
Lecture Note on Deep Learning
and Quantum Many-Body

Computation

Jin-Guo Liu, Shuo-Hui Li, and Lei Wang∗

Institute of Physics, Chinese Academy of Sciences
Beijing 100190, China

November 23, 2018

Abstract

This note introduces deep learning from a computa-
tional quantum physicist’s perspective. The focus is on
deep learning’s impacts to quantum many-body compu-
tation, and vice versa. The latest version of the note is
at http://wangleiphy.github.io/. Please send comments,
suggestions and corrections to the email address in below.

∗ wanglei@iphy.ac.cn

http://wangleiphy.github.io/

C O N T E N T S

1 introduction 2

2 discriminative learning 4

2.1 Data Representation 4

2.2 Model: Artificial Neural Networks 6

2.3 Cost Function 9

2.4 Optimization 11

2.4.1 Back Propagation 11

2.4.2 Gradient Descend 13

2.5 Understanding, Visualization and Applications Beyond
Classification 15

3 generative modeling 17

3.1 Unsupervised Probabilistic Modeling 17

3.2 Generative Model Zoo 18

3.2.1 Boltzmann Machines 19

3.2.2 Autoregressive Models 22

3.2.3 Normalizing Flow 23

3.2.4 Variational Autoencoders 25

3.2.5 Tensor Networks 28

3.2.6 Generative Adversarial Networks 29

3.3 Summary 32

4 applications to quantum many-body physics and

more 33

4.1 Material and Chemistry Discoveries 33

4.2 Density Functional Theory 34

4.3 “Phase” Recognition 34

4.4 Variational Ansatz 34

4.5 Renormalization Group 35

4.6 Monte Carlo Update Proposals 36

4.7 Tensor Networks 37

4.8 Quantum Machine Leanring 38

4.9 Miscellaneous 38

5 hands on session 39

5.1 Computation Graph and Back Propagation 39

5.2 Deep Learning Libraries 41

5.3 Generative Modeling using Normalizing Flows 42

5.4 Restricted Boltzmann Machine for Image Restoration 43

5.5 Neural Network as a Quantum Wave Function Ansatz 43

6 challenges ahead 45

7 resources 46

BIBLIOGRAPHY 47

1

1
I N T R O D U C T I O N

Deep Learning (DL) ⊂ Machine Learning (ML) ⊂ Artificial Intelli-
gence (AI). Interestingly, DL is younger than ML; ML is younger than
AI. This might be an indication that it is easier to make progress on a
concrete subset of problems, even if you have a magnificent goal. See
[1, 2] for an introduction and historical review of AI. ML is about find-
ing out regularities in data and making use of them for fun and profit.
Human is good at identifying patterns in data. The whole history of
science can be attributed as searching for patten in Nature and sum-
marizing them into physical/chemistry/biological laws. Those laws
explain observed data, and more importantly, predict future obser-
vations. ML tries to automate such procedure with algorithms run
on computers. Lastly, DL is a bunch of rebranded ML approaches
involving neural networks, which were popular in 1980’s under the
name connectionism. An even more enlightening name to emphasize
the modern core technologies is differentiable programing.

We are at the third wave of AI. There were two upsurges in 50’s,
and in 80’s. In between, it is the so called AI winter. Part of the
reasons for those winters were that the researchers made overly opti-
mistic promises in their papers, proposals and talks, which failed to
deliver later.

What is really different this time ? We have seen broad industrial
successes of the AI technologies. Advances in the deep learning
quickly get deployed from research papers into products. Training
much larger models are possible now because computers run much
faster and it is much easier to collect training data. Also, thanks to
arXiv, Github, Twitter, Youtube etc, information spread at a much
faster speed. So it is faster to iterate on other people’s success and
trigger interdisciplinary progresses. In sum, the keys behind this re-
cent renaissance are

1. The emphasize of big data,

2. Modern computing hardware and software frameworks,

3. Representation learning.

Why are we learning these as physicists ? It is a game changing
technique. It has changed computer vision, natural language pro-
cessing, and robotics. Eventually, like the steam engine, electricity or

2

information technologies, it will change industry, business, our daily
life, and scientific discovery.

This lecture note tries to bring to you the core ideas and techniques
in deep learning from a physicist’s perspective. We will explain what
are the typical problems in deep learning and how does one solve
them. We shall aim at a principled and unified approach to these top-
ics, and emphasize their connections to quantum many-body compu-
tation.

Please be aware that

1. It is not magic. In fact, any sufficiently analyzed magic is in-
distinguishable from science. ”No one really understands quan-
tum mechanics”, but this does not prevent us making all kinds
of precise predictions about molecules and solids. Similar is
true about AI, with a practical and scientific attitude you will
understand subtle things like “artist style of a painting”, at least
compute and make use of it [3].

2. Physics background helps. With the mind set of a computa-
tional quantum physicist it is relatively easy to grasp deep learn-
ing. Since what you are facing are merely calculus, linear alge-
bra, probability theory, and information theory. Moreover, you
will find that many concepts and approaches in deep learning
have extremely close relation to statistical and quantum physics.

3. Get your hands dirty. Try to understand things by deriving
equations and programing them into computers. Good intu-
itions build on these laborious efforts.

That’s it. Have fun!

3

2
D I S C R I M I N AT I V E L E A R N I N G

One particular class of tasks is to make predictions of properties
of unseen data based on existing observations. You can understand
this as function fitting y = f (x), either for interpolation or for extrap-
olation. Alternatively, in a probabilistic language, the goal is to learn
the conditional probability p(y|x). We call x data, and y label. When
the labels are discrete values, the task is called classification. While
for continuous labels, this is called regression. You can find numerous
approaches for these tasks at scikit-learn. However, the so called “no
free lunch” theorem [4] states that no algorithm is better than any
other if we average the performance over all possible data distribu-
tion. Well..., why should we prefer one approach over another one
? It is because we either explicitly or implicitly have certain prior
knowledge about the typical problems we care about. The “deep
learning” approach we focus on here is successful for natural images
and languages. One reason is that the designed deep neural nets fit
nicely into the symmetry, compositional nature, and correlation of the
physical world. Another reason is a technical one, these deep learn-
ing algorithms run very efficiently on modern specialized hardwares
such GPUs.

In general, there are four key components of the machine learn-
ing applications, data, model, objective function and optimization. With
combination of each component, we will have vast different machine
learning algorithms for different tasks.

2.1 data representation

For discriminative learning we have a dataset D = {(x, y)}, which Data generation
probabilityis a set of tuples of data and labels. Taking a probabilisitic view, one

can think a dataset contains samples of certain probability distribution.
This view is quite natural to those of us who generate training data
using Monte Carlo simulation. For many deep learning applications,
one also assume the data are independent and identically distributed
(i.i.d.) samples from an unknown data generation probability given
by the nature. It is important to be aware of the difference between
having direct access to i.i.d. data or analytical expression of an un-
normalized probability distribution (i.e. Boltzmann weight). This can
lead to very different design choices of the learning algorithms.

4

http://scikit-learn.org/stable/supervised_learning.html#supervised-learning

xN

...

x2

x1 1

wN

w2

w1
b

(a)

x1

x2

...
xN

...

...

(b)

Figure 1: (a) An artificial neuron and (b) an artificial neuron network.

Besides i.i.d, another fundamental requirement is that the data con- Information
completetains the key variation. For example, in the Atari game example by

DeepMind, a single screencast of the video can not tell you the veloc-
ity of the spaceship [5]. While in the phase transition applications, it
is actually fundamentally difficult to tell the phases apart from one
Monte Carlo snapshot instead of an ensemble, especially the system
is at criticality.

Even though the raw data is information complete in principe, we Feature engineering

are free to manually prepare some additional features to help the ma-
chine to learn. In computer vision, people used to manually prepare
features. Even AlphaGo (but not AlphaGo Zero) took human de-
signed features from the board. Similarly, feature design is a key to
the material and chemistry applications of the machine learning. For
most of the material machine learning project, finding the right “de-
scriptor” for learning is an important research topic. For many-body
problems, general feature design based on symmetries of the physi-
cal problem is acceptable. Sometimes it is indeed helpful to build in
the physical symmetries such as spin inversion or translational invari-
ances in the input data or the network structure. However, it would
be even more exciting if the neural network can automatically dis-
cover the emerged symmetry or relevant variables, since the defining
feature of deep learning is to learn the right representation and avoid
manual feature design.

To let computers learn, we should first present the dataset in an Data format

understandable format to them. In the simplest form, we can think a
dataset as a two dimensional array of the size (Batch, Feature), where
each row is a sample, and each column is a feature dimension. Take
an image dataset as an example, each image is reshaped into a row
vector. While for quantum-many body problems, each row can be
a snapshot sampled according to wavefunction, a quantum Monte

5

Carlo configuration etc. The label y can be understood as a single
column vector of the length for regression. While for category labels,
a standard way is to represent them in the one-hot encoding.

2.2 model : artificial neural networks

Connectionists believe that intelligence emerges from connections
of simple building blocks. The biological inspired building block is
called artificial neuron, shown in Fig. 1(a). The neuron multiplies
weights to the input vector and add a bias, and then passes the results
through an activation function. You can think the artificial neuron as
a switch, which activates or not depending on the weighted sum of
the inputs. An artificial neural network consists of many of artificial
neurons connected into a network, see Fig. 1(b). This particular form
of neural network is the also called feedforward neural network since
all the connections has a direction. The data flows from left to the
right, and gives the output from the finial layer. We denote the input
data as x0 = x. It flows through the network and gives rise to x`=1,2,...,
eventually the finial output. The output of a neural network does not
need to be a scalar. Having multiple number of output when dealing
with categorical labels.

A neural network expresses complex multi-variables functions us-
ing nested transformations. It is a universal function approximator
in the sense that even with a single layer of the hidden neurons, it
can approximate any continuous function to arbitrary accuracy by in-
creasing the number of hidden neurons [6, 7]. However, this noncon-
structive mathematical theorem does not tell us how to construct ap-
propriate neural network architecture for particular problem at hand.
It does not tell us how to determine the parameter of a neural network
even with a given structure, either. Based on engineering practices,
people find out that it is more rewarding to increase the depth of the
neural network, hence the name “deep learning”. Surprisingly, in a
trained neural network neurons in the shallow layer care more about
low level features such as edge information, while the neurons in
the deep layers care more about global features such as shape. This
reminds physicists renormalization group flow [8, 9].

Classical texts [10, 11] contain many toy examples which are still en-
lightening today. One can get familiar with artificial neural networks
by analytically working out some toy problems.

Exercise 1 (Parity Problem). Construct a neural network to detect whether
the input bit string contains even or odd number of 1’s. This is the famous
XOR problem if the input length is two.

It is better to zoom out from individual neurons and take a mod-
ular perspective of the neural network. Typically the data flow in a
feedforward neural network alternates between linear affine transfor-
mation and element-wise nonlinear layers. One can see that these are

6

in general two non-commuting operations, and both are necessary
ingredient to model nontrivial functions. Composition of two linear
transformation is still a linear transformation. While element-wise
nonlinear transformation can not extracts correlation between input
variables. Thus, the general pattern of alternating between linear and
nonlinear units also applies to more complicated neutral networks.

Table 1 summarized typical nonlinear activation functions used in
neural networks. Since they have different range of the output, they
are used for different purposes. For example, Linear, ReLU and soft-
plus for regression problems, sigmoid and softmax for classification
problems. We will see that output type ties closely to the cost func-
tions in the probabilistic interpretation.

The basic linear transformation of a vanilla neural network per-
forms an affine transformation to the input data

x`+1
ν = ∑

µ

x`µWµ,ν + bν, (1)

where Wµ,ν and bν are the parameters. Since this layer mixes compo-
nents, it is sometimes called the dense layer. Afterwards, one pass
the output to an element-wise nonlinear transformation, which is de-
noted as the activation function of the neurons.

To be more explicit about the spatial structure of the input data,
image data is represented as four dimensional tensors. For example
(Batch, Channel, Height, Width) in some of the modern deep learn-

Table 1: Popular activation functions. Except Softmax, these functions
apply element-wise to the variables.

Name Function Output range Graph

Sigmoid σ(z) = (1 + e−z)
−1

(0, 1)
-4 -2 2 4

0.2

0.4

0.6

0.8

1.0

Tanh tanh(z) = 2σ(2z)− 1 (−1, 1) -4 -2 2 4

-1.0

-0.5

0.5

1.0

ReLU max(z, 0) [0, ∞)
-4 -2 2 4

1

2

3

4

5

Softplus ln(1 + ez) (0, ∞)
-4 -2 2 4

1

2

3

4

5

ELU

{
α(ez − 1), if z < 0

z, otherwise
(−α, ∞)

-4 -2 2 4

-1

1

2

3

4

5

Softmax ezi / ∑i ezi (0, 1)

7

ing frameworks, where “channel” denotes RGB channels of the input.
For each sample, the convolutional operation performs the following
operation (omitting the batch index)

x`+1
ν,i,j = ∑

µ
∑
m,n

x`µ,i+m,j+nWµ,ν,m,n + bν, (2)

where the parameters are Wµ,ν,m,n and bν. The convolutional kernel
is a four dimensional tensor, which performs the matrix-vector multi-
plication in the channel space µ, ν and computes the cross correlation
in the spatial dimension i, j. The number of learnable parameters of
each convolutional kernel does not scale with the spatial size of the
input. If one requires the summed indices do not exceed the size
of the input, the output of Eq. (2) will have different spatial shape
with the input, which is denoted as “valid” padding. Alternatively,
one can also pad zeros around the original input, such that the spatial
size is the same as the input, which is denoted as the “same” padding.
In fact, for many of the physical applications, one tempts to have a
“periodic” padding. Moreover, one can generalize Eq. (2) so the filter
have different stride and dilation factors.

Exercise 2 (Padding and Kernel Size in ConvNet). (a) Convince your-
self that with 3× 3 convolutional kernel and padding 1 the spatial size of out-
put remains the same. (b) Think about how to implement periodic padding.
(c) Some times people use 1× 1 convolutional kernel, please explain why it
makes sense.

After the convolutional layer, one typically perform downsampling, Typical network
layoutsuch as taking the maximum or average over a spatial region. This op-

eration is denoted as pooling. Pooling is also a linear transformation.
The idea of convolution + pooling is to identify translational invariant
features in the input, then response to these features. Standard neu-
ral network architectures consists many layers of convolutional layer,
pooling layers to extract invariant features, and finally have a few
fully connected layers to perform the classification. With latest ideas
in neural network architecture design such as ResNet [12] and high-
way, one can successfully train neural networks more than hundreds
layers.

Overall, it is important to put the prior knowledge into the neu-
ral network structure. The hierarchical structure of a deep neural
network works since it fits the compositional nature of the world.
Therefore, lower layers extract fine features while deeper layers cares
more about the coarse grained features of the data. Moreover, convo-
lutional neural network respects the translational invariance of most
image data, in which the local receptive field with shared weight scan
through the images and search for appearance of a common feature.

There are three levels of understanding of a neural network. First,
one can view it as a function approximator y = f (x). There is noth-
ing wrong about such understanding, however it will severely limits

8

f`

θ`

f`+1

θ`+1

x` x`+1 x`+2

Figure 2: Layers of a feedforward network. Each layer is a function
x`+1 = f`(θ`, x`).

one’s imagination when it comes to applications. Next, one views
it from a probabilistic perspective. For example, the neural net ex-
presses the conditional probability of the output given the input. Or,
it transforms the probability distribution of the input data and output
data. We will see many of the generative models are doing exactly
this. Finally, one can view the neural network as information pro-
cessing devices. Drawing analogies to the tensor networks and even
quantum circuits can be as fruitful as making connections to neuro-
science. For example, it could be quite instructive to use information
theoretical measures to guide the structure design and learning of the
neural net, like we did for tensor networks.

2.3 cost function

Probabilistic interpretation of the neural network provides a uni-
fied view for designing the cost functions. Imaging the output of the
neural network parametrizes a conditional probability distribution of
the predicted label based on the data. The goal is to minimize the
negative log-likelihood averaged over the training dataset

L = − 1
|D| ∑

(x,y)∈D
ln [pθ(y|x)] . (3)

For example, when dealing with real valued labels we assume the
neural network outputs the mean of a Gaussian distribution pθ(y|x) =
N (y; ŷ(x, θ), 1). The cost function will then be the familiar mean-
squared error (MSE). While for binary classification problem we can
assume the neural network outputs mean of a Bernoulli distribution
pθ(y|x) = [ŷ(x, θ)]y[1− ŷ(x, θ)](1−y). To make sure the output of the
neural network is between 0 and 1 one can use the sigmoid output.
More generally, for categorical output one can use the softmax layer
such that the finial output will be normalized probability.

9

The sum and product rule of probabilities

p(A) = ∑
B

p(A, B), (4)

p(A, B) = p(B|A)p(A), (5)

where p(A, B) is the joint probability, p(B|A) is the conditional
probability of B given A. The Bayes rule reads

p(B|A) =
p(A|B)p(B)

p(A)
, (6)

also known as “Posterior = Likelihood×Prior
Evidence ”.

Info

A standard way to prevent overfitting is to add a regularization
term to the cost function,

L ← L+ λΩ(θ). (7)

For example, the L2 norm of all weights Ω(θ) = ||w||2. The pres-
ence of such regularization term prevents the weight from growing
to large values. In the practical gradient descend update, the L2 norm
regularization leads to decay of the weight, so such regularization is
also called weight decay. Another popular form of regularization is
the L1 norm, which favors sparse solutions.

A principled way to introduce the regularization terms is the Max-
imum a posteriori (MAP) estimation of the Bayesian statistics. We
view the parameter θ also as the stochastic variable to be estimated.
Thus

arg max
θ

p(θ|x, y) = arg max
θ

[ln p(y|x, θ) + ln p(x, θ)] . (8)

One sees that the regularization terms can be understood as the
prior of the parameters.

Info

Another form of the regularization is to include randomness in the Dropout, Data
argumentation,
Transfer learning

training and average over the randomness at testing time. For exam-
ple, the drop out regularization randomly masks out output of some
neurons in the training. This ensures that the neural network can
not count on certain particular neuron output to make the prediction.
In the testing time, all the neurons are used but their outputs are
reweighed with a factor related to the drop out probability. This is

10

similar to taking a vote from an ensemble. A related regularization
approach is data argumentation. You can make small modifications
to the training set (shift, rotation, jittering) to artificially enlarge the
training set. The thing is that label should be unchanged for irrele-
vant perturbations, so the neural network is forced to learn about the
more robust mappings from the pixels to the label. This is particularly
useful when the dataset is small. Finally, generalization via transfer
learning. People train a neural network on a much larger dataset and
take the resulting network and fine tune the last few layers for special
tasks.

2.4 optimization

Finally, given the data, the neural network model and a suitable
cost function, we’d like to learn the model from data by performing
optimization over the cost function. There are many optimization
tricks you can use, random guessing, simulate annealing, evolution
strategies, or whatever you can think of. A particular powerful algo-
rithms is using the gradient information of the loss with respect to
the network parameters.

2.4.1 Back Propagation

A key algorithm component of the deep neural network is the back BackProp is neither
symbolic
differentiation nor
numerical finite
difference
differentiation

propagation algorithm, which computes the gradient of the neural
network output w.r.t. its parameters in an efficient way. This is the
core algorithm run under the hood of many successful industrial ap-
plications. The idea is simply to apply the chain rule iteratively. A
modular and graphical representation called computation graph is
useful for dealing with increasingly complex modern neural network
structures. You can think the computation graph as “Feynman dia-
grams” for deep learning. Another analogy, graphical notations are
used extensively for visualizing contractions and quantum entangle-
ment in tensor networks. When using neural nets to study physics,
one should ask similar questions: what are the meaning of all these
connections ?

As shown in Fig. 2, we would like to compute the gradient of
the loss function with respect to the neural network parameters ef-
ficiently

∂L
∂θ`

=
∂L

∂x`+1
∂x`+1

∂θ`
= δ`+1 ∂x`+1

∂θ`
(9)

δ` =
∂L
∂x`

=
∂L

∂x`+1
∂x`+1

∂x`
= δ`+1 ∂x`+1

∂x`
(10)

Equation (10) is the key of the back propagation algorithm, in which Back Propagation is
nothing but ”reverse
mode automatic
differentiation”
applied to neural
network. See [13] for
survey of automatic
differentiation
techniques applied to
machine learning.

it connects the gradient of the loss with respect to the output of each

11

layer. In practice, we compute the l.h.s. using information on the
r.h.s., hence the name “back” propagation. Note that ∂x`+1

∂x` is the
Jacobian matrix of each layer of the size (output, input). One sees
that back propagation involves iterative matrix-vector multiplications
(which become matrix-matrix multiplications if you consider batch
dimension). One should already be caution with the possible numer- Jacobian-Vector

multiplication is a
recurring pattern in
automatic
differentiation.
Think twice before
actually allocating
space for the
Jacobian matrix. Do
you really need itself
?

ical issue such as vanishing or exploding gradient. The Jacobian of
element-wise layer is a diagonal matrix.

The steps of the back propagation algorithm is summarized in Al-
gorithm 1. In two passes one evaluate the gradient with respect all
parameters up to the machine precision. This scaling of computa-
tional cost is linear with respect to the number of parameters of the
neural network. And the memory cost is linear with respect to the
depth of the network since in the forward pass one caches intermedi-
ate results for efficient calculation of the Jacobian-Vector product in
the backward pass.

One can trade between computational and memory cost by saving
intermediate results less frequently. This is called “checkpoint”. And
for reversible network one can reduce the memory cost more aggres-
sively to be independent of the network depth [14, 15].

Algorithm 1 Computing gradient of the loss function with respect
to the neural network parameters using back propagation.

Require: Loss function for the input data x
Require: Neural network with parameters θ`

Ensure: ∂L
∂θ`

for ` = 0, . . . , L− 1
x`=0 = x
for ` = 0, · · · , L− 1 do . Feedforward pass

x`+1 = f`(x`, θ`)

end for
Compute δL = ∂L

∂xL for the last layer
for ` = L− 1, · · · , 0 do . Backward pass

Evaluate ∂L
∂θ`

= δ`+1 ∂x`+1

∂θ`
. Eq. (9)

Evaluate δ` = δ`+1 ∂x`+1

∂x` . Eq. (10)
end for

Exercise 3 (Gradient of input data). In Algorithm 1 where do you get
the gradient of the loss with respect to the input data ? It is a useful quantity
for adversarial training [16], deep dream [17] and style transfer [3].

12

A dense layer consists of a affined transformation followed by an
elementweise nonlinearity. We can view them as two sequential
layers

x`+1
ν = x`µWµν + bν, (11)

x`+2
ν = σ(x`+1

ν). (12)

We can back propagate the gradient information using Jacobian
of each layer

δ`µ = δ`+1
ν Wµν, (13)

δ`+1
ν = δ`+2

ν σ′(x`+1
ν), (14)

where Eq. (14) involves elementwise multiplication of vectors, also
known as the Hadamard product. And the gradient with respect
to the parameters are

∂L
∂Wµν

= δ`+1
ν x`µ, (15)

∂L
∂bν

= δ`+1
ν , (16)

where Eq. (15) involves outer product of vectors.

Example

Each unit of the back propagation can be understood in a modular BackProp is modular

way. When transverse through the network graph, each module only
takes care of the Jacobian-Vector product locally, and later we can
back propagate the gradient information. Note one can control the
fine grained resolution when define each module. Each block can
be an elementary math function, a layer, or even a neural network
itself. Developing a modular thinking greatly helps when one builds
up more complicated projects.

2.4.2 Gradient Descend

After evaluation of the gradient, one can perform the gradient de-
cent update of the parameters

θ = θ− η
∂L
∂θ

, (17)

where η > 0 is the so called learning rate. Notice that in the Eq. (3)
there is a summation over the training set, which can be as large as
million for large dataset. Faithfully going through the whole dataset
for an evaluation of the gradient can be time consuming. One can

13

stochastically draw a “mini-batch” of samples from the dataset to
estimate the gradient. Sampling the gradient introduced noises in
the optimization, which is not necessarily a bad idea since fluctua-
tion may bring us out of local minimum. In the extreme case where
one estimates the gradient use only one sample, it is called stochastic
gradient descend (SGD). However, this way of computing is very un-
friendly to modern computing hardware (caching and vectorization),
so typically one still uses a bit larger batch size (say 64) to speed up
the calculation. A typical flowchart of training is summarized in Al-
gorithm 2. One random shuffles the training dataset, and updates the
parameters on many mini-batches. It is called one epoch after one has
gone through the whole dataset on average. Typically training of a
deep neural network can take thousands of epochs.

Algorithm 2 Train a neural network using SGD.

Require: Training dataset T = {(x, y)}
Require: A loss function
Ensure: Neural network parameters θ

while stop criterion not met do
for b = 0, 1, . . . , |T |/|D| − 1 do

Sample a minibatch of training data D
Evaluate gradient of the loss using Backprop . Eq. (3)
Update θ . Eq. (17)

end for
end while

Over years, machine learning practitioners have developed more so- Beyond SGD

phisticated optimization schemes than SGD. Some concepts are worth
knowing besides using them as black box optimizers. Momentum
means that we keep mix some of the gradient of last step. This will
keep the parameter moving when the gradient is small. While if the
cost function surface has a narrow valley, this will damp the oscilla-
tion perpendicular to the steepest direction [18]

v = αv− ∂L
∂θ

, (18)

θ = θ+ v. (19)

Adaptive learning rate means that one uses different learning rate for
various parameters at different learning stages, including RMPprop,
Adagrad, Adam etc. These optimizers are all first order method so
they scale to billions of network parameters. Moreover, it is even pos-
sible to use the information of second order gradient. For example,
L-BFGS algorithm is suitable if you can afford to use the whole batch
to evaluate the gradient since the method is more sensitive to the
sampling noise.

A typical difficulty with training deep neural nets is the gradient Unsupervised
pretraining

14

vanishing/exploding problem. Finding a good initial values of the
network parameters can somehow alleviate such problem. Histori-
cally, people used unsupervised feature learning to support super-
vised learning by providing initial weights. Now, with progresses in
activations functions (ReLU) and network architecture (BatchNorm [19],
ResNet [12]), pure gradient based optimization is unimaginably suc-
cessful and unsupervised pretraining became unnecessary (or, un-
fashionable) in training deep neural network.

Having said so much about optimization, it is important to em- Learning is NOT
optimizationphasize a crucial point in neural network training: it is not at all an

optimization problem. In fact our goal is NOT to obtain the global
minimum of the loss function Eq. (3). Since the loss function is just
a surrogate function evaluated on the finite training data. Achieving
the global minimum of the surrogate does not mean that the model
will generalize well. Since our ultimate goal is to make the predic-
tions on unseen data, we can divide the dataset into training, vali-
dation and test sets. We optimize the neural net using the gradient
information computed on the training dataset and monitor the loss
on the validation data. Typically, at certain point the loss function
computed on the validation dataset will increase, although it is still
decreasing on the training data. We should stop the training at this
point to prevent overfitting, which is called early stoping. Moreover,
one can tune the so called hyperparameters (e.g. batch size, learning
rate etc) based on the performance on the validation set. Finally, one
can report the actual performance on the test set, which is used only
once at the very end.

One key problem in training the neural network is what should
one do if the performance is not good. If the neural network over-
fits, one can try to increase the regularization, for example, increase
data size or perform data argumentation, increase the regularization
strength or using drop out. Or one can decrease the model complex-
ity. While if the model underfits, beside making sure that the training
data is indeed representative and following i.i.d, one should increase
the model complexity. However, this does not always guarantee bet-
ter performance as the optimization might be the problem. In this
case, one can tune the hyperparameters in the optimization, or use
better optimization methods and better initialization. Overall, when
the model has the right inductive bias one can alleviate the burden of
the optimization. So, overall, designing better network architecture is
more important than parameter turning.

2.5 understanding , visualization and applications be-
yond classification

There are strong motivation of visualizing and understanding what Visualize weights,
features, activationsis going on in deep neural networks. For that, one can visualize

15

the weight of the filter, thus to know what are the features they are
looking for. Or, one can view the output from the layer before the
classifier as features, and feed all images into the neural network and
search for nearest neighbors or perform dimensionality reduction on
these features for understanding. Or, one can do gradient ascent
to generate a synthetic image that maximally activates a neuron by
performing Backprop. Therefore one knows what are the features
that the particular neuron is looking for in the original image [20].

The neural networks can actually acquire generative ability even Neural arts

though they are trained for pattern recognition. A well trained deep
neural network is a great resources for creative tasks. For example,
one can have some fun with neural arts. Deep dream amplifies exist-
ing features in the image [17]. Neural style transfer = Texture synthe-
sis (style) + Feature reconstruction (content) [3].

Finally, we have mentioned that smaller perturbation should not Adversarial samples

change the label when doing the data argumentation. However, this
is not always true. One can create “adversarial samples” by delib-
erately making small updates to the image to confuse the neural
net [16]. Although some of these adversarial samples looks identi-
cal to human, the neural nets can make wrong predictions. Existence
of adversarial samples have at least two implications: 1. researches
on AI safety; 2. there are crucial differences in the neural nets and
human brain. Some physicists interpret adversarial attacks as finding
the softest mode in a Stat-Mech system.

16

3

G E N E R AT I V E M O D E L I N G

3.1 unsupervised probabilistic modeling

The previous chapter on discriminative learning deals with predic-
tions, i.e. finding out the function mapping y = f (x) or modeling the
conditional probability p(y|x). These techniques are hugely success-
ful in industrial applications. However, as can be seen from the dis-
cussions, they are far from being intelligent. Feynman has a famous
quote “what I can not create, I do not understand”. Indeed, having
the ability to create new instances is a good indication of deeper un-
derstanding and higher level of intelligence. Generative modeling is
the forefront of deep learning research [21].

Generative modeling aims to learn about the joint probability distri-
bution of the data and label p(x, y). With a generative model at hand,
one can support the discriminative task through the Bayes formula
p(y|x) = p(x, y)/p(x), where p(x) = ∑y p(x, y). Moreover, one can
generate new samples conditioned on its label p(x|y) = p(x, y)/p(y).
The generative models are also useful to support semi-supervised
learning and reinforcement learning.

To wrap up, the goal of generative modeling is to represent, learn
and sample from such high dimensional probability distributions. In
the following, we will focus on learning p(x). So the dataset would
be a set of unlabelled data D = {x}. Learning joint probability distri-
bution is similar.

First, let us review a key concept in the information theory, the
Kullback-Leibler (KL) divergence

KL(π||p) = ∑
x

π(x) ln
[

π(x)
p(x)

]
, (20)

which measures the distance between two probability distributions.
We have KL ≥ 0 due to the Jensen inequality. The equality is achieved
only when the two distributions are identity. The KL-divergence
is not symmetric with respect to its arguments. KL(π||p) places
high probability in p anywhere the data probability π is high, while
KL(p||π) places low probability where the data probability π is
low [22].

17

The Jensen inequality [23] states that for convex ^ functions f

〈 f (x)〉 ≥ f (〈x〉). (21)

Examples of convex ^ functions f (x) = x2, ex, e−x,− ln x, x ln x.

Info

Introducing Shannon entropy H(π) = −∑x π(x) ln π(x) and cross-
entropy H(π, p) = −∑x π(x) ln p(x), one sees that KL(π||p) =

H(π, p) −H(π). Minimization of the KL-divergence is then equiv-
alent to minimization of the cross-entropy since only it depends on
the to-be-optimized parameters. In typical DL applications one only
has i.i.d. samples from the target probability distribution π(x), so one
replaces it with the empirical estimation π(x) = 1

|D| ∑x′∈D δ(x− x′).
The cross entropy then turns out to be the negative log-likelihood
(NLL) we met in the last chapter

L = − 1
|D| ∑

x∈D
ln[pθ(x)]. (22)

Minimizing the NLL is a prominent (but not the only) way to train Idea 1: use a neural
net to represent
p(x), but how to
normalize ? how to
sample ? Idea 2: use
a neural net to
transform simple
prior z to complex
data x, but what is
the likelihood ? How
to actually learn ?

generative models, also known as Maximum Likelihood Estimation
(MLE). The Eq. (22) appears to be a minor change compared to the
discriminative task Eq. (3). However it causes huge challenges to
change the conditional probability to probability function in the cost
function. How to represent and learn such high dimensional proba-
bility distributions with the intractable normalization factor ? How
could we marginalize and sample from such high dimensional proba-
bility distributions ? We will see that physicists have a lot to say about
these problems since they love high dimensional probability, Monte
Carlo methods and mean-field approaches. In fact, generative mod-
eling has close relation to many problems in statistical and quantum
physics, such as inverse statistical problems, modeling a quantum
state and quantum state tomography.

Exercise 4 (Positivity of NLL). Show that the NLL is positive for proba-
bility distributions of discrete variables. What about probability densities of
continuous variables ?

3.2 generative model zoo

This section we review several representative generative models.
The key idea is to impose certain structural prior in the probability
distribution. Each model has its own strengths and weakness. Ex-
ploring new approaches or combining the existing ones is an active
research field in deep learning, with some ideas coming from physics.

18

3.2.1 Boltzmann Machines

As a prominent statistical physics inspired approach, the Boltz-
mann Machines (BM) model the probability as a Boltzmann distri-
bution

p(x) =
e−E(x)

Z , (23)

where E(x) is an energy function and Z , the partition function, is a
normalization factor. The task of probabilistic modeling is then trans-
lated into designing and learning of the energy function to model ob-
served data. For binary data, this is identical to the so called inverse
Ising problem. Exploiting the maximum log-likelihood estimation,
the gradient of Eq. (22) is

∂L
∂θ

=

〈
∂E(x)

∂θ

〉
x∼D
−
〈

∂E(x)
∂θ

〉
x∼p(x)

. (24)

The two terms are called positive and negative phase respectively.
Intuitively, the positive phase tries to push down the energy of the
observed data, therefore increases the model probability on the ob-
served data. While the negative phase tries to push up the energy on
samples drawn from the model, therefore to make the model proba-
bility more evenly distributed.

Consider a concrete example of the energy model E = − 1
2Wijxixj,

the gradient Eq. (24) can be simply evaluated. And the gradient
descent update Eq. (17)

Wij = Wij + η
(
〈xixj〉x∼D − 〈xixj〉x∼p(x)

)
. (25)

The physical meaning of such update is quite appealing: one com-
pares the correlation on the dataset and on the model, then strengthen
or weaken the coupling accordingly.

Example

The positive phase are quite straightforward to estimate by simply
sampling batches from the dataset. While the negative phase typically
involves the Markov chain Monte Carlo (MCMC) sampling. It can be
very expensive to thermalize the Markov chain at each gradient eval-
uation step. The contrastive divergence (CD) algorithm [24] initialize
the chain with a sample draw from the dataset and run the Markov
chain only k steps. The reasoning is that if the BM has learned the
probability well, then the model probability p(x) resembles the one
of the dataset anyway. Furthermore, the persistent CD [25] algorithm
use the sample from last step to initialize the Monte Carlo chain. The

19

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15

(a) RBM

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

h6 h7 h8 h9 h10

h11 h12 h13 h14 h15

(b) DBM

Figure 3: RBM and DBM with the same number of neurons and con-
nections. Information theoretical consideration shows that
the DBM can potentially capture patterns that are impossi-
ble for the RBM [26].

logic being that in the gradient descent update to the model is small
anyway, so accumulation of the Monte Carlo samples helps mixing.
In practice, one run a batch of the Monte Carlo chain in parallel to
estimate the expected value of the negative phase.

Exercise 5 (Mind the Gradient). Define ∆ = 〈E(x)〉x∼D−〈E(x)〉x∼p(x).
How is its gradient with respect to θ related to Eq. (24) ?

To increase the representational power of the model, one can intro-
duce hidden variables in the energy function and marginalize them
to obtain the model probability distribution

p(x) =
1
Z ∑

h
e−E(x,h). (26)

This is equivalent to say that E(x) = − ln ∑h e−E(x,h) in Eq. (23), which
can be quite complex even for simple joint energy function E(x, h).
Differentiating the equation, we have

∂E(x)
∂θ

=
∑h e−E(x,h) ∂E(x,h)

∂θ

∑h e−E(x,h)
= ∑

h
p(h|x)∂E(x, h)

∂θ
, (27)

Therefore, in the presence of the hidden variables the gradient in
Eq. (24) becomes

∂L
∂θ

=

〈
∂E(x, h)

∂θ

〉
x∼D,h∼p(h|x)

−
〈

∂E(x, h)
∂θ

〉
(x,h)∼p(x,h)

, (28)

which remains simple and elegant. However, the downside of in-
troducing the hidden variables is that one needs even to perform
expensive MCMC for the positive phase. An alternative approach is
to use the mean-field approximation to evaluate these expectations
approximately.

The restricted Boltzmann Machine (RBM) aims to have a balanced
expressibility and learnability. The energy function reads

E(x, h) = −∑
i

aixi −∑
j

bjhj −∑
i,j

xiWijhj. (29)

20

Since the RBM is defined on a bipartite graph shown in Fig. 3(a),
its conditional probability distribution factorizes p(h|x) = ∏j p(hj|x)
and p(x|h) = ∏i p(xi|h), where

p(hj = 1|x) = σ

(
∑

i
xiWij + bj

)
, (30)

p(xi = 1|h) = σ

(
∑

j
Wijhj + ai

)
. (31)

This means that given the visible units we can directly sample the Despite of appealing
theory and historic
importance, BM is
now out of fashion
in industrial
applications due to
limitations in its
learning and
sampling efficiency.

hidden units in parallel, vice versa. Sampling back and force between
the visible and hidden units is called block Gibbs sampling. Such
sampling approach appears to be efficient, but it is not. The visible
and hidden features tend to lock to each other for many steps in the
sampling. In the end, the block Gibbs sampling is still a form of
MCMC which in general suffers from long autecorrelation time and
transition between modes.

For an RBM, one can actually trace out the hidden units in the
Eq. (23) analytically and obtain

E(x) = −∑
i

aixi −∑
j

ln(1 + e∑i xiWij+bj). (32)

This can be viewed as a Boltzmann Machine with fully visible units
whose energy function has a softplus interaction. Using Eq. (24)
and Eq. (32) one can directly obtain

−∂L
∂ai

= 〈xi〉x∼D − 〈xi〉x∼p(x) , (33)

−∂L
∂bj

=
〈

p(hj = 1|x)
〉

x∼D −
〈

p(hj = 1|x)
〉

x∼p(x) , (34)

− ∂L
∂Wij

=
〈

xi p(hj = 1|x)
〉

x∼D −
〈

xi p(hj = 1|x)
〉

x∼p(x) . (35)

On see that the gradient information is related to the difference
between correlations computed on the dataset and the model.

Info

Exercise 6 (Improved Estimators). To reconcile Eq. (28) and Eqs. (33-35),
please convince yourself that

〈
xi p(hj = 1|x)

〉
x∼D =

〈
xihj

〉
x∼D,h∼p(h|x)

and
〈

xi p(hj = 1|x)
〉

x∼p(x) =
〈

xihj
〉
(x,h)∼p(x,h). The formal are improved

estimators with reduced variances. In statistics this is known as the Rao-
Blackwellization trick. Whenever you can perform marginalization analyti-
cally in a Monte Carlo calculation, please do it.

21

Although in principle the RBM can represent any probability distri-
bution given sufficiently large number of hidden neurons, the require-
ment can be exponential. To further increase the representational ef-
ficiency, one introduces the deep Boltzmann Machine (DBM) which
has more than one layers of hidden neurons, see Fig. 3(b). Under in-
formation theoretical considerations, one can indeed show there are
certain data which is impossible to represent using an RBM, but can
possibly be represented by the DBM with the same number of hid-
den neurons and connections [26]. However, the downside of DBMs
is that they are even harder to train and sample due the interactions
among the hidden units [27].

3.2.2 Autoregressive Models

Arguably the simplest probabilistic model is the autoregressive
models. They belong to the fully visible Bayes network. Basically, they
breaks the full probability function into products of conditional prob-
abilities, e.g.,

p(x) = ∏
i

p(xi|x<i). (36)

One can parameterize and learn the conditional probabilities using
neural networks. In practice, one can model all these conditional
probabilities using a single neural network, either a recurrent neural
network with variable length, or using a feedforward neural network
with masks. Note that these neural networks do not directly out-
put the sample xi, but the parameters of the conditional probability.
For example, for continuous variables we can demand p(xi|x<i) =

N (xi; µi, σ2
i), where the mean and variance are functions of x<i. The

log-likelihood of a given data is easily computed as

ln p(x) = −1
2 ∑

i

((
xi − µi

σi

)2

+ ln(2πσi)

)
. (37)

To sample from the autoregressive model, we can sample ε ∼ N (ε; 0, 1)
and iterate the update rule

xi = σi(x<i)εi + µi(x<i). (38)

A slightly awkward but very enlightening way to compute the log-
likelihood of the autoregressive model is to treat Eq. (38) as an
invertible mapping between x and ε, and invoke the probability
transformation

ln p(x) = lnN (ε; 0, 1)− ln
∣∣∣∣det

(
∂x
∂ε

)∣∣∣∣ . (39)

Info

22

Notice that Jacobian matrix is triangular, whose determinant can
be easily computed to be Eq. (37). Generalizing this idea to more
complex bijective transformations bring us to a general class of
generative models called Normalizing Flow [28–36]. In particular,
a stack of autoregressive transformations is called autoregressive
flow (AF).

Despite their simplicity, autoregressive networks have achieved state
of the art performances in computer vision (PixelCNN and Pixel-
RNN [33]) and speech synthesis (WaveNet [34]). The downside of
autoregressive models is that one has to impose an order of the con-
ditional dependence which may not correspond to the global hier-
archical structure of the data. Moreover, sequential sampling of the
autoregressive model such as Eq. (38) is considered to be slow since
they can not take advantage of modern hardware. Nevertheless, the
generative process Eq. (38) is direct sampling, which is much more
efficient compared to the Gibbs sampling of Boltzmann Machines.

The inverse autoregressive flow (IAF) [32] changes the transforma-
tion Eq. (38) to be

xi = σi(ε<i)εi + µi(ε<i), (40)

so that one can generate the data in parallel. The log-likelihood of
the generated data also follows Eq. (37). However, the downside
of the IAF is that it can not efficiently compute the likelihood of an
arbitrary given data which is not generated by itself. Thus, IAF is
not suitable for density estimation. IAF was originally introduced
to improve the encoder of the VAE [32]. Recently, DeepMind use
an IAF (parallel WaveNet) [37] to learn the probability density of
an autoregressive flow (WaveNet) [34], thus to improve the speech
synthesis speed to meet the needs in real-world applications [38].
To train the parallel WaveNet, they minimize the Probability Density
Distillation loss KL(pIAF||pAF) [37] since it is easy to draw sample
from IAF, and easy to compute likelihood of AF on given data.

Info

3.2.3 Normalizing Flow

Normalizing flow is a family of bijective and differentiable (i.e.,
diffeomorphism) neural networks which maps between two contin-
uous variables z and x of the same dimension. The idea is that the

23

physical variables can have more complex realistic probability density
compared to the latent variables [28–36]

ln p(x) = ln p(z)− ln
∣∣∣∣det

(
∂x
∂z

)∣∣∣∣ . (41)

Since diffeomorphism forms a group, the transformation is compo-
sitional x = g(z) = · · · ◦ g2 ◦ g1(z), where each step is a diffeomor-
phism. And the log-Jacobian determinant in Eq. (41) is computed as
ln
∣∣∣det

(
∂x
∂z

)∣∣∣ = ∑i ln
∣∣∣det

(
∂gi+1

∂gi

)∣∣∣. To compute the log-likelihood of

a given data, one first infer z = g−1(x) and keep track of the log-
Jacobian determinant in each step.

The abstraction of a diffeomorphism neural network is called a bi- Bijectors are
modularjector [39, 40]. Each bijector should provide interface to compute for-

ward, inverse and log-Jacobian determinant in an efficient way. The
bijectors can be assembled in a modular fashion to perform complex
probability transformation. Because of their flexibility, they can act as
drop in components of other generative models.

As an example of Eq. (41), consider the famous Box-Muller trans-
formation which maps a pair of uniform random variables z to
Gaussian random variables x{

x1 =
√
−2 ln z1 cos(2πz2),

x2 =
√
−2 ln z1 sin(2πz2).

(42)

Since
∣∣∣det

(
∂x
∂z

)∣∣∣ =
∣∣∣∣∣∣det

 − cos(2πz2)

z1
√
−2π ln z1

−2π
√
−2 ln z1 sin(2πz2)

− sin(2πz2)

z1
√
−2π ln z1

2π
√
−2 ln z1 cos(2πz2)

∣∣∣∣∣∣ =
2π
z1

, we confirm that p(x) = p(z)
/ ∣∣∣det

(
∂x
∂z

)∣∣∣ = 1
2π exp

(
− 1

2 (x2
1 + x2

2)
)
.

Normalization flows are generalizations of this trick to higher di-
mensional spaces while still keepping the Jacobian determinants
easy to compute.

Example

We take the real-valued non-volume preserving transformation (Real
NVP) [31] as an example of the normalizing flow. For each layer of the
Real NVP network, we divide multi-dimensional variables x` into two
subgroups x` = x`< ∪ x`> and transform one subgroup conditioned on
the other group at each step{

x`< = x`<
x`> = x`> � es`(x`<) + t`(x`<)

(43)

where s`(·) and t`(·) are two arbitrary functions (with correct in-
put/output dimension) which we parametrize using neural networks.

24

It is clear that this transformation is easy to invert by reversing the
scaling and translation operations. Moreover, the Jacobian determi-
nant of the transformation is also easy to compute since the matrix
is triangular. By applying a chain of these elementary transforma-
tions to various bipartitions one can transform in between a simple
prior density and a complex target density. The Real NVP network
can be trained with standard maximum likelihood estimation on data.
After training, one can generate new samples directly by sampling la-
tent variables according to the prior probability density and passing
them through the network. Moreover, one can perform inference by
passing the data backward through the network and obtain the latent
variables. The log-probability of the data is efficiently computed as

ln p(x) = ln p(z)−∑
`,i
(s`)i, (44)

where the summation over index i is for each component of the out-
put of the s function.

3.2.4 Variational Autoencoders

Variational autoencoder (VAE) is an elegant framework for per- One of the creators
of VAE, Max
Welling, did his PhD
on gravity theory
under the
supervision of ’t
Hooft in late 90s.

forming variational inference [41], which also has deep connection
variational mean field approaches in statistical physics. In fact, the
predecessor of VAE is called Helmholtz machines [42]. The general
idea of an autoencoder is to let the input data go through a network
with bottleneck and restore itself. After training, the first half of the
network is an encoder which transform the data x into the latent
space z . And the second half of the network is a decoder which trans-
form latent variables into the data manifold. The bottleneck means
that we typically require that the latent space has lower dimension or
simpler probability distribution than the original data.

Suppose the latent variables p(z) follow a simple prior distribution, Intractable posterior

such as an independent Gaussian. The decoder is parameterized by a
neural network which gives the conditional probability p(x|z). Thus,
the joint probability distribution of the visible and latent variables is
also known p(x, z) = p(x|z)p(z). However, the encoder probability
given by the posterior p(z|x) = p(x, z)/p(x) is much more difficult to
evaluate since normalization factor p(x) is intractable. One needs to
marginalize the latent variables z in the joint probability distribution
p(x) =

∫
p(x, z)dz.

The intractable integration over the latent variables also prevent us
minimizing the NLL on the dataset. To deal with such problem, we
employ variational mean-field approach in statistical physics.

25

Consider in the statistical physics where π(z) = e−E(z)/Z and
Z = ∑z e−E(z). In Stat-Mech we try to minimize the free energy
− lnZ , which is unfortunately intractable in general. To proceed,
we define a variational free energy

L = ∑
z

q(z) ln
[

q(z)
e−E(z)

]
= 〈E(z) + ln q(z)〉z∼q(z) (45)

for a normalized variational probability distribution q(z). The two
terms have the physical meaning of “energy” and “entropy” re-
spectively. Crucially, since

L+ lnZ = KL(q||π) ≥ 0, (46)

thus Eq. (45) is a variational upper bound of the physical free en-
ergy, − lnZ . The approximation becomes exact when the varia-
tional distribution approaches to the target probability. Equation
(46) is known as Gibbs-Bogoliubov-Feynman inequality in physics.

Info

In analogy to variational free energy calculation in statistical physics,
we have variational Bayes methods. For each data we introduce

L(x) = 〈− ln p(x, z) + ln q(z|x)〉z∼q(z|x), (47)

which is a variational upper bound of− ln p(x) since L(x)+ ln p(x) = This breakup is also
the foundation of the
Expectation-
Maximization
algorithm, where one
iterates alternatively
between optimizing
the variational
posterior (E) and the
parameters (M) to
learn models with
latent variables [43].

KL(q(z|x)||p(z|x)) ≥ 0. We see that q(z|x) provides a variational ap-
proximation of the posterior p(z|x). By minimizing L one effectively
pushes the two distributions together. And the variational free en-
ergy becomes exact only when q(z|x) matches to p(z|x). In fact, −L
is called evidence lower bound (ELBO) in variational inference.

We can obtain an alternative form of the variational free energy

Lθ,φ(x) = − 〈ln pθ(x|z)〉z∼qφ(z|x) + KL(qφ(z|x)||p(z)). (48)

The first term of Eq. (48) is the reconstruction negative log-likelihood,
while the second term is the KL divergence between the approximate
posterior distribution and the latent prior. We also be explicit about
the network parameters θ, φ of the encoder and decoder.

The decoder neural network pθ(x|z) accepts the latent vector z and
outputs the parametrization of the conditional probability. It can be

ln pθ(x|z) = ∑
i

xi ln x̂i + (1− xi) ln(1− x̂i), (49)

x̂ = DecoderNeuralNetθ(z), (50)

for binary data. And

ln pθ(x|z) = lnN (x; µ, σ21), (51)

(µ, σ) = DecoderNeuralNetθ(z), (52)

26

for continuous data. Gradient of Eq. (48) with respect to θ only de-
pends on the first term.

Similarly, the encoder qφ(z|x) is also parametrized as a neural net-
work. To optimize φ we need to compute the gradient with respect
to the sampling process, which we invoke the reparametrization trick.
To generate sample z ∼ qφ(z|x) we first sample from an independent
random source, say ε ∼ N (ε; 0, 1) and pass it through an invertible
and differentiable transformation z = gφ(x, ε). The probability distri-
bution of the encoder is related to the one of the random source by

ln qφ(z|x) = lnN (ε; 0, 1)− ln
∣∣∣∣det

(
∂gφ(x, ε)

∂ε

)∣∣∣∣ . (53)

Suppose that the log-determinant is easy to compute so we can sam-
ple the latent vector z given the visible variable x and an independent
random source ε. Now that the gradient can easily pass through the
sampling process

∇φ 〈 f (x, z)〉z∼qφ(z|x) = 〈∇φ f (x, gφ(x, ε))〉
ε∼N (ε;0,1) . (54)

As an alternate, the REINFORCE [44] (score function) estimator of
the gradient reads

∇φ 〈 f (x, z)〉z∼qφ(z|x) =
〈

f (x, z)∇φ ln qφ(z|x)
〉

z∼qφ(z|x) . (55)

Compared to the reparametrization Eq. (54) REINFORCE usually
has larger variance because it only uses the scalar function ln qφ(z|x)
instead of the vector information of the gradient ∇φ f (x, z). An ad-
vantage of REINFORCE is that it can also work with discrete latent
variables. See Ref. [45] for the research frontier for low variance
unbiased gradient estimation for discrete latent variables.

Info

Suppose each component of the latent vector follows independent
Gaussian whose mean and variance are determined by the data x, we
have

ln qφ(z|x) = lnN (z; µ, σ21), (56)

(µ, σ) = EncoderNeuralNetφ(x). (57)

And the way to sample the latent variable is

ε ∼ N (ε; 0, 1), (58)

z = µ + σ � ε. (59)

The KL term in Eq. (48) can be evaluated analytically [41] in this case.

27

After training of the VAE, we obtain an encoder q(z|x) and a de-
coder p(x|z). The encoder performs dimensionality reduction from
the physical space into the latent space. Very often, different dimen-
sions in the latent space acquire semantic meaning. By perform arith-
metic operations in the latent space one can interpolate between phys-
ical data. Optimization of chemical properties can also be done in the
low dimensional continuous latent space. The decoder is a generative
model, which maps latent variable into the physical variable with rich
distribution.

The marginal NLL of the VAE can be estimated using importance
sampling

− ln p(x) = − ln
〈

p(x, z)
q(z|x)

〉
z∼q(z|x)

. (60)

By using the Jensen’s inequality (21) one can also see that the vari-
ational free energy Eq. (47) is an upper bound of Eq. (60).

Info

3.2.5 Tensor Networks

A new addition to the family of generative models is the tensor
network state. In a quantum inspired approach one models the prob-
ability as the wavefunction square

p(x) =
|Ψ(x)|2
Z , (61)

where Z is the normalization factor. This representation, named
as Born Machine [46], transforms many approaches of representing
quantum state into machine learning. Consider binary data, we can
represent wavefunction using the matrix product state (MPS) [47]

Ψ(x) = Tr

(
∏

i
Ai[xi]

)
. (62)

The size of each matrix is called the bond dimension of the MPS rep-
resentation. They control the expressibility of the MPS parameteriza-
tion. The MPS can be learned using maximum likelihood estimation
as before. Although other loss functions such as fidelity of quantum
states can also be considered [48, 49].

An advantage of using MPS for generative modeling is that one Adaptive learning

can adopt algorithms developed for quantum many-body states such
as the DMRG for parameter learning. For example, one can perform
“two-site” optimization by merging two adjacent matrices together
and optimizing its tensor elements. After the optimization the rank
of the two site tensor may grow, one can thus dynamically adjust the

28

bond dimension of the MPS representation during learning. As a
consequence, the expressibility of the model grows as it observes the
data, which is different from conventional generative models with
fixed network with fixed number of parameters.

Another advantage of MPS as a generative model is that the gradi- Efficient gradient

ent of the NLL (22) can be computed efficiently

∂L
∂θ

= −2
〈

∂ ln Ψ(x)
∂θ

〉
x∼D

+ 2
〈

∂ ln Ψ(x)
∂θ

〉
x∼p(x)

. (63)

Note that the negative phase (second term) can also be written as
Z′/Z, where Z′ = 2 ∑x Ψ′(x)Ψ(x) and the prime means derivatives
with respect to the network parameter θ. Crucially, for MPS both Z′

and Z can be evaluated efficiently via tensor contractions. So the gra-
dient can be computed efficiently without resorting to the contrastive
divergence, in contrast to the Boltzmann Machines (24). The NLL is
also tractable so that MPS model knows the normalized density of
each sample.

Finally, tractable normalization factor of MPS allows one to per- Direct sampling

form direct sampling instead of using MCMC used in the Boltzmann
Machines. While compared to the autoregressive models, one can
perform data restoration by removing any part of the data. This is be-
cause tensor networks expresses an undirected (instead of directed)
probability dependence fo the data.

These aforementioned advantages apply as well to other unitary
tensor networks such as the tree tensor network and MERA. It is
yet to been seen whether one can unlock the potential of tensor net-
works for real world AI applications. Using Eq. (61) and associated
quantum-inspired approaches (or even a quantum device) provide a
great chance to model complex probabilities. While on a more concep-
tual level, one wish to have have more quantitative and interpretable
approaches inspired by quantum physics research. For example, Born
Machine may give us more principled structure designing and learn-
ing strategies for modeling complex dataset, and provide a novel the-
oretical understandings of the expressibility of generative models the
quantum information perspective.

3.2.6 Generative Adversarial Networks

Different from the generative models introduced till now, the Gen-
erative Adversarial Networks (GAN) belong to the implicit generative
models. That is to say that although one can generate samples using
GAN, one does not have direct access to its likelihood. So obviously
training of GAN is also not based on maximum likelihood estimation.

A generator network maps random variables z to physical data
x. A discriminator network D is a binary classifier which tries tell

29

whether the sample is from the dataset D (1) or synthesized (0). On
the expanded dataset {(x, 1), (G(z), 0)}, the cross-entropy cost reads

L = − 〈ln D(x)〉x∼D − 〈ln (1− D(G(z)))〉z∼p(z) . (64)

Such cost function defines a minimax game maxG minD L between
the generator and the discriminator, where the generator tries to forge
data to confuse the discriminator.

Since the loss function does not involve the probability of the gen-
erated samples, one can use an arbitrary neural network as the gen-
erator. Giving up likelihood increases the flexibility of the generator
network at the cost that it is harder to train and evaluate. Assess the
performance of GAN in practice often boils down to beauty contest.
Lacking an explicit likelihood function also limits its applications to
physics problems where quantitative results are important.

Recall the Born Machine mentioned in Sec. 3.2.5, suppose one im-
plements a Born Machine using a quantum circuit, the resulting model
would be an implicit model [50]. Since one usually does not have di-
rect access to the quantum state of an actual quantum state, adversar-
ial training against a classical neural network can be a way to learn
the quantum circuit as a probabilisitic generative model [51].

30

Ta
bl

e
2
:A

su
m

m
ar

y
of

ge
ne

ra
ti

ve
m

od
el

s
an

d
th

ei
r

sa
lie

nt
fe

at
ur

es
.Q

ue
st

io
n

m
ar

ks
m

ea
n

ge
ne

ra
liz

at
io

ns
ar

e
po

ss
ib

le
,b

ut
no

nt
ri

vi
al

.

N
am

e
Tr

ai
ni

ng
C

os
t

D
at

a
Sp

ac
e

La
te

nt
Sp

ac
e

A
rc

hi
te

ct
ur

e
Sa

m
pl

in
g

Li
ke

lih
oo

d
Ex

pr
es

si
bi

lit
y

D
iffi

cu
lt

y
(L

ea
rn

/S
am

pl
e)

R
BM

Lo
g-

lik
el

ih
oo

d
A

rb
it

ra
ry

A
rb

it
ra

ry
Bi

pa
rt

it
e

M
C

M
C

In
tr

ac
ta

bl
e

pa
rt

it
io

n
fu

nc
ti

on

F
A
A

/
A
A
A

D
BM

EL
BO

A
rb

it
ra

ry
A

rb
it

ra
ry

Bi
pa

rt
it

e
M

C
M

C
In

tr
ac

ta
bl

e
pa

rt
it

io
n

fu
nc

ti
on

&
po

st
er

io
r

F
F
F

A
A

/
A
A
A

A
ut

or
eg

re
ss

iv
e

M
od

el
Lo

g-
lik

el
ih

oo
d

A
rb

it
ra

ry
N

on
e

O
rd

er
in

g
Se

qu
en

ti
al

Tr
ac

ta
bl

e
F
F

A
/
A
A

N
or

m
al

iz
in

g
Fl

ow
Lo

g-
lik

el
ih

oo
d

C
on

ti
nu

ou
s

C
on

ti
nu

ou
s,

Sa
m

e
di

m
en

si
on

as
da

ta

Bi
je

ct
or

Pa
ra

lle
l

Tr
ac

ta
bl

e
F
F

A
/
A

VA
E

EL
BO

A
rb

it
ra

ry
C

on
ti

nu
ou

s
A

rb
it

ra
ry

?
Pa

ra
lle

l
In

tr
ac

ta
bl

e
po

st
er

io
r

F
F
F

A
/
A

M
PS

/T
TN

Lo
g-

lik
el

ih
oo

d
A

rb
it

ra
ry

?
N

on
e

or
tr

ee
te

ns
or

N
o

lo
op

Se
qu

en
ti

al
Tr

ac
ta

bl
e

F
F
F

A
A

/
A
A

G
A

N
A

dv
er

sa
ri

al
C

on
ti

nu
ou

s
A

rb
it

ra
ry

?
A

rb
it

ra
ry

Pa
ra

lle
l

Im
pl

ic
it

F
F
F
F

A
A
A

/
A

Q
ua

nt
um

C
ir

-
cu

it
A

dv
er

sa
ri

al
D

is
cr

et
e

D
is

cr
et

e
A

rb
it

ra
ry

Pa
ra

lle
l

Im
pl

ic
it

F
F
F
F
F

A
A
A
A

/
A

31

3.3 summary

In the discussions of generative models we have touched upon a
field called probabilistic graphical models [52]. They represent inde-
pendence relation using graphical notations. The graphical models
with undirected edges are called Markov random field, which can
be understood as statistical physics models (Sec. 3.2.1). Typically,
it is hard to sample from a Markov random field unless it has a
tree structure. While the graphical models with directed edges are
called Bayes network, which describe conditional probability distri-
bution (Sec. 3.2.2). The conditional probabilities allows ancestral sam-
pling which start from the root node and follow the conditional prob-
abilities.

As we have seen, feedforward neural networks can be used as key
components for generative modeling. They transform the probability
distribution of the input data to certain target probability distribution.
Please be aware that there are subtle differences in the interpretations
of these neural nets’ outputs. They can either be parametrization of
the conditional probability p(x|z) (Secs. 3.2.2, 3.2.4) or be the samples
x themselves (Secs. 3.2.3, 3.2.6). Table 2 summarized and compared
the main features of various generative models discussed in this note.

In fact, various models introduce in this section is also related.
Seeking their relation or trying to unify them provides one a deeper
understanding on generative modeling. First of all, the Boltzmann
Machines, and in general probabilistic graphical models, are likely
to be closely related to the tensor networks. In particular cases, the
exact mappings between RBM and tensor networks has been worked
out [26]. In general, it is still rewarding to explore the connections
of representation and learning algorithms between the two classes of
models. Second, the autoregressive models are closely related to the
normalizing flows viewed as a transformation of probability densities.
While in [28] it was even argued on the connections to the variational
autoencoder. Finally, combining models to take advantage of both
worlds is also a rewarding direction [30, 32, 53].

32

4

A P P L I C AT I O N S T O Q U A N T U M M A N Y- B O D Y
P H Y S I C S A N D M O R E

We now discuss a few applications of deep learning to quantum
many-body physics. Since it is rather difficult to have a complete
survey of this fast growing field, we select a few representative exam-
ples that we have meaningful things to say. Note that the selection is
highly biased by the interests of the authors. We sincerely apologize
for not mentioning your favorite papers because of our ignorance.
We will also try to comment on the outlooks and challenges saw by
authors (again, biased opinions).

The interested readers can check the 〈Physics|Machine Learning〉
blog for recent news, events and papers. The lecture materials of
the KITS Workshop on Machine Learning and Many-Body Physics
provides a sampled snapshot of the field up to summer of 2017.

4.1 material and chemistry discoveries

It is natural to combine machine learning techniques with materi-
als genome project and high throughput screening of materials and
molecules. In its most straightforward application, regression from
microscopic composition to the macroscopic properties can be used to
bypass laborious ab-initio calculation and experimental search. Find-
ing appropriate descriptors for materials and molecules sometimes
become a key. And such representation learning is exact what deep
learning techniques are designed for. One of the crucial consideration
in constructing these representations is to respect the translational,
rotational and permutational symmetry of the physical system. See
Refs. [54] and references therein for possible solutions.

A recent example in chemistry design is to use the VAE to map
string representation of molecules to a continuous latent space and
then perform differential optimization for desired molecular proper-
ties [55]. Like many deep learning applications in natural language
and images, the model learned meaningful low dimensional repre-
sentation in the latent space. Arithmetics operations have physical
(or rather chemical) meanings. There were also attempts of using
GANs for generating molecules.

33

https://physicsml.github.io/pages/papers.html
http://kits.ucas.ac.cn/index.php/events/workshop/52-machine-learning-and-many-body-physics-jun-28th-jul-7th-2017

IPAM@UCLA had a three months program on this topic in 2016,
see the White Paper for a summary of progresses and open problems
by participants of the program.

4.2 density functional theory

Searching for density functionals using machine learning approaches
is an active research frontier. Density functional theory (DFT) is in
principle exact, at least for ground state energy and density distribu-
tion. However no one knows the universal exchange-correlation func-
tional. Machine Learning modeling of exact density functional has
been demonstrated in one dimension [56] with exact results coming
from the density-matrix-renormalization-group calculation in contin-
uous space. For more general realistic cases, besides how to model
the density functionals, another problem is how to get accurate train-
ing data. If that problem get solved, then how about time-dependent
DFT, where the functional is over space and time ?

Taking one step back, even in the regime of local density approxi-
mation, searching for a good kinetic energy functional can already
be extremely useful since it can support orbital free DFT calcula-
tions [57, 58]. Bypassing Kohn-Sham orbitals (which are auxiliary
objects anyway) can greatly accelerate the search of stable material
structures

4.3 “phase” recognition

Ever since the seminal work by Carrasquilla and Melko [59], there
are by now a large number of papers on classifying phases using neu-
ral networks. Among them, one of the authors (L.W.) advocated un-
supervised learning approaches for discovering phase transitions [60].
To the authors’ understanding, a grand goal would be to identify and
even discover elusive phases and phase transitions (e.g. topological
ones) which are otherwise difficult to capture. However, typically
the machine learning models tend to pick up short-range features
such as the energy, which is unfortunately non-universal. Thus, one
of the great challenges is to discover nonlocal signatures such as the
topological order (instead of manual feature engineering or fitting
the topological invariance directly). Reading classical texts in pattern
recognition [10, 11] may bring inspirations from the founding fathers
of the field.

4.4 variational ansatz

Reference [61] obtained excellent variational energy for non-frustrated
quantum spin systems by adopting the Restricted Boltzmann Ma-
chines in Sec. 3.2.1 as a variational ansatz. The ansatz can be viewed

34

http://www.ipam.ucla.edu/wp-content/uploads/2017/03/Understanding-Many-Particle-Systems-with-Machine-Learning_White-Paper.pdf

as an alternative of Jastrows. But it is more flexible in the sense that
it encodes multi-body correlations in an efficient way.

Later studies [26, 62, 63] connect the RBM variational ansatz to ten-
sor network states. References [64, 65] analyzed their expressibility
from quantum entanglement and computational complexity points
of view respectively. Out of these works, one sees that the neural
network states can be advantageous for describing highly entangled
quantum states, and models with long range interactions. Another
particular interesting application is on the chiral topological states,
in which the standard PEPS ansatz suffer from fundamental difficul-
ties [63, 66].

Another interesting direction is to interpret that RBM, in particular,
the one used in [61] as shallow convolutional neural networks. Along
this line, it is natural to go systematically to deeper neural networks
and employ deep learning frameworks for automatic differentiation
in the VMC calculation [67]. Reference [68] carried out the VMC
calculation for small molecules in the first quantization formalism,
in which the antisymmetric property of the wavefunction was taken
with special care. It appears to us that further development calls for
innovations in the the optimization scheme which is beyond the wave-
function ansatz, e.g. direct generative sampling, and low variance
gradient estimator.

4.5 renormalization group

Renormalization Group (RG) is a fundamental concept in theoreti-
cal physics. In essence, RG keeps relevant information while reducing
the dimensionality of data. The connection of RG and deep learning
is quite intriguing since on one hand side it brings deep learning ma-
chineries into solving physical problems with RG, and on the other
hand site, it may provide theoretical understanding to deep learning.

References [8] proposed a generative Bayesian network with a MERA
inspired structure. Reference [9] connects the Boltzmann Machines
with decimation transformation in real-space RG. Reference [69] con-
nects principal component analysis with momentum shell RG. Refer-
ence [70] proposed to use mutual information as a criteria for restor-
ing the RG behavior in the training of Boltzmann Machines. Lastly,
Reference [71] proposed a variational RG framework by stacking the
bijectors (Sec. 3.2.3) into a MERA-liked structure. The approach pro-
vides a way to identify collective variables and and their effective
interaction. The collective variables in the latent space has reduced
mutual information. They can be regarded as nonlinear and adap-
tive generalizations of wavelets. Training of the NueralRG network
employs the probability density distillation (Sec. 3.2.2) on the bare en-
ergy function, in which the training loss provides a variational upper
bound of the physical free energy. The NeuralRG approach imple-

35

ments an information preserving RG procedure, which is useful for
exploring holographic mapping [72].

4.6 monte carlo update proposals

Markov chain Monte Carlo (MCMC) finds wide applications in
physics and machine learning. Since the major drawback of MCMC
compared to other approximate methods is its efficiency, there is
a strong motivation to accelerate MCMC simulations within both
physics and machine learning community. Loosely speaking, there
can be at least three ideas of accelerating Monte Carlo sampling us-
ing machine learning techniques.

First, Reference [73] trained surrogate functions to speed up hybrid
Monte Carlo simulation [74] for Bayesian statistics. The surrogate
function approximates the potential energy surface of the target prob-
lem and provides an easy way to compute derivatives. Recently, there
were papers reporting similar ideas for physics problems. Here, the
surrogate model can be physical models such as the Ising model [75]
or molecular gases [76], or general probabilistic graphical models
such as the restricted Boltzmann machine [77]. For Monte Carlo
simulations involving fermion determinants [76, 78] the approach is
more profitable since the updates of the original model is much heav-
ier than the surrogate model. However, the actual benefit depends
on the particular problem and the surrogate model. A drawback of
these surrogate function approaches is that they require training data
to start with, which is known as the ”cold start” problem in analog to
the recommender systems [76]. Using the adaptive approach of [79]
one may somewhat alleviate this ”chicken-egg” problem.

Second, there were more recent attempts in machine learning com-
munity trying to directly optimize the proposal probability via rein-
forcement learning [80–82]. These papers directly parameterize the
proposal probability as neural networks and optimize objective func-
tions related to the efficiency, e.g., the difference of samples or the
squared jump. To ensure detailed balance condition, it is crucial to
keep track of the proposal probability of an update and its reverse
move. Both A-NICE-MC [80] and L2HMC [81] adopted normalizing
flows (Sec. 3.2.3). The later paper is particularly interesting because
it systematically generalizes the celebrated hybrid Monte Carlo [74]
to a learnable framework. Reference [83] used reinforcement learn-
ing to devise updates for frustrated spin models. In fact, besides the
efficiency boost one can aim at algorithmic innovations in the Monte
Carlo updates. Devising novel update strategies which can reduce
the auto correlation between samples was considered to be the art
MCMC methods. An attempt along this line is Ref. [84], which con-
nected the Swendsen-Wang cluster and the Boltzmann Machines and
explored a few new cluster updates.

36

Lastly, the NeuralRG technique [71] provides another approach to
learn Monte Carlo proposal without data. Since the mapping to the
latent space reduces the complexity of the distribution, one can per-
form highly efficient (hybrid) Monte Carlo updates in the latent space
and obtain unbiased physical results. This can be regarded as an ex-
tension of the Fourier space or wavelets basis Monte Carlo methods,
except that now the representation is learned in an adaptive fashion.

By the way, to obtain unbiased physical results one typically en-
sures detailed balance condition using Metropolis-Hastings accep-
tance rule. Thus, one should employ generative models with explicit
and tractable densities for update proposals. This rules out GAN and
VAE in the game, at least for the moment.

4.7 tensor networks

Reference [85] is the first in the physics community to apply tensor
network approach to pattern recognition. The paper and blog post
mentioned some parallel attempts in the computer science commu-
nity. In a second paper [49], Miles Stoudenmire boosted the perfor-
mance by first performing unsupervised feature extraction using a
tree tensor network. Reference [47] uses MPS for generative model-
ing of the classical binary data. Since generative tasks are harder, the
authors believe that it is in these class of problems one may unlock
bigger potential of tensor networks.

There are at least two motivations of using the tensor networks
for machine learning. First, tensor network and algorithms provide
principled approaches for discriminative and generative tasks with
possibly stronger representational power. In fact, the mathematical
structure of tensor network states and quantum mechanics appear
naturally when one tries to extend the probabilistic graphical mod-
els while still attempt to ensure the positivity of the probability den-
sity [86, 87]. Second, tensor networks are doorways to one form of
quantum machine learning because the tensor networks are formally
equivalent to quantum circuits. Tensor network states provide means
of architecture design and parameter initialization for quantum cir-
cuits [88]. By now, tensor networks have certainly caught attentions
of some of the machine learning practitioners [89, 90]. We are still
awaiting for an event similar to AlexNet, where the tensor network
machine learning approach wins over the traditional approaches by
a large margin. With accumulations of the results and techniques,
this is likely to happen in the coming years, at least in one specific
application domain.

37

https://physicsml.github.io/tensor-network.html

4.8 quantum machine leanring

Quantum machine learning is a general term with many applica-
tions. See reviews [91, 92] for its past.

Getting closer to the topics covered in this lecture note, Boltzmann
Machines were used to decode quantum error [93] and for quan-
tum state tomography [94]. Building on the probabilistic interpreta-
tion of quantum mechanics, one can envision a quantum generative
model [95]. It expresses the probability distribution of a dataset as the
probability associated with the wavefunction. The theory behind it is
that even measured on a fixed bases, the quantum circuit can express
probability distribution that are intractable to classical computers. In
particular, there was an experiment [96] on generative machine learn-
ing. To the authors, the biggest concern is how to train the quantum
circuits analogously to the neural networks using back-propagation.
The tricks on market (quantum classical hybrid approach with gradi-
ent free optimizer) are not scalable.

Finally, there are reinforcement learning for quantum control [97]
and designing new quantum optics experiment [98].

4.9 miscellaneous

There is an attempt to train regression model as the impurity solver
of dynamical mean-field theory [99] and for analytical continuation of
imaginary data [100]. Like many of the regressions applications, the
concern is where to obtain the labelled training data in the first place.
The later application is representative in applying machine learning
to inverse problems by exploiting the fact that it is relatively easy to
collect training data by solving the forward problem.

Lastly, concerning the fermion sign problem in Monte Carlo sim-
ulation. There was an attempt of classify the nodal surface in dif-
fusion Monte Carlo (DMC) [101]. This appears to be an interesting
attempt since understanding the nodal surface in DMC would im-
ply one can complete solve the ground state. Besides the concern on
lacking labelled training data, the nodal surface might be fractal in
the most challenging case. Finally, there are attempts of alleviating
the sign problem via deforming the integration path in the complex
domain [102, 103].

38

5

H A N D S O N S E S S I O N

Differential programing and GPU acceleration are two key ingre-
dients for the success of contemporary deep learning application. In
this chapter, we will get familiar with these tools for studying quan-
tum many-body systems step by step, with examples.

Codes in this tutorial have been uploaded to the following git repos-
itory https://github.com/GiggleLiu/marburg.git

5.1 computation graph and back propagation

We have introduced the basic idea of training neural network using
back propagation in Sec.2.4.1. In order to make back propagation
easy to implement, especially on GPUs, people often use computation
graphs to represent the loss functions. A computation graph consists
of nodes and edges.

• An edge represents a function argument (or data dependency).

• A node is a function. If there is no incomming edges on this
node, it represents special function that feeds variables to this
graph.

• A node knows how to compute its output and the its derivative
w.r.t each input argument.

The third clause ensures that back propagation is applicable on this
graph. Figure 4 is a computation graph for the single layer perceptron. Please check out

Viznet, a package for
drawing neural
networks, tensor
networks, and
quantum circuits.

It is easy to infer that this graph represents an operation y = σ(Wx +

b).

Exercise 7 (BackProp and Computation Graph in Numpy). Now we
implement back propagation in computation graph style using pure numpy.
Read and run notebook notebooks/computation graph.ipynb, or an online
version https://goo.gl/6d2sei. Complete the task at the end of the notebook.

39

https://github.com/GiggleLiu/marburg.git
https://github.com/GiggleLiu/viznet
https://goo.gl/6d2sei

x dot

f(W, x) = Wx

W b

+

Figure 4: Computation graph for a single layer perceptron model, yel-
low nodes are inputs, the orange node is output, white
nodes are functions. Colors used here are for illustration
purpose, not a requirement of computation graphs.

Device # Cores Clock Speed Memory Price

CPU(Intel
Core i7-7700k)

4 (8 threads with
hyperthreading)

4.4 GHz Shared with
system

$339

CPU(Intel
Core i7-6950X)

10 (20 threads with
hyperthreading)

3.5 GHz Shared with
system

$1723

GPU (NVIDIA
Titan Xp)

3840 1.6 GHz 12 GB
GDDR5X

$1200

GPU (NVIDIA
GTX 1070)

1920 1.68 GHz 8 GB
GDDR5

$399

Table 3: A table of comparison between CPU and GPU. This table is
from course cs231n of Stanford University, April 27 2017.

Table 3 shows a GPU can have more than 1k CUDA cores. Each
CUDA core is relatively weak comparing with a CPU core. Its clock
speed is much lower, and is only able to process two floating point
operations per cycle.

By counting floating point operations per second (FLOPS), GPU
will give you > 100 times speed up with respect to a CPU on
the same price. In practice, this value is barely achieved due to
the overhead of data transfer between system memory and GPU
memory.

Problems which have a high arithmetic intensity and regular
memory access patterns are typically easier to implement on GPUs.

CPU vs GPU

40

http://cs231n.stanford.edu/syllabus.html

model dataset epochs batch Knet Theano Torch Caffe TFlow

LinReg Housing 10K 506 2.84 1.88 2.66 2.35 5.92

Softmax MNIST 10 100 2.35 1.40 2.88 2.45 5.57

MLP MNIST 10 100 3.68 2.31 4.03 3.69 6.94

LeNet MNIST 1 100 3.59 3.03 1.69 3.54 8.77

CharLM Hiawatha 1 128 2.25 2.42 2.23 1.43 2.86

Table 4: Performance benchmark for selected libraries using different
datasets and neural network models. Table is from [104].

5.2 deep learning libraries

In fact, you don’t need to realize all computation nodes from scrach.
People have built several high performance libraries that implement
computation graph. A comparison of their single GPU performance
are shown in Table 4. In the list of neural network libraries shown
above, Theano and Tensorflow (TFlow) are Python libraries. Torch is
in Lua but its cousine PyTorch is the python version with a similar
performance. All these libs are based on CUDA programming, es-
pecially cuDNN. cuDNN is an officially optimized library for deep
learning with respect to hardware. Due to the usage of this common
backend, there is no reason that one lib is significantly better than
another providing used properly.

PyTorch is our primary coding choice for the following tutorials.
PyTorch is an open source machine learning library primarily devel-
oped by Facebook’s artificial-intelligence research group. Unlike ten-
sorflow that uses static graph, pytorch uses dynamic graph. For the
static graphs, you should first draw the computation graph and then
feed data to this graph and run it on chosen device (define-and-run).
Using dynamic graphs, the graph structure is defined on-the-fly via
the actual forward computation. This is a far more natural style of
programming (define-by-run).

Pytorch’s numpy like coding style makes it easy to use, debug
and make extensions. However, before fully embracing pytorch, you
should know its weaknesses.

• Pytorch does not have complex number support, the github is-
sue on complex valued network is in low priority. This kind of
concern do not exist in tensorflow.

• Pytorch’s initial release is in Oct. 2016. So it has comparatively
smaller community, less tool chains (e.g. its visualization is not
as good as tensorflow’s tensorboard) and also less stable.

41

https://www.tensorflow.org/
http://pytorch.org/
https://developer.nvidia.com/cudnn
https://github.com/pytorch/pytorch/issues/755
https://github.com/pytorch/pytorch/issues/755

4 2 0 2 4
x1

4

2

0

2

4

x 2

original
generated

Figure 5: Samples from a 2d ring distribution (blue dots) and samples
generated by NICE network (red dots).

5.3 generative modeling using normalizing flows

The goal of this section is to implement a Normalizing Flows net-
work introduced in Sec. 3.2.3 using pytorch for density estimation. In
this task, we are provided with samples from an unknown distribu-
tion, and we need to estimate the probability density of each sample
by transforming it to a sample from simple distributions like Gaus-
sian distribution . Conversely, we can also generate samples directly
using the trained network.

The samples given is sampled from a 2d ring distribution(the blue
dots in Fig. 5). Recall that Normalizing Flow can be built with lay-
ers of bijectors. Here we are going to implement a Non-linear Inde-
pendent Components Estimation (NICE) network, where each layer
performs the following transformation [28] x`< = x`<

x`> = x`> + t`(x`<)
(65)

Using the trained NICE network we can obtain new samples follow-
ing the 2d Ring distribution, see the red dots in Fig 5.

Exercise 8 (Learning and Sampling using Normalizing Flow net-
works). Read and run notebook notebooks/nice.ipynb, or an online version
https://goo.gl/8Caymh. Complete the task at the end of the notebook. In
this task, with only little change, you can turn the NICE network into Real
NVP network, recall that in Real NVP network, in each layer the transform
is Eq. (43).

42

https://goo.gl/8Caymh

h1 h2 h3 h4

x1 x2 x3 x4 x(1)
1 x(1)

2 x(1)
3 x(1)

4

h(1)
1 h(1)

2 h(1)
3 h(1)

4

Figure 6: Gibbs sampling of an RBM.

5.4 restricted boltzmann machine for image restora-
tion

Restricted Boltzmann Machine can learn about data probability dis-
tribution and generate new samples accordingly. Eq. (24) explains
how to obtain the gradient of the NLL loss of an RBM. For the neg-
ative phase we use Gibbs sampling to obtain samples from the the
joint distribution p(x, h). The Gibbs sampling of the RBM samples
back and forth between the visible and hidden units using the condi-
tional probabilities p(x|h) and p(h|x). The samples will converge to
x∞ ∼ p(x)

In practice, we make a truncation to the sampling process, and use
xk to approximate x∞, which is called k-step contrastive divergence
(CD-k). Note that fixed points of parameters for different k are not
the same one in general [105].

Exercise 9 (Image restoration using RBM). We provide an example to
train an RBM to generate and restore MNIST images. Read and run note-
book notebooks/rbm generation.ipynb, or an online version https://goo.gl/d7kPzy.
Complete the task at the end of the notebook.

5.5 neural network as a quantum wave function ansatz

Variational Monte Carlo (VMC) [106] tries variational optimize a
state ansatz ψθ(x) = 〈x|ψθ〉 to minimize the energy of a target hamil-
tonian H

Eθ =
〈ψθ|H|ψθ〉
〈ψθ|ψθ〉

,

where θ represents tunable parameters of this ansatz, and x is a string
of ±1’s which represent a spin configuration, with 1 spin up and −1
spin down.

Obviously, Eθ is the loss function we want to minimize. The gradi-
ent of E with respect to θ is given by

∂E
∂θ

= 〈Eloc∆∗loc〉 − 〈Eloc〉〈∆∗loc〉, (66)

43

https://goo.gl/d7kPzy

Figure 7: The flowchart of VMC calculation.

where 〈·〉 is the ensemble average over Monte Carlo importance sam-
pling over probability distribution x ∼ |〈x|ψθ〉|2, Eloc =

〈x|H|ψθ〉
〈x|ψθ〉 , ∆loc ≡

∂ ln ψθ(x)
∂θ .

The training process is shown in Fig. 7. Deep learning are in-
corporated into VMC framework by writing wave function ansatz
in computation graph form. In the sampling phase, VMC queries
pθ(x) ∝ |ψθ(x)|2 from computation graph, with only forward pass
executed. In the evaluation phase, we perform local measurements
to obtain Eloc and ∆loc. The evaluation of Eloc again requires many
forward calls. On the other side, ∆loc requires back propagation with
respect to ln ψθ(x).

After obtaining the gradient in Eq. (66), we update parameters ac-
cording to gradient descent θ = θ− η ∂E

∂θ , with η the learning rate.

Exercise 10 (Deep Learning for VMC). Read and run notebook note-
books/rbm generative.ipynb, or an online version https://goo.gl/vPFtdU. Com-
plete the task at the end of the notebook. This is an example of using RBM
wave function ansatz for VMC. You can insert your own ansatz by replacing
RBM with other computation graph. Also, we prepared a frustrated J1-J2
Hamiltonian with a non-trivial sign structure for you. Please challenge
yourself.

44

https://goo.gl/vPFtdU

6
C H A L L E N G E S A H E A D

Now that you have learned about theory and practice about deep
learning, and its applications to quantum many-body problems, we’d
like to pose a few challenges to you. Overall, we believe it is impor-
tant to solve new problems besides reproducing known knowledge.

1. Can it discover a new phase of matter ?

2. Would it discover new algorithms for us ?

3. Would it be possible for us to make progress on fermion sign
problem ?

4. Non-stochastic, or better ways for optimizing, renormalizing,
and evolving Neural Networks.

5. Information pattern aware structure learning of neural networks.

45

7

R E S O U R C E S

The book [107] is a good introductory reading, which gives you
an overview of the “five schools” of the machine learning. Classical
texts on neural networks are [10] and [11]. Modern textbooks are
[43, 108] and [22]. The book by David MacKay [23] is a great source
for inspirations. More broadly on AI, there is [1]. Mehta et al has
a hundred pages long review (plus Python notebooks) oriented to
physicists [109].

Besides books, there are great online resources to learn about deep
learning. The online book by Michael Nielsen is a very accessible
introduction to neural networks (written by a former quantum physi-
cist). Andrew Ng’s lectures at Coursera and Stanford’s CS231n are
standard references. We also find EPFL EE-559 ”Deep Learning”
taught by François Fleuret and U. Toronto CSC 321 ”Intro to Neu-
ral Networks and Machine Learning” taught by Roger Grosse quite
helpful. The in-progress book Machine Learning for Artists contains
many fun demos and visualizations. Distill is an online journal for
machine learning research, which feature media interactive media.
Arxiv-Sanity is a good place to keep track of most recent progresses
in deep learning.

For more of physics orientated lectures on machine learning, please
see Simon Trebst’s lectures at Cornell, I and II; Giuseppe Carleo’s se-
ries lectures at ICTP; Juan Carrasquilla and Roger Melko’s minisourse
at São Paulo. And there is a lecture series at the perimeter institute.
Teaching materials and videos by Florian Marquardt of the course
”Machine Learning for Physicists” can be found here.

46

http://neuralnetworksanddeeplearning.com/
https://www.coursera.org/specializations/deep-learning
http://cs231n.stanford.edu/
https://documents.epfl.ch/users/f/fl/fleuret/www/dlc/
http://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/
https://ml4a.github.io/ml4a/
https://distill.pub/
http://www.arxiv-sanity.com/
https://www.youtube.com/watch?v=BJL9JECYIFY
https://www.youtube.com/watch?v=24NAfIXoaYg
http://indico.ictp.it/event/7989/other-view?view=ictptimetable
http://www.ictp-saifr.org/?page_id=15446
http://pirsa.org/C18002
https://machine-learning-for-physicists.org/

A C K N O W L E D G E M E N T S

We thank fruitful collaborations and discussions with Pan Zhang,
Yehua Liu, Jing Chen, Song Cheng, Haidong Xie, Tao Xiang, Zhao-Yu
Han, Jun Wang, Xiu-Zhe Roger Luo, Xun Gao, Zi Cai, Li Huang, Yi-
feng Yang, Yang Qi, Junwei Liu, Ziyang Meng, Yi-Zhuang You, Miles
Stoudenmire, Giuseppe Carleo, Matthias Rupp, Alejandro Perdomo-
Ortiz. The authors are supported by the National Natural Science
Foundation of China under Grant No. 11774398.

47

B I B L I O G R A P H Y

[1] Stuart Jonathan Russell and Peter Norvig. Artificial intelligence:
a modern approach. Prentice Hall, 2003.

[2] Nils J. Nilsson. The Quest for Artificial Intelligence. Cambridge
University Press, 2009. URL http://ebooks.cambridge.org/

ref/id/CBO9780511819346.

[3] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A Neu-
ral Algorithm of Artistic Style. 2015. URL https://arxiv.org/

abs/1508.06576.

[4] David H Wolpert. The Lack of A Priori Distinctions Between
Learning Algorithms. Neural Comput., 8:1341, 1996.

[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A.
Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin
Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, He-
len King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 518:529, 2015. doi: 10.1038/nature14236.
URL http://dx.doi.org/10.1038/nature14236.

[6] G. Cybenko. Approximation by Superpositions of a Sigmoidal
Function. Math. Control. Signals, Syst., 2:303, 1989. doi: 10.1007/
BF02836480.

[7] Kurt Hornik. Approximation capabilities of multilayer feed-
forward networks. Neural Networks, 4:251–257, 1991. doi:
10.1016/0893-6080(91)90009-T.

[8] Cédric Bény. Deep learning and the renormalization group.
arXiv, 2013. URL http://arxiv.org/abs/1301.3124.

[9] Pankaj Mehta and David J. Schwab. An exact mapping be-
tween the Variational Renormalization Group and Deep Learn-
ing. arXiv, 2014. URL http://arxiv.org/abs/1410.3831.

[10] Marvin Minsky and Papert Seymour A. Perceptrons, Expanded
Edition. The MIT Press, 1988.

[11] David E Rumelhart and James L McClelland. Parallel Distributed
Processing. A Bradford Book, 1986.

48

http://ebooks.cambridge.org/ref/id/CBO9780511819346
http://ebooks.cambridge.org/ref/id/CBO9780511819346
https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1508.06576
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1301.3124
http://arxiv.org/abs/1410.3831

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. arXiv, 2015.
URL https://arxiv.org/abs/1512.03385.

[13] A. Gunes Baydin, B. A. Pearlmutter, A. Andreyevich Radul, and
J. M. Siskind. Automatic differentiation in machine learning: a
survey. ArXiv e-prints, February 2015.

[14] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse. The Re-
versible Residual Network: Backpropagation Without Storing
Activations. ArXiv e-prints, July 2017.

[15] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud.
Neural Ordinary Differential Equations. ArXiv e-prints, June
2018.

[16] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-
triguing properties of neural networks. arXiv, 2013. URL
http://arxiv.org/abs/1312.6199.

[17] Alexander Mordvintsev, Christopher Olah, and Mike
Tyka. Inceptionism: Going Deeper into Neural Networks,
2015. URL https://research.googleblog.com/2015/06/

inceptionism-going-deeper-into-neural.html.

[18] Gabriel Goh. Why momentum really works. Distill, 2017.
doi: 10.23915/distill.00006. URL http://distill.pub/2017/

momentum.

[19] Sergey Ioffe and Christian Szegedy. Batch Normalization: Ac-
celerating Deep Network Training by Reducing Internal Covari-
ate Shift. arXiv, 2015. doi: 10.1007/s13398-014-0173-7.2. URL
http://arxiv.org/abs/1502.03167.

[20] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Fea-
ture visualization. Distill, 2017. doi: 10.23915/distill.00007.
https://distill.pub/2017/feature-visualization.

[21] Andrej Karpathy, Pieter Abbeel, Greg Brockman, Peter Chen,
Vicki Cheung, Rocky Duan, Ian GoodFellow, Durk Kingma,
Jonathan Ho, Rein Houthooft, Tim Salimans, John Schulman,
Ilya Sutskever, and Wojciech Zaremba. OpenAI Post on
Generative Models, 2016. URL https://blog.openai.com/

generative-models/.

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016. URL http://www.

deeplearningbook.org/.

49

https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1312.6199
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
http://distill.pub/2017/momentum
http://distill.pub/2017/momentum
http://arxiv.org/abs/1502.03167
https://blog.openai.com/generative-models/
https://blog.openai.com/generative-models/
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/

[23] David J C MacKay. Information Theory, Inference, and Learning
Algorithms. Cambridge University Press, 2003.

[24] Geoffrey E Hinton. Training Products of Experts by Minimizing
Contrastive Divergence. Neural Comput., 14:1771, 2002.

[25] Tijmen Tieleman. Training Restricted Boltzmann Machines us-
ing Approximations to the Likelihood Gradient. In Proceedings
of teh 25th international conference on Machine Learning, page 1064,
2008.

[26] Jing Chen, Song Cheng, Haidong Xie, Lei Wang, and Tao Xi-
ang. On the Equivalence of Restricted Boltzmann Machines
and Tensor Network States. Phys. Rev. B, 97:085104, 2018.
doi: 10.1103/PhysRevB.97.085104. URL http://arxiv.org/

abs/1701.04831.

[27] Ruslan Salakhutdinov. Learning Deep Genera-
tive Models. Annu. Rev. Stat. Its Appl., 2:361–385,
2015. doi: 10.1146/annurev-statistics-010814-020120.
URL http://www.annualreviews.org/doi/10.1146/

annurev-statistics-010814-020120.

[28] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-
linear Independent Components Estimation. arXiv, 2014. doi:
1410.8516. URL http://arxiv.org/abs/1410.8516.

[29] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo
Larochelle. MADE: Masked Autoencoder for Distribution Esti-
mation. arXiv, 2015. URL http://arxiv.org/abs/1502.03509.

[30] Danilo Jimenez Rezende and Shakir Mohamed. Variational
Inference with Normalizing Flows. arXiv, 2015. URL http:

//arxiv.org/abs/1505.05770.

[31] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density
estimation using Real NVP. arXiv, 2016. doi: 1605.08803. URL
http://arxiv.org/abs/1605.08803.

[32] Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen,
Ilya Sutskever, and Max Welling. Improving Variational In-
ference with Inverse Autoregressive Flow. arXiv, 2016. URL
http://arxiv.org/abs/1606.04934.

[33] Aaron van den Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. Pixel Recurrent Neural Networks. In Int.
Conf. Mach. Learn. I(CML), volume 48, pages 1747—-1756, 2016.
URL https://arxiv.org/pdf/1601.06759.pdf{%}0Ahttp://

arxiv.org/abs/1601.06759.

50

http://arxiv.org/abs/1701.04831
http://arxiv.org/abs/1701.04831
http://www.annualreviews.org/doi/10.1146/annurev-statistics-010814-020120
http://www.annualreviews.org/doi/10.1146/annurev-statistics-010814-020120
http://arxiv.org/abs/1410.8516
http://arxiv.org/abs/1502.03509
http://arxiv.org/abs/1505.05770
http://arxiv.org/abs/1505.05770
http://arxiv.org/abs/1605.08803
http://arxiv.org/abs/1606.04934
https://arxiv.org/pdf/1601.06759.pdf{%}0Ahttp://arxiv.org/abs/1601.06759
https://arxiv.org/pdf/1601.06759.pdf{%}0Ahttp://arxiv.org/abs/1601.06759

[34] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Si-
monyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, An-
drew Senior, and Koray Kavukcuoglu. WaveNet: A Generative
Model for Raw Audio. arXiv, 2016. URL http://arxiv.org/

abs/1609.03499.

[35] George Papamakarios, Theo Pavlakou, and Iain Murray.
Masked Autoregressive Flow for Density Estimation. arXiv,
2017. URL http://arxiv.org/abs/1705.07057.

[36] D. P. Kingma and P. Dhariwal. Glow: Generative Flow with
Invertible 1x1 Convolutions. ArXiv e-prints, July 2018.

[37] Aaron van den Oord, Yazhe Li, Igor Babuschkin, Karen Si-
monyan, Oriol Vinyals, Koray Kavukcuoglu, George van den
Driessche, Edward Lockhart, Luis C. Cobo, Florian Stimberg,
Norman Casagrande, Dominik Grewe, Seb Noury, Sander
Dieleman, Erich Elsen, Nal Kalchbrenner, Heiga Zen, Alex
Graves, Helen King, Tom Walters, Dan Belov, and Demis Has-
sabis. Parallel WaveNet: Fast High-Fidelity Speech Synthesis.
arXiv, 2017. URL http://arxiv.org/abs/1711.10433.

[38] Aaron van den Oord, Yazhe Li, and Igor
Babuschkin. High-fidelity speech synthesis with
WaveNet, 2017. URL https://deepmind.com/blog/

high-fidelity-speech-synthesis-wavenet/.

[39] Pyro Developers. Pyro, 2017. URL http://pyro.ai/.

[40] Joshua V. Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo,
Srinivas Vasudevan, Dave Moore, Brian Patton, Alex Alemi,
Matt Hoffman, and Rif A. Saurous. TensorFlow Distributions.
arXiv, 2017. URL http://arxiv.org/abs/1711.10604.

[41] Diederik P Kingma and Max Welling. Auto-Encoding Varia-
tional Bayes. 2013. URL http://arxiv.org/abs/1312.6114.

[42] Peter Dayan, Geoffrey E Hinton, Radford M Neal, and
Richard S Zemel. The Helmholtz Machine. 904:889–904, 1995.

[43] C. M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[44] Ronald J. Wiliams. Simple Statistical Gradient-Following Algo-
rithms for Connectionist Reinforcement Learning. Mach. Learn.,
8:229–256, 1992. doi: 10.1023/A:1022672621406.

[45] George Tucker, Andriy Mnih, Chris J. Maddison, Dieterich Law-
son, and Jascha Sohl-Dickstein. REBAR: Low-variance, un-
biased gradient estimates for discrete latent variable models.
arXiv, 2017. URL http://arxiv.org/abs/1703.07370.

51

http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1705.07057
http://arxiv.org/abs/1711.10433
https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/
https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/
http://pyro.ai/
http://arxiv.org/abs/1711.10604
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1703.07370

[46] Song Cheng, Jing Chen, and Lei Wang. Information Perspective
to Probabilistic Modeling: Boltzmann Machines versus Born
Machines. arXiv, 2017. URL http://arxiv.org/abs/1712.

04144.

[47] Zhao-Yu Han, Jun Wang, Heng Fan, Lei Wang, and Pan
Zhang. Unsupervised Generative Modeling Using Matrix Prod-
uct States. 2017. URL http://arxiv.org/abs/1709.01662.

[48] Ding Liu, Shi-Ju Ran, Peter Wittek, Cheng Peng, Raul Blázquez
Garcı́a, Gang Su, and Maciej Lewenstein. Machine Learning
by Two-Dimensional Hierarchical Tensor Networks: A Quan-
tum Information Theoretic Perspective on Deep Architectures.
arXiv, 2017. URL http://arxiv.org/abs/1710.04833.

[49] E. M. Stoudenmire. Learning Relevant Features of Data with
Multi-scale Tensor Networks. 2017. URL http://arxiv.org/

abs/1801.00315.

[50] J.-G. Liu and L. Wang. Differentiable Learning of Quantum
Circuit Born Machine. ArXiv e-prints, April 2018.

[51] H. Situ, Z. He, L. Li, and S. Zheng. Adversarial training of
quantum Born machine. ArXiv e-prints, July 2018.

[52] Daphne Koller and Nir Friedman. Probabilistic Graphical Models.
MIT Press, 2009.

[53] Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Pra-
fulla Dhariwal, John Schulman, Ilya Sutskever, and Pieter
Abbeel. Variational Lossy Autoencoder. arXiv, 2016. URL
http://arxiv.org/abs/1611.02731.

[54] L. Zhang, J. Han, H. Wang, W. A. Saidi, R. Car, and W. E.
End-to-end Symmetry Preserving Inter-atomic Potential Energy
Model for Finite and Extended Systems. ArXiv e-prints, May
2018.

[55] Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud,
José Miguel Hernández-Lobato, Benjamı́n Sánchez-Lengeling,
Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D.
Hirzel, Ryan P. Adams, and Alán Aspuru-Guzik. Automatic
chemical design using a data-driven continuous representation
of molecules. arXiv, 2016. doi: 10.1021/acscentsci.7b00572. URL
http://arxiv.org/abs/1610.02415.

[56] Li Li, Thomas E Baker, Steven R White, and Kieron Burke.
Pure density functional for strong correlations and the thermo-
dynamic limit from machine learning Li. arXiv, 2016. URL
http://arxiv.org/abs/1609.03705.

52

http://arxiv.org/abs/1712.04144
http://arxiv.org/abs/1712.04144
http://arxiv.org/abs/1709.01662
http://arxiv.org/abs/1710.04833
http://arxiv.org/abs/1801.00315
http://arxiv.org/abs/1801.00315
http://arxiv.org/abs/1611.02731
http://arxiv.org/abs/1610.02415
http://arxiv.org/abs/1609.03705

[57] John C Snyder, Matthias Rupp, Katja Hansen, Klaus-Robert Mu,
and Kieron Burke. Finding Density Functionals with Machine
Learning. Ph, 108:253002, 2012. doi: 10.1103/PhysRevLett.108.
253002.

[58] Felix Brockherde, Leslie Vogt, Li Li, Mark E Tuckerman, and
Kieron Burke. By-passing the Kohn-Sham equations with ma-
chine learning. arXiv, 2017. URL http://arxiv.org/abs/1609.

02815.

[59] Juan Carrasquilla and Roger G. Melko. Machine learning
phases of matter. Nat. Phys., 13:431–434, 2017. doi: 10.1038/
nphys4035.

[60] Lei Wang. Discovering phase transitions with unsupervised
learning. Phys. Rev. B, 94:195105, 2016. doi: 10.1103/PhysRevB.
94.195105.

[61] Giuseppe Carleo and Matthias Troyer. Solving the quantum
many-body problem with artificial neural networks. Science,
355:602, 2017.

[62] Stephen R. Clark. Unifying Neural-network Quantum States
and Correlator Product States via Tensor Networks. 2017. URL
http://arxiv.org/abs/1710.03545.

[63] Ivan Glasser, Nicola Pancotti, Moritz August, Ivan D. Ro-
driguez, and J. Ignacio Cirac. Neural Networks Quantum
States, String-Bond States and chiral topological states. Phys.
Rev. X, 8:11006, 2017. doi: 10.1103/PhysRevX.8.011006. URL
http://arxiv.org/abs/1710.04045.

[64] Dong Ling Deng, Xiaopeng Li, and S. Das Sarma. Quantum
entanglement in neural network states. Phys. Rev. X, 7:1–17,
2017. doi: 10.1103/PhysRevX.7.021021.

[65] Xun Gao and Lu-Ming Duan. Efficient Representation of
Quantum Many-body States with Deep Neural Networks. Nat.
Commun., pages 1–5, 2017. doi: 10.1038/s41467-017-00705-2.
URL http://arxiv.org/abs/1701.05039{%}0Ahttp:

//dx.doi.org/10.1038/s41467-017-00705-2.

[66] Raphael Kaubruegger, Lorenzo Pastori, and Jan Carl Budich.
Chiral Topological Phases from Artificial Neural Networks.
arXiv, 2017. URL http://arxiv.org/abs/1710.04713.

[67] Zi Cai and Jinguo Liu. Approximating quantum many-body
wave-functions using artificial neural networks. 035116:1–8,
2017. doi: 10.1103/PhysRevB.97.035116. URL http://arxiv.

org/abs/1704.05148.

53

http://arxiv.org/abs/1609.02815
http://arxiv.org/abs/1609.02815
http://arxiv.org/abs/1710.03545
http://arxiv.org/abs/1710.04045
http://arxiv.org/abs/1701.05039{%}0Ahttp://dx.doi.org/10.1038/s41467-017-00705-2
http://arxiv.org/abs/1701.05039{%}0Ahttp://dx.doi.org/10.1038/s41467-017-00705-2
http://arxiv.org/abs/1710.04713
http://arxiv.org/abs/1704.05148
http://arxiv.org/abs/1704.05148

[68] J. Han, L. Zhang, H. Wang, and W. E. Solving Many-Electron
Schr02dinger Equation Using Deep Neural Networks. ArXiv
e-prints.

[69] Serena Bradde and William Bialek. PCA Meets RG. J. Stat. Phys.,
167:462–475, 2017. doi: 10.1007/s10955-017-1770-6.

[70] Maciej Koch-Janusz and Zohar Ringel. Mutual Information,
Neural Networks and the Renormalization Group. arXiv, 2017.
URL http://arxiv.org/abs/1704.06279.

[71] Shuo-Hui Li and Lei Wang. Neural Network Renormalization
Group. arXiv, 2018. URL http://arxiv.org/abs/1802.02840.

[72] Yi-Zhuang You, Zhao Yang, and Xiao-Liang Qi. Machine learn-
ing spatial geometry from entanglement features. Phys. Rev. B,
97:045153, Jan 2018. doi: 10.1103/PhysRevB.97.045153. URL
https://link.aps.org/doi/10.1103/PhysRevB.97.045153.

[73] C. E. Rasmussen. Gaussian Processes to Speed up
Hybrid Monte Carlo for Expensive Bayesian Integrals.
Bayesian Stat. 7, pages 651–659, 2003. URL http:

//www.is.tuebingen.mpg.de/fileadmin/user{_}upload/

files/publications/pdf2080.pdf.

[74] Simon Duane, A D Kennedy, Brian J Pendleton, and Dun-
can Roweth. Hybrid Monte Carlo. Phys. Lett. B, 195:216–
222, 1987. doi: https://doi.org/10.1016/0370-2693(87)91197-X.
URL http://www.sciencedirect.com/science/article/pii/

037026938791197X.

[75] Junwei Liu, Yang Qi, Zi Yang Meng, and Liang Fu. Self-learning
Monte Carlo method. Phys. Rev. B, 95:1–5, 2017. doi: 10.1103/
PhysRevB.95.041101.

[76] Li Huang, Yi Feng Yang, and Lei Wang. Recommender engine
for continuous-time quantum Monte Carlo methods. Phys. Rev.
E, 95:031301(R), 2017. doi: 10.1103/PhysRevE.95.031301.

[77] Li Huang and Lei Wang. Accelerated Monte Carlo simulations
with restricted Boltzmann machines. Phys. Rev. B, 95:035105,
2017. doi: 10.1103/PhysRevB.95.035105.

[78] Junwei Liu, Huitao Shen, Yang Qi, Zi Yang Meng, and Liang
Fu. Self-learning Monte Carlo method and cumulative update
in fermion systems. Phys. Rev. B, 95:241104, 2017. doi: 10.1103/
PhysRevB.95.241104.

[79] Faming Liang, Chuanhai Liu, and Raymond J Carroll. Advanced
Markov Chain Monte Carlo Methods: Learning from Past Samples.
Wiley, 2011.

54

http://arxiv.org/abs/1704.06279
http://arxiv.org/abs/1802.02840
https://link.aps.org/doi/10.1103/PhysRevB.97.045153
http://www.is.tuebingen.mpg.de/fileadmin/user{_}upload/files/publications/pdf2080.pdf
http://www.is.tuebingen.mpg.de/fileadmin/user{_}upload/files/publications/pdf2080.pdf
http://www.is.tuebingen.mpg.de/fileadmin/user{_}upload/files/publications/pdf2080.pdf
http://www.sciencedirect.com/science/article/pii/037026938791197X
http://www.sciencedirect.com/science/article/pii/037026938791197X

[80] Jiaming Song, Shengjia Zhao, and Stefano Ermon. A-NICE-
MC: Adversarial Training for MCMC. arXiv, 2017. URL http:

//arxiv.org/abs/1706.07561.

[81] Daniel Levy, Matthew D. Hoffman, and Jascha Sohl-Dickstein.
Generalizing Hamiltonian Monte Carlo with Neural Networks.
arXiv, 2017. URL http://arxiv.org/abs/1711.09268.

[82] Marco F. Cusumano-Towner and Vikash K. Mansinghka. Using
probabilistic programs as proposals. arXiv, 2018. URL http:

//arxiv.org/abs/1801.03612.

[83] Troels Arnfred Bojesen. Policy Guided Monte Carlo: Reinforce-
ment Learning Markov Chain Dynamics. arXiv, 2018. URL
http://arxiv.org/abs/1808.09095.

[84] Lei Wang. Can Boltzmann Machines Discover Cluster Updates
? arXiv, 2017. doi: 10.1103/PhysRevE.96.051301. URL http:

//arxiv.org/abs/1702.08586.

[85] E. Miles Stoudenmire and David J. Schwab. Supervised Learn-
ing with Quantum-Inspired Tensor Networks. arXiv, 2016. URL
http://arxiv.org/abs/1605.05775.

[86] Raphael Bailly. Quadratic weighted automata:spectral algo-
rithm and likelihood maximization. In Chun-Nan Hsu and
Wee Sun Lee, editors, Proceedings of the Asian Conference on
Machine Learning, volume 20 of Proceedings of Machine Learn-
ing Research, pages 147–163, South Garden Hotels and Re-
sorts, Taoyuan, Taiwain, 14–15 Nov 2011. PMLR. URL http:

//proceedings.mlr.press/v20/bailly11.html.

[87] Ming-Jie Zhao and Herbert Jaeger. Norm-observable opera-
tor models. Neural Computation, 22(7):1927–1959, 2010. doi:
10.1162/neco.2010.03-09-983. URL https://doi.org/10.1162/

neco.2010.03-09-983. PMID: 20141473.

[88] W. Huggins, P. Patel, K. B. Whaley, and E. Miles Stoudenmire.
Towards Quantum Machine Learning with Tensor Networks.
ArXiv e-prints, March 2018.

[89] Yoav Levine, David Yakira, Nadav Cohen, and Amnon Shashua.
Deep Learning and Quantum Entanglement: Fundamental
Connections with Implications to Network Design. 2017. URL
http://arxiv.org/abs/1704.01552.

[90] A. Cichocki, A-H. Phan, Q. Zhao, N. Lee, I. V. Oseledets,
M. Sugiyama, and D. Mandic. Tensor Networks for Dimen-
sionality Reduction and Large-Scale Optimizations. Part 2 Ap-
plications and Future Perspectives. arXiv, 2017. doi: 10.1561/
2200000067. URL http://arxiv.org/abs/1708.09165.

55

http://arxiv.org/abs/1706.07561
http://arxiv.org/abs/1706.07561
http://arxiv.org/abs/1711.09268
http://arxiv.org/abs/1801.03612
http://arxiv.org/abs/1801.03612
http://arxiv.org/abs/1808.09095
http://arxiv.org/abs/1702.08586
http://arxiv.org/abs/1702.08586
http://arxiv.org/abs/1605.05775
http://proceedings.mlr.press/v20/bailly11.html
http://proceedings.mlr.press/v20/bailly11.html
https://doi.org/10.1162/neco.2010.03-09-983
https://doi.org/10.1162/neco.2010.03-09-983
http://arxiv.org/abs/1704.01552
http://arxiv.org/abs/1708.09165

[91] Scott Aaronson. Read the fine print. Nat. Phys., 11:291–293,
2015. doi: 10.1038/nphys3272. URL http://dx.doi.org/10.

1038/nphys3272.

[92] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Reben-
trost, Nathan Wiebe, and Seth Lloyd. Quantum machine learn-
ing. Nature, 549:195–202, 2017. doi: 10.1038/nature23474. URL
http://dx.doi.org/10.1038/nature23474.

[93] Giacomo Torlai and Roger G. Melko. Neural Decoder for
Topological Codes. Phys. Rev. Lett., 119:030501, 2017. doi:
10.1103/PhysRevLett.119.030501.

[94] Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla,
Matthias Troyer, Roger Melko, and Giuseppe Carleo. Many-
body quantum state tomography with neural networks. arXiv,
2017. URL http://arxiv.org/abs/1703.05334.

[95] Xun Gao, Zhengyu Zhang, and Luming Duan. An efficient
quantum algorithm for generative machine learning. arXiv,
2017. URL http://arxiv.org/abs/1711.02038.

[96] Marcello Benedetti, Delfina Garcia-Pintos, Yunseong Nam, and
Alejandro Perdomo-Ortiz. A generative modeling approach for
benchmarking and training shallow quantum circuits. arXiv,
2018. URL http://arxiv.org/abs/1801.07686.

[97] Marin Bukov, Alexandre G R Day, Dries Sels, Phillip Weinberg,
Anatoli Polkovnikov, and Pankaj Mehta. Reinforcement Learn-
ing in Different Phases of Quantum Control. arXiv, 2017. URL
http://arxiv.org/abs/1705.00565.

[98] Alexey A Melnikov, Hendrik Poulsen, Mario Krenn, Vedran
Dunjko, and Markus Tiersch. Active learning machine learns
to create new quantum experiments. pages 1–6, 2017. doi:
10.1073/pnas.1714936115.

[99] Louis-François Arsenault, O. Anatole von Lilienfeld, and An-
drew J Millis. Machine learning for many-body physics: effi-
cient solution of dynamical mean-field theory. arXiv, 2015. URL
http://arxiv.org/abs/1506.08858.

[100] Louis-François Arsenault, Richard Neuberg, Lauren A Han-
nah, and Andrew J Millis. Projected regression method
for solving Fredholm integral equations arising in the an-
alytic continuation problem of quantum physics. Inverse
Probl., 33:115007, 2017. doi: 10.1088/1361-6420/aa8d93.
URL http://stacks.iop.org/0266-5611/33/i=11/a=115007?

key=crossref.a8698118ad7bdcd7dc901b78e3029959.

56

http://dx.doi.org/10.1038/nphys3272
http://dx.doi.org/10.1038/nphys3272
http://dx.doi.org/10.1038/nature23474
http://arxiv.org/abs/1703.05334
http://arxiv.org/abs/1711.02038
http://arxiv.org/abs/1801.07686
http://arxiv.org/abs/1705.00565
http://arxiv.org/abs/1506.08858
http://stacks.iop.org/0266-5611/33/i=11/a=115007?key=crossref.a8698118ad7bdcd7dc901b78e3029959
http://stacks.iop.org/0266-5611/33/i=11/a=115007?key=crossref.a8698118ad7bdcd7dc901b78e3029959

[101] Erin Ledell, Prabhat Dmitry, Yu Zubarev, Brian Austin, and
William A Lester. Classification of nodal pockets in many-
electron wave functions via machine learning. J Math Chem,
2012. doi: 10.1007/s10910-012-0019-5.

[102] Yuto Mori, Kouji Kashiwa, and Akira Ohnishi. Application of
neural network to sign problem via path optimization method.
2017. URL http://arxiv.org/abs/1709.03208.

[103] Andrei Alexandru, Paulo Bedaque, Henry Lamm, and Scott
Lawrence. Finite-Density monte carlo calculations on Sign-
Optimized manifolds. 2018. URL http://arxiv.org/abs/

1804.00697.

[104] Deniz Yuret. Knet : beginning deep learning with 100 lines of
Julia. (Nips), 2016.

[105] Miguel A Carreira-Perpinan and Geoffrey E Hinton. On con-
trastive divergence learning. In Aistats, volume 10, pages
33–40, 2005. URL https://pdfs.semanticscholar.org/39eb/

fbb53b041b97332cd351886749c0395037fb.pdf#page=42.

[106] Sandro Sorella. Variational monte carlo and markov chains for
computational physics. In Strongly Correlated Systems, pages
207–236. Springer, 2013.

[107] Pedro Domingos. The master algorithm. Basic Books, 2015.

[108] Christopher M Bishop. Neural networks for pattern recognition.
Oxford university press, 1995.

[109] Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre G.R.
Day, Clint Richardson, Charles K. Fisher, and David J. Schwab.
A high-bias, low-variance introduction to machine learning for
physicists. URL http://arxiv.org/abs/1803.08823.

57

http://arxiv.org/abs/1709.03208
http://arxiv.org/abs/1804.00697
http://arxiv.org/abs/1804.00697
https://pdfs.semanticscholar.org/39eb/fbb53b041b97332cd351886749c0395037fb.pdf#page=42
https://pdfs.semanticscholar.org/39eb/fbb53b041b97332cd351886749c0395037fb.pdf#page=42
http://arxiv.org/abs/1803.08823

	Introduction
	Discriminative Learning
	Data Representation
	Model: Artificial Neural Networks
	Cost Function
	Optimization
	Back Propagation
	Gradient Descend

	Understanding, Visualization and Applications Beyond Classification

	Generative Modeling
	Unsupervised Probabilistic Modeling
	Generative Model Zoo
	Boltzmann Machines
	Autoregressive Models
	Normalizing Flow
	Variational Autoencoders
	Tensor Networks
	Generative Adversarial Networks

	Summary

	Applications to Quantum Many-Body Physics and More
	Material and Chemistry Discoveries
	Density Functional Theory
	``Phase'' Recognition
	Variational Ansatz
	Renormalization Group
	Monte Carlo Update Proposals
	Tensor Networks
	Quantum Machine Leanring
	Miscellaneous

	Hands on session
	Computation Graph and Back Propagation
	Deep Learning Libraries
	Generative Modeling using Normalizing Flows
	Restricted Boltzmann Machine for Image Restoration
	Neural Network as a Quantum Wave Function Ansatz

	Challenges Ahead
	Resources
	BIBLIOGRAPHY

