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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`
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h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
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e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51
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For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).
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can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly
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Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as
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For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads
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i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as
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For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads
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^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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Figure 1. Artificial Neural network encoding a many-
body quantum state of N spins. Shown is a restricted
Boltzmann machine architecture which features a set of N
visible artificial neurons (yellow dots) and a set of M hid-
den neurons (grey dots). For each value of the many-body
spin configuration S = (�z

1 ,�
z
2 , . . .�

z
N ), the artificial neural

network computes the value of the wave function  (S).

tic framework for reinforcement learning of the param-
eters W allowing for the best possible representation of
both ground-state and time-dependent physical states of
a given quantum Hamiltonian H. The parameters of
the neural network are then optimized (trained, in the
language of neural networks) either by static variational
Monte Carlo (VMC) sampling [21], or in time-dependent
VMC [22, 23], when dynamical properties are of inter-
est. We validate the accuracy of this approach study-
ing the Ising and Heisenberg models in both one and
two-dimensions. The power of the neural-network quan-

tum states (NQS) is demonstrated obtaining state-of-the-
art accuracy in both ground-state and out-of-equilibrium
dynamics. In the latter case, our approach effectively
solves the phase-problem traditionally affecting stochas-
tic Quantum Monte Carlo approaches, since their intro-
duction.

Neural-Network Quantum States — Consider a quan-
tum system with N discrete-valued degrees of freedom
S = (S1, S2 . . . SN ), which may be spins, bosonic occu-
pation numbers, or similar. The many-body wave func-
tion is a mapping of the N�dimensional set S to (expo-
nentially many) complex numbers which fully specify the
amplitude and the phase of the quantum state. The point
of view we take here is to interpret the wave function as
a computational black box which, given an input many-
body configuration S, returns a phase and an amplitude
according to  (S). Our goal is to approximate this com-
putational black box with a neural network, trained to
best represent  (S). Different possible choices for the ar-
tificial neural-network architectures have been proposed
to solve specific tasks, and the best architecture to de-
scribe a many-body quantum system may vary from one
case to another. For the sake of concreteness, in the
following we specialize our discussion to restricted Boltz-

mann machines (RBM) architectures, and apply them to
describe spin 1/2 quantum systems. In this case, RBM
artificial networks are constituted by one visible layer of
N nodes, corresponding to the physical spin variables in a
chosen basis (say for example S = �z

1 , . . . �z
N ) , and a sin-

gle hidden layer of M auxiliary spin variables (h1 . . . hM )
(see Fig. 1). This description corresponds to a varia-
tional expression for the quantum states which reads:

 M (S; W) =
X

{hi}

e
P

j aj�z
j +

P
i bihi+

P
ij Wijhi�

z
j ,

where hi = {�1, 1} is a set of M hidden spin variables,
and the weights W = {ai, bj , Wij} fully specify the re-
sponse of the network to a given input state S. Since this
architecture features no intra-layer interactions, the hid-
den variables can be explicitly traced out, and the wave
function reads  (S; W) = e

P
i ai�

z
i ⇥ ⇧M

i=1Fi(S), where
Fi(S) = 2 cosh

h
bi +

P
j Wij�z

j

i
. The network weights

are, in general, to be taken complex-valued in order to
provide a complete description of both the amplitude and
the wave-function’s phase.

The mathematical foundations for the ability of NQS
to describe intricate many-body wave functions are the
numerously established representability theorems [24–
26], which guarantee the existence of network approxi-
mates of high-dimensional functions, provided a sufficient
level of smoothness and regularity is met in the function
to be approximated. Since in most physically relevant
situations the many-body wave function reasonably sat-
isfies these requirements, we can expect the NQS form
to be of broad applicability. One of the practical ad-
vantages of this representation is that its quality can, in
principle, be systematically improved upon increasing the
number of hidden variables. The number M (or equiva-
lently the density ↵ = M/N) then plays a role analogous
to the bond dimension for the MPS. Notice however that
the correlations induced by the hidden units are intrinsi-
cally non local in space and are therefore well suited to
describe quantum systems in arbitrary dimension. An-
other convenient point of the NQS representation is that
it can be formulated in a symmetry-conserving fashion.
For example, lattice translation symmetry can be used
to reduce the number of variational parameters of the
NQS ansatz, in the same spirit of shift-invariant RBM’s
[27, 28]. Specifically, for integer hidden variable density
↵ = 1, 2, . . . , the weight matrix takes the form of feature
filters W (f)

j , for f 2 [1, ↵]. These filters have a total of
↵N variational elements in lieu of the ↵N2 elements of
the asymmetric case (see Supp. Mat. for further details).

Given a general expression for the quantum many-
body state, we are now left with the task of solving the
many-body problem upon machine learning of the net-
work parameters W. In the most interesting applications
the exact many-body state is unknown, and it is typi-
cally found upon solution either of the static Schrödinger
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Carleo and Troyer, Science 2017Ψ



“Teach a neural network quantum & statistical physics”

Boltzmann machine as a quantum state

• Stronger feature detection of deep hierarchical structure 
• BackProp for efficient gradient computation 
• Beyond VMC: variational autoregressive networks (VAN) 

  

Cai, Liu, Han, He, Clark, Wu, Zhang…

 (x)qubits

Ψ

https://arxiv.org/abs/1704.05148


Quantum State Tomography

Torlai et al, Nature Physics 2017, Carrasquilla et al 1810.10584

Reconstruction 

“Reconstruct quantum state as a neural network”

RBMs 
(but other generative  

models also work)

Ψ Measure

x1 x2 . . . xN

h1 h2 h3 . . . hM

LETTERS
https://doi.org/10.1038/s41567-018-0048-5

1Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada. 2Perimeter Institute of Theoretical Physics, Waterloo, Ontario, 
Canada. 3Theoretische Physik, ETH Zurich, Zurich, Switzerland. 4Vector Institute, Toronto, Ontario, Canada. 5D-Wave Systems, Burnaby, British Columbia, 
Canada. 6Quantum Architectures and Computation Group, Station Q, Microsoft Research, Redmond, WA, USA. 7Center for Computational Quantum 
Physics,  Flatiron Institute, New York, NY, USA. *e-mail: gcarleo@flatironinstitute.org

The experimental realization of increasingly complex syn-
thetic quantum systems calls for the development of general 
theoretical methods to validate and fully exploit quantum 
resources. Quantum state tomography (QST) aims to recon-
struct the full quantum state from simple measurements, and 
therefore provides a key tool to obtain reliable analytics1–3. 
However, exact brute-force approaches to QST place a high 
demand on computational resources, making them unfeasi-
ble for anything except small systems4,5. Here we show how 
machine learning techniques can be used to perform QST of 
highly entangled states with more than a hundred qubits, 
to a high degree of accuracy. We demonstrate that machine 
learning allows one to reconstruct traditionally challenging 
many-body quantities—such as the entanglement entropy—
from simple, experimentally accessible measurements. This 
approach can benefit existing and future generations of 
devices ranging from quantum computers to ultracold-atom 
quantum simulators6–8.

Machine learning methods have been demonstrated to be par-
ticularly powerful at compressing high-dimensional data into 
low-dimensional representations9,10. Largely developed in the 
domain of data science, these techniques have recently been used 
to address fundamental questions in the domain of physical sci-
ences. Applications to quantum many-body systems have been put 
forward in the last year, for example, to classify phases of matter11–13, 
and to simulate quantum systems14.

QST is itself a data-driven problem, in which we aim to obtain a 
complete quantum-mechanical description of a system, on the basis 
of a limited set of experimentally accessible measurements. While 
compressed sensing approaches15 reduce the experimental burden 
of full QST, large systems can be studied only through techniques 
requiring a feasible number of measurements. For example, permu-
tationally invariant tomography16 makes efficient use of the symme-
tries of prototypical quantum optics states, and can be amenable to 
a large number of qubits. However, the general case of many-body 
systems is challenging for QST. In this context, matrix product states 
are the state-of-the-art tool for QST of low-entangled states17,18. For 
highly entangled quantum states resulting either from deep quan-
tum circuits or high-dimensional physical systems, alternative rep-
resentations are required for QST.

Here, we show how machine learning approaches can be used 
to find such representations. In particular, we argue that suitably 
trained artificial neural networks offer a natural and general way 
of performing QST driven by a limited amount of experimental 
data. Our approach is demonstrated on controlled artificial data 
sets, comprising measurements from several prototypical quantum 

states with a large number of degrees of freedom (qubits, spins and 
so on), which are thus hard for traditional QST approaches.

We consider here the goal of reconstructing a generic many-
body target wavefunction Ψ Ψ≡ ⟨ ∣ ⟩x x( ) , where x is some reference 
basis (for example, σz for spin- ∕1 2). To act as the model, we use a 
representation of the many-body state in terms of artificial neural 
networks14:

ψ = ϕ
λ μ

λ

λ

∕μ
p

Z
x

x
( )

( )
e (1)i x

,
( ) 2

where the networks pλ(x) and ϕµ(x) represent, respectively, the 
amplitude and phase of the state, and Zλ is the normalization con-
stant. The neural-network architecture we use in this work is based 
on the restricted Boltzmann machine (RBM). This architecture 
features a visible layer (describing the physical qubits) and a hid-
den layer of binary neurons, fully connected with weighted edges 
to the visible layer (see Methods). RBM states offer a compact 
variational representation of many-body quantum states, capable 
of sustaining non-trivial correlations, such as high entanglement, 
or topological features19–24. Specifically, we take pλ to be an RBM 
with parameters λ, and a separate RBM network, pµ with param-
eters µ to model the phase, ϕµ =  log pµ(x). Our machine learning 
approach to QST is then carried out as follows. First, the RBM is 
trained on a data set consisting of a series of independent density 
measurements Ψ∣ ∣x( )b[ ] 2 realized in a collection of bases {x[b]} of the 
N-body quantum system. During this stage, the network parameters 
(λ, µ) are optimized to maximize the data-set likelihood, in a way 
that ψ∣ ∣ ≃ ∣Ψ ∣λ μ x x( ) ( )b b

,
[ ] 2 [ ] 2 (see Methods). Once trained, ψλ,μ(x) 

approximates both the wavefunction’s amplitudes and phases, thus 
reconstructing the target state. The accuracy of the reconstruction 
can be systematically improved by increasing the number of hid-
den neurons M in the RBM for fixed N, or equivalently the den-
sity of hidden units α =  M/N (refs 14,25). One key feature of our QST 
approach is that it needs only raw data (that is, many experimental 
snapshots coming from single measurements), rather than estimates 
of expectation values of operators1,4,16–18. This set-up implies that 
we circumvent the need to achieve low levels of intrinsic Gaussian 
noise in the evaluations of mean values of operators.

To demonstrate this approach, we start by considering QST of 
the W state, a paradigmatic N-qubit multipartite entangled wave-
function defined as

∣Ψ ⟩ = ∣ …⟩ + … + ∣… ⟩
N
1 ( 100 001 ) (2)W
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Due to their power, flexibility and ease of use, unsupervised 
machine learning approaches such as those developed in this paper 
can readily be adapted to reconstruct complicated many-body quan-
tum states from a limited number of experimental measurements. Our 
results suggest that RBM approaches will perform well on physically 
relevant many-body and quantum optics states, whereas poorer per-
formance is expected for structureless, random states (as studied in the 
Supplementary Information). Feasible applications range from validat-
ing quantum computers and adiabatic simulators31, to reconstructing 
quantities that are challenging for a direct observation in experiments. 
In particular, we predict that the use of our machine learning approach 
for bosonic ultracold atom experiments will allow for the determina-
tion of the entanglement entropy on systems substantially larger than 
those currently accessible with quantum interference techniques28.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0048-5.
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Figure 2: Example of Figure 1 represented as a Bayesian network (only two layers are represented).
The bottom nodes are observed. Note that the graph is truncated, as the nodes of �2 must be linked
to the next layer which is not represented, as well as to each other, in the same manner as the two
layers below it.

Figure 3: Stochastic maps involved in the last two steps of the computation of the marginal state
on 3 consecutive output sites. The lines ending abruptly indicates that the corresponding variable
is summed over. The “past” of any region of �0 of size L always involves just 3 sites before level
�[log2(L)].

3 Learning CORA

The causal properties inherent in the definition of MERA/CORA imply that a marginal over any
finite group of L sites can be computed (explicitly, i.e., without sampling) in a time of order
eL log(N). Indeed, due to the particular causal structure of the maps ⇡j , the past of any set of
sites of �j , namely those sites of �j+1 on which their values depend explicitly through ⇡j , always
ends up involving a constant number of sites independent of N (and generally manageably small).
This is illustrated in Figure 3.

In the quantum physical setting for which MERA was introduced, the state that we want to represent
is not defined by samples, but instead by a Hamiltonian, or energy function, that it minimizes,
i.e., the cost function itself. Most often, the Hamiltonians considered are local, which implies that
the evaluation of their expectation only requires the use of marginal states over small clusters of
neighboring sites. Therefore the cost function can be evaluated efficiently and exactly.

Such a procedure can be adapted to a situation where, instead of being handed the Hamiltonian, we
are given samples from the unknown distribution: the training data. In physics, this situation presents
itself when an experimentalists wants to reconstruct a state that he has access to only through exper-
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FIG. 2. RG and deep learning in the one-dimensional Ising Model. (A) A decimation based renormalization trans-
formation for the ferromagnetic 1-D Ising model. At each step, half the spins are decimated, doubling the effective lattice
spacing. After, n successive decimations, the spins can be described using a new 1-D Ising models with a coupling Jn between
spins. Couplings at a given layer are related to couplings at a previous layer through the square of the hyberbolic tangent
function. (B) Decimation-based renormalization transformations can also be realized using the deep architecture where the
weights between the n + 1 and n-th hidden layer are given by Jn. (C) Visualizing the renormalization group flow of the
couplings for 1-D Ferromagnetic Ising model. Under four successive decimations or equivalently as we move up four layers in
the deep architecture, the couplings (marked by red dots) get smaller. Eventually, the couplings are attracted to stable fixed
point J = 0.

the two approaches employ distinct variational approxi-
mation schemes for coarse graining. Finally, notice that
the correspondence does not rely on the explicit form of
the energy E({hj}, {vj}) and hence holds for any Boltz-
mann Machine.

IV. EXAMPLES

To gain intuition about the mapping between RG
and deep learning, it is helpful to consider some sim-
ple examples in detail. We begin by examining the one-
dimensional nearest-neighbor Ising model where the RG
transformation can be carried out exactly. We then nu-
merically explore the two-dimensional nearest-neighbor
Ising model using an RBM-based deep learning architec-
ture.

A. One dimensional Ising Model

The one-dimensional Ising model describes a collection
of binary spins {vi} organized along a one-dimensional
lattice with lattice spacing a. Such a system is described
by a Hamiltonian of the form

H = −J
∑

i

vivi+1, (23)

where J is a ferromagnetic coupling that energetically
favors configurations where neighboring spins align. To
perform a RG transformation, we decimate (marginalize
over) every other spin. This doubles the lattice spacing
a → 2a and results in a new effective interaction J (1) be-
tween spins (see Figure 2). If we denote the coupling af-
ter performing n successive RG transformations by J (n),

then a standard calculation shows that these coefficients
satisfy the RG equations

tanh [J (n+1)] = tanh2 [J (n)], (24)

where we have defined J (0) = J [14]. This recursion
relationship can be visualized as a one-dimensional flow
in the coupling space J from J = ∞ to J = 0. Thus,
after performing RG the interactions become weaker and
weaker and J → 0 as n → ∞.

This RG transformation also naturally gives rise to the
deep learning architecture shown in Figure 2. The spins
at a given layer of the DNN have a natural interpretation
as the decimated spins when performing the RG trans-
formation in the layer below. Notice that the coupled
spins in the bottom two layers of the DNNs in Fig. 2B
form an “effective” one-dimensional chain isomorphic to
the original spin chain. Thus, marginalizing over spins in
the bottom layer in the DNN is identical to decimating
every other spin in the original spin systems. This im-
plies that the “hidden” spins in the second layer of the
DNN are also described by the RG transformed Hamil-
tonian with a coupling J (1) between neighboring spins.
Repeating this argument for spins coupled between the
second and third layers and so on, one obtains the deep
learning architecture shown in Fig. 2B which implements
decimation.

The advantage of the simple deep architecture pre-
sented here is that it is easy to interpret and requires no
calculations to construct. However, an important short-
coming is that it contains no information about half of
the visible spins, namely the spins that do not couple to
the hidden layer.

You, Yang, Qi, 1709.01223

MACHINE LEARNING SPATIAL GEOMETRY FROM … PHYSICAL REVIEW B 97, 045153 (2018)

Given the random state |ψv⟩ on each vertex v and the
entangled pair state |Ie⟩ on each edge e, the RTN state can be
constructed by projecting the entangled pair states to random
vertex states via the following partial inner product:

|G⟩ =
⊗

v∈V

⊗

e∈E

⟨ψv|Ie⟩. (4)

The remaining subspaces (as solid circles in Fig. 2) on the
dangling ends of the external edges are not touched by the
projection. They form the physical Hilbert space Hphy =⊗

v∈V∂
Hphy

v in which the RTN state |G⟩ is supported. Here
V∂ denotes the set of boundary vertices, i.e., the subset of V
whose vertices are connected to the external edges. It is worth
mentioning that |G⟩ should better be treated as an ensemble
of RTN states, instead of a single specific state, due to the
randomness in |ψv⟩. All states in the ensemble are labeled
by the same edge-weighted graph G and share the similar
entanglement feature.

B. Entanglement Features of RTN States

The entanglement feature of a quantum many-body state
refers to the full set of entanglement entropies over all entan-
glement subregions. In general, one could include all orders of
Renyi entropies in the definition, but we will only focus on the
second Renyi entropies in the following and leave the generic
discussion to the last section.

Given an ensemble of RTN states |G⟩ and a subregion A ⊆
V∂ , the ensemble-typical second Renyi entropy SG(A) over the
subregion A is defined via

e− SG (A) = E
TrA(TrĀ |G⟩⟨G|)2

(Tr |G⟩⟨G|)2
, (5)

where E takes the RTN ensemble expectation value (i.e.,
averaging over the random states |ψv⟩ on all vertices), and
Ā = V∂ \ A denotes the complement region of A. We have
explicitly introduced the denominator Tr |G⟩⟨G| to ensure the
normalization of the RTN density matrix. An important result
of Ref. [31] is to show that the entanglement entropy SG(A)
can be expressed in term of the free energies of a classical Ising
model on the same graph G in the large bond dimension limit.
A more general treatment away from that limit is provided in a
related work Ref. [68], but in this work, we will only consider
the large bond dimension limit.

To specify the Ising model, we first introduce a set of Ising
spins σv = ± 1 for all v ∈ V and an additional set of Ising
variables τv = ± 1 on the boundary v ∈ V∂ only. The model is
described by the energy functional

EG[σ,τ ] = −
∑

e∈E

Je

∏

v∈∂e

σv − h
∑

v∈V∂

τvσv. (6)

The Ising coupling Je ≡ Ie/4 is set by the edge mutual
information Ie of the RTN state. The external field h ≡ 1

2 ln D∂

is set by the local Hilbert space dimension D∂ of the physical
degrees of freedom (which is also the bond dimension of the
external leg). Only σv spins are dynamical, and τv are just Ising
variables that specifies the directions of the external pinning
field hτv on the boundary. The configuration of τv is determined

FIG. 3. Entanglement entropy as the minimal cut (in black)
through the tensor network that separates the region A (in red) from
Ā (in blue). The Ising domain wall is automatically the minimal
cut in the large bond dimension (low temperature) limit. Different
network structures gives rise to different scaling behaviors of the
entanglement entropy: (a) area law S(A) ∼ const., (b) logarithmic
law S(A) ∼ ln LA, and (c) volume law S(A) ∼ LA.

by the choice of the entanglement region A:

τv(A) =
{
− 1 v ∈ A,
+1 v ∈ Ā.

(7)

Tracing out the dynamical spins σv , the free energy F [τ ] of
the boundary spins τv can be defined via

e− FG [τ ] =
∑

[σ ]

e− EG [σ,τ ]. (8)

In the large bond dimension limit (Ie ≫ 1), it was shown [31]
that the typical second Renyi entropy of the RTN state |G⟩ is
given by the free energy difference

SG(A) = FG[τ (A)] − FG[τ (∅)], (9)

where τ (A) denotes the boundary pinning field configuration
specified in Eq. (7) and τ (∅) denotes the configuration of τv =
+1 for all v ∈ V∂ . The derivation of Eq. (9) is reviewed in
Appendix A. The physical intuition of Eq. (9) comes from the
interpretation [4] of the entanglement entropy as the area of
the minimal surface that separates the region A from Ā in the
holographic bulk. Correspondingly, the free energy difference
F [τ (A)] − F [τ (∅)] measures the energy cost of the domain
wall that separates the part A from Ā in the tensor network
(see Fig. 3), which matches the holographic interpretation of
the entanglement entropy in the large bond dimension limit.
Technically, the advantage of RTN over other types of tensor
networks also lies in the fact that the second Renyi entropy
of the RTN state can be efficiently estimated from the free
energy of the corresponding Ising model as in Eq. (9). For a
generic tensor network, calculating its entanglement entropy
requires to diagonalize the reduced density matrix, which could
be much more difficult than solving the Ising model in many
cases.

The set of entanglement entropies {SG(A)|A ⊆ V∂} consti-
tutes the entanglement feature of the RTN state, which only
depends on the graph G and its edge weights Ie. The RTN state
thus provides us a model to encode the entanglement feature
directly in the network structure (i.e., the graph geometry). This
is the essential idea behind the tensor network holography.
In many previous approaches, a bulk geometry is first given
and a tensor network is tiled on the background geometry.
The resulting tensor network state then produces the entangle-
ment feature on the holographic boundary that is dual to the
holographic bulk geometry. For example, Fig. 3 demonstrates
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Consider then a classical system of local degrees of freedom 
= … ≡X x x x{ , , } { }N i1 , defined by a Hamiltonian energy function 

H({xi}) and associated statistical probabilities ∝ β−XP( ) e xH({ })i , 
where β is the inverse temperature. Alternatively (and sufficiently 
for our purposes), the system is given by Monte Carlo samples of the 
equilibrium distribution XP( ). We denote a small spatial region of 
interest by ≡V v{ }i  and the remainder of the system by ≡E e{ }i , so 
that =X V E( , ). We adopt a probabilistic point of view, and treat X E,  
and so on as random variables. Our goal is to extract the relevant 
degrees of freedom H from V .

‘Relevance’ is understood here in the following way: the degrees 
of freedom that RG captures govern the long-distance behaviour 
of the theory, and therefore the experimentally measurable physi-
cal properties; they carry the most information about the system 
at large, as opposed to local fluctuations. We thus formally define 
the random variable H as a composite function of degrees of free-
dom in V  maximizing the ‘mutual information’ between H and the 
environment E . This definition, as we discuss in the Supplementary 
Information, is related to the requirement that the effective coarse-
grained Hamiltonian be compact and short-ranged, which is a con-
dition any successful standard RG scheme should satisfy. As we also 
show, it is supported by numerical results.

Mutual information, denoted by Iλ, measures the total amount of 
information about one random variable contained in the other9,10,31 
(thus, it is more general than correlation coefficients). It is given in 
our setting by:

∑=Λ Λ
Λ

Λ

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

H E E H
E H

H E
H E

I P
P

P P
( : ) ( , )log

( , )
( ) ( ) (1)

,

The unknown distribution Λ E HP ( , ) and its marginalization 
Λ HP ( ), depending on a set of parameters Λ (which we keep generic 

at this point), are functions of V EP( , ) and of ∣Λ H VP ( ), which is the 
central object of interest.

Finding ∣Λ H VP ( ) that maximizes IΛ under certain constraints is 
a well-posed mathematical question and has a formal solution32.  

However, since the space of probability distributions grows expo-
nentially with the number of local degrees of freedom, it is, in 
practice, impossible to use without further assumptions for any 
but the smallest physical systems. Our approach is to exploit the 
remarkable dimensionality reduction properties of artificial neural 
networks11. We use restricted Boltzmann machines (RBMs), a class 
of probabilistic networks well adapted to approximating arbitrary 
data probability distributions. An RBM is composed of two layers 
of nodes, the ‘visible’ layer, corresponding to local degrees of free-
dom in our setting, and a ‘hidden’ layer. The interactions between 
the layers are defined by an energy function ≡ θΘ V HE E ( , )a b, ,  =   
− ∑ b hj j j −  ∑ a vi i i −  θ∑ v hij i ij j, such that the joint probability distri-
bution for a particular configuration of visible and hidden degrees 
of freedom is given by a Boltzmann weight:

=Θ
− θV H

Z
VHP ( , ) 1 e (2)E ( , )a b, ,

where Z  is the normalization. The goal of the network training is 
to find parameters θij (‘weights’ or ‘filters’) and ai,bi optimizing a 
chosen objective function.

Three distinct RBMs are used. Two are trained as efficient 
approximators of the probability distributions V EP( , ) and VP( ), 
using the celebrated contrastive divergence (CD) algorithm33. Their 
trained parameters are used by the third network (see Fig. 1b),  
which has a different objective: to find ∣Λ H VP ( ) maximizing IΛ. To 
the end we introduce the real-space mutual information (RSMI) 
network, whose architecture is shown in Fig. 1a. The hidden units 
of RSMI correspond to coarse-grained variables H.

The parameters λΛ = a b( , , )i j i
j  of the RSMI network are trained 

by an iterative procedure. At each iteration, a Monte Carlo estimate 
of function Λ H EI ( : ) and its gradients is performed for the current 
values of parameters Λ. The gradients are then used to improve 
the values of weights in the next step, using a stochastic gradient 
descent procedure.

The trained weights Λ define the probability ∣Λ H VP ( ) of a 
Boltzmann form, which is used to generate MC samples of the coarse-
grained system. Those, in turn, become input to the next iteration of 
the RSMI algorithm. The estimates of mutual information, weights of 
the trained RBMs and sets of generated MC samples at every RG step 
can be used to extract quantitative information about the system in 
the form of correlation functions, critical exponents and so on, as we 
show below and in the Supplementary Information. We also empha-
size that the parameters Λ identifying relevant degrees of freedom are 
re-computed at every RG step. This potentially allows RSMI to capture 
the evolution of the degrees of freedom along the RG flow34.

Validation
To validate our approach, we consider two important classical mod-
els of statistical physics: the Ising model, whose coarse-grained 
degrees of freedom resemble the original ones, and the fully packed 
dimer model, where they are entirely different.

Ha

b

B

P( )

CD CD RSMI

PΛ(H∣ )
λ j
i

θ

θ( )

),

( ),

P(

Fig. 1 | The RSMI algorithm. a, The RSMI neural network architecture. The 
hidden layer H is directly coupled to the visible layer V  via the weights λi

j 
(red arrows). However, the training algorithm for the weights estimates 
mutual information between H and the environment E . The buffer B is 
introduced to filter out local correlations within V  (see Supplementary 
Information). b, The workflow of the algorithm. The CD-algorithm-trained 
RBMs learn to approximate probability distributions V EP( , ) and VP( ). Their 
final parameters, denoted collectively by V EΘ( , ) and VΘ( ), are inputs for the 
main RSMI network learning to extract H V∣ΛP ( ) by maximizing IΛ. The final 
weights λi

j of the RSMI network identify the relevant degrees of freedom. 
They are shown in Figs. 2 and 4 for Ising and dimer problems.
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Figure 2: Example of Figure 1 represented as a Bayesian network (only two layers are represented).
The bottom nodes are observed. Note that the graph is truncated, as the nodes of �2 must be linked
to the next layer which is not represented, as well as to each other, in the same manner as the two
layers below it.

Figure 3: Stochastic maps involved in the last two steps of the computation of the marginal state
on 3 consecutive output sites. The lines ending abruptly indicates that the corresponding variable
is summed over. The “past” of any region of �0 of size L always involves just 3 sites before level
�[log2(L)].

3 Learning CORA

The causal properties inherent in the definition of MERA/CORA imply that a marginal over any
finite group of L sites can be computed (explicitly, i.e., without sampling) in a time of order
eL log(N). Indeed, due to the particular causal structure of the maps ⇡j , the past of any set of
sites of �j , namely those sites of �j+1 on which their values depend explicitly through ⇡j , always
ends up involving a constant number of sites independent of N (and generally manageably small).
This is illustrated in Figure 3.

In the quantum physical setting for which MERA was introduced, the state that we want to represent
is not defined by samples, but instead by a Hamiltonian, or energy function, that it minimizes,
i.e., the cost function itself. Most often, the Hamiltonians considered are local, which implies that
the evaluation of their expectation only requires the use of marginal states over small clusters of
neighboring sites. Therefore the cost function can be evaluated efficiently and exactly.

Such a procedure can be adapted to a situation where, instead of being handed the Hamiltonian, we
are given samples from the unknown distribution: the training data. In physics, this situation presents
itself when an experimentalists wants to reconstruct a state that he has access to only through exper-
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FIG. 2. RG and deep learning in the one-dimensional Ising Model. (A) A decimation based renormalization trans-
formation for the ferromagnetic 1-D Ising model. At each step, half the spins are decimated, doubling the effective lattice
spacing. After, n successive decimations, the spins can be described using a new 1-D Ising models with a coupling Jn between
spins. Couplings at a given layer are related to couplings at a previous layer through the square of the hyberbolic tangent
function. (B) Decimation-based renormalization transformations can also be realized using the deep architecture where the
weights between the n + 1 and n-th hidden layer are given by Jn. (C) Visualizing the renormalization group flow of the
couplings for 1-D Ferromagnetic Ising model. Under four successive decimations or equivalently as we move up four layers in
the deep architecture, the couplings (marked by red dots) get smaller. Eventually, the couplings are attracted to stable fixed
point J = 0.

the two approaches employ distinct variational approxi-
mation schemes for coarse graining. Finally, notice that
the correspondence does not rely on the explicit form of
the energy E({hj}, {vj}) and hence holds for any Boltz-
mann Machine.

IV. EXAMPLES

To gain intuition about the mapping between RG
and deep learning, it is helpful to consider some sim-
ple examples in detail. We begin by examining the one-
dimensional nearest-neighbor Ising model where the RG
transformation can be carried out exactly. We then nu-
merically explore the two-dimensional nearest-neighbor
Ising model using an RBM-based deep learning architec-
ture.

A. One dimensional Ising Model

The one-dimensional Ising model describes a collection
of binary spins {vi} organized along a one-dimensional
lattice with lattice spacing a. Such a system is described
by a Hamiltonian of the form

H = −J
∑

i

vivi+1, (23)

where J is a ferromagnetic coupling that energetically
favors configurations where neighboring spins align. To
perform a RG transformation, we decimate (marginalize
over) every other spin. This doubles the lattice spacing
a → 2a and results in a new effective interaction J (1) be-
tween spins (see Figure 2). If we denote the coupling af-
ter performing n successive RG transformations by J (n),

then a standard calculation shows that these coefficients
satisfy the RG equations

tanh [J (n+1)] = tanh2 [J (n)], (24)

where we have defined J (0) = J [14]. This recursion
relationship can be visualized as a one-dimensional flow
in the coupling space J from J = ∞ to J = 0. Thus,
after performing RG the interactions become weaker and
weaker and J → 0 as n → ∞.

This RG transformation also naturally gives rise to the
deep learning architecture shown in Figure 2. The spins
at a given layer of the DNN have a natural interpretation
as the decimated spins when performing the RG trans-
formation in the layer below. Notice that the coupled
spins in the bottom two layers of the DNNs in Fig. 2B
form an “effective” one-dimensional chain isomorphic to
the original spin chain. Thus, marginalizing over spins in
the bottom layer in the DNN is identical to decimating
every other spin in the original spin systems. This im-
plies that the “hidden” spins in the second layer of the
DNN are also described by the RG transformed Hamil-
tonian with a coupling J (1) between neighboring spins.
Repeating this argument for spins coupled between the
second and third layers and so on, one obtains the deep
learning architecture shown in Fig. 2B which implements
decimation.

The advantage of the simple deep architecture pre-
sented here is that it is easy to interpret and requires no
calculations to construct. However, an important short-
coming is that it contains no information about half of
the visible spins, namely the spins that do not couple to
the hidden layer.
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Given the random state |ψv⟩ on each vertex v and the
entangled pair state |Ie⟩ on each edge e, the RTN state can be
constructed by projecting the entangled pair states to random
vertex states via the following partial inner product:

|G⟩ =
⊗

v∈V

⊗

e∈E

⟨ψv|Ie⟩. (4)

The remaining subspaces (as solid circles in Fig. 2) on the
dangling ends of the external edges are not touched by the
projection. They form the physical Hilbert space Hphy =⊗

v∈V∂
Hphy

v in which the RTN state |G⟩ is supported. Here
V∂ denotes the set of boundary vertices, i.e., the subset of V
whose vertices are connected to the external edges. It is worth
mentioning that |G⟩ should better be treated as an ensemble
of RTN states, instead of a single specific state, due to the
randomness in |ψv⟩. All states in the ensemble are labeled
by the same edge-weighted graph G and share the similar
entanglement feature.

B. Entanglement Features of RTN States

The entanglement feature of a quantum many-body state
refers to the full set of entanglement entropies over all entan-
glement subregions. In general, one could include all orders of
Renyi entropies in the definition, but we will only focus on the
second Renyi entropies in the following and leave the generic
discussion to the last section.

Given an ensemble of RTN states |G⟩ and a subregion A ⊆
V∂ , the ensemble-typical second Renyi entropy SG(A) over the
subregion A is defined via

e− SG (A) = E
TrA(TrĀ |G⟩⟨G|)2

(Tr |G⟩⟨G|)2
, (5)

where E takes the RTN ensemble expectation value (i.e.,
averaging over the random states |ψv⟩ on all vertices), and
Ā = V∂ \ A denotes the complement region of A. We have
explicitly introduced the denominator Tr |G⟩⟨G| to ensure the
normalization of the RTN density matrix. An important result
of Ref. [31] is to show that the entanglement entropy SG(A)
can be expressed in term of the free energies of a classical Ising
model on the same graph G in the large bond dimension limit.
A more general treatment away from that limit is provided in a
related work Ref. [68], but in this work, we will only consider
the large bond dimension limit.

To specify the Ising model, we first introduce a set of Ising
spins σv = ± 1 for all v ∈ V and an additional set of Ising
variables τv = ± 1 on the boundary v ∈ V∂ only. The model is
described by the energy functional

EG[σ,τ ] = −
∑

e∈E

Je

∏

v∈∂e

σv − h
∑

v∈V∂

τvσv. (6)

The Ising coupling Je ≡ Ie/4 is set by the edge mutual
information Ie of the RTN state. The external field h ≡ 1

2 ln D∂

is set by the local Hilbert space dimension D∂ of the physical
degrees of freedom (which is also the bond dimension of the
external leg). Only σv spins are dynamical, and τv are just Ising
variables that specifies the directions of the external pinning
field hτv on the boundary. The configuration of τv is determined

FIG. 3. Entanglement entropy as the minimal cut (in black)
through the tensor network that separates the region A (in red) from
Ā (in blue). The Ising domain wall is automatically the minimal
cut in the large bond dimension (low temperature) limit. Different
network structures gives rise to different scaling behaviors of the
entanglement entropy: (a) area law S(A) ∼ const., (b) logarithmic
law S(A) ∼ ln LA, and (c) volume law S(A) ∼ LA.

by the choice of the entanglement region A:

τv(A) =
{
− 1 v ∈ A,
+1 v ∈ Ā.

(7)

Tracing out the dynamical spins σv , the free energy F [τ ] of
the boundary spins τv can be defined via

e− FG [τ ] =
∑

[σ ]

e− EG [σ,τ ]. (8)

In the large bond dimension limit (Ie ≫ 1), it was shown [31]
that the typical second Renyi entropy of the RTN state |G⟩ is
given by the free energy difference

SG(A) = FG[τ (A)] − FG[τ (∅)], (9)

where τ (A) denotes the boundary pinning field configuration
specified in Eq. (7) and τ (∅) denotes the configuration of τv =
+1 for all v ∈ V∂ . The derivation of Eq. (9) is reviewed in
Appendix A. The physical intuition of Eq. (9) comes from the
interpretation [4] of the entanglement entropy as the area of
the minimal surface that separates the region A from Ā in the
holographic bulk. Correspondingly, the free energy difference
F [τ (A)] − F [τ (∅)] measures the energy cost of the domain
wall that separates the part A from Ā in the tensor network
(see Fig. 3), which matches the holographic interpretation of
the entanglement entropy in the large bond dimension limit.
Technically, the advantage of RTN over other types of tensor
networks also lies in the fact that the second Renyi entropy
of the RTN state can be efficiently estimated from the free
energy of the corresponding Ising model as in Eq. (9). For a
generic tensor network, calculating its entanglement entropy
requires to diagonalize the reduced density matrix, which could
be much more difficult than solving the Ising model in many
cases.

The set of entanglement entropies {SG(A)|A ⊆ V∂} consti-
tutes the entanglement feature of the RTN state, which only
depends on the graph G and its edge weights Ie. The RTN state
thus provides us a model to encode the entanglement feature
directly in the network structure (i.e., the graph geometry). This
is the essential idea behind the tensor network holography.
In many previous approaches, a bulk geometry is first given
and a tensor network is tiled on the background geometry.
The resulting tensor network state then produces the entangle-
ment feature on the holographic boundary that is dual to the
holographic bulk geometry. For example, Fig. 3 demonstrates
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Consider then a classical system of local degrees of freedom 
= … ≡X x x x{ , , } { }N i1 , defined by a Hamiltonian energy function 

H({xi}) and associated statistical probabilities ∝ β−XP( ) e xH({ })i , 
where β is the inverse temperature. Alternatively (and sufficiently 
for our purposes), the system is given by Monte Carlo samples of the 
equilibrium distribution XP( ). We denote a small spatial region of 
interest by ≡V v{ }i  and the remainder of the system by ≡E e{ }i , so 
that =X V E( , ). We adopt a probabilistic point of view, and treat X E,  
and so on as random variables. Our goal is to extract the relevant 
degrees of freedom H from V .

‘Relevance’ is understood here in the following way: the degrees 
of freedom that RG captures govern the long-distance behaviour 
of the theory, and therefore the experimentally measurable physi-
cal properties; they carry the most information about the system 
at large, as opposed to local fluctuations. We thus formally define 
the random variable H as a composite function of degrees of free-
dom in V  maximizing the ‘mutual information’ between H and the 
environment E . This definition, as we discuss in the Supplementary 
Information, is related to the requirement that the effective coarse-
grained Hamiltonian be compact and short-ranged, which is a con-
dition any successful standard RG scheme should satisfy. As we also 
show, it is supported by numerical results.

Mutual information, denoted by Iλ, measures the total amount of 
information about one random variable contained in the other9,10,31 
(thus, it is more general than correlation coefficients). It is given in 
our setting by:

∑=Λ Λ
Λ

Λ

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

H E E H
E H

H E
H E

I P
P

P P
( : ) ( , )log

( , )
( ) ( ) (1)

,

The unknown distribution Λ E HP ( , ) and its marginalization 
Λ HP ( ), depending on a set of parameters Λ (which we keep generic 

at this point), are functions of V EP( , ) and of ∣Λ H VP ( ), which is the 
central object of interest.

Finding ∣Λ H VP ( ) that maximizes IΛ under certain constraints is 
a well-posed mathematical question and has a formal solution32.  

However, since the space of probability distributions grows expo-
nentially with the number of local degrees of freedom, it is, in 
practice, impossible to use without further assumptions for any 
but the smallest physical systems. Our approach is to exploit the 
remarkable dimensionality reduction properties of artificial neural 
networks11. We use restricted Boltzmann machines (RBMs), a class 
of probabilistic networks well adapted to approximating arbitrary 
data probability distributions. An RBM is composed of two layers 
of nodes, the ‘visible’ layer, corresponding to local degrees of free-
dom in our setting, and a ‘hidden’ layer. The interactions between 
the layers are defined by an energy function ≡ θΘ V HE E ( , )a b, ,  =   
− ∑ b hj j j −  ∑ a vi i i −  θ∑ v hij i ij j, such that the joint probability distri-
bution for a particular configuration of visible and hidden degrees 
of freedom is given by a Boltzmann weight:

=Θ
− θV H

Z
VHP ( , ) 1 e (2)E ( , )a b, ,

where Z  is the normalization. The goal of the network training is 
to find parameters θij (‘weights’ or ‘filters’) and ai,bi optimizing a 
chosen objective function.

Three distinct RBMs are used. Two are trained as efficient 
approximators of the probability distributions V EP( , ) and VP( ), 
using the celebrated contrastive divergence (CD) algorithm33. Their 
trained parameters are used by the third network (see Fig. 1b),  
which has a different objective: to find ∣Λ H VP ( ) maximizing IΛ. To 
the end we introduce the real-space mutual information (RSMI) 
network, whose architecture is shown in Fig. 1a. The hidden units 
of RSMI correspond to coarse-grained variables H.

The parameters λΛ = a b( , , )i j i
j  of the RSMI network are trained 

by an iterative procedure. At each iteration, a Monte Carlo estimate 
of function Λ H EI ( : ) and its gradients is performed for the current 
values of parameters Λ. The gradients are then used to improve 
the values of weights in the next step, using a stochastic gradient 
descent procedure.

The trained weights Λ define the probability ∣Λ H VP ( ) of a 
Boltzmann form, which is used to generate MC samples of the coarse-
grained system. Those, in turn, become input to the next iteration of 
the RSMI algorithm. The estimates of mutual information, weights of 
the trained RBMs and sets of generated MC samples at every RG step 
can be used to extract quantitative information about the system in 
the form of correlation functions, critical exponents and so on, as we 
show below and in the Supplementary Information. We also empha-
size that the parameters Λ identifying relevant degrees of freedom are 
re-computed at every RG step. This potentially allows RSMI to capture 
the evolution of the degrees of freedom along the RG flow34.

Validation
To validate our approach, we consider two important classical mod-
els of statistical physics: the Ising model, whose coarse-grained 
degrees of freedom resemble the original ones, and the fully packed 
dimer model, where they are entirely different.

Ha

b

B

P( )

CD CD RSMI

PΛ(H∣ )
λ j
i

θ

θ( )

),

( ),

P(

Fig. 1 | The RSMI algorithm. a, The RSMI neural network architecture. The 
hidden layer H is directly coupled to the visible layer V  via the weights λi

j 
(red arrows). However, the training algorithm for the weights estimates 
mutual information between H and the environment E . The buffer B is 
introduced to filter out local correlations within V  (see Supplementary 
Information). b, The workflow of the algorithm. The CD-algorithm-trained 
RBMs learn to approximate probability distributions V EP( , ) and VP( ). Their 
final parameters, denoted collectively by V EΘ( , ) and VΘ( ), are inputs for the 
main RSMI network learning to extract H V∣ΛP ( ) by maximizing IΛ. The final 
weights λi

j of the RSMI network identify the relevant degrees of freedom. 
They are shown in Figs. 2 and 4 for Ising and dimer problems.
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Fig. 2 | The weights of the RSMI network trained on the Ising model. 
Visualization of the weights of the RSMI network trained on the Ising model 
for a visibile area V  of 2 ×  2 spins. The ANN couples strongly to areas with 
large absolute value of the weights. a, The weights for Nh!= !1 hidden neuron: 
the ANN discovers Kadanoff blocking. b, The weights for Nh!= !4 hidden 
neurons: each neuron tracks one original spin.
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+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Panda  
58% confidence

Gibbon  
99% confidenceGoodfellow et al, 2014

Vulnerability of deep learning, Kenway, 1803.06111 & 1803.10995
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• Use Boltzmann Machines as recommender 
systems for Monte Carlo simulation of physical 
problems 

Learn preferences

Recommendations

LW, 1702.08586 

• Moreover, BM parametrizes Monte Carlo policies 
and can explore novel algorithms!

Li Huang and LW, 1610.02746  
Liu, Qi, Meng, Fu, 1610.03137 
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Algorithmic innovation outperforms Moore’s law! 
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2.D applications 47

Figure 2.D.1: Example application of a VAE in [Gómez-Bombarelli et al.,
2016]: design of new molecules with desired chemical properties. (a) A latent
continuous representation z of molecules is learned on a large dataset of
molecules. (b) This continuous representation enables gradient-based search
of new molecules that maximizes some chosen desired chemical property
given by objective function f (z).
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Figure 2.D.1: Example application of a VAE in [Gómez-Bombarelli et al.,
2016]: design of new molecules with desired chemical properties. (a) A latent
continuous representation z of molecules is learned on a large dataset of
molecules. (b) This continuous representation enables gradient-based search
of new molecules that maximizes some chosen desired chemical property
given by objective function f (z).
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DL as a fluid control problem

Monge-Ampère equation 
optimal transport theory

Continuous-time limitp(z)
q(∇u(z))

= det ( ∂2u
∂zi∂zj )

∂p(x, t)
∂t

+ ∇ ⋅ [p(x, t)∇φ] = 0

Simple density Complex density
Zhang, E, LW, 1809.10188 

Continuity equation of 
compressible fluids

c.f. Neural ODE, 1806.07366

u(z) = |z |2 /2 + ϵφ(z)



 Density estimation of hand-written digits

State-of-the-art performance in unstructured density estimation
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Neural Renormalization Group Flow

A fresh approach for holographic duality

Swingle 0905.1317, Qi 1309.6282 and more

Neural Network Renormalization Group

Shuo-Hui Li1, 2 and Lei Wang1, ⇤

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China

We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det

 
@x
@z

!������ , (1)

where q(x) is the normalized probability density of the phys-
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