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Abstract

Generative models generate unseen samples according
to a learned joint probability distribution in the high-
dimensional space. They find wide applications in density
estimation, variational inference, representation learning
and more. Deep generative models and associated tech-
niques (such as differentiable programing and representa-
tion learning) are cutting-edge technologies physicists can
learn from deep learning.

This note introduces the concept and principles of gen-
erative modeling, together with applications of modern
generative models (autoregressive models, normalizing
flows, variational autoencoders etc) as well as the old ones
(Boltzmann machines) to physics problems. As a bonus,
this note puts some emphasize on physics-inspired gen-
erative models which take insights from statistical, quan-
tum, and fluid mechanics.
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http://wangleiphy.github.io/. Please send comments,
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1
G E N E R AT I V E M O D E L I N G

What I can not create, I do not
understand

Richard Feynman’s
blackboard

Deep learning is more than discriminative tasks such as pattern
recognition. Generative modeling, by its name, it is about generating
new instances from the learned probability distribution. Generative
models are fun, useful but also challenging. Thus, they are at the
forefront of deep learning research [1].

1.1 probabilistic generative modeling

The goal of generative modeling is to represent, learn and sample
from high-dimensional probability distributions. Given data x and
label y, generative models capture the joint probability distribution
p(x, y). A well trained generative model can support discriminative
tasks through the Bayes formula p(y|x) = p(x, y)/p(x), where p(x) =
∑y p(x, y). Moreover, one can generate new samples conditioned on
its label p(x|y) = p(x, y)/p(y). The generative models are also useful
to support semi-supervised learning and reinforcement learning.

For simplicity, let us focus on density estimation first, where the goal
is to model the joint probability p(x) of a given an unlabelled dataset
D = {x}. Information theory consideration defines an objective func-
tion for this task. The Kullback-Leibler (KL) divergence reads

KL(π||p) = ∑
x

π(x) ln
[

π(x)
p(x)

]
, (1)

which measures the dissimilarity between two probability distribu-
tions. We have KL ≥ 0 due to the Jensen inequality. The equality
is achieved only when the two distributions match exactly. The KL-
divergence is not symmetric with respect to its arguments. So it is
not a proper distance measure. KL(π||p) places high probability in
p anywhere the data probability π is high, while KL(p||π) places
low probability where the data probability π is low [2].
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The Jensen inequality [3] states that for convex ^ functions f

〈 f (x)〉 ≥ f (〈x〉). (2)

Examples of convex ^ functions f (x) = x2, ex, e−x,− ln x, x ln x.

Info

Introducing Shannon entropy H(π) = −∑x π(x) ln π(x) and cross-
entropy H(π, p) = −∑x π(x) ln p(x), one sees that KL(π||p) =

H(π, p) −H(π). Minimization of the KL-divergence is then equiv-
alent to minimization of the cross-entropy since only it depends on
the to-be-optimized parameters. In typical DL applications one only
has i.i.d. samples from the target probability distribution π(x), so one
replaces it with the empirical estimation π(x) = 1

|D| ∑x′∈D δ(x− x′).
The cross entropy then turns out to be the negative log-likelihood
(NLL) we met in the last chapter

L = − 1
|D| ∑

x∈D
ln[p(x)]. (3)

Minimizing the NLL is a prominent (but not the only) way to train Idea 1: use a neural
net to represent
p(x), but how to
normalize ? how to
sample ? Idea 2: use
a neural net to
transform simple
prior z to complex
data x, but what is
the likelihood ? How
to actually learn the
network?

generative models, also known as Maximum Likelihood Estimation
(MLE). The Eq. (3) appears to be a minor change compared to the
discriminative task. However it causes huge challenges to change the
conditional probability to probability function in the cost function.
How to represent and learn such high dimensional probability dis-
tributions with the intractable normalization factor ? How could we
marginalize and sample from such high dimensional probability dis-
tributions ? We will see that physicists have a lot to say about these
problems since they love high dimensional probability, Monte Carlo
methods and mean-field approaches. In fact, generative modeling has
close relation to many problems in statistical and quantum physics,
such as inverse statistical problems, modeling a quantum state and
quantum state tomography.

Exercise 1 (Positivity of NLL for discrete random variables). Show
that the NLL is positive for probability distributions of discrete variables.
What about probability densities of continuous variables ?

Density estimation on data is not the only thing physicists wanted ”Solving” means: 1.
compute expected
value of physical
observables, 2.
sampling
configurations at
various
temperatures, 3.
compute marginal
probabilities given
arbitrary subgroup
of variables

to do. For example, in statistical physics one wants to solve the
problem given bare energy function. Generative models can also
help us on that with variational calculation by minimizing the re-
verse KL-divergence. Consider a statistical physics problem where
π(x) = e−E(x)/Z and Z = ∑x e−E(x). We try to minimize the free
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energy − lnZ , which is unfortunately intractable in general. To pro-
ceed, we define a variational free energy

L = ∑
x

q(x) ln
[

q(x)
e−E(x)

]
= 〈E(x) + ln q(x)〉x∼q(x) (4)

for a normalized variational probability distribution q(x). The two
terms have the physical meaning of “energy” and “entropy” respec-
tively. Crucially, since

L+ lnZ = KL(q||π) ≥ 0, (5)

thus Eq. (4) is a variational upper bound of the physical free energy,
− lnZ . The approximation becomes exact when the variational dis-
tribution approaches to the target distribution. Equation (5) is known
as Gibbs-Bogoliubov-Feynman inequality in physics.

The density estimation and variational calculation examples are by no
means the only two applications of the generative models. Since they
capture the whole distribution, by defining and adjusting the suit-
able cost function you can use generative model for creative applica-
tions, or enhance performance of downstream tasks. One thing we
already see is that the requirement on the generative models are task
dependent. For density estimation, we need to efficiently compute
the likelihood (or at least its gradient given data). While for varia-
tional calculation, we need to be able to efficiently sample from the
model as well.

1.2 generative model zoo

This section we review several representative generative models.
The key idea is to impose certain structural prior in the probabilistic
model. Each model has its own strengths and weakness. Exploring
new approaches or combining the existing ones is an active research
field in deep learning, with many ideas coming from physics.

1.2.1 Boltzmann Machines

As a prominent statistical physics inspired approach, the Boltz-
mann Machines (BM) model the probability as a Boltzmann distri-
bution

p(x) =
e−E(x)

Z , (6)

where E(x) is an energy function and Z , the partition function, is a
normalization factor. The task of probabilistic modeling is then trans-
lated into designing and learning of the energy function to model
observed data. Density estimation of binary data is related to the so
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called inverse Ising problem. Exploiting the maximum log-likelihood
estimation, the gradient of Eq. (3) is

∂L
∂θ

=

〈
∂E(x)

∂θ

〉
x∼D
−
〈

∂E(x)
∂θ

〉
x∼p(x)

. (7)

The two terms are called positive and negative phase respectively.
Intuitively, the positive phase tries to push down the energy of the
observed data, therefore increases the model probability on the ob-
served data. While the negative phase tries to push up the energy on
samples drawn from the model, therefore to make the model proba-
bility more evenly distributed.

Consider a concrete example of the energy model E = − 1
2Wijxixj,

the gradient Eq. (7) can be simply evaluated. And the gradient
descent update

Wij = Wij + η
(
〈xixj〉x∼D − 〈xixj〉x∼p(x)

)
. (8)

The physical meaning of such update is quite appealing: one com-
pares the correlation on the dataset and on the model, then strengthen
or weaken the coupling accordingly.

Example

The positive phase are quite straightforward to estimate by simply
sampling batches from the dataset. While the negative phase typi-
cally involves the Markov chain Monte Carlo (MCMC) sampling. It
can be very expensive to thermalize the Markov chain at each gra-
dient evaluation step. The contrastive divergence (CD) algorithm [4]
initialize the chain with a sample drawn from the dataset and run
the Markov chain only k steps. The reasoning is that if the BM has
learned the probability well, then the model probability p(x) resem-
bles the one of the dataset anyway. Furthermore, the persistent CD [5]
algorithm use the sample from last step to initialize the Monte Carlo
chain. The logic being that the gradient descent update of the model
is small anyway, so accumulation of the Monte Carlo samples helps
mixing. In practice, one run a batch of the Monte Carlo chains in
parallel to estimate the expected value of the negative phase.

Exercise 2 (Mind the Gradient). Define ∆ = 〈E(x)〉x∼D−〈E(x)〉x∼p(x).
How is its gradient with respect to θ related to Eq. (7) ?

To increase the representational power of the model, one can intro-
duce hidden variables in the energy function and marginalize them
to obtain the model probability distribution

p(x) =
1
Z ∑

h
e−E(x,h). (9)
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x1 x2 x3 x4 x5

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15

(a) RBM

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

h6 h7 h8 h9 h10

h11 h12 h13 h14 h15

(b) DBM

Figure 1: RBM and DBM with the same number of neurons and con-
nections. Information theoretical consideration shows that
the DBM can potentially capture patterns that are impossi-
ble for the RBM [6].

This is equivalent to say that E(x) = − ln ∑h e−E(x,h) in Eq. (6), which
can be quite complex even for simple joint energy function E(x, h).
Differentiating the equation, we have

∂E(x)
∂θ

=
∑h e−E(x,h) ∂E(x,h)

∂θ

∑h e−E(x,h)
= ∑

h
p(h|x)∂E(x, h)

∂θ
, (10)

Therefore, in the presence of the hidden variables the gradient in
Eq. (7) becomes

∂L
∂θ

=

〈
∂E(x, h)

∂θ

〉
x∼D,h∼p(h|x)

−
〈

∂E(x, h)
∂θ

〉
(x,h)∼p(x,h)

, (11)

which remains simple and elegant. However, the downside of in-
troducing the hidden variables is that one needs even to perform
expensive MCMC for the positive phase. An alternative approach is
to use the mean-field approximation to evaluate these expectations
approximately.

The restricted Boltzmann Machine (RBM) strives to have a balanced
expressibility and learnability. The energy function reads

E(x, h) = −∑
i

aixi −∑
j

bjhj −∑
i,j

xiWijhj. (12)

Since the RBM is defined on a bipartite graph shown in Fig. 1(a),
its conditional probability distribution factorizes p(h|x) = ∏j p(hj|x)
and p(x|h) = ∏i p(xi|h), where

p(hj = 1|x) = σ

(
∑

i
xiWij + bj

)
, (13)

p(xi = 1|h) = σ

(
∑

j
Wijhj + ai

)
. (14)

This means that given the visible units we can directly sample the Despite of appealing
theory and historic
importance, BM is
now out of fashion
in industrial
applications due to
limitations in its
learning and
sampling efficiency.

hidden units in parallel, vice versa. Sampling back and forth between
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the visible and hidden units is called block Gibbs sampling. Such
sampling approach appears to be efficient, but it is not. The visible
and hidden features tend to lock to each other for many steps in the
sampling. In the end, the block Gibbs sampling is still a form of
MCMC which in general suffers from long autecorrelation time and
transition between modes.

For an RBM, one can actually trace out the hidden units in the
Eq. (6) analytically and obtain

E(x) = −∑
i

aixi −∑
j

ln(1 + e∑i xiWij+bj). (15)

This can be viewed as a Boltzmann Machine with fully visible units
whose energy function has a softplus interaction. Using Eq. (7) and
Eq. (15) one can directly obtain

−∂L
∂ai

= 〈xi〉x∼D − 〈xi〉x∼p(x) , (16)

−∂L
∂bj

=
〈

p(hj = 1|x)
〉

x∼D −
〈

p(hj = 1|x)
〉

x∼p(x) , (17)

− ∂L
∂Wij

=
〈

xi p(hj = 1|x)
〉

x∼D −
〈

xi p(hj = 1|x)
〉

x∼p(x) . (18)

On see that the gradient information is related to the difference
between correlations computed on the dataset and the model.

Info

Exercise 3 (Improved Estimators). To reconcile Eq. (11) and Eqs. (16-18),
please convince yourself that

〈
xi p(hj = 1|x)

〉
x∼D =

〈
xihj

〉
x∼D,h∼p(h|x)

and
〈

xi p(hj = 1|x)
〉

x∼p(x) =
〈

xihj
〉
(x,h)∼p(x,h). The former ones are im-

proved estimators with reduced variances. In statistics this is known as
the Rao-Blackwellization trick. Remember that: whenever you can perform
marginalization analytically in a Monte Carlo calculation, please do it.

Although in principle the RBM can represent any probability distri-
bution given sufficiently large number of hidden neurons, the require-
ment can be exponential. To further increase the representational ef-
ficiency, one introduces the deep Boltzmann Machine (DBM) which
has more than one layers of hidden neurons, see Fig. 1(b). Under in-
formation theoretical considerations, one can indeed show there are
certain data which is impossible to represent using an RBM, but can
possibly be represented by the DBM with the same number of hidden
neurons and connections [6]. However, the downside of DBMs is that
they are even harder to train and sample due the interactions among
the hidden units [7].
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1.2.2 Autoregressive Models

Arguably the simplest probabilistic model is the autoregressive
models. They belong to the fully visible Bayes network. Basically, they
breaks the full probability function into products of conditional prob-
abilities, e.g.,

p(x) = ∏
i

p(xi|x<i). (19)

One can parameterize and learn the conditional probabilities using
neural networks. In practice, one can model all these conditional
probabilities using a single neural network, either a recurrent neural
network with variable length, or using a feedforward neural network
with masks. Note that these neural networks do not directly out-
put the sample xi, but the parameters of the conditional probability.
For example, for continuous variables we can demand p(xi|x<i) =

N (xi; µi, σ2
i ), where the mean and variance are functions of x<i. The

log-likelihood of a given datum is easily computed as

ln p(x) = −1
2 ∑

i

((
xi − µi

σi

)2

+ ln(2πσi)

)
. (20)

To sample from the autoregressive model, we can sample ε ∼ N (ε; 0, 1)
and iterate the update rule

xi = σi(x<i)εi + µi(x<i). (21)

A slightly awkward but very enlightening way to compute the log-
likelihood of the autoregressive model is to treat Eq. (21) as an
invertible mapping between x and ε, and invoke the probability
transformation

ln p(x) = lnN (ε; 0, 1)− ln
∣∣∣∣det

(
∂x
∂ε

)∣∣∣∣ . (22)

Notice that Jacobian matrix is triangular, whose determinant can
be easily computed to be Eq. (20). Generalizing this idea to more
complex bijective transformations bring us to a general class of
generative models called Normalizing Flow [8–16]. In particular,
a stack of autoregressive transformations is called autoregressive
flow (AF).

Info

Despite their simplicity, autoregressive networks have achieved state
of the art performances in computer vision (PixelCNN and Pixel-
RNN [13]) and speech synthesis (WaveNet [14]). The downside of
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autoregressive models is that one has to impose an order of the con-
ditional dependence which may not correspond to the global hier-
archical structure of the data. Moreover, sequential sampling of the
autoregressive model such as Eq. (21) is considered to be slow since
they can not take advantage of modern hardware. Nevertheless, the
generative process Eq. (21) is direct sampling, which is can be more
efficient compared to the Gibbs sampling of Boltzmann Machines.

The inverse autoregressive flow (IAF) [12] changes the transforma-
tion Eq. (21) to be

xi = σi(ε<i)εi + µi(ε<i), (23)

so that one can generate the data in parallel. The log-likelihood of
the generated data also follows Eq. (20). However, the downside
of the IAF is that it can not efficiently compute the likelihood of an
arbitrary given data which is not generated by itself. Thus, IAF is
not suitable for density estimation. IAF was originally introduced
to improve the encoder of the VAE [12]. Recently, DeepMind use
an IAF (Parallel WaveNet) [17] to learn the probability density of
an autoregressive flow (WaveNet) [14], thus to improve the speech
synthesis speed to meet the needs in real-world applications [18].
To train the parallel WaveNet, they minimize the Probability Density
Distillation loss KL(pIAF||pAF) [17] since it is easy to draw sample
from IAF, and easy to compute likelihood of AF on given data.

Info

1.2.3 Normalizing Flow

Normalizing flow is a family of bijective and differentiable (i.e.,
diffeomorphism) neural networks which maps between two contin-
uous variables z and x of the same dimension. The idea is that the
physical variables can have more complex realistic probability density
compared to the latent variables [8–16]

ln p(x) = ln q(z)− ln
∣∣∣∣det

(
∂x
∂z

)∣∣∣∣ . (24)

Since diffeomorphism forms a group, the transformation is compo-
sitional x = g(z) = · · · ◦ g2 ◦ g1(z), where each step is a diffeomor-
phism. And the log-Jacobian determinant in Eq. (24) is computed as
ln
∣∣∣det

(
∂x
∂z

)∣∣∣ = ∑i ln
∣∣∣det

(
∂gi+1

∂gi

)∣∣∣. To compute the log-likelihood of

a given data, one first infer z = g−1(x) and keep track of the log-
Jacobian determinant in each step.

The abstraction of a diffeomorphism neural network is called a bi- Bijectors are
modular
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jector [19, 20]. Each bijector should provide interface to compute for-
ward, inverse and log-Jacobian determinant in an efficient way. The
bijectors can be assembled in a modular fashion to perform complex
probability transformation. Because of their flexibility, they can act as
drop in components of other generative models.

As an example of Eq. (24), consider the famous Box-Muller trans-
formation which maps a pair of uniform random variables z to
Gaussian random variables x{

x1 =
√
−2 ln z1 cos(2πz2),

x2 =
√
−2 ln z1 sin(2πz2).

(25)

Since
∣∣∣det

(
∂x
∂z

)∣∣∣ =
∣∣∣∣∣∣det

 − cos(2πz2)

z1
√
−2π ln z1

−2π
√
−2 ln z1 sin(2πz2)

− sin(2πz2)

z1
√
−2π ln z1

2π
√
−2 ln z1 cos(2πz2)

∣∣∣∣∣∣ =
2π
z1

, we confirm that q(x) = p(z)
/ ∣∣∣det

(
∂x
∂z

)∣∣∣ = 1
2π exp

(
− 1

2 (x2
1 + x2

2)
)
.

Normalization flows are generalizations of this trick to higher di-
mensional spaces while still keepping the Jacobian determinants
easy to compute.

Example

We take the real-valued non-volume preserving transformation (Real
NVP) [11] as an example of the normalizing flow. For each layer of the
Real NVP network, we divide multi-dimensional variables x` into two
subgroups x` = x`< ∪ x`> and transform one subgroup conditioned on
the other group at each step{

x`< = x`<
x`> = x`> � es`(x`<) + t`(x`<)

(26)

where s`(·) and t`(·) are two arbitrary functions (with correct in-
put/output dimension) which we parametrize using neural networks.
It is clear that this transformation is easy to invert by reversing the
scaling and translation operations. Moreover, the Jacobian determi-
nant of the transformation is also easy to compute since the matrix
is triangular. By applying a chain of these elementary transforma-
tions to various bipartitions one can transform in between a simple
prior density and a complex target density. The Real NVP network
can be trained with standard maximum likelihood estimation on data.
After training, one can generate new samples directly by sampling la-
tent variables according to the prior probability density and passing
them through the network. Moreover, one can perform inference by
passing the data backward through the network and obtain the latent
variables. The log-probability of the data is efficiently computed as

ln q(x) = ln p(z)−∑
`,i
(s`)i, (27)
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where the summation over index i is for each component of the out-
put of the s function.

From the above discussion, one sees that the crucial point of de-
sign flow-based generative model is to balance the expressibility and
the computational effort of the Jacobian calculation. Typically, this is
implemented via imposing internal structure of the network [8–16].
Recently, References shows that is is possible to take the ”continuous-
time” limit of the flow, which relax the structure constrain [21, 22].
Interestingly, the resulting generative model can be viewed as inte-
grating an ordinary differential system for the data and its likelihood.

Reference [23] further revealed the optimal transport perspective Monge-Ampère
Flowof continuous-time normalizing flow and discussed means to impose

the physical symmetries in the generating process. Consider latent
variables z and physical variables x both living in RN . Given a dif-
feomorphism between them, x = x(z), the probability densities in
the latent and physical spaces are related by p(z) = q(x)

∣∣∣det
(

∂x
∂z

)∣∣∣.
The Brenier theorem [24] implies that instead of dealing with a multi-
variable generative map, one can consider a scalar valued generating
function x = ∇u(z), where the convex Brenier potential u satisfies
the Monge-Ampère equation [25]

p(z)
q(∇u(z))

= det
(

∂2u
∂zi∂zj

)
. (28)

Given the densities p and q, solving the Monge-Ampère equation for
u turns out to be challenging due to the nonlinearity in the determi-
nant. Moreover, for typical machine learning and statistical physics
problems, one faces an additional challenge that one does not even
have direct access to both probability densities p and q. Instead, one
only has independent and identically distributed samples from one
of them, or one only knows one of the distributions up to a normal-
ization constant. Therefore, solving the Brenier potential in these
contexts is a control problem instead of a boundary value problem.
An additional computational challenge is that even for a given Bre-
nier potential, the right-hand side of (28) involves the determinant
of the Hessian matrix, which scales unfavorably as O(N3) with the
dimensionality of the problem.

To address these problems, we consider the Monge-Ampère equa-
tion in its linearized form, where the transformation is infinitesimal [26].
We write the convex Brenier potential as u(z) = ||z||2/2+ εϕ(z), thus
x− z = ε∇ϕ(z), and correspondingly ln q(x)− ln p(z) = −Tr ln

(
I + ε

∂2 ϕ
∂zi∂zj

)
=

−ε∇2ϕ(z) +O(ε2). In the last equation we expand the logarithmic



1.2 generative model zoo 12

function and write the trace of a Hessian matrix as the Laplacian op-
erator. Finally, taking the continuous-time limit ε→ 0, we obtain

dx
dt

= ∇ϕ(x), (29)

d ln p(x, t)
dt

= −∇2ϕ(x), (30)

such that x(0) = z, p(x, 0) = p(z), and p(x, T) = q(x), where t
denotes continuous-time and T is a fixed time horizon. For simplicity
here, we still keep the notion of x, which now depends on time. The
evolution of x from time t = 0 to T then defines our generative map.

The two ordinary differential equations (ODEs) compose a dynam-
ical system, which describes the flow of continuous random variables
and the associated probability densities under iterative change-of-
variable transformation. One can interpret equations (29) and (30)
as fluid mechanics equations in the Lagrangian formalism. Equa-
tion (29) describes the trajectory of fluid parcels under the velocity
field given by the gradient of the potential function ϕ(x). While the
time derivative in (30) is understood as the “material derivative” [27],
which describes the change of the local fluid density p(x, t) experi-
enced by someone travels with the fluid.

The fluid mechanics interpretation is even more apparent if we
write out the material derivative in (30) as d/dt = ∂/∂t + dx/dt · ∇,
and use (29) to obtain

∂p(x, t)
∂t

+∇ · [p(x, t)v] = 0, (31)

which is the continuity equation of a compressible fluid with density
p(x, t) and velocity field v = ∇ϕ(x). Obeying the continuity equation
ensures that the flow conserves the total probability mass. Moreover,
the velocity field is curl free ∇× v ≡ 0 and the fluid follows a form
of gradient flow [28]. The irrotational flow matches one’s heuristic ex-
pectation that the flow-based generative model transports probability
masses.

It should be stressed that although we use the optimal transport
theory to motivate model architecture design, i.e., the gradient flow
for generative modeling, we do not have to employ the optimal trans-
port objective functions for the control problem. The difference is that
in generative modeling one typically fixes only one end of the proba-
bility density and aims at learning a suitable transformation to reach
the other end. While for optimal transport one has both ends fixed
and aims at minimizing the transportation cost. References [29–31]
adapted the Wasserstein distances in the optimal transport theory as
an objective function for generative modeling.

1.2.4 Variational Autoencoders

Variational autoencoder (VAE) is an elegant framework for per- One of the creators
of VAE, Max
Welling, did his PhD
on gravity theory
under the
supervision of ’t
Hooft in late 90s.
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forming variational inference [32], which also has deep connection
variational mean field approaches in statistical physics. In fact, the
predecessor of VAE is called Helmholtz machines [33]. The general
idea of an autoencoder is to let the input data go through a network
with bottleneck and restore itself. After training, the first half of the
network is an encoder which transform the data x into the latent
space z . And the second half of the network is a decoder which trans-
form latent variables into the data manifold. The bottleneck means
that we typically require that the latent space has lower dimension or
simpler probability distribution than the original data.

Suppose the latent variables p(z) follow a simple prior distribution, Intractable posterior

such as an independent Gaussian. The decoder is parameterized by a
neural network which gives the conditional probability p(x|z). Thus,
the joint probability distribution of the visible and latent variables is
also known p(x, z) = p(x|z)p(z). However, the encoder probability
given by the posterior p(z|x) = p(x, z)/p(x) is much more difficult to
evaluate since normalization factor p(x) is intractable. One needs to
marginalize the latent variables z in the joint probability distribution
p(x) =

∫
p(x, z)dz.

The intractable integration over the latent variables also prevent us
minimizing the NLL on the dataset. To deal with such problem, we
employ variational approach originated from statistical physics. The
variational Bayes methods is a an application of the variational free
energy calculation in statistical physics Eq. (5) for inference problem.
For each data we introduce

L(x) = 〈− ln p(x, z) + ln q(z|x)〉z∼q(z|x), (32)

which is a variational upper bound of− ln p(x) since L(x)+ ln p(x) = This breakup is also
the foundation of the
Expectation-
Maximization
algorithm, where one
iterates alternatively
between optimizing
the variational
posterior (E) and the
parameters (M) to
learn models with
latent variables [34].

KL(q(z|x)||p(z|x)) ≥ 0. We see that q(z|x) provides a variational ap-
proximation of the posterior p(z|x). By minimizing L one effectively
pushes the two distributions together. And the variational free en-
ergy becomes exact only when q(z|x) matches to p(z|x). In fact, −L
is called evidence lower bound (ELBO) in variational inference.

We can obtain an alternative form of the variational free energy

Lθ,φ(x) = − 〈ln pθ(x|z)〉z∼qφ(z|x) + KL(qφ(z|x)||p(z)). (33)

The first term of Eq. (33) is the reconstruction negative log-likelihood,
while the second term is the KL divergence between the approximate
posterior distribution and the latent prior. We also be explicit about
the network parameters θ, φ of the encoder and decoder.

The decoder neural network pθ(x|z) accepts the latent vector z and
outputs the parametrization of the conditional probability. It can be

ln pθ(x|z) = ∑
i

xi ln x̂i + (1− xi) ln(1− x̂i), (34)

x̂ = DecoderNeuralNetθ(z), (35)
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for binary data. And

ln pθ(x|z) = lnN (x; µ, σ21), (36)

(µ, σ) = DecoderNeuralNetθ(z), (37)

for continuous data. Gradient of Eq. (33) with respect to θ only de-
pends on the first term.

Similarly, the encoder qφ(z|x) is also parametrized as a neural net-
work. To optimize φ we need to compute the gradient with respect
to the sampling process, which we invoke the reparametrization trick.
To generate sample z ∼ qφ(z|x) we first sample from an independent
random source, say ε ∼ N (ε; 0, 1) and pass it through an invertible
and differentiable transformation z = gφ(x, ε). The probability distri-
bution of the encoder is related to the one of the random source by

ln qφ(z|x) = lnN (ε; 0, 1)− ln
∣∣∣∣det

(
∂gφ(x, ε)

∂ε

)∣∣∣∣ . (38)

Suppose that the log-determinant is easy to compute so we can sam-
ple the latent vector z given the visible variable x and an independent
random source ε. Now that the gradient can easily pass through the
sampling process

∇φ 〈 f (x, z)〉z∼qφ(z|x) = 〈∇φ f (x, gφ(x, ε))〉
ε∼N (ε;0,1) . (39)

As an alternate, the REINFORCE [35] (score function) estimator of
the gradient reads

∇φ 〈 f (x, z)〉z∼qφ(z|x) =
〈

f (x, z)∇φ ln qφ(z|x)
〉

z∼qφ(z|x) . (40)

Compared to the reparametrization Eq. (39) REINFORCE usually
has larger variance because it only uses the scalar function ln qφ(z|x)
instead of the vector information of the gradient ∇φ f (x, z). An ad-
vantage of REINFORCE is that it can also work with discrete latent
variables. See Ref. [36] for the research frontier for low variance
unbiased gradient estimation for discrete latent variables.

Info

Suppose each component of the latent vector follows independent
Gaussian whose mean and variance are determined by the data x, we
have

ln qφ(z|x) = lnN (z; µ, σ21), (41)

(µ, σ) = EncoderNeuralNetφ(x). (42)

And the way to sample the latent variable is

ε ∼ N (ε; 0, 1), (43)

z = µ + σ � ε. (44)



1.2 generative model zoo 15

The KL term in Eq. (33) can be evaluated analytically [32] in this case.
After training of the VAE, we obtain an encoder q(z|x) and a de-

coder p(x|z). The encoder performs dimensionality reduction from
the physical space into the latent space. Very often, different dimen-
sions in the latent space acquire semantic meaning. By perform arith-
metic operations in the latent space one can interpolate between phys-
ical data. Optimization of chemical properties can also be done in the
low dimensional continuous latent space. The decoder is a generative
model, which maps latent variable into the physical variable with rich
distribution.

The marginal NLL of the VAE can be estimated using importance
sampling

− ln p(x) = − ln
〈

p(x, z)
q(z|x)

〉
z∼q(z|x)

. (45)

By using the Jensen’s inequality (2) one can also see that the varia-
tional free energy Eq. (32) is an upper bound of Eq. (45).

Info

1.2.5 Tensor Networks

A new addition to the family of generative models is the tensor
network state. In a quantum inspired approach one models the prob-
ability as the wavefunction square

p(x) =
|Ψ(x)|2
Z , (46)

where Z is the normalization factor. This representation, named
as Born Machine [37], transforms many approaches of representing
quantum state into machine learning. Consider binary data, we can
represent wavefunction using the matrix product state (MPS) [38]

Ψ(x) = Tr

(
∏

i
Ai[xi]

)
. (47)

The size of each matrix is called the bond dimension of the MPS rep-
resentation. They control the expressibility of the MPS parameteriza-
tion. The MPS can be learned using maximum likelihood estimation
as before. Although other loss functions such as fidelity of quantum
states can also be considered [39, 40].

An advantage of using MPS for generative modeling is that one Adaptive learning

can adopt algorithms developed for quantum many-body states such
as the DMRG for parameter learning. For example, one can perform
“two-site” optimization by merging two adjacent matrices together
and optimizing its tensor elements. After the optimization the rank
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of the two site tensor may grow, one can thus dynamically adjust the
bond dimension of the MPS representation during learning. As a
consequence, the expressibility of the model grows as it observes the
data, which is different from conventional generative models with
fixed network with fixed number of parameters.

Another advantage of MPS as a generative model is that the gradi- Efficient gradient

ent of the NLL (3) can be computed efficiently

∂L
∂θ

= −2
〈

∂ ln Ψ(x)
∂θ

〉
x∼D

+ 2
〈

∂ ln Ψ(x)
∂θ

〉
x∼p(x)

. (48)

Note that the negative phase (second term) can also be written as
Z ′/Z , where Z ′ = 2 ∑x Ψ′(x)Ψ(x) and the prime means derivatives
with respect to the network parameter θ. Crucially, for MPS both Z ′
and Z can be evaluated efficiently via tensor contractions. So the gra-
dient can be computed efficiently without resorting to the contrastive
divergence, in contrast to the Boltzmann Machines (7). The NLL is
also tractable so that MPS model knows the normalized density of
each sample.

Finally, tractable normalization factor of MPS allows one to per- Direct sampling

form direct sampling instead of using MCMC used in the Boltzmann
Machines. While compared to the autoregressive models, one can
perform data restoration by removing any part of the data. This is be-
cause tensor networks expresses an undirected (instead of directed)
probability dependence fo the data.

These aforementioned advantages apply as well to other unitary
tensor networks such as the tree tensor network and MERA. It is
yet to been seen whether one can unlock the potential of tensor net-
works for real world AI applications. Using Eq. (46) and associated
quantum-inspired approaches (or even a quantum device) provide a
great chance to model complex probabilities. While on a more concep-
tual level, one wish to have have more quantitative and interpretable
approaches inspired by quantum physics research. For example, Born
Machine may give us more principled structure designing and learn-
ing strategies for modeling complex dataset, and provide a novel the-
oretical understandings of the expressibility of generative models the
quantum information perspective.

In a more general context, there are at least two reasons of using
the tensor networks for machine learning. First, tensor network and
algorithms provide principled approaches for discriminative and gen-
erative tasks with possibly stronger representational power. In fact,
the mathematical structure of tensor network states appear naturally
when one tries to extend the probabilistic graphical models while still
attempt to ensure the positivity of the probability density [41, 42].
Second, tensor networks are doorways to quantum machine learn-
ing because many of the tensor networks are formally equivalent to
quantum circuits. Tensor network states provide means of architec-
ture design and parameter initialization for quantum circuits [43]. By
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now, tensor networks have certainly caught attentions of some of the
machine learning practitioners [44, 45]. However, we are still awaiting
for an event similar to AlexNet, where the tensor network machine
learning approach wins over the traditional approaches by a large
margin. With accumulations of the results and techniques, this is
likely to happen in the coming years, at least in one specific applica-
tion domain.

A final note, besides various tensor network architectures, there
are large number of algorithms for optimizing, evolving, factorizing,
and compressing tensor networks. Beside simulating quantum many-
body physics, they have far reaching impacts in applications ranging
from classical graphical models all the way to quantum computing.
Please refer to this Website for more information.

1.2.6 Generative Adversarial Networks

Different from the generative models introduced till now, the Gen-
erative Adversarial Networks (GAN) belong to the implicit generative
models [46].

That is to say that although one can generate samples using GAN,
one does not have direct access to its likelihood. So obviously training
of GAN is also not based on maximum likelihood estimation.

A generator network maps random variables z to physical data
x. A discriminator network D is a binary classifier which tries tell
whether the sample is from the dataset D (1) or synthesized (0). On
the expanded dataset {(x, 1), (G(z), 0)}, the cross-entropy cost reads

L = − 〈ln D(x)〉x∼D − 〈ln (1− D(G(z)))〉z∼p(z) . (49)

Such cost function defines a minimax game maxG minD L between
the generator and the discriminator, where the generator tries to forge
data to confuse the discriminator.

Since the loss function does not involve the probability of the gen-
erated samples, one can use an arbitrary neural network as the gen-
erator. Giving up likelihood increases the flexibility of the generator
network at the cost that it is harder to train and evaluate. Assess the
performance of GAN in practice often boils down to beauty contest.
Lacking an explicit likelihood function also limits its applications to
physics problems where quantitative results are important.

1.2.7 Generative Moment Matching Networks

The generative moment matching networks (GMMN) [47, 48] is
another class of implicit generative model which employs the kernel
two-sample test as the cost function [49].

The idea is to simply compare the distance in the kernel feature
space on the samples drawn from the target and the model distribu-

http://tensornetwork.org/
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tions. We refer the following loss function as the squared maximum
mean discrepancy (MMD) [50, 51]

L =

∥∥∥∥∥∑x
p(x)φ(x)−∑

x
π(x)φ(x)

∥∥∥∥∥
2

(50)

= 〈K(x, y)〉x∼p,y∼p − 2〈K(x, y)〉x∼p,y∼π + 〈K(x, y)〉x∼π,y∼π.

The summation in the first line runs over the whole Hilbert space. The
expectation values in the second line are for the corresponding prob-
ability distributions. The function φ maps x to a high-dimensional re-
producing kernel Hilbert space [52]. However, as common in the ker-
nel methods, by defining a kernel function K(x, y) = φ(x)Tφ(y) one
can avoid working in the high-dimensional feature space. We employ

a mixture of Gaussians kernel K(x, y) = 1
c

c
∑

i=1
exp

(
− 1

2σi
|x− y|2

)
to

reveal differences between the two distributions under various scales.
Here, σi is the bandwidth parameter which controls the width of the
Gaussian kernel. The MMD loss with Gaussian kernels asymptoti-
cally approaches zero if and only if the output distribution matches
the target distribution exactly [50, 51].
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1.3 summary

In the discussions of generative models we have touched upon a
field called probabilistic graphical models [53]. They represent de-
pendence between random variables using graphical notations. The
graphical models with undirected edges are called Markov random
field, which can be understood as statistical physics models (Sec. 1.2.1).
Typically, it is hard to sample from a Markov random field model un-
less it has a tree structure. (Or, in special cases such as planar Ising
model in the absence of magnetic field.) While the graphical models
with directed edges are called Bayes network, which describe condi-
tional probability distribution (Sec. 1.2.2). The conditional probabili-
ties allows ancestral sampling starting from the root node and follow
the conditional probabilities.

As we have seen, feedforward neural networks can be used as key
components for generative modeling. They transform probability
distribution of input data to certain target probability distribution.
Please note that there are subtle differences in the interpretations of
these neural nets’ outputs. They can either be parametrization of the
conditional probability p(x|z) (Secs. 1.2.2, 1.2.4) or be the samples x
themselves (Secs. 1.2.3, 1.2.6). Table 1 summarized and compared the
main features of various generative models discussed in this note.

No surprisingly, various generative models are related in various
ways. Revealing their connections and seeking for a unified frame-
work calls for a deeper understanding of generative modeling. First
of all, the Boltzmann Machines, and in general all probabilistic graph-
ical models, are likely to be closely related to the tensor networks. In
particular cases, the exact mappings between RBM and tensor net-
works has been worked out [6]. It is still rewarding to explore more
connections of representation and learning algorithms between these
two classes of models. Second, the autoregressive models for con-
tinuous variables are closely related to normalizing flows. While
Ref. [8] also discussed connection of normalizing flows to the vari-
ational autoencoders. Finally, combining models to take advantage
of both worlds is also a rewarding research direction [10, 12, 54, 55].
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P H Y S I C S A P P L I C AT I O N S

We arrange the following topics according to their application do-
mains.

2.1 variational ansatz

Reference [56] obtained excellent variational energy for non-frustrated
quantum spin systems by adopting the Restricted Boltzmann Ma-
chines in Sec. 1.2.1 as a variational ansatz. The ansatz can be viewed
as a generalization of Jastrow trial wavefunctions. The RBM is more
flexible in the sense that it encodes multi-body correlations in an ef-
ficient way [57]. Moreover, employing complex parametrization ex-
tends the ability of RBM, so it may also capture quantum states of
frustrated systems and unitary dynamics of quantum circuits [56, 58].

References [6, 59, 60] connect the RBM variational ansatz to tensor
network states. References [61, 62] analyzed their expressibility from
quantum entanglement and computational complexity points of view
respectively. Out of these works, one sees that the neural network
states can be advantageous for describing highly entangled quantum
states and models with long range interactions. An interesting appli-
cation is on the chiral topological states, in which the standard PEPS
ansatz suffers from fundamental difficulties [60, 63].

Another interesting direction is based on the fact that the RBM, in
particular, the one used in [56] is equivalent to a shallow convolu-
tional neural networks. Along this line, it is natural to go system-
atically to deeper neural networks and employ deep learning frame-
works for automatic differentiation in the VMC calculation [64]. Ref-
erence [65] performed variational calculation of excited states using
backprop optimization of deep neural networks. Reference [66] car-
ried out the VMC calculation for small molecules in the first quanti-
zation formalism, in which the antisymmetric property of the wave-
function was taken with special care.

It appears to the author that further development calls for inno-
vations in the optimization scheme, which goes beyond the wave-
function ansatz, e.g. direct generative sampling, and low variance
gradient estimator. As a one step towards this goal, the authors
employ variational autoregressive networks to study Ising and spin
glasses problems [67]. This calculation follows the variational free

21
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energy framework of Eq. (5), which generalizes the celebrated Weiss
and Bethe mean field theories.

2.2 renormalization group

Renormalization Group (RG) is a fundamental concept in theoreti-
cal physics. In essence, RG keeps relevant information while reducing
the dimensionality of data. This strongly resembles the quest for rep-
resentation learning in generative modeling. The connection of RG
and deep learning is both intriguing and rewarding. On one hand
side it may provide theoretical understanding to deep learning. And
on the other hand, it brings deep learning machineries into solving
physical problems with RG.

References [68] proposed a generative Bayesian network with a
MERA inspired structure. Reference [69] connects the Boltzmann
Machines with decimation transformation in real-space RG. Refer-
ence [70] connects principal component analysis with momentum
shell RG. Reference [71] proposed to use mutual information as a
criteria for restoring the RG behavior in the training of Boltzmann
Machines. Lastly, Reference [72] proposed a variational RG frame-
work by stacking the bijectors (Sec. 1.2.3) into a MERA-liked structure.
The approach provides a way to identify collective variables and their
effective interaction. The collective variables in the latent space has
reduced mutual information. They can be regarded as nonlinear and
adaptive generalizations of wavelets. Training of the NeuralRG net-
work employs the probability density distillation (Sec. 1.2.2) on the
bare energy function, in which the training loss provides a variational
upper bound of the physical free energy. The NeuralRG approach im-
plements an information preserving RG procedure, which is useful
for exploring holographic duality [73].

2.3 monte carlo update proposals

Markov chain Monte Carlo (MCMC) finds wide applications in
physics and machine learning. Since the major drawback of MCMC
compared to other approximate methods is its efficiency, there is
a strong motivation to accelerate MCMC simulations within both
physics and machine learning community. Loosely speaking, there
are at least three ideas to accelerate Monte Carlo sampling using ma-
chine learning techniques.

First, Reference [74] trained surrogate functions to speed up hybrid
Monte Carlo simulation [75] for Bayesian statistics. The surrogate
function approximates the potential energy surface of the target prob-
lem and provides an easy way to compute derivatives. Recently, there
were papers reporting similar ideas for physics problems. Here, the
surrogate model can be physical models such as the Ising model [76]
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or molecular gases [77], or general probabilistic graphical models
such as the restricted Boltzmann machine [78]. For Monte Carlo
simulations involving fermion determinants [77, 79] the approach is
more profitable since the updates of the original model is much heav-
ier than the surrogate model. However, the actual benefit depends
on the particular problem and the surrogate model. A drawback of
these surrogate function approaches is that they require training data
to start with, which is known as the ”cold start” problem in analog to
the recommender systems [77]. Using the adaptive approach of [80]
one may somewhat alleviate this ”chicken-egg” problem.

Second, there were more recent attempts in machine learning com-
munity trying to directly optimize the proposal probability via rein-
forcement learning [81–83]. These papers directly parameterize the
proposal probability as neural networks and optimize objective func-
tions related to the efficiency, e.g., the difference of proposals such as
the squared jump distances. To ensure unbiased physical results, it
is crucial to keep track of the proposal probability of an update and
its reverse move for the detailed balance condition. Both A-NICE-
MC [81] and L2HMC [82] adopted normalizing flows (Sec. 1.2.3). The
later paper is particularly interesting because it systematically gener-
alizes the celebrated hybrid Monte Carlo [75] to a learnable frame-
work. Reference [84] used reinforcement learning to devise updates
for frustrated spin models. In fact, besides the efficiency boost one
can aim at algorithmic innovations in the Monte Carlo updates. De-
vising novel update strategies which can reduce the auto correlation
between samples was considered to be the art MCMC methods. An
attempt along this line is Ref. [85], which connected the Swendsen-
Wang cluster and the Boltzmann Machines and explored a few new
cluster updates.

Lastly, the NeuralRG technique [72] provides another approach to
learn Monte Carlo proposal without data. Since the mapping to the
latent space reduces the complexity of the distribution, one can per-
form highly efficient (hybrid) Monte Carlo updates in the latent space
and obtain unbiased physical results. This can be regarded as an ex-
tension of the Fourier space or wavelets basis Monte Carlo methods,
except that now the representation is learned in an adaptive fashion.

By the way, to obtain unbiased physical results one typically en-
sures detailed balance condition using Metropolis-Hastings accep-
tance rule. Thus, one should employ generative models with explicit
and tractable densities for update proposals. This rules out GAN and
VAE in the game, at least for the moment.

2.4 chemical and material design

Reference [86] use the VAE to map string representation of molecules
(SMILES) to a continuous latent space and then perform differen-
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tiable optimization for desired molecular properties. Like many deep
learning applications in natural language and image processing, the
model learned meaningful low dimensional representation in the la-
tent space. Arithmetics operations have physical (or rather chemical)
meanings. There were also attempts of using GANs for chemistry
and material design. See [87] for a recent review.

2.5 quantum information science and beyond

Generative models were used for quantum error correction [88], for
quantum state tomography [89, 90], and for detecting Bell nonlocal-
ity in quantum mechanics [91]. Early works mostly employed the
restricted Boltzmann Machines. However more recently researches
started to explore general class of generative models [90].

Conversely, generative modeling might be one of the killer appli-
cation of the quantum machine learning [92, 93]. Building on the
probabilistic interpretation of quantum mechanics, one can envision a
quantum generative model [94]. It expresses the probability distribu-
tion of a dataset as the probability associated with the wavefunction.
The theory behind it is that even measured on a fixed bases, the quan-
tum circuit can express probability distribution that are intractable to
classical computers. In particular, there was a demonstration [95] on
training quantum circuit as a probabilisitic generative model.

A quantum circuit implementation of the ”Born Machine” would
be an implicit generative model since one usually does not have di-
rect access to the quantum state of an actual quantum state. The mo-
ment matching (Sec. 1.2.7) or adversarial training (Sec. 1.2.6) against
a classical neural network can be a way to learn the quantum circuit
Born machine [96, 97]. References [98] explores the practical aspects
of scaling up the generative learning on actual quantum devices and
gradient based training in this setting.
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• Ian Goodfellow, NIPS 2016 Tutorial: Generative Adversarial
Networks, Video

• Ruslan Salakhutdinov, Learning Deep Generative Models

• Shakir Mohamed and Danilo Rezende, Deep Generative Mod-
els, Video

• Ryan Adams, A Tutorial on Deep Probabilistic Generative Mod-
els

• David Duvenaud, Generative Models, Video

Blogs

• Rui Shu, Change of Variables: A Precursor to Normalizing Flow

• Eric Jang, Normalizing Flows Tutorial I, II

• OpenAI, Glow: Better Reversible Generative Models

• DeepMind, WaveNet: A Generative Model for Raw Audio, High-
fidelity speech synthesis with WaveNet

Codes

• MADE (Masked Autoencoder Density Estimation)

• PixelCNN

• RBM for image restoration

• NetKet

• Variational Autoregressive Network

• Neural Renormalization Group (with Real NVP layers)

• Continuous-time Normalizing Flow

• MPS for generative modeling
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