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@ Motivation: Al for science, why now ?

@ Generative models and their physics genes

@ Applications: electron gases and dense hydrogen



Al for science: 24 years ago

Lecture Notes in Physics

John W.Clark Thomas Lindenau
Manfred L. Ristig (Eds.)

Scientific
Applications

of Neural Nets

Proceedings

Bad Honnel
Germany 1998

8 Doing Science With Neural Nets: Pride and
Prejudice

When neural networks re-emerged on the scene in the mid-80s as a new
and glamorous computational paradigm, the initial reaction in some sectors
of the scientific community was perhaps too enthusiastic and not sufficiently
critical. There was a tendency on the part of practitioners to oversell the

In conclusion, as a methodology for classification or function approxima-
tion in scientific problems, computational analysis based on neural networks
is expected to prove most valuable in applications for which (i) the data
set is large and complex, (ii) there is as yet no coherent theory of the un-
derlying phenomenon, or quantitative theoretical explication is impractical,

Why now, again ?
What has changed ?
What has not ?



Science is more than fitting, so is machine learning

Discriminative learning Generative learning
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Computational Neuroscience: Theoretical Insights into Brain Function

To recognize shapes, first learn to generate images

Geoffrey E. Hinton -

Department of Computer Science, University of Toronto, 10 Kings College Road, Toronto, M5S 3G4
Canada




ChatGPT: Optimizing Language Models for Dialogue
November 30, 2022 — Announcements, Research

DALL-E API Now Available in Public Beta
November 3, 2022 — Announcements, API

DALL-E Now Available Without Waitlist
September 28, 2022 — Announcements

Introducing Whisper
September 21, 2022 — Research

DALL-E: Introducing Outpainting
August 31, 2022 — Announcements

Our Approach to Alignment Research
August 24, 2022 — Research

New and Improved Content Moderation Tooling
August 10, 2022 — Announcements

DALL-E Now Available in Beta
July 20, 2022 — Announcements

OpenAI Technical Goals
June 20, 2016 — Announcements

Generative Models

June 16, 2016 — Research, Milestones

Team Update
May 25, 2016 — Announcements

OpenAI Gym Beta
April 27, 2016 — Research

Welcome, Pieter and Shivon!
April 26, 2016 — Announcements

Team++
March 31, 2016 — Announcements

Introducing OpenAl
December 11, 2015 — Announcements

https:/openai.com/blog/



Generative Al: a new buzz word in silicon valley

A Coming-Out Party for Generative

B N ,
A.L, Silicon Valley's New Craze New York Times
A celebration for Stability Al, the start-up behind the Kevin Roose
controversial Stable Diffusion image generator, represents the Oct. 21, 2022

arrival of a new A.l. boom.

Sequoia’s Sonya Huang: The

Protocol generative Al hype is 'absolutely
A justified

She’s bullish on generative Al given the “superpowers” it gives humans who work with it.




https:/www.sequoiacap.com/article/generative-ai-a-creative-new-world/
by Sonya Huang, Pat Grady and GP'T-3
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Large model availability: . First attempts Almost there ‘ Ready for prime time




https:/huggingface.co/spaces/stabilitvai/stable-diffusion

the inner structure of an electron Generate image
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https:/future.com/how-to-build-gpt-3-for-science/

How to Build a GPT-3 for
SCience (scientific literature and data)

i bl You may ask (prompts):
Posted August 18, 2022

Generative pre— l raining

“Tell me why this hypothesis is wrong”

“Tell me why my treatment idea won't work™
“Generate a new treatment idea”

“What evidence is there to support social policy X?”

M— | « . . . .
hitps:/galactica.org/ Who has published the most reliable research in this
Galactica: A Large Language

. 2
Model for Science field:
Meta, Nov16,2022 “Write me a scientific paper based on my data”
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“..the murderer is

\\%(_\...)

Qi~ Jim (Linxi) Fan

It’s not at all obvious why simply predicting the next
word can give us such abilities. One intuitive

explanation is to imagine a detective story. Suppose
the model needs to fill in the last blank: “the murderer
is __ 7, then it has to do deep reasoning to answer
correctly. 2/
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text ~ p(text|prompt)

https:/chat.openai.com/chat
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BTW, a failed example of chatGPT

[s it possible to make it work with prompt
engineering ?

How to integrate symbolic logic into large
language models ?
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Generative Al for matter engineering

latent chemical

space space

(Generate

_—
B ——

Inference

Review: “Inverse molecular design using machine learning”, Sanchez-Lengeling & Aspuru-Guzik, Science 18
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DeepMind CASP 15 invited talk by John Jumper

Mapping ML methods to Outline

protein problems

John Jumper . . .
" e Generative models and diffusion
e Protein language models and the scaling hypothesis

e Next problems

CASP15

CASP 14 (2020) : CASP 15 (2022)

Sum(Zscore>0.0)

Sum(Zscore>0.0)
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Great to have for protein generative models

textual inversion

invert

Input samples > “Sk” “An oil painting of S..” “App icon of S..”

Elmo sitting 1n 5 “Crochet S..”
the same pose as S

https:/textual-inversion.github.ic



Great to have for protein generative models

Instruct-pix2pix

“Swap sunflowers with roses” “Add fireworks to the sky” “Replace the fruits with cake”

T TR S 207
"‘.'/ 30.1. ¥ A - .'\ ) |

Given an image and a written instruction, our method follows the instruction to edit the image.

https:/www.timothybrooks.com/instruct-pix2pix




Generative Al for matter computation

Renormalization group  Molecular simulation  Lattice field theory

Li and LW, PRL 18 Noe et al, Science 19 Albergo et al, PRD ‘19
Li, Dong, Zhang, LW, PRX 20 Wirnsberger et al, JCP ‘20 Kanwar et al, PRL 20

These are principled computation: quantitatively accurate,
interpretable, reliable, and generalizable even without data



Generative models and their physics genes

Tensor

Networks

Goodfellow,

NIPS tutorial, 1701.00160

p(x)

4) Expli¢it density
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Direct

Implicit denswy
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Tractable density

Approximate density

Markov Chain

GSN
-Fully visible belief nets
-NADE | / \ |
MADE Varlatlonal Markov Chain
-PixelRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)

1
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Quantum
Circuits

+Diffusion models
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2. Linear Algebra

4. Numerical
Computation

DEEP. LEARNING _‘f"'*-

Aan Goodfol{ow )Y shua Bengio,
and Aaron Qo _

1. Introduction

Part I: Applied Math and Machine Learning Basics

3. Probability and
Information Theory

A4

“Part 1l is the most important for a researcher
—someone who wants to understand the
breadth of perspectives that have been
brought to the field of deep learning, and
push the field forward towards true artificial
intelligence.”

7. Regularization

Part II: Deep Networks: Modern Practices

6. Deep Feedforward
Networks

/

8. Optimization

9. CNNs

4

11. Practical
Methodology

12. Applications

\

Part III: Deep Learning Research

13. Linear Factor
Models

t

14. Autoencoders |—>

15. Representation
Learning

16. Structured
Probabilistic Models

!

17. Monte Carlo
Methods

19. Inference

'

20. Deep Generative
Models

18. Partition
Function




(outdated®) lecture note http:/wangleiphy.github.io/lectures/PlLtutorial.pdf

Generative Models for Physicists

CONTENTS
Lei Wang”®
I GENERATIVE MODELING 2
Insti f Physi hinese Academy of Sciences STPPE - -
stitute o 5];5 cs, Chinese i y 1.1 Probabilistic Generative Modeling 2
eijing 100190, China .
e 1.2  Generative Model Zoo 4
Octoh 1.2.1 Boltzmann Machines 5
ctober 28, 2018 :
1.2.2 Autoregressive Models 8
1.2.3 Normalizing Flow 9
Abstract 1.2.4 Variational Autoencoders 13
1.2.5 Tensor Networks 15
Generative models generate unseen samples according . .
to a learned joint probability distribution in the high- 1.2.6  Generative Adversarial Networks 17
dimensional space. They find wide applications in density 1.2.7 Generative Moment Matchin g Networks 18
estimation, variational inference, representation learning
and more. Deep generative models and associated tech- 1.3 Summar}’ 20
niques (SIT.Ch as dlffer?ntlable programing and repljesenta- 5 PHYSICS APPLICATIONS 21
tion learning) are cutting-edge technologies physicists can
learn from deep learning. 2.1 Variational Ansatz 21
This note introduces the concept and principles of gen- R 1; : G
erative modeling, together with applications of modern 2.2 enormalization Gr oup 22
generative models (autoregressive models, normalizing 2.3 Monte Carlo Upd ate PI'OpOS als 22
flows, variational autoencoders etc) as well as the old ones ) ) )
(Boltzmann machines) to physics problems. As a bonus, 2.4 Chemical and Material D681gn 23
this note puts some emphasize on physics-inspired gen- . .
erative models which take insights from statistical, quan- 25 Quantum Information Science and Beyond 24
tum, and fluid mechanics. 3 RESOURCES 25
The latest version of the note is at
http://wangleiphy.github.io/. Please send comments,
suggestions and corrections to the email address in below. BIBLIOGRAPHY 26

*I will update the note with materials contained in this lecture once I find time



So, what is the fuss ?

]

(
O—» px) >0
@

Normalization ? Sampling ?

y
KA

de px)=1 X ()



Perfect versus imperfect sampling

Children computing the number ©m on the Monte Carlo beach.  Adults computing the number n at the Monte Carlo heliport.

| OXFORD MASTER SERIES IN STATISTICAL, |
COMPUTATIONAL,AND THEORETICAL PHYSICS

Statistical Mechanics:
| Algorithms and
‘ Computations

Werner Krauth




Generative modeling

Statistical physics

Negative log-likelihood

Energy function

Score function

Force

[L.atent variables

Collective variables/coarse
graining/renormalization group

Partition function

Free energy calculation

Sample diversity

Enhanced sampling




Two sides of the same coin

Generative modeling Statistical physics
/ /’
Known: samples Known: energy function
Unknown: generating distribution Unknown: samples, partition function
“learn from data” “learn from Hamiltonian”
& = — Eguga |In p()| F = = H(x) + kzT In p(x)]
x~p(x

KL(data || p) vS KL(p || e_H/kBT)



Nature tries to minimize free energy

F=E-1S

energy entropy
"X X O : "
"X X o

"X X e

Fis a cost function given by Nature



The variational free energy principle

Flp] = de p(e)[H(x) + kT Inp(x)] > F
¢ ¢ l

variational density energy entropy @

Difficulties in Applying the Variational
Principle to Quantum Field Theories! Generative

models!
Richard P. Feynman

itranscript of his talk in 1987



Deep variational free energy approach

Use deep generative models as the variational density

Fpl= B [H@+kTInp()] o Lo

X~p(x) | |
with normalizing flow &
energy entropy (&2, autoregressive models
\/ Tractable entropy \/ Direct sampling

\/ Turning a sampling problem to an optimization problem

better leverages the deep learning engine: %
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Deep variational free-energy in the context

E, Han,Zhang, Physics Today 2020

_____________

_____________

_______________

_______________

________________

________________

Macroscopic
Mesoscopic
|
' Coarse-grained
' molecular dynamics
I
|
Microscopic Classical molecular

dynamics

. Density functional theory
Hartree—Fock method

= =1

- - d

nm um

Obijective Model Data Task
MD potential 3N-dim DFT energy/
energy surface| function force
Generalization
DFT xc energy 3-dim QMC/
functional functional CCSD/...
Variational 3N-dim S
, No Optimization
free-energy functional
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Forward KL or Reverse KL ?

Maximum likelihood estimation Variational free energy

¢~ = argmin,Dkr(p[/¢) ¢" = argmin  Dx1(q||p)

Probability Density
Probability Density

X X

Fig. 3.6, Goodfellow, Bengio, Courville, http:/www.deeplearningbook.org/



http://www.deeplearningbook.org/

_ 1 [ (g(z) —p(z))°
| Daplle) =5 [ L
Y -le@fg@Il(:@ Minka, Microsoft Research Technical Report 2005 lim Do (p || q) = KL(¢|| p)
Di(pllq) = 2/ (\/p(:v) - \/Q(I))le‘
[, ap(z) + (1 — a)q(z) — p(x)*q(z)'~*dz  lm Dalp|l9) =KL(p || )
Dalplla) = ol — a) L[ () — a(@)?
vlla) =5 [ P
np | "p | "p | ij\ /K
= —00 a =0 a = 0.5 a=1 o = o0
Fisher diwergence, defined as
F(g,p) = [ |I[Vlogq(#) — Vlogp(8)|*q(0) do,



Boltzmann machines

— = Lx~data [lnp(x)] plx) = e /7
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GAUSSIAN-BERNOULLI RBMS WITHOUT TEARS
2210.10318

Renjie Liao* !, Simon Kornblith?, Mengye Ren?, David J. Fleet®>:*-°, Geoffrey Hinton**°




Autoregressive models
p(x) = p(x))p(x, | x)p(x3 [ X1, X5) -

Language: GPT 2005.14165 Speech: WaveNet 1609.03499

Otpt @ @ © 0 0 0 000000 OO© O

Hidden .~ ~ ~ A ~A /& /& A /A & o o o o

“... quick brown fox jumps ...”

&\%(]umps‘ o ) Hdden 5 65 0 00000000000

LLLLL

||||| 00000000 O0CO0COO0COO0O

Image: PixelCNN 1601.06759 Molecular graph: 1810.11347

§.i§ggo SR N R A
o _--—-= ® O : :
O



Variational autoregressive networks

Sherrington-Kirkpatrick spin glass Variational autoregressive network
NMF | ' ' pe) = | [ p(x1x.)
o Bethe i
> —1 ¢ * VAN ithub.com/wdphyi6/stat-mech-van
5 1 — Exact github.com/wdphyi6/stat-mech ,
D Wu, LW, Zhang, PRL "19
W _q121 |
g Conventional approaches
LL
—-1.4} Naive mean-field o
(a) factorized probability p(x) = Hp (xi)
i

|
—h
@)

0.5 1 1.5 p(xl., x])

B Bethe approximation p(.X') — H p(xi) H
l

pairwise interaction (eE p( xi) p( xj)



Implementation: autoregressive masks

O— X,

A Masked Autoencoder
Xy |
Germain et al, 1502.03500
A3
p(x;) = Bern(x,) p(x, | x;) = Bern(x,) p(x3]x1,x,) = Bern(x;)

Other examples: Pixel CNN, van den Oord et al, 1601.06759 Casual transformer, 1706.03762
Other ways to implement autoregressive models: recurrent networks



Normalizing flows

b Parallel WaveNet 1711.10433 @ Glow 1807.03030
https:/deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/ https:/blog.openai.com/glow



https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/

Normalizing flow in a nutshell

0z
ot N (2) 0x
CISI
d Review article 1912.02762

[ —

/ /

“neural net” » Target
. , p(x) g,
with 1 neuron \ density

Yy VvVvY




Flow architecture design

Composability

Balanced

inductive bias C ll.'l'

det (Z—i) Autoregressive Neural RG Continuous flow




Example of a building block

Forward arbitrary Z< Z>
neural nets
RPN -~ N
Xs =250 e’%<) 4 1H(zZ<) @
Inverse C

®

Z> = (X¥s — Hx<)) O e~ S¥<) K /

{ ©

LLog-Abs-Jacobian-Det X X

In |det (?9_;) = Zi [S(Z<)]i Real NVP, Dinh et al,1605.08803

Turns out to have surprising connection Stormer—Verlet integration (later)



Normalizing tflow for physics: an intuition

el center-of-mass
P E motion
coupled (LS '7'3 3
@ oscillators 1% E ‘_O. @
\\?j% ;5 Elu
2 relative N(z
px) Z motion ()

High-dimensional, composable, learnable, nonlinear transformations



Neural network renormalization group

Li, LW, PRL "18 lio1258¢9/NeuralRG

Collective variables
0.0+ Exact free energy lower bound
[ ] g 05 Onsager 1944
c _1.0-
* * S
_ _ N _15-
Probability Transformation 0
100 102 102 103
ox epochs
Inp(x) =InV(z) —In |det .
¢ % 0.5 Accelerated sampling w/
O 54 learned collective variables
Y Q
o e e thed
0.2
.éo,l- - ¢  HMC ?n physical space
Physical variables ool T In fatent space

20 30 40

HMC steps

10

50



Quantum Version of the architecture

0) Multi-Scale
. . Entanglement

Renormalization

Ansatz

Entangled qubits



Connection to wavelets

Nonlinear & adaptive generalizations of wavelets
Guy, Wavelets & RG19g9g+ White, Evenbly, Qi, Wavelets, MERA, and holographic mapping 2013+



Continuous normalizing flows

det
()z

Consider infinitesimal change-of-variables Chen et al1806.07366

Inp(x) =InA(z) — In

0
X=2z+¢€v Inp(x) —InAN(z) = —1In det(1+ea—v)‘
<,
e — 0 \/
ax _ dinp(x,n) _

dt dt



Fluid physics behind flows

Q Zhang, E, LW 1800.10188
dx \ / X ¥ wangleiphy/MongeAmpereFlow
— =y \'
dt ‘/‘] d a “ .
e - 4_°% ..y material
dlnp(x,1) V. 4 '\ dt ot derivative”
dt f
op(x, 1)

——+V; pex,Hv| =0

D EE——

Simple density Complex density



Neural Ordinary Differential Equations

Residual network ODE integration

LY. $-|
O O
O +H
a v
o)
— d
: :
O =
o
; :
M @)

X, =X,+vx,) dx/dt = v(x)
Harbor el al 1705.03341
Lu et al 1710.10121,

Chen et al, 1806°O7366 E Commun. Math. Stat 17'...



Neural Ordinary Differential Equations

Residual network ODE integration

144 /

1 '
0= =570 5 0=—¢ 0 5
Input/Hidden/Output Input/Hidden/Output
X =X, T+ VX —
t+1 t ( t) dx/dt = v(x) Harbor el al 1705.03341

Lu et al 1710.10121,

Chen et al, 1806.07306 E Commun. Math. Stat 17'...



Continuous normalizing flows
implemented with NeuralODE

Chen et al, 1806.07366, Grathwohl et al 1810.01367

Target Densit Samples Vector Fleld
f;\“
e 77 i)
~ A

Continuous normalizing flow have no structural

=

constraints on the transformation Jacobian



The two use cases

Zhang, E, LW, 1809.10188

(a) Density estimation (b) Variational free energy

“learn from data” “learn from Hamiltonian”

P = — Egugaga | In p@)] F = 3 kT In p(x) + H(x)|
xX~p(x




Demo: Classical Coulomb gas in a harmonic trap

1 N
2
H=) ———+ ) x;
— ‘xi — xj | .
1<J !
304 __
L2
Bolton et al, Sup. Micro '93
28 -
171
K2 N {’-.}
26 - el
? T0F oy |
v ™ |
; - f Efof E I
£ 169 o
5 | |
) | |
= | |
- 22 - | I I T T I
: 15.80 ‘ : |
20 -
18 -
0 100 200 300 400 500

epochs

https:/github.com/fermiflow/FermiFlow/blob/github/classical_coulomb_gas.ipynb




Training: Monte Carlo Gradient Estimators

Review: 1000.10052

V 0 |= X~pg [f(x )] Reinforcement learning

Variational inference
Variational Monte Carlo

Score function estimator (REINFORCE) Variational quantum algorithms

VoExp, f)| = Ex~py fx) Veln];@(x)]

Pathwise estimator (Reparametrization trick) X = gg(Z)

Vg-:x,vpe [f(x)] — -:ZN/V(Z) [Vef (89(1))]




10.1

Guidance in Choosing Gradient Estimators

With so many competing approaches, we offer our rules of thumb in choosing an estimator, which
follow the intuition we developed throughout the paper:

If our estimation problem involves continuous functions and measures that are continuous
in the domain, then using th{ pathwise estimator]is a good default. It is relatively easy to
implement and a default implementation, one without other variance reduction, will typically
have variance that is low enough so as not to interfere with the optimisation.

If the cost function is not differentiable or a black-box function then the score-function or the

measure-valued gradients pre available. If the number of parameters is low, then the measure-

valued gradient will typically have lower variance and would be preferred. But if we have a
high-dimensional parameter set, then the' score function estimatoj should be used.

If we have no control over the number of times we can evaluate a black-box cost function,
effectively only allowing a single evaluation of it, then the score function is the only estimator
of the three we reviewed that is applicable.

The score function estimator should, by default, always be implemented with at least a basic
variance reduction. The simplest option is to use a baseline control variate estimated with a
running average of the cost value.

When using the score-function estimator, some attention should be paid to the dynamic range
of the cost function and its variance, and to find ways to keep its value bounded within a
reasonable range, e.g., transforming the cost so that it is zero mean, or using a baseline.

For all estimators, track the variance of the gradients if possible and address high variance by
using a larger number of samples from the measure, decreasing the learning rate, or clipping
the gradient values. It may also be useful to restrict the range of some parameters to avoid
extreme values, e.g., by clipping them to a desired interval.

The measure-valued gradient should be used with some coupling method for variance reduc-
tion. Coupling strategies that exploit relationships between the positive and negative compo-
nents of the density decomposition, and which have shared sampling paths, are known for the
commonly-used distributions.

If we have several unbiased gradient estimators, a convex combination of them might have
lower variance than any of the individual estimators.

If the measure is discrete on its domain then the score-function or measure-valued gradient
are available. The choice will again depend on the dimensionality of the parameter space.

In all cases, we strongly recommend having a broad set of tests to verify the unbiasedness of
the gradient estimator when implemented.

Mohamed et al, 1006.10652
VH [EXNPH [f(X)]

When to use which ?

More discussions

Roeder et al, 1703.009194
Vaitl et al 2206.09016, 2207.08219
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https:/github.com/deepmind/mc_gradients Mohamed et al, 1006.10652



A few words about tooling

€% Zygote

O PyTO rch TensllrFlow D SciML fj/ j

HIPS/autograd theano

Y.

'\ ‘.
' /V /[ 4

V' / [/ ,
WY W

Keras

Differentiable programming frameworks



Case study: Normalizing flow for atomic solids

Variational free energy with a really deep (and a bit awkward)
permutation equivariant flow

_______ Bace System NV LFEP LBAR MBAR
5 Mode LJ 256  3.10800(28)  3.10797(1)  3.10798(9)
LJ 500 3.12300(41)  3.12264(2)  3.12262(10)
— In[E —pE(x)—In q(X)]
InZ=InkE,_,, [e
N free energy perturbation (Zwanzig 1954)

3 InZ;,—InZ,=Ink, [e‘ﬂ(EB_EA)]

Wirnsberger et al, 2111.08696  https:/github.com/deepmind/flows_for_atomic_solids

r/o |




Normalizing flow for atomic solids

F. Hardware details and computational cost

For our flow experiments, we used 16 A100 GPUs to train each model on the bigger
systems (H12-particle mW and 500-particle LJ). It took approximately 3 weeks of
training to reach convergence of the free-energy estimates. Obtaining 2M samples for
evaluation took approximately 12 hours on 8 V100 GPUs for each of these models.

For each baseline MBAR estimate, we performed 100 separate simulations for LJ
and 200 for mW, corresponding to the number of stages employed. These simulations
were performed with LAMMPS (8] and each of them ran on multiple CPU cores
communicating via MPI. We used 4 cores for the 64-particle and 216-particle mW

experiments and 8 cores for all other systems. The MD simulations completed after
approximately 11 and 14 hours for LJ (256 and 500 particles), and 7, 20 and 48 hours
for mW (64, 216 and 512 particles). To evaluate the energy matrix for a single MBAR

Heavy lifting is mostly due to preserving permutation. But, does it really matter?



Diffusion models

Denoising score matching Vincent 2011 Diffusion generative model
Sohl-Dickstein et al, 1503.03585

1 . ) ' (x0.7)

~Ey (z1x)pua ) [I868(X) — Vi log g, (X | x)|I3]. 71 < E,|—log LOZ0T

5 g (%1)paaa () L186 (X) gqs(x | x)|[3] —log po(x0)] < Eq|—log J(xorlxo).

Song et al, 1007.05600, Ho et al, 2006.11239

|

meln <l"tNZ/{(O,T) B0~ o (%0)

<

4"}(ff\JC_[t(Xﬂ}(())HSO (Xt7 t) - v}(t 1Og qt(Xt|XO)||g

diffusion data diffused data neural score of diffused
time ¢ sample xg sample x; network data sample




A tale of three equations

Langevin equation (SDE)

qx, g 1X%,) = N(x, + fdt2Tdtl)  or X, 45— X, =jJdt ++/2Tdt N (0,])

Fokker-Planck equation (PDE)

op(x,t
2 (at L4V - [pe.0)f] — TV?p(x.1) = 0
“Particle method” (ODE)
g 1
(Another way to reverse the diffusion is E o f —1'V np (%, 1) Maoutsa et al, 2006.00702

via the reverse-time SDE Anderson 1982) Song et al, 2011.13456



- - 1 3/2 -
P(x, t):/d3x’ (47TD6) exp | — P(x',t—e), (9.18)

and simplified by the change of variables,

N

5 =3 +e(F)—F =

(9.19)
&’y =X (1+€V-0(x)) =d°%' (1+€V-v(X) +O(€?)).
Keeping only terms at order of €, we obtain
: i 2. 5
P(x,t)= [1 —eV-v(x)] f d’y (47TDE) e e P(x+y—ev(x),t—e€)
i 2.
—[1—€eV.0(x 39 ~ D¢
_[1 eV v(x)] /d y(47TDE) e 4D
I > o y;— 2€y,v;+ €20, 0P _
« | PG+ G —B(R)) - VP + 2 Eyzvf "N VP - -+ 0(e)
>0 > 2 0P 2
= [1—6V-v(x)] P—€ev-V+eDV-P —e€ ry FO(€7) |.
(9.20)
Equating terms at order of € leads to the Fokker—Planck equation,
P 5 S
— 4+V.J=0, with J=93P—DVP. (9.21)

ot

from Langevin
to Fokker-Planck

MEHRAN KARDAR

Statistical Physics of

Fields

more information - www.cambridge.org/9780521873413



.essons from diffusion models

Continuous normalizing flow has great potential: diffusion model is an “existence proof”

Going beyond maximum likelihood estimation training (even if we can)

https:/blog.alexalemi.com/

Break the loss into small pieces, sample them (kind of layer-wise training)

diffusion.html
The conditional trick (originated from denoising score matching Vincent 2011)
- X n 2
min By s (0,1) B mgo (x0) Encr v (e x0) |80 (X2 1) — Vi, 10g g (xe[%0)[ |5
diffusion data diffused data neural score of diffused
time ¢ sample xg sample x; network data sample

https:/cvpr2022-tutorial-diffusion-models.github.io




Claim:

= o | 590 = VI g(x) % =

= Xo~qo(Xp)

0
= gl | S9(0) — Vi Ing(x | x)|” + const.

!

of 6

Ind d
q(x) = [q(x | X0)q0(Xp)d X, ndependent

Proof:

—xo~qo(xg) —x~q(x|x) s - Vin q ()C ‘ xO)] — J'de deQO(xO)q (X ‘ xO)

S SR El JdXonXCIo(Xo)CI(X\Xo) |s|° = [dxq(X) 517 = Eyngeo | 571

s - Vg(x|xp)
q(x | xp)

— [dxo J'dqu(X())S -V Q(X ‘ 'x())

= [dxs - Vgx) =E,  mls - Vingx)]

Eikse(x;, NETFVy, log p(x;|xo)HIMILTFLY [BIV,, log p(x,)] REER/IME||se(xr, ) — Vi, log p(x; |xo) || A0 LY htps://spaces.ac.cn/archives/9209




Flow matching

px,0) = (0,1 ground truth px,1) = g(x)
base distribution velocity field w data distribution

op(x, 1)
ot

—>

+ V- |pGx, Hux, 0| =0

)
Zem = Err0.0Exmpien |v9(x, 1) — u(x,1) |

Liu et al 2209.03003, Albergo et al, 2209.15571, Lipman et al, 2210.02747



Conditional flow matching

ap(x ‘xla t)

——+V- pGe | x,. Dux |x,, 0] =0

px,1) = Jp(x | x, 1) gx)dx;  plx,Dux, 1) = JP(X | xp, Du(x | xq, 1) g(x))dx,

2
Zcpm = =1~ (0,1 Ex ~q(x ) Ex~p(x|x,.0) |v9(x, f) —u(x|xg,1) |

Veg FM — V@g CFM

an example: x = (I =0xp + 1x, plx|xy, ) = A (1x), (1 = 1)°)

Rectified flow 2209.03003 Xo ~ N (0,1) u(x |x1, 1) = dx/dt = X, — X,
causalizing linear interpolation



2
Where SZFM — _Z‘NCZ[(O,l) _pr(x,t) V@(x, t) — u(x, t) |

2
Zeem = Erea0.1) = x 1 ~q(x;) Ex~p(x|x;,0) |v9(x, f) —u(x|x,1) |

p(x, 1) = Jp(x | x,0) g(x))dx; plx,tux,t) = Jp(x | x1, Du(x | xy, 1) g(x))dx,

Proof:

2
2 2
_xlrvq(xl) _pr(x\xl,t) Vo| = del deqcxl)p(x ‘xla t) ‘ Vo | — J'dxp(xa t) ‘ Vo ‘ — —x~p(x,f) | Vo

= e Exxmp (el ["9 - u(x | x, t)] = del deq(xl)p(x | X1, 1) [vg - u(x | xy, t)]

— dep(x, l‘)Vg - u(x, 1) = —x~p(x,1) [‘)H - u(x, t)]




Flow matching is all you need!

This framework contains various diffusion models as special cases

Optimal transport theory and iterative improvement of the interpolation

path (Liu et al 2209.03003)

400x speedup compared to continuous normalizing flow (Albergo et al, 2209.15571)

Surpasses diffusion model on Imagenet in likelihood and sample quality
(Lipman et al, 2210.02747)

CEDRIC VILLANI

Fun to try: flow matching for computing free energy difference

Fun to try: Train Riemannian ﬂOWS With it Part II Optimal transport and Riemannian geometry




Demo: Classical Coulomb gas in a harmonic trap

Estimating free energy via flow matching

2z = =1~ (0,1) Exy~ 4 (0,1)Cx | ~exp(—BE)/Z |x1 — Xy — v(x, 1)

1

Z=FE, [e—ﬁE(x)—hl Cl(x)] Ing(x) = In A (0,]) — J V - vdt
0

Interpolate

—mmm

Base density Target density
direct sampling MCMC sampling



GAN

Gaussian Generative
Noise Network

Likelihood ftree simulator

Prone to mode collapse

More tricky to train than others

https:/www.christies.com/Features/A-collaboration-between-

two-artists-one-human-one-a-machine-g332-1.aspx

Performance have been surpassed by diffusion models

| found GAN to be less useful for serious scientific applications



2200.10423

VAE

Close connection to variational calculus we have just learned

—E (x)

px) = —— ~

Variational free energy

Approximate sampling and estimation of partition
functions using neural networks

George T. Cantwell
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501
gcant@Qumich. edu

px|2)p(z)
p(x)

Variational Bayes

p(zlx) =

We consider the closely related problems of sampling from a distribution known
up to a normalizing constant, and estimating said normalizing constant. We show
how variational autoencoders (VAEs) can be applied to this task. In their standard
applications, VAESs are trained to fit data drawn from an unknown and intractable
distribution. We 1nvert the logic and train the VAE to fit a simple and tractable
distribution, on the assumption of a complex and intractable latent distribution,
specified up to normalization. This procedure constructs approximations without
the use of training data or Markov chain Monte Carlo sampling. We illustrate our
method on three examples: the Ising model, graph clustering, and ranking.



Generative Al for Science

@ HQW toBuilda GPT-3for  gcjentific language model
Science

@ .' % § Matter inverse design

@ F = F — TS Nature’s cost function

T T —




Ab-initio study of quantum matters at T>o0

hz hz Zez 1 ZZ€2
H=— Vz— Vz_ 1 4+ — _ 1]
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i e I ! 1i i 1751
Z T r (6 — H/k T ) Application range
of quantum Monte Carlo
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Bonitz et al, Phys. Plasmas 20 Dornheim et al, Phys. Plasmas 17




How to solve quantum many-body systems?

y

I3 s

Quantum-to-classical mapping via

path integral, then we are done

2= | ded-

/

However, the sign problem

strikes again: the “weights”

may not be positive &

We need a variational principle that directly applies to quantum systems



The Gibbs-Feynman-
Bogolyubov-Delbriick—-Moliere variational principle

min Flp] = kgT Tr(p In p) + Tr(Hp)

s.t. Trp=1  p>0 pi=p (x|plx)=(-)(Px|p|x)

Difficulties in Applying the Variational
deep

generative
models !!

Principle to Quantum Field Theories:

Richard P. Feynman

itranscript of Professor Feynman's talk in 1987



Classical world Quantum world

Probability density p Density matrix p
Kullback-Leibler divergence Quantum relative entropy
KL (p|lq) S(pl\a)
Variational free-energy Variational free-energy
1 1
F = de [E p(x)n p(x) + p(x)H(x)] F = ETr(p Inp) + Tr(pH)



Density matrix

p=) D, YNV,
e ~

Classical probability 0 < p, < 1 Quantum states W, (x) = (x|¥,)

How to represent them ??

Use TWO deep generative models !!



vV Normalizing tflow
x g

VY (x) = () |det a—
ox

Target Base Jacobian of
states states the flow

Particle
coordinates

The flow implements a learnable many-body unitary transformation

hence the name “neural canonical transformation” a classical generalization of Li, Dong, Zhang, LW, PRX ‘20



Applications to two prototypical
quantum many-body problems

Uniform electron gas Dense hydrogen

Gregoryanz et al, Matter Radiat. Extremes, 2020

1200

1000

~ 800

Jellium

| 1 1
0 100 200 300 400 500
Pressure (GPa)

Xie, Zhang, LW, 2201.03156 Xie, Li, Wang, Zhang, LW, 2209.06005



Uniform electron gas

2 p) ® o

N 2
h*V: e
S S e LT
=1 2m i<j ‘ri_rj f o.o o

E"PE[n] = Jd3r n(e. =+---)

Fundamental model Input to the density
for metals (2 < r; < 6) functional theory calculations



Quasi-particles effective mass
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Quas] horse real herse

A fundamental quantity appears in nearly all physical properties of a Fermi liquid

N(O) S Cy A

Density of states entropy specific heat magnetic susceptibility



Quasi-particles effective mass of 3d electron gas

Hedin Phy. Rev. 1965 Azadi, Drummond, Foulkes, PRL 2021
1.2 -@- GWpsa(RPA)
ﬁ @ -« GWp(RPA)
| ’ -~ GWosa(Gy)
1.1 GWp(G)
: —8— GWp(G.&G-)
] — GWOSA(G+&G—)
1.0 -¥-- GW-SS
| M- GW-SRPA
X | X VDMC-Para)
S * 09 ® DMC-Para
1.05 E | Y DMC-Ferro
0.8-
0.7
0.6

o O 1 2 3 4 5 6 7 8 9 10
r re

> 50 years of conflicting results !



Two-dimensional electron gas experiments

week ending
VOLUME 91, NUMBER 4 PHYSICAL REVIEW LETTERS 25 JULY 2003

Spin-Independent Origin of the Strongly Enhanced Effective Mass
in a Dilute 2D Electron System

m*/m> 1
A. A. Shashkin,* Maryam Rahimi, S. Anissimova, and S.V. Kravchenko

Physics Department, Northeastern University, Boston, Massachusetts 02115, USA

V.T. Dolgopolov
Institute of Solid State Physics, Chernogolovka, Moscow District 142432, Russia

) - 0 0 |
T. M. Klapwijk
Department of Applied Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands \ o~

(Received 13 January 2003; published 24 July 2003)

k endi
PRL 101, 026402 (2008) PHYSICAL REVIEW LETTERS 11 JULY 2008
Effective Mass Suppression in Dilute, Spin-Polarized Two-Dimensional Electron Systems m=*/m< 1

Medini Padmanabhan, T. Gokmen, N. C. Bishop, and M. Shayegan

Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
(Received 19 September 2007; published 7 July 2008)

Layer thickness, valley, disorder, spin-orbit coupling...



m* from low temperature entropy

Eich, Holzmann, Vignale, PRB ‘17
2
wky m* T

3 mTF

§ =

interacting electrons
m* § <«
—> — = —
m 30 ~

noninteracting electrons

Not an easy task due to the lack of reliable methods
for interacting electrons at low-temperature with intermediate density



Deep generative models for
the variational density matrix

p = ZP(K)|‘PK><‘PK|

K\

Normalized probability Orthonormal
distribution many-electron basis

@ ZP(K) =1 @ (P | ¥g) = 51{,1('
K

There will also be interesting twists for physics considerations



@ Autoregressive model for p(K)

Fermionic

occupation p(K) = p(k)p(k, | k)plks |k, ky)--

in k-space

K — {kl,kz, ,kN}

# of fermions # of words
quick
Momentum cutoff Vocabulary brown fOX
Entr Negative log- Jumps
opY likelihood

Twist: we are modeling a set of words with no repetitions and no order

We use masked casual self-attention Vaswani et al 1706.03762; Alternative solution: Hibat-Allah et al, 2002.02793, Barrett et al, 2109.12606



@ \/Normalizing flow for | W)

Electron X C D

coordinates

O,

@

am
VN

QN

=~
) ——
D] —

Jacobian of the

Orthonormal many-body states .
transformation

Twist: the flow should be permutation equivariant for fermionic coordinates

we use FermiNet layer Pfau et al, 1009.02487



Feynman'’s backflow in the deep learning era

T C=a (- xh (-
quasi particle o
JFl Feynman & Cohen 1956

wavefunction for liquid Helium

o
H;"
:O
8 2
= Q)
o=
md)
=

Equivariant
neural network

2
H;"
:O
¢ 2
= Q)
&=
= ¢
S

=

Twist: Iterative backflow — deep residual network — continuous normalizing flow

Taddei et al, PRB ‘15 E Commun. Math. Stat 17/, Harbor el al 1705.03341, Lu et al 1710.10121, Chen et al, 1806.07366



Fermi Flow

Xie, Zhang, LW, 2105.08644, JML ‘22

github.com/fermiflow

Continuous flow of electron density in a quantum dot


http://github.com/fermiflow/

The objective function

1 (x | H| W)
F= E —Inp(K) + -
K~p(K) ﬁ X~ ‘ (x| V) ‘ ’ <x ‘ ‘PK>
Boltzmann Born
distribution probability

Jointly optimize | W) and p(K) to minimize the variational free energy



Benchmarks on spin-polarized electron gases

3D electron gas T/ Tr=0.0625 2D electron gas T=0
—0.085
—(0.265-
—0.090 - —0.270-
> >
&= £5 —0.275-
~ —0.095 ~
—0.280-
—0.100 1 Brown et al, PRL ‘13 —0.285- Tanatar, Ceperley, PRB, ‘89
restricted PIMC N=33, rs=10 Slater-Jastrow VMC N=37, rs=5

10!
epochs epochs




37 spin-polarized electrons in 2D @ T/ Tr=0.15

/ Erszl ETS:3 §7“3:5 17“8:10
Starting point: 0.40 -

[deal gas entropy s,

0.35-

< 0.30-

T~
YA

S
0.25- m S
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Effective mass of spin-polarized 2DEG

1.0

0.9-

0.3~

0.2

k
!
|
!
\

Perturbative theory
valid for r, < 1

Diffusion Monte Carlo

extrapolated to N = oo
Drummond, Needs, PRB 13

More pronounced suppression of m*in the low-density strong-coupling region



Experiments on spin-polarized 2DEG

Asgari et al, PRB ‘09

i

G*+/Dyson ——
G't/OSA ——

] |

5 10 15

m* (a.u.)

Drommond, Needs, PRB’13

e = GW,KO, SC [31]

I ' I ¥
x DMC (pres. work)
+ DMC [20]
Exp. [1]
- = GW, KO, OSA [31]

Quantum osci
Padmana

Go

lation experiments
ohan et al, PRL 08

<men et al, PRB ‘o9



Entropy measurement of 2DEG

ARTICLE

Received 16 May 2014 | Accepted 27 Apr 2015 | Published 23 Jun 2015

Strongly correlated two-dimensional plasma
explored from entropy measurements

A.Y. Kuntsevich?, Y.V. Tupikov3, V.M. Pudalov"? & L.S. Burmistrov®*

05 o |
Maxwell relation — | =—\|— e o
an T a T 7 1 \@f_\j&g\%& *A*A-u«‘.“ v L ?7};3 K

Electron density (10" cm™)

0S/on
N
/!ZI

Next, directly compare computed entropy with the experiment



FAQS

Where to get training data ?
No training data. Data are self-generated from the generative model.

How do we know 1t is correct ?

Variational principle: lower free-energy is better.

Do I understand the “black box” model ?

a) I don’t care (as long as it is sufficiently accurate).

1
' : Elom] = E €Oy + — S dmy,
b) In p(K) contains the Landau energy functional = Eot 2,60+ 2, fuadmon,

< x illustrates adiabatic continuity.



Deep variational free energy for dense hydrogen
Xie, Li, Wang, Zhang, LW, 2209.06005

Hyg(R)
ws(R)

Classical protons coupled to ground state electrons

s (5 ps

probability

S~p(S) R~|ys(R)|°

r

free energy

Geminal

we(R)

wavefunction

Network

electron



The dense hydrogen problem

Gregoryanz et al, Matter Radiat. Extremes, 2020 Xle’ Ll’ Wang’ Zhang’ LW’ 2209'06095
1200 . -— —0.80
00 Molec.ular _0.85-
e ,_epoch=68 1328 2583 3828
— —0.90-
— 800} ~_
E:, D?—O 05 IW 1- /N- 1- /«7\—# 1- f‘“’
S N
T 600 25 —1.00 0- — oL Jpld  Tlel |
e 3 0.0 25 00 25 00 25 0.0 25
E: 400 | i —1.05 r(a.u.) r(a.u.) r(a.u.) r(a.u.)
£ —1.10- p =1.38g/cm® T =6000K
200
—1.15+
U . : 190 k Morales et al, PRE '10
0 100 200 300 400 500 — 1. ' ' '
Pressure (GPa) 1000 2000 3000 4000
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Generative model for proton probability density distribution
Deep neural network (Ferminet) for electron wavefunction



energy (Ry/H)

—1.0

' 5 ' 500 '
2000 4000 2000 4000 2000 4000
epochs epochs epochs

Our predictions will be systematically improved when lowering the variational free energy



Dense hydrogen in the sky and in the lab

Jupiter interior Inertial confinement fusion
Tbar 4 g
e L A v . b‘z Shell Ablator
~6,500bK W -
1-2 Mbar ,
Metallic H Capsule
> < Lasers

~25,000 K Equation-of-state is the input for

hydrodynamics simulations

~
40 Mbar -~
~



“Using Al to accelerate scientific discovery” Demis Hassabis, co-founder and CEO of DeepMind 2021

E

What makes for a suitable probl

Massive combinatorial Clear objective function Either lots of data

search space (metric) to optimise and/or an accurate and
against efficient simulator




Why now ?

Variational free-energy is a fundamental principle for T>0
quantum systems

However, it was under-exploited for solving practical problems
(mostly due to intractable entropy for nontrivial density matrices)

Now, it is has became possible by integrating recent advances in
generative models



The Universe as a generative model

Thank you!

Discovering physical laws: learning the action
Solving physical problems: optimizing the action



Thanks to my collaborators

Shuo-Hui Li ~ Dian Wu Hao Xie Zi-Hang Li Pan Zhang Han Wang  Linfeng Zhang

1802.02840, PRL "18

1809.10000, PRL ‘19 wdphyi6/stat-mech-van
2105.08044, JML 22 fermiflow/CoulombGas

2201.03150, 2200.00004§ fermiflow/hydrogen

lio12589/NeuralRG



https://github.com/fermiflow/CoulombGas
https://github.com/fermiflow/hydrogen

