Backflow can be made unitary (if we track its Jacobian)

x z

Feynman & Cohen 1956

wavefunction for liquid Helium

Feynman’s backflow in the deep learning era
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Deep residual networks can be regarded as 
discretization of a continuous dynamics

E Commun. Math. Stat 17’,  Harbor el al 1705.03341, Lu et al 1710.10121, Chen et al, 1806.07366Taddei et al,  PRB ‘15

x z

Feynman’s backflow in the deep learning era



Continuous flow of electron density in a quantum dot

github.com/fermiflow
Xie, Zhang, LW, 2105.08644, JML ’22 

Fermi Flow

http://github.com/fermiflow/


 Tr(ρ ln ρ) = 𝔼
n∼μn

[ln μn]

Exercise

Recall that , prove ρ = ∑
n

μn |Ψn⟩⟨Ψn |



Dense hydrogenUniform electron gas

1 to 1000:  model architecture based on physics, pretraining, large scale optimization…

ONE —PARTICLE GREEN'S FUNCTION
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SPECIFlC HEAT OF AN ELECTRON GAS same effect has been noted earlier in case of a dilute
I'ermi gas, "and is there supposed to disappear when
higher order terms are taken into account. To see if this
attraction might be strong enough to make a spherical
Fermi surface unstable, we considered the following
distortion,

1+8)k/ko) 1, 8(rj'. Sist(k, 8)= 1
1+8&k/k, &1, 8&~—q: his (k,8)=1
1&k/k, &1—-',~'8:

(its+(k, 8) =8is (k,8) =—1, 8 ~ 0, rI —+ 0.
The lowering in energy from f relative to the increase in
energy from I' then becomes ag'lnq where a, the co-
efFicient of the singular term in f, ranges between 0.015
and 0.038 when r, goes from 1 to 6. The attraction is
thus far too weak to be of any importance.
It should be pointed out that it is not clear if there

should be a s' factor in f when we use an approximation
Go instead of the self-consistent G. To see this we use the
results from Appendix 8 and write

0.90

OCC

E=Q t e(k)+ V,(((k)]+AL':,

FIG. 12. Specific heat of an electron gas. The specific heat of
an interacting electron gas divided by that of a non-interacting
or Sommerfeld electron gas (L'1+ (third column from the right in
Table VI)A 'l is plotted against r.

Since f,"i depends on e(((,0) and e(((,0) depends on f,
%atabe can write down an equation for y from a self-
consistency requirement:

~-'=1—Z—hs~ hi(X~/(1+l ~)). (11'?)

Watabe's expressions for Cs/C —1 and Xs/X—1 are the
same as those in Eq. (114)multiplied by y ' a,nd with li
replaced by )y. This is obvious from Eq. (116a).
Specifically he thus obtains X/Xs ——p. Watabe's result
for y ranges from 1.12 to 1.32 when r, goes from 1 to 5.
Our values for y as given by Eq. (116b) using fs, f.('i
and f,('i with the s' factor agree with Watabe's within
1'Po. Also Glick's result" for y at r, =2 agrees accurately
with Katabe's and ours. This is a quite remarkable
coincidence, which we cannot explain.
%e now make a few remarks on the analytical be-

havior of the different contributions to f, (8). f,"'(8)
varies between —0.25 and —0.25(l~/(1+X/2)). The slope
of f, ' (()&i8s zero at 8 and 8=rr. fs(8) and f. (8()s&start
out with finite values at 0=0 and go to infinity at 8=m
as ln(1+cos8). The coeScients of the ln term have
opposite signs and roughly the same magnitude. Ke
thus have a singular attraction between quasiparticles
of opposite momenta and opposite spin giving a tendency
towards a superconducting state. This effect does rot
come from the logarithmic singularity in e(((,0). The

gI:= (l Ly(k', G)+e*"
(2s.)'
XTr(V.((G+G 'G—1—lnGo 'G)ldk'(, l,

G (k, ) = ( —(k)—V„. (k))—'; e(k) = (k'k'/2m) .

Suppose now that we approximate G by Go in hI&., which
since AP: is stationary might not be too serious. %e then
have

Since

I.=g e(k)+ 0 @(k'; G)dk'(, i.
(2') 4

8Gs(k)/Siss ——2s.i8(k—k') 8(e—s(k)—V,r((k)) (120)

we have that

E(k)= 8E/8ms= e(k)+M(kq e(k)+ Vgff(k)),
f(k,k') =RE(k)/its 2sss 'I(k, k');

e= c'= e(ks)+ V,(((ks) .

Suppose on the other hand that we start from

E(k) = e(k)+M(k, I;(k)),

(121)

(122)

"See A. A. Abrikosov eI gt. , (Ref. 2), p. 36.

where 3f is a functional of Gs. We then have for f
f(k,k') =2sss 'I(k, k'); e= e = e(ks)+ Veff(kE) (123)

The equations for f, (121) and (123), may be compared
to Eq. (32). We thus get different results depending on

Hedin Phys. Rev. 1965

Nobel Lecture7 are updated versions). In 1935, Eugene Wigner (one of
the founders of modern solid-state physics) and his colleague Hillard
Huntington first tried to predict what would happened to hydrogen if it
were compressed to very high densities.8 Based on a nearly free-electron
picture, they predicted that above 250 000 atm (25 GPa)—an un-
imaginable pressure at the time—hydrogen would enter ametallic state.
Because they did not know the compressibility of hydrogen, they were
quite far off in their estimate of the pressure required. Experimental
high-pressure physics has developedandmaturedover the eight decades
since, succeeding in subjecting hydrogen to pressures of the order of 400
GPa,9 an almost 16-fold increase compared with the original prediction
of Wigner and Huntington. A plethora of exciting and interesting
phenomenahavebeenobserved indensehydrogen, but themetallic state
remains elusive. Owing to the accumulated experience, knowledge, and
significantly improved experimental and theoretical methods, we now
understand the problems much better and can make an educated guess
as to the P–T conditions needed to turn the molecular gas into the
lightest metal. While the experimentalists are tantalizingly close to the
pressures needed to metallize hydrogen, theory has already moved
beyondcurrent static pressure limits andhas predicted that ground-state
(T ! 0 K) hydrogen, owing to strong quantum effects, would be an
entirely new state of matter, which could be superfluid or super-
conducting, depending on the magnetic field applied.16 This fascinating
prospect is so unusual that it is quite difficult to imagine it being possible.
Consequently, metallizing hydrogen and reaching such a novel state of
matter is arguably the most exciting and interesting discovery that
condensed matter physics could produce today.

II. PHYSICS OF DENSE HYDROGEN AND DEUTERIUM
AT HIGH DENSITIES (COMPRESSION)

The behavior of hydrogen is strongly influenced by quantum
mechanical effects. Nuclear quantum effects are larger for hydrogen

than any other atom, which explains its unique behavior. Solid hy-
drogen has a massive quantum zero-point energy (ZPE), far greater
than its latent heat of melting, and has a Debye temperature well above
melting. These factors determine the behavior of hydrogen in the dense
state. Currently, five solid phases of hydrogen are known (see Fig. 1),
and it is unique among the stable elements in that full structural in-
formation (e.g., the locations of the atomic centers and the shapes of the
molecules) is absent for all of them, which prevents modeling and/or
predictions of hydrogen behavior at higher pressures.

Under ambient conditions, i.e., atmospheric pressure and
300 K, hydrogen is a molecular gas [see Fig. 2(a)]. The exchange
interaction, a purely quantum mechanical effect, forms one of the
strongest bonds in chemistry, the H–H bond. Owing to this bond,
hydrogen exists in molecular form, with atoms separated by ap-
proximately 0.74 Å and a bond dissociation energy of approximately
4.52 eV under ambient conditions.17,18 In its solid state at 2 K, the
hydrogen bandgap is very large, at about 14 eV.19 Conversely, in-
termolecular bonding is very weak, requiring extreme conditions to
bring the molecules together and bind them into the solid state. Low-
temperature solidification of hydrogen was first achieved in 1899 by
Dewar, at a slightly higher temperature (19 K) than that required to
liquefy helium. An alternative solidification route is through com-
pression, whereby hydrogen can be solidified at 300 K by bringing the
molecules close to each other and increasing the density. The gaseous,
diffusive, and corrosive nature of hydrogen, combinedwith the lack of
high-pressure technology, delayed room temperature solidification
for almost a century after Dewar’s experiments. Only the invention
and refinement of the diamond anvil cell allowed Mao and Bell20 to
solidify hydrogen at 300 K using a pressure of 5.5 GPa (55 000 atm).
The solid state under these conditions is now known as phase I
(Fig. 1). This phase is characterized by quantum spherically disor-
deredmolecules arranged in a hexagonal close packed (hcp) structure
[Fig. 2(b)]. At room temperature and above 5.5 GPa, hydrogen is a
very good (molecular) insulator with a bandgap of 9.5 eV (H.-K.Mao,
unpublished work). Phase I occupies a very prominent part of the
phase diagram, reaching up to 190 GPa at 300 K. It displays re-
markable pressure stability and to our knowledge extends over the
second largest pressure range for any molecular system, being second
only to molecular chlorine, whose phase I exists over a pressure
interval of 230 GPa.21 Phase II, known as the “broken symmetry”
phase,23 is formed by compressing phase I of hydrogen or deuterium
above 60 GPa or 25 GPa, respectively,13 and at temperatures below
∼100 K. Governed by quantum effects, phase II is thought to have
ordered (or at least partially ordered) molecules, but the nature of
their arrangement and their shape are unknown.24 There is a strong
isotope dependence in the transition from phase I to II, with the
deuterium transition occurring at substantially lower pressures than
that in hydrogen, implying a critical role of nuclear quantum effects.
Phase III is obtained by compressing phase II above ∼155 GPa below
100 K25 or at around 190 GPa at 300 K10,11 (see Fig. 1). Nothing so far
is known about its structure (atomic positions), but it has been shown
to also have an hcp lattice,26,27 with unusually intense infrared ac-
tivity.28 It has very recently been shown that phase III extends over a
pressure interval of more than 200 GPa at low temperatures.22 The
phase diagrams of hydrogen and deuterium were studied in great
detail in the 1990s, leading to many interesting discoveries: for ex-
ample, both isotopes have a triple point, i.e., a P–T point at which the

FIG. 1. Proposed (artistic) P–T phase diagram of H2. Solid phase lines are a
combination of static compression studies of solid hydrogen9–13 and dynamic
compression studies of fluid deuterium.14,15 Dashed lines represent extrapolations
of these combined results. The dark brown color of phases III and V at higher
pressures suggests closing of the bandgap.
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Triumph of condensed matter physics
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Why metal is metal ?

H = −
N

∑
i=1

ℏ2 ∇2
i

2m
+ ∑

i<j

e2

|xi − xj |

110 Uniform Electron Gas and sp-Bonded Metals

Table 5.1. Typical rs values in elemental solids in units of the Bohr radius a0. The
valence is indicated by Z. The alkalis have bcc structure; Al, Cu, and Pb are fcc; the
other group IV elements have diamond structure; and other elements have various
structures. The values for metals are taken from [285] and [300]; precise values

depend on temperature.

Z = 1 Z = 2 Z = 1 Z = 2 Z = 3 Z = 4

Li 3.23 Be 1.88 B C 1.31
Na 3.93 Mg 2.65 Al 2.07 Si 2.00
K 4.86 Ca 3.27 Cu 2.67 Zn 2.31 Ga 2.19 Ge 2.08
Rb 5.20 Sr 3.56 Ag 3.02 Cd 2.59 In 2.41 Sn 2.39
Cs 5.63 Ba 3.69 Au 3.01 Hg 2.15 Tl Pb 2.30

lattice constant; expressions for fcc and bcc, and the VI, III–V, and II–VI semiconductors
are given in Exercises 5.1 and 5.2.

Of course, density is not constant in a real solid and it is interesting to determine the
variation in density. In ordinary diamond-structure Si, there is a significant volume with
low density (the open parts of the diamond structure). However, in the compressed metallic
phase of Si with Sn structure, the variation in rs is only ± ≈20%. The distribution of local
values of the density parameter rs for valence electrons in Si can be found in [299].

The hamiltonian for the homogeneous system is derived by replacing the nuclei in
Eq. (3.1) with a uniform positively charged background, which leads to

Ĥ = − h̄2

2me

∑

i

∇2
i + 1

2
4π

ε0




∑

i $=j

e2

|ri − rj |
−

∫
d3rd3r ′ (ne)2

|r − r′|





→ −1
2

∑

i

∇2
i + 1

2




∑

i $=j

1
|ri − rj |

−
∫

d3rd3r ′ n2

|r − r′|



 , (5.2)

where the second expression is in Hartree atomic units h̄ = me = e = 4π/ε0 = 1, where
lengths are given in units of the Bohr radius a0. The last term is the average background
term, which must be included to cancel the divergence due to Coulomb interaction among
the electrons. The total energy is given by

E = 〈Ĥ 〉 = 〈T̂ 〉 + 〈V̂int〉 − 1
2

∫
d3rd3r ′ n2

|r − r′|
, (5.3)

where the first term is the kinetic energy of interacting electrons and the last two terms
are the difference between the potential energy of the actual interacting electrons and the
self-interaction of a classical uniform negative charge density, i.e., the exchange–correlation

rs

Uniform electron gas

Metal density : Coulomb repulsion 
is nonperturbative compared to kinetic energy

2 < rs < 6
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Landau fermi liquid theory

T ≪ TF ≲
e2

rs

Physics happens around the Fermi surface with strongly constrained phase-space

Fermi sea

K = {k1, k2, …, kN}

Low energy excited states labeled in 
the same way as the ideal Fermi gas



Have we known everything about a Fermi liquid ?

No! 



m*
m

=

Quasi-particles effective mass 

A fundamental quantity appears in nearly all physical properties of a Fermi liquid

cV χN(0) s
Density of states entropy specific heat magnetic susceptibility

Richard D. Mattuck 

A Guide to Feynman 

Diagrams in the Many-
body Problem



Quasi-particles effective mass of 3d electron gas 

> 50 years of conflicting results !

ONE —PARTICLE GREEN'S FUNCTION

l.20

I.l 5

I lo-

1.05

0.95

SPECIFlC HEAT OF AN ELECTRON GAS same effect has been noted earlier in case of a dilute
I'ermi gas, "and is there supposed to disappear when
higher order terms are taken into account. To see if this
attraction might be strong enough to make a spherical
Fermi surface unstable, we considered the following
distortion,

1+8)k/ko) 1, 8(rj'. Sist(k, 8)= 1
1+8&k/k, &1, 8&~—q: his (k,8)=1
1&k/k, &1—-',~'8:

(its+(k, 8) =8is (k,8) =—1, 8 ~ 0, rI —+ 0.
The lowering in energy from f relative to the increase in
energy from I' then becomes ag'lnq where a, the co-
efFicient of the singular term in f, ranges between 0.015
and 0.038 when r, goes from 1 to 6. The attraction is
thus far too weak to be of any importance.
It should be pointed out that it is not clear if there

should be a s' factor in f when we use an approximation
Go instead of the self-consistent G. To see this we use the
results from Appendix 8 and write

0.90

OCC

E=Q t e(k)+ V,(((k)]+AL':,

FIG. 12. Specific heat of an electron gas. The specific heat of
an interacting electron gas divided by that of a non-interacting
or Sommerfeld electron gas (L'1+ (third column from the right in
Table VI)A 'l is plotted against r.

Since f,"i depends on e(((,0) and e(((,0) depends on f,
%atabe can write down an equation for y from a self-
consistency requirement:

~-'=1—Z—hs~ hi(X~/(1+l ~)). (11'?)

Watabe's expressions for Cs/C —1 and Xs/X—1 are the
same as those in Eq. (114)multiplied by y ' a,nd with li
replaced by )y. This is obvious from Eq. (116a).
Specifically he thus obtains X/Xs ——p. Watabe's result
for y ranges from 1.12 to 1.32 when r, goes from 1 to 5.
Our values for y as given by Eq. (116b) using fs, f.('i
and f,('i with the s' factor agree with Watabe's within
1'Po. Also Glick's result" for y at r, =2 agrees accurately
with Katabe's and ours. This is a quite remarkable
coincidence, which we cannot explain.
%e now make a few remarks on the analytical be-

havior of the different contributions to f, (8). f,"'(8)
varies between —0.25 and —0.25(l~/(1+X/2)). The slope
of f, ' (()&i8s zero at 8 and 8=rr. fs(8) and f. (8()s&start
out with finite values at 0=0 and go to infinity at 8=m
as ln(1+cos8). The coeScients of the ln term have
opposite signs and roughly the same magnitude. Ke
thus have a singular attraction between quasiparticles
of opposite momenta and opposite spin giving a tendency
towards a superconducting state. This effect does rot
come from the logarithmic singularity in e(((,0). The

gI:= (l Ly(k', G)+e*"
(2s.)'
XTr(V.((G+G 'G—1—lnGo 'G)ldk'(, l,

G (k, ) = ( —(k)—V„. (k))—'; e(k) = (k'k'/2m) .

Suppose now that we approximate G by Go in hI&., which
since AP: is stationary might not be too serious. %e then
have

Since

I.=g e(k)+ 0 @(k'; G)dk'(, i.
(2') 4

8Gs(k)/Siss ——2s.i8(k—k') 8(e—s(k)—V,r((k)) (120)

we have that

E(k)= 8E/8ms= e(k)+M(kq e(k)+ Vgff(k)),
f(k,k') =RE(k)/its 2sss 'I(k, k');

e= c'= e(ks)+ V,(((ks) .

Suppose on the other hand that we start from

E(k) = e(k)+M(k, I;(k)),

(121)

(122)

"See A. A. Abrikosov eI gt. , (Ref. 2), p. 36.

where 3f is a functional of Gs. We then have for f
f(k,k') =2sss 'I(k, k'); e= e = e(ks)+ Veff(kE) (123)

The equations for f, (121) and (123), may be compared
to Eq. (32). We thus get different results depending on

Hedin Phy. Rev. 1965
5

FIG. 3. Quasiparticle e↵ective masses m⇤ of paramagnetic
and ferromagnetic 3D-HEGs as functions of 1/N , where N is
the system size.

GW calculations with a random-phase-approximation-
screened free-electron model (SRPA) [55], suggest that
the e↵ective mass decreases at low density. The GW ap-
proximation is expected to be accurate at high density
(rs  1), which is consistent with the behavior shown
in Fig. 4, where the di↵erences between the various GW

results reduce as the density increases. Indeed, the dif-
ference between the DMC and GW e↵ective masses is
quite small at rs = 1. Recently, the single-particle exci-
tation spectra and quasiparticle e↵ective masses of 3D-
HEGs have been calculated using variational diagram-
matic Monte Carlo (VDMC) [53], in which high-order
Feynman diagrams are sampled using Monte Carlo meth-
ods [56]. The behavior of the VDMC e↵ective mass as a
function of density is close to some of the GW results, as
can be observed from Fig. 4. To the best of our knowl-
edge, there are no reliable experimental results for the ef-
fective mass of the 3D-HEG. However, the bandwidth of
Na metal, which has a band e↵ective mass (incorporating
crystal lattice e↵ects) of 1.23, has been measured [61, 62]
and can be compared with that of the 3D-HEG at den-
sity parameter rs = 4. Neither our DMC results nor the

FIG. 4. Quasiparticle e↵ective masses m⇤ of paramagnetic
(Para) and ferromagnetic (Ferro) 3D-HEGs at the infinite-
system-size limit as functions of density parameter rs. Padé
functions were fitted to the DMC quasiparticle energy bands
to determine the e↵ective mass. The many-body GWx and
variational diagrammatic Monte Carlo (VDMC) results are
from Refs. [52] and [53], respectively. The GW -SS and GW -
SRPA results are from Refs. [54] and [55], respectively. The
GW results are for paramagnetic 3D-HEGs.

existing VDMC and GW results explain the experimen-
tally estimated 18–25% bandwidth narrowing relative to
self-consistent band theoretical calculations [61, 62].

In summary, we have calculated the single-particle en-
ergy bands and quasiparticle e↵ective masses of para-
magnetic and ferromagnetic 3D-HEGs using the DMC
method. Two fitting functions, of Padé and quartic form,
have been used to obtain the gradient of the energy band
at the Fermi wavevector and hence the e↵ective mass
at each finite system size studied. We found that the
e↵ective masses of paramagnetic and ferromagnetic sys-
tems of any given finite size are almost independent of
the choice of trial wave function and the fitting func-
tion used. The DMC bandwidths of paramagnetic and
ferromagnetic 3D-HEGs are larger than that of the free-
electron model but smaller than the HF bandwidth at
all densities considered. The DMC bandwidth for a 3D-
HEG with density parameter rs = 4 agrees with previous
QMC results for the bandwidth of Na. A su�ciently
high precision is achieved in our simulations that the
systematic finite-size errors in the e↵ective masses can
be eliminated by extrapolation to the thermodynamic
limit. Our DMC results predict that the e↵ective mass
of the 3D-HEG decreases as the density decreases from
r1 = 1 to rs = 10. This reduction is more pronounced in
the ferromagnetic system than the paramagnetic system.
The good agreement between DMC results for Na and
the 3D-HEG indicates that the 3D-HEG provides a good

Azadi, Drummond, Foulkes, PRL 2021
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Layer thickness, valley, disorder, spin-orbit coupling…

Two-dimensional electron gas experiments

m * /m > 1

m * /m < 1

🤔



⇒
m*
m

=
s
s0

s =
π2kB

3
m*
m

T
TF

m* from low temperature entropy

Not an easy task due to the lack of reliable methods 

for low-temperature electron gases with intermediate density

Eich, Holzmann, Vignale, PRB ‘17

interacting electrons 

noninteracting electrons 

m*/m = kF /(dε/dk)kF

m * /m = (1 −
∂Σ
∂ω ) (1 +

m
k

∂Σ
∂k )

−1

computing specific heat also works, but that often requires differentiating (noisy) energies



ρ = ∑
K

p(K) ΨK⟩⟨ΨK

Normalized probability 
distribution 

Orthonormal 

many-electron basis

∑
K

p(K) = 1 ⟨ΨK |ΨK′￼
⟩ = δK,K′￼

Deep generative models for 

the variational density matrix

There will also be interesting twists for physics considerations



Autoregressive model for p(K)
p(K) = p(k1)p(k2 |k1)p(k3 |k1, k2)⋯

K = {k1, k2, …, kN}

“… quick brown fox jumps …”
p( jumps | . . . )

Twist: we are modeling a set of words with no repetitions and no order
We use masked casual self-attention Vaswani et al 1706.03762; Alternative solution: Hibat-Allah et al, 2002.02793, Barrett et al, 2109.12606

# of particles # of words

Momentum cutof Vocabulary

Entropy
Negative log-

likelihood

Fermionic 
occupation

in k-space

quick
brown fox

jumps

Wu, LW, Zhang, PRL ‘19



Normalizing flow for |ΨK⟩

ΨK(x) =
det(eiki⋅ζj)

N!
⋅ det ( ∂ζ

∂x )
1
2

Electron 

coordinates

Quasi-particle 

coordinates

Jacobian of the 

transformationOrthonormal many-body states

Twist: the flow should be permutation equivariant for fermionic coordinates

x ζ

we use FermiNet layer Pfau et al, 1909.02487 



Jointly optimize  and  to minimize the variational free energy |ΨK⟩ p(K)

F = 𝔼
K∼p(K)

1
β

ln p(K) + 𝔼
x∼ ⟨x |ΨK⟩

2 [ ⟨x |H |ΨK⟩
⟨x |ΨK⟩ ]

Boltzmann

distribution

Born 

rule 

The objective function



Limiting case 1: Interacting electrons at T=0

Reduces to ground state variational Monte Carlo 

with a single normalizing flow wavefunction

E = 𝔼
x∼ ΨK(x)

2 [ ⟨x |H |ΨK⟩
⟨x |ΨK⟩ ]

 only for the closed 

shell momentum configuration
p(K) = 1

x ζ

K = {ki}

c.f. neural network states for uniform electron gases: Wilson et al 2202.04622,  Cassella et al 2202.05183 , Li et al, 2203.15472



Limiting case 2: Noninteracting electrons at T>0

F = 𝔼
K∼p(K) [ 1

β
ln p(K) +

N

∑
i=1

ℏ2k2
i

2m ]
A classical statistical mechanics problem:


Noninteracting fermions in canonical ensemble

Distribute N fermions in M momenta to minimize the free energy

(Not as trivial as you might think) Borrmann & Franke, J. Chem. Phys. 1993 

K = {ki}

R ζ=



Benchmarks on spin-polarized electron gases

3D electron gas T/TF=0.0625

Brown et al, PRL ‘13

restricted PIMC N=33, rs=10
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2D electron gas T=0

Tanatar, Ceperley, PRB, ’89

Slater-Jastrow VMC N=37, rs=5
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37 spin-polarized electrons in 2D @ T/TF=0.15
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=
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Effective mass of spin-polarized 2DEG

More pronounced suppression of m* in the low-density strong-coupling region

Diffusion Monte Carlo 

extrapolated to N = ∞

Drummond, Needs, PRB ‘13

Perturbative theory 

valid for rs ≪ 1



Asgari et al, PRB ‘09 Drommond, Needs, PRB’13

Quantum oscillation experiments

Padmanabhan et al, PRL  ’08  


Gokmen et al, PRB ‘09

Experiments on spin-polarized 2DEG 



Entropy measurement of 2DEG

( ∂S
∂n )

T
= − ( ∂μ

∂T )
n

Maxwell relation
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Strongly correlated two-dimensional plasma
explored from entropy measurements
A.Y. Kuntsevich1,2, Y.V. Tupikov3, V.M. Pudalov1,2 & I.S. Burmistrov2,4

Charged plasma and Fermi liquid are two distinct states of electronic matter intrinsic to dilute

two-dimensional electron systems at elevated and low temperatures, respectively. Probing

their thermodynamics represents challenge because of lack of an adequate technique. Here,

we report a thermodynamic method to measure the entropy per electron in gated structures.

Our technique appears to be three orders of magnitude superior in sensitivity to a.c.

calorimetry, allowing entropy measurements with only 108 electrons. This enables us to

investigate the correlated plasma regime, previously inaccessible experimentally in two-

dimensional electron systems in semiconductors. In experiments with clean two-dimensional

electron system in silicon-based structures, we traced entropy evolution from the plasma to

Fermi liquid regime by varying electron density. We reveal that the correlated plasma regime

can be mapped onto the ordinary non-degenerate Fermi gas with an interaction-enhanced

temperature-dependent effective mass. Our method opens up new horizons in studies of

low-dimensional electron systems.
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Next, directly compare computed entropy with the experiment

the modified effective mass. Lacking a microscopic theory for
non-degenerate strongly interacting electron system, we fitted our
results using equation (4) with a density dependent effective mass
m*(n) as a fitting parameter.

Thus extracted effective mass for different temperatures is
shown in Fig. 2b. In the high temperature limit T\UcEF,
the kinetic energy of electrons is given by temperature; hence,
the 2D electron gas turns out to be weakly interacting and
qS/qn is expected to be described by equation (4) with the
density-independent effective mass close to the band mass
value mb.

In general, for a given temperature, the effective mass exhibits a
re-entrant behaviour: as density decreases m* first grows, then
passes through a maximum and falls down approaching a value of
the order of mb. The lower the temperature, the higher maximum
value the effective mass reaches. The enhanced effective mass is in
a qualitative agreement with the low-temperature Shubnikov-de-
Haas measurements of ref. 4 (shown with a thick curve in
Fig. 2b).

The low-density region, where the effective mass falls as
density decreases, corresponds to a non-degenerate strongly
correlated electron plasma regime (EFtToU). We are not aware
of any theory describing this domain. To treat the data in this
regime, we suggest the following phenomenological approach.
For the degenerate clean 2D Fermi liquid, renormalization of its
physical parameters, and, particularly, the effective mass, is
governed by a single dimensionless variable equal to the ratio of
the potential interaction energy U to the kinetic Fermi energy,
rs ¼ 1= a"B

ffiffiffiffiffiffi
pn

p" #
=EF (ref. 14). Here a"B ¼ k‘ 2= mbe2ð Þ stands for

the effective Bohr radius with average dielectric constant.

As explained above, when temperature increases, the interac-
tions for a given density weaken and cannot be characterized
anymore by rspU/EF. Correspondingly, to describe our m*(n,T)
data set over the wide range of densities and temperatures,
we suggest a phenomenological effective interaction parameter
~rs ¼ pa2Bnþ aTgþ b=Eg

FU
b

" #& 1=2
; which interpolates the two

limits, of the degenerate Fermi liquid and non-degenerate
correlated plasma. It appears that all nonmonotonic m*(n)
dependencies for various temperatures collapse onto a single
curve, when we choose a¼ 0.4, b¼ 1 and g¼ 1 (see the inset in
Fig. 2b). Some supporting reasonings from the plasma physics
can be found in Supplementary Note 7, though the precision of
our measurements is not too high to exclude other possible
~rs n;Tð Þ functional forms.

Role of the in-plane magnetic field. To have a deeper insight
into the effective mass renormalization in the low-density regime,
we repeat the same measurements with the in-plane magnetic
fields B||¼ 5.5, and 9 T, which produce Zeeman splitting EZ: 0.5
and 1meV, respectively (see Fig. 2c). At low densities (EFuT,
region A in Fig. 2c) the plasma is spin-polarized by B||¼ 9 T.
Therefore, both, S and qS/qn at B||¼ 9 T are expected to be less
than the respective zero field values.

Region A is located in the vicinity of the critical density for
sample Si-UW2 (nc E8' 1010 cm& 2) and below it. If the free
spins existed in the 2D system in the region A, as the Mott–
Wigner scenario of the 2D MIT predicts19, they would be fully
polarized by the magnetic field gmBB4T (that is, at both B||¼ 9 T
and B||¼ 5.5 T), and the entropy would fall significantly by ns ln2
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Figure 2 | Entropy per electron in zero perpendicular field. (a) The entropy per electron qS/qn versus density (symbols) for various temperatures,
sample Si-UW2. Inset: the same data versus dimensionless density (EF/T), the solid curve is the expectation for the Fermi gas with the Si band parameters,
the dashed curve is the expectation for the FL with negative qm*/qn (see text); (b) the effective mass m* versus density. The black curve corresponds to
the approximation of m* from the Shubnikov-de-Haas measurements4. Symbols are the m*(n,T) data determined using equation (4) from the measured
qS/qn values. Different symbols correspond to different temperatures (shown in the inset). Scaling of the effective mass versus effective interaction
parameter ~rs is shown in the inset(see text). (c) The signal qS/qn(n) at 3.2 K for Si-UW2 is shown with filled symbols: at zero field (black boxes), B||¼ 5.5 T
(blue triangles) and 9T (red boxes). Empty symbols (right axis) are the corresponding effective masses at B¼0 (black) and B||¼9T (red). The bars
illustrate schematically the band diagram for two spin subbands in the regions A, B and C. Vertical dashed lines depict schematic borders between the
regions A, B and C. (d) The entropy of the 2D electron system measured in Si-UW2 for three temperatures (symbols). Inset: temperature dependence of
the entropy for n¼ 10.5' 1011 cm& 2 (EF¼ 75K) and 3.9' 1011 cm& 2 (EF¼ 30K). Dashed curves denote the upper estimate for the entropy.
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Why now ? 
Variational free-energy is a fundamental principle for T>0 
quantum systems

Now, it is has became possible by integrating recent advances in 
generative machine learning

However, it was under-exploited for solving practical problems 
(mostly due to intractable entropy for nontrivial density matrices)



FAQs
Where to get training data ?

Do I understand the “black box” model  ?

How do we know it is correct ?

No training data. Data are self-generated from the generative model.

Variational principle: lower free-energy is better.

a) I don’t care (as long as it is sufficiently accurate).


b)  contains the Landau energy functional

       illustrates adiabatic continuity.

ln p(K)
ζ ↔ x

E[δnk] = E0 + ∑
k

ϵkδnk +
1
2 ∑

k,k′￼

fk,k′￼δnkδnk′￼



Can machines discover physical law ?

Discussions

that artificial intelligence has not advanced as

much as we would like. Name disambiguation,

like information retrieval, needs a determinis-

tic approach and human intervention to be suc-

cessful and precise. 

JEFFREY BEALL

Metadata Librarian, University of Colorado Denver, Denver,
CO 80204, USA. E-mail: jeffrey.beall@ucdenver.edu
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Too Much Quantification

Hinders Creativity

IN HIS NEWS FOCUS STORY “ARE YOU READY
to become a number?” (27 March, p. 1662),

M. Enserink discusses several new initiatives

that would assign each scientist a unique

identifying number, used to link all of a given

individual’s scientific writing. These new

über-databases would supposedly make our

published writings readily attainable, easily

catalogued, and quantifiable. 

Scientists and publishing corporations

soliciting the use of über-databases claim

that this will help review boards that are cur-

rently abusing indices such as impact factor.

This logic is flawed. Instead of applying

common sense to assess the quality of the

reviewed scientists, review boards take the

easy path and rely on numbers such as the

total number of publications and their impact

factor. Further quantification of scientific

output—through ResearcherID, Scholar Fac-

tor, or a new numeric identifier—will in-

crease the dependence of these boards on

quantitative measures of productivity. 

These factors, by definition, describe the

mainstream of the scientif ic population

and research. Increased use of these bean-

counting measures will lead to exclusion of

nonconformist scientists from our system.

However, the very essence of excellent sci-

ence resides in nonconformity and multi-

disciplinary thinking. Imposing more rules

as requirements for academic survival will

narrow the paths by which scientists can

travel. In the long run, these limits will greatly

damage the creativity of scientists. Science is

quantitative, but quantification of scientific

creativity may result in its destruction.

MERON GURKIEWICZ AND ALON KORNGREEN*

The Mina and Everard Goodman Faculty of Life Sciences and
The Gonda Multidisciplinary Brain Research Center, Bar-Ilan
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Livestock Genomics in

Developing Countries

THE RECENT REPORTS ON THE BOVINE GENOME
in the 24 April issue (“The genome sequence

of taurine cattle: A window to ruminant biol-

ogy and evolution,” The Bovine Sequencing

and Analysis Consortium et al., p. 522, and

“Genome-wide survey of SNP variation un-

covers the genetic structure of cattle breeds,”

The Bovine HapMap Consortium, p. 528)

highlight the enormous potential of genomics

to increase the understanding of genetic varia-

tion of livestock and to provide benefits for

well-planned utilization of animal genetic

resources for food and agriculture. Genomic

selection (1) is already being applied to com-

mercial livestock populations and is expected

to increase selection response and decrease

the costs of phenotyping relative to conven-

tional approaches. The opportunities of ge-

nomics may be even greater for local breeds,

in developing countries, assuming that com-

plementary animal identification and record-

ing can be established. Genetic variation is

greater than in commercial breeds and pro-

jected increases in demand for animal prod-

ucts are much larger in developing than devel-

oped countries (2). 

Unfortunately, genomics also presents

risks for the sustainable management of ani-

www.sciencemag.org SCIENCE VOL 324 19 JUNE 2009 1515

An acidic breakup

1522

Life in saline habitats

1523

mal genetic resources in these countries.

Historically, genetic improvement in pro-

ductivity has commonly been achieved by im-

portation of germplasm and cross-breeding,

rendering within-breed improvement less

attractive. Increases in productivity have

been limited, however, by the poor adapta-

tion of imported breeds to vastly different,

and generally harsher, production environ-

ments than those in which they were se-

lected. Increasingly precise selection in the

same favorable environments is unlikely to

overcome this limitation and may even

decrease genetic diversity and adaptability.

The maximum utility of livestock genomics

can only be achieved with research, includ-

ing collection of phenotypes and genotypes,

on developing country breeds (and cross-

breeds) in their natural environment. The

Bovine HapMap analysis, which included

two African and several Bos indicus breeds,

is an encouraging start, but must be followed

through with continued academic and finan-

cial investment.
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Machines Fall Short of

Revolutionary Science

THE 3 APRIL ISSUE CONTAINED TWO REPORTS
about automated science (“Distilling free-

form natural laws from experimental data,”

M. Schmidt and H. Lipson, p. 81, and “The

automation of science,” R. D. King et al., p.

85). These Reports are seriously mistaken

about the nature of the scientific enterprise,

particularly regarding what theorists do and

the meaning of physical law. As Thomas

Kuhn famously argued, what most scientists

do most of the time—which he called “nor-

mal science” and Rutherford called “stamp

collecting”—does not contribute very much

to the advancement of knowledge; rather,

this normal science simply fleshes out the

consequences of the paradigms that have

been established by truly revolutionary

advances. Even if machines did contribute

to normal science, we see no mechanism by

which they could create a Kuhnian revolu-

tion and thereby establish new physical law. 
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LETTERS

In the Report by Schmidt and Lipson, a
machine deduces the equation behind a sample
of chaotic motion. The discovery of determinis-
tic chaos is an example of true Kuhnian revolu-
tion; others were its application to unexpected
fields like meteorology and population biology.
In the constrained problem in the Report, the
relevant physical law and variables are known
in advance; it is hardly a template for the
creative, exploratory nature of true science.
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TECHNICAL COMMENT ABSTRACTS

COMMENT ON “Experimental Test of

Self-Shielding in Vacuum Ultraviolet

Photodissociation of CO”

James R. Lyons, Roy S. Lewis, 
Robert N. Clayton

Chakraborty et al. (Reports, 5 September 2008, p. 1328)

demonstrated very large, wavelength-dependent mass-

independent isotopic effects during carbon monoxide

(CO) photodissociation and argued that self-shielding in

CO was not responsible. We suggest that variations in

band oscillator strengths and linewidths among CO iso-

topologs are responsible for most of the wavelength

dependence observed and that the reported experiments

confirm the importance of self-shielding during CO 

photodissociation. 

Full text at www.sciencemag.org/cgi/content/full/324/5934/

1516-a

COMMENT ON “Experimental Test of

Self-Shielding in Vacuum Ultraviolet

Photodissociation of CO”

S. R. Federman and E. D. Young 

Chakraborty et al. (Reports, 5 September 2008, p. 1328)

suggested that experimental results provide support for CO

photodissociation having caused the oxygen isotope ratio

associated with the early solar nebula. We point out that fur-

ther analysis is required before other mechanisms, such as

self-shielding, are shown to be of little importance. 

Full text at www.sciencemag.org/cgi/content/full/324/5934/

1516-b

COMMENT ON “Experimental Test of

Self-Shielding in Vacuum Ultraviolet

Photodissociation of CO”

Qing-Zhu Yin, Xiaoyu Shi, Chao Chang,
Cheuk-Yiu Ng 

Chakraborty et al. (Reports, 5 September 2008, p.

1328) concluded that an anomalously enriched atomic

oxygen reservoir can be generated through carbon

monoxide photodissociation without self-shielding. We

show that this conclusion is based on the incorrect

assumption that the spectral shifts of the 97.03-

nanometers and 107.61-nanometers vibrational bands

for C16O, C17O, and C18O are negligible and point out

shortcomings of the low-resolution light source used in

their experiments. 

Full text at www.sciencemag.org/cgi/content/full/324/5934/

1516-c

RESPONSE TO COMMENTS ON

“Experimental Test of Self-

Shielding in Vacuum Ultraviolet

Photodissociation of CO”

Subrata Chakraborty, Musahid Ahmed, 
Teresa L. Jackson, Mark H. Thiemens 

We address the comments by Lyons et al., Federman and

Young, and Yin et al. regarding the interpretation of our

carbon monoxide photodissociation experiments and

provide further experimental data analysis, including

measured synchrotron beam profiles. The experimental

data do not support existing self-shielding models that

attempt to explain observed meteoritic oxygen isotopic

compositions because they rely on previously untested

theoretical assumptions.

Full text at www.sciencemag.org/cgi/content/full/324/5934/
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Distilling Free-Form Natural Laws
from Experimental Data
Michael Schmidt1 and Hod Lipson2,3*

For centuries, scientists have attempted to identify and document analytical laws that underlie
physical phenomena in nature. Despite the prevalence of computing power, the process of finding
natural laws and their corresponding equations has resisted automation. A key challenge to finding
analytic relations automatically is defining algorithmically what makes a correlation in observed
data important and insightful. We propose a principle for the identification of nontriviality. We
demonstrated this approach by automatically searching motion-tracking data captured from various
physical systems, ranging from simple harmonic oscillators to chaotic double-pendula. Without any
prior knowledge about physics, kinematics, or geometry, the algorithm discovered Hamiltonians,
Lagrangians, and other laws of geometric and momentum conservation. The discovery rate
accelerated as laws found for simpler systems were used to bootstrap explanations for more
complex systems, gradually uncovering the “alphabet” used to describe those systems.

Mathematical symmetries and invariants
underlie nearly all physical laws in na-
ture (1), suggesting that the search for

many natural laws is inseparably a search for con-
served quantities and invariant equations (2, 3).
Automated techniques for generating, collecting,
and storing data from scientific measurements
have become increasingly precise and powerful,
but automated processes for distilling this data into
knowledge in the form of analytical natural laws
have not kept pace. Thus, there is a pressing prac-
tical need (4, 5) for improved forms of scientific
data mining (6, 7).

The most prohibitive obstacle to overcome in
order to search for conservation laws computa-
tionally is finding meaningful and nontrivial
invariants. There exist an infinite number of
identities that are numerically invariant but have

no connection to the natural physics or dynamics
of the system. We introduce a principle for iden-
tifying only the useful analytical relations that are
related to the system dynamics. We then dem-
onstrate how a search algorithm based on this
principle identifies meaningful analytical links
in data captured from various physical systems
(Fig. 1).

Our goal is to find natural relations where
they exist, with minimal restrictions on their
analytical form (i.e., free-form). Many methods
exist for modeling scientific data: Some use
fixed-form parametric models derived from ex-
pert knowledge, and others use numerical models
(such as neural networks) aimed at prediction.
Still others have explored restricted model spaces
using greedy monomial search (8, 9). Alterna-
tively, we seek the principal unconstrained
analytical expression that explains symbolically
precise conserved relations, thus helping distill
data into scientific knowledge.

Symbolic regression (10) is an established
method based on evolutionary computation (11)
for searching the space of mathematical expres-
sions while minimizing various error metrics [see

section S4 in the supporting online material
(SOM)]. Unlike traditional linear and nonlinear
regression methods that fit parameters to an
equation of a given form, symbolic regression
searches both the parameters and the form of
equations simultaneously (see SOM section S6).
Initial expressions are formed by randomly com-
bining mathematical building blocks such as
algebraic operators {+, –, ÷, ×}, analytical
functions (for example, sine and cosine), con-
stants, and state variables. New equations are
formed by recombining previous equations and
probabilistically varying their subexpressions.
The algorithm retains equations that model the
experimental data better than others and aban-
dons unpromising solutions. After equations reach
a desired level of accuracy, the algorithm termi-
nates, returning a set of equations that are most
likely to correspond to the intrinsic mechanisms
underlying the observed system.

Although symbolic regression is typically
used to find explicit (12–14) and differential
equations (15), this method cannot readily find
conservation laws or invariant equations. Rather
than trying to model a specific signal, we are
trying to detect any underlying physical law that
the system obeys, which may or may not be
constant (e.g., a Lagrangian).

A particular challenge is requiring the law to
be a function of the system’s state while avoiding
trivial or meaningless relations. For any system
over the state space x, there are infinitely many
trivial equations over x that satisfy a conserved
quantity, such as sin2(x1) + cos2(x1) or x1 + 4.56 –
x2x1/x2. Additionally, there are infinitely many
arbitrarily close trivial conservations, such as
4.56 + 1/(100 + x1

2). To distinguish good con-
servation law candidates from poor ones, we
need a more robust principle than simply invar-
iance alone.

The identification of nontrivial relations is a
major challenge, even for human scientists: Many
published invariant quantities have turned out to
be coincidental (16). The mere appearance of a
conserved value is insufficient for a conservation

1Computational Biology, Cornell University, Ithaca, NY 14853,
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Cornell University, Ithaca, NY 14853, USA. 3Computing and
Information Science, Cornell University, Ithaca, NY 14853,
USA.
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Fig. 1. Mining physical systems. We captured the angles and angular velocities
of a chaotic double-pendulum (A) over time using motion tracking (B), then we
automatically searched for equations that describe a single natural law relating

these variables. Without any prior knowledge about physics or geometry, the
algorithm found the conservation law (C), which turns out to be the double
pendulum’s Hamiltonian. Actual pendulum, data, and results are shown.
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Lagrangians, and other laws of geometric and momentum conservation. The discovery rate
accelerated as laws found for simpler systems were used to bootstrap explanations for more
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equations (15), this method cannot readily find
conservation laws or invariant equations. Rather
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We have demonstrated the discovery of
physical laws, from scratch, directly from ex-
perimentally captured data with the use of a
computational search. We used the presented
approach to detect nonlinear energy conservation
laws, Newtonian force laws, geometric invari-
ants, and system manifolds in various synthetic
and physically implemented systems without
prior knowledge about physics, kinematics, or
geometry. The concise analytical expressions that
we found are amenable to human interpretation
and help to reveal the physics underlying the
observed phenomenon. Many applications exist
for this approach, in fields ranging from systems
biology to cosmology, where theoretical gaps
exist despite abundance in data.

Might this process diminish the role of future
scientists? Quite the contrary: Scientists may use
processes such as this to help focus on interesting
phenomena more rapidly and to interpret their
meaning.
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The Automation of Science
Ross D. King,1* Jem Rowland,1 Stephen G. Oliver,2 Michael Young,3 Wayne Aubrey,1
Emma Byrne,1 Maria Liakata,1 Magdalena Markham,1 Pınar Pir,2 Larisa N. Soldatova,1
Andrew Sparkes,1 Kenneth E. Whelan,1 Amanda Clare1

The basis of science is the hypothetico-deductive method and the recording of experiments in
sufficient detail to enable reproducibility. We report the development of Robot Scientist “Adam,”
which advances the automation of both. Adam has autonomously generated functional genomics
hypotheses about the yeast Saccharomyces cerevisiae and experimentally tested these hypotheses
by using laboratory automation. We have confirmed Adam’s conclusions through manual
experiments. To describe Adam’s research, we have developed an ontology and logical language.
The resulting formalization involves over 10,000 different research units in a nested treelike
structure, 10 levels deep, that relates the 6.6 million biomass measurements to their logical
description. This formalization describes how a machine contributed to scientific knowledge.

Computers are playing an ever-greater role
in the scientific process (1). Their use to
control the execution of experiments con-

tributes to a vast expansion in the production of
scientific data (2). This growth in scientific data,
in turn, requires the increased use of computers
for analysis and modeling. The use of computers
is also changing the way that science is described
and reported. Scientific knowledge is best ex-
pressed in formal logical languages (3). Only
formal languages provide sufficient semantic
clarity to ensure reproducibility and the free
exchange of scientific knowledge. Despite the

advantages of logic, most scientific knowledge is
expressed only in natural languages. This is now
changing through developments such as the
Semantic Web (4) and ontologies (5).

A natural extension of the trend to ever-greater
computer involvement in science is the concept of
a robot scientist (6). This is a physically imple-
mented laboratory automation system that exploits
techniques from the field of artificial intelligence
(7–9) to execute cycles of scientific experimenta-
tion. A robot scientist automatically originates
hypotheses to explain observations, devises exper-
iments to test these hypotheses, physically runs the
experiments by using laboratory robotics, inter-
prets the results, and then repeats the cycle.

High-throughput laboratory automation is trans-
forming biology and revealing vast amounts of
new scientific knowledge (10). Nevertheless, ex-
isting high-throughput methods are currently in-
adequate for areas such as systems biology. This
is because, even though very large numbers of

experiments can be executed, each individual ex-
periment cannot be designed to test a hypothesis
about amodel. Robot scientists have the potential
to overcome this fundamental limitation.

The complexity of biological systems neces-
sitates the recording of experimental metadata in
as much detail as possible. Acquiring these meta-
data has often proved problematic. With robot
scientists, comprehensive metadata are produced
as a natural by-product of the way they work.
Because the experiments are conceived and ex-
ecuted automatically by computer, it is possible
to completely capture and digitally curate all as-
pects of the scientific process (11, 12).

To demonstrate that the robot scientist meth-
odology can be both automated and be made
effective enough to contribute to scientific knowl-
edge, we have developed Robot Scientist “Adam”
(13) (Fig. 1). Adam’s hardware is fully automated
such that it only requires a technician to period-
ically add laboratory consumables and to remove
waste. It is designed to automate the high-
throughput execution of individually designed
microbial batch growth experiments in micro-
titer plates (14). Adam measures growth curves
(phenotypes) of selected microbial strains (geno-
types) growing in defined media (environments).
Growth of cell cultures can be easily measured in
high-throughput, and growth curves are sensitive
to changes in genotype and environment.

We applied Adam to the identification of
genes encoding orphan enzymes in Saccharomy-
ces cerevisiae: enzymes catalyzing biochemical
reactions thought to occur in yeast, but for which
the encoding gene(s) are not known (15). To set
up Adam for this application required (i) a
comprehensive logical model encoding knowl-
edge of S. cerevisiae metabolism [~1200 open
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Figure 1. How can Androids contribute to new scientific understanding? In addition to scientific literature,
we take inspiration from the philosophy of science and from dozens of stories provided by active computational natural
scientists. Thereby we identify three fundamental dimensions of computer-assisted scientific understanding. From there,
we look into the future and develop a roadmap on how to develop Androids that can contribute to understanding – the
essential aim of science.

cal theory of Scientific Understanding recently devel-
oped by Dennis Dieks and Henk de Regt [12, 13], who
was awarded the Lakatos Award in 2019 for the de-
velopment of this theory. We thereby introduce three
fundamental dimensions for scientific androids1 con-
tribution towards new scientific understanding:

I) Androids acting as a microscope in the re-
sponses, i.e., akin to an instrument revealing
properties of a physical system that are other-
wise di�cult or even impossible to probe. Hu-
mans then lift these insights to scientific under-
standing.

II) Androids acting as muses, i.e., sources of inspi-
ration for new concepts and ideas that are sub-
sequently understood and generalized by human
scientists.

1
We encapsulate all advanced artificial computational systems

under androids, independent of their working principles. In

this way, we are focusing on the operational objective rather

than the methodology.

III) Lastly, in an ultimate dimension of android-
assisted scientific understanding, computers are
the agents of understanding. While we have not
found any evidence of computers acting as true
agents of understanding in science yet, we out-
line important characteristics of such an artifi-
cial system of the future and potential ways to
achieve it.

In the first two dimensions, the android enables hu-
mans to gain new scientific understanding while in the
last one the machine gains understanding itself. These
classes enable us to layout a vibrant and mostly unex-
plored field of research, which will hopefully manifest
itself as a guiding star for future developments of ar-
tificial intelligence in the natural sciences.

The goal of this perspective is to put Scientific
Understanding back to the limelight – where we are
convinced it belongs. We hope to inspire physicists,
chemists and biologists and A.I. researchers to go be-
yond the status quo, focus on these central aims of
science, and revolutionize computer-assisted scientific
understanding. In that way, we believe that androids

On scientific understanding with artificial intelligence
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Imagine an oracle that correctly predicts the outcome of every particle physics experiment, the
products of every chemical reaction, or the function of every protein. Such an oracle would revolu-
tionize science and technology as we know them. However, as scientists, we would not be satisfied
with the oracle itself. We want more. We want to comprehend how the oracle conceived these
predictions. This feat, denoted as scientific understanding, has frequently been recognized as the
essential aim of science. Now, the ever-growing power of computers and artificial intelligence poses
one ultimate question: How can advanced artificial systems contribute to scientific understanding
or achieve it autonomously?

We are convinced that this is not a mere technical question but lies at the core of science. There-
fore, here we set out to answer where we are and where we can go from here. We first seek advice
from the philosophy of science to understand scientific understanding. Then we review the current
state of the art, both from literature and by collecting dozens of anecdotes from scientists about how
they acquired new conceptual understanding with the help of computers. Those combined insights
help us to define three dimensions of android-assisted scientific understanding: The android as a I)
computational microscope, II) resource of inspiration and the ultimate, not yet existent III) agent
of understanding. For each dimension, we explain new avenues to push beyond the status quo and
unleash the full power of artificial intelligence’s contribution to the central aim of science. We hope
our perspective inspires and focuses research towards androids that get new scientific understanding
and ultimately bring us closer to true artificial scientists.

I. INTRODUCTION

Artificial Intelligence (A.I.) has recently been called
a “new tool in the box for scientists”[1] and that “ma-
chine learning with artificial networks is revolutioniz-
ing science“[2]. Additionally, it has been conjectured
“that machines could have a significantly more cre-
ative role in future research.” [3]. For instance, it has
even been postulated that “[t]he new goal of theoret-
ical chemistry should be that of providing access to
a chemical ’oracle’: an A.I. environment which can
help humans solve problems, associated with the fun-
damental chemical questions of the fourth industrial
revolution [...], in a way such that the human cannot

∗
mario.krenn@mpl.mpg.de

†
alan@aspuru.com

distinguish between this and communicating with a
human expert” [4].

However, this excitement has not been shared
among all scientists. Specifically, it has been ques-
tioned whether advanced computational approaches
can go beyond numerics [5–9] and contribute funda-
mentally to one of the essential aims of science, that
is, gaining of new scientific understanding [10–12].

In this work, we address how artificial systems can
contribute to scientific understanding – specifically,
what is the state-of-the-art and how we can push fur-
ther. Besides a thorough literature review, we sur-
veyed dozens of scientists at the interface of biol-
ogy, chemistry or physics on the one hand, and arti-
ficial intelligence and advanced computational meth-
ods. These personal narratives focus on the concrete
discovery process of ideas and are a vital augmenta-
tion to the scientific literature. We put the literature
and personal accounts in the context of a philosophi-
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Do we understand what is the machine doing ?

Yes/No/Well, do I have to ?/I don’t care…

Discussions



Is this all fitting ?

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Postscript on Supervised Neural
Networks

One of my students, Robert, asked:

Maybe I’m missing something fundamental, but supervised neural
networks seem equivalent to fitting a pre-defined function to some
given data, then extrapolating – what’s the difference?

I agree with Robert. The supervised neural networks we have studied so far
are simply parameterized nonlinear functions which can be fitted to data.
Hopefully you will agree with another comment that Robert made:

Unsupervised networks seem much more interesting than their su-
pervised counterparts. I’m amazed that it works!
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True for supervised learning, which is hugely successful for real-world applications. 

Discussions

But that is not the whole story, especially for scientific applications.



“Using AI to accelerate scientific discovery”  talk by Demis Hassabis in 2021“Using AI to accelerate scientific discovery” 2021, by Demis Hassabis, co-founder and CEO of DeepMind



Linfeng ZhangHao Xie

Thank you!
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