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Discriminative AI is not enough
14.6. Generating images by inverting CNNs * 493

(a) (b) (c)

Figure 14.37: Illustration of DeepDream. The CNN is an Inception classifier trained on ImageNet. (a)
Starting image of an Aurelia aurita (also called moon jelly). (b) Image generated after 10 iterations. (c)
Image generated after 50 iterations. From https: // en. wikipedia. org/ wiki/ DeepDream . Used with kind
permission of Wikipedia author Martin Thoma.

of features in the image. Suppose we are interested in “amplifying” features from layers l 2 L.
We can do this by defining an energy or loss function of the form L(x) =

P
l2L

�
l
(x), where

�
l

=
1

HWC

P
hwc

�
lhwc

(x) is the feature vector for layer l. We can now use gradient descent to
optimize this energy. The resulting process is called DeepDream [MOT15], since the model amplifies
features that were only hinted at in the original image and then creates images with more and more
of them.10

Figure 14.37 shows an example. We start with an image of a jellyfish, which we pass into a CNN
that was trained to classify ImageNet images. After several iterations, we generate some image which
is a hybrid of the input and the kinds of “hallucinations” we saw in Figure 14.33; these hallucinations
involve dog parts, since ImageNet has so many kinds of dogs in its label set. See [Tho16] for details,
and https://deepdreamgenerator.com for a fun web-based demo.

14.6.5 Neural style transfer

The DeepDream system in Figure 14.37 shows one way that CNNs can be used to create “art”.
However, it is rather creepy. In this section, we discuss a related approach that gives the user more
control. In particular, the user has to specify a reference “style image” xs and “content image” xc.
The system will then try to generate a new image x that “re-renders” xc in the style of xs. This is
called neural style transfer, and is illustrated in Figure 14.38 and Figure 14.39. This technique
was first proposed in [GEB16], and there are now many papers on this topic; see [Jin+17] for a recent
review.

14.6.5.1 How it works

Style transfer works by optimizing the following energy function:

L(x|xs, xc) = �TV LTV(x) + �cLcontent(x, xc) + �sLstyle(x, xs) (14.33)

See Figure 14.40 for a high level illustration.

10. The method was originally called Inceptionism, since it uses the inception CNN (Section 14.3.3).

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

Deepdream: http://googleresearch.blogspot.ch/2015/06/inceptionism-going-deeper-into-neural.html
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Bayes rule

p(X |y) ∝ p(X)p(y |X)
posterior prior likelihood

Forward predictionInverse design



Probability theory 101

Conditional probability

Joint probability

p(y |X)

p(X, y)

p(X, y) = p(y |X)p(X)

p(X) = ∑
y

p(X, y)

Product rule

Sum rule
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Mamixmum likelihood estimation Variational free energy

Statistical physicsGenerative modeling

“learn from data” “learn from energy”

F = 𝔼
X∼p(X)

[E(X) + kBT ln p(X)]

Two sides of the same coin

𝕂𝕃(data ∥ p) 𝕂𝕃(p ∥ e−E/kBT)

ℒ = − 𝔼X∼data [ln p(X)]

vs



𝕂𝕃(π ∥ p) ≡ ∑
X

π(X)[ln π(X) − ln p(X)]

𝕂𝕃(π ∥ p) ≥ 0

𝕂𝕃(π ∥ p) = 0 ⟺ π(X) = p(X)

𝕂𝕃(π ∥ p) ≠ 𝕂𝕃(p ∥ π)

Kullback–Leibler divergence



π(X) ∝ ∑
d∈dataset

δ(X − d)

min
θ

𝕂𝕃(π ∥ pθ) ⟺ min
θ

{𝔼X∼dataset [−ln pθ(X)]}

Learn from data

Maximum likelihood estimationtarget model

The lower bound is the entropy of the dataset: complete memorization



Learn from Energy 

π(X) ∝ e−E/kBT

min
θ

𝕂𝕃(pθ ∥ π) ⟺ min
θ { 𝔼

X∼pθ(X)
[E(X) + kBT ln pθ(X)]}

Variational free energytargetmodel

The lower bound is the true free energy: exact solution



Mode covering

min
θ

𝕂𝕃(data ∥ pθ)

data

Goodfellow et al, Deep Learning

pθ

e−E/kBT

Mode seeking

min
θ

𝕂𝕃(pθ ∥ e−E/kBT)

pθ

Maximum likelihood estimation Variational free energy

Forward KL or Reverse KL ?

Failure mode: local minimaFailure mode: hallucination



2.D applications 47

Figure 2.D.1: Example application of a VAE in [Gómez-Bombarelli et al.,
2016]: design of new molecules with desired chemical properties. (a) A latent
continuous representation z of molecules is learned on a large dataset of
molecules. (b) This continuous representation enables gradient-based search
of new molecules that maximizes some chosen desired chemical property
given by objective function f (z).
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Figure 2.D.1: Example application of a VAE in [Gómez-Bombarelli et al.,
2016]: design of new molecules with desired chemical properties. (a) A latent
continuous representation z of molecules is learned on a large dataset of
molecules. (b) This continuous representation enables gradient-based search
of new molecules that maximizes some chosen desired chemical property
given by objective function f (z).
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.

21A. Georges et al.: Dynamical mean-field theory of . . .
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�
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�
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Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q
⇣
x(0···T )

⌘
. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p
⇣
x(0···T )

⌘
. An identity-covariance

Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, fµ

⇣
x(t), t

⌘
� x(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which
uses a Markov chain which slowly converts one distribu-
tion into another to compute a ratio of normalizing con-
stants. In (Burda et al., 2014) it is shown that AIS can also
be performed using the reverse rather than forward trajec-
tory. Langevin dynamics (Langevin, 1908), which are the
stochastic realization of the Fokker-Planck equation, show
how to define a Gaussian diffusion process which has any
target distribution as its equilibrium. In (Suykens & Vande-
walle, 1995) the Fokker-Planck equation is used to perform
stochastic optimization. Finally, the Kolmogorov forward
and backward equations (Feller, 1949) show that for many
forward diffusion processes, the reverse diffusion processes
can be described using the same functional form.

2. Algorithm
Our goal is to define a forward (or inference) diffusion pro-
cess which converts any complex data distribution into a
simple, tractable, distribution, and then learn a finite-time
reversal of this diffusion process which defines our gener-
ative model distribution (See Figure 1). We first describe
the forward, inference diffusion process. We then show

how the reverse, generative diffusion process can be trained
and used to evaluate probabilities. We also derive entropy
bounds for the reverse process, and show how the learned
distributions can be multiplied by any second distribution
(e.g. as would be done to compute a posterior when in-
painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
�
x(0)

�
. The data distribu-

tion is gradually converted into a well behaved (analyti-
cally tractable) distribution ⇡ (y) by repeated application
of a Markov diffusion kernel T⇡ (y|y0;�) for ⇡ (y), where
� is the diffusion rate,

⇡ (y) =

Z
dy0

T⇡ (y|y0;�)⇡ (y0) (1)

q

⇣
x(t)|x(t�1)

⌘
= T⇡

⇣
x(t)|x(t�1);�t

⌘
. (2)
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Flow 
Matching

(a) Linear interpolation

Xt = tX1 + (1� t)X0

(b) Rectified flow Zt

induced by (X0, X1)

(c) Linear interpolation

Zt = tZ1 + (1� t)Z0

(d) Rectified flow Z0
t

induced by (Z0, Z1)

Figure 2: (a) Linear interpolation of data input (X0, X1) ⇠ ⇡0 ⇥ ⇡1. (b) The rectified flow Zt induced by (X0, X1);
the trajectories are “rewired” at the intersection points to avoid the crossing. (c) The linear interpolation of the end
points (Z0, Z1) of flow Zt. (d) The rectified flow induced from (Z0, Z1), which follows straight paths.

Empirically, rectified flow can yield high-quality results for image generation when simulated with a very
few number of Euler steps (see Figure 1, top row). Moreover, with just one step of reflow, the flow becomes
nearly straight and hence yield good results with a single Euler discretization step (Figure 1, the second
row). This substantially improves over the standard denoising diffusion methods. Quantitatively, we claim a
state-of-the-art result of FID (4.85) and recall (0.51) on CIFAR10 for one-step fast diffusion/flow models [5,
48, 91, 99, 47]. The same algorithm also achieves superb result on domain transfer tasks such as image-to-
image translation (see the bottom two rows of Figure 1) and transfer learning.

2 Method

We provide a quick overview of the method in Section 2.1, followed with some discussion and remarks in
Section 2.2. We introduce a nonlinear extension of our method in Section 2.3, with which we clarify the
connection and advantages of our method with the method of probability flow ODEs [73] and DDIM [70].

2.1 Overview

Rectified flow Given empirical observations of X0 ⇠ ⇡0, X1 ⇠ ⇡1, the rectified flow induced from
(X0, X1) is an ordinary differentiable model (ODE) on time t 2 [0, 1],

dZt = v(Zt, t)dt,

which converts Z0 from ⇡0 to a Z1 following ⇡1. The drift force v : Rd ! Rd is set to drive the flow to
follow the direction (X1 �X0) of the linear path pointing from X0 to X1 as much as possible, by solving a
simple least squares regression problem:

min
v

Z 1

0
E
h��(X1 �X0)� v

�
Xt, t

���2
i
dt, with Xt = tX1 + (1� t)X0, (1)

where Xt is the linear interpolation of X0 and X1. Naviely, Xt follows the ODE of dXt = (X1 �X0)dt,
which is non-causal (or anticipating) as the update of Xt requires the information of the final point X1. By
fitting the drift v with X1 � X0, the rectified flow causalizes the paths of linear interpolation Xt, yielding
an ODE flow that can be simulated without seeing the future.

In practice, we parameterize v with a neural network or other nonlinear models and solve (1) with any off-
the-shelf stochastic optimizer, such as stochastic gradient descent, with empirical draws of (X0, X1). See

4

∂p(X, t)
∂t

+ ∇ ⋅ [p(X, t)v] = 0

Leverage the power of modern generative models for science

https://arxiv.org/abs/1610.02415
https://arxiv.org/abs/1802.02840
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ABSTRACT

We revisit the challenging problem of training Gaussian-Bernoulli restricted
Boltzmann machines (GRBMs), introducing two innovations. We propose a novel
Gibbs-Langevin sampling algorithm that outperforms existing methods like Gibbs
sampling. We propose a modified contrastive divergence (CD) algorithm so that
one can generate images with GRBMs starting from noise. This enables direct
comparison of GRBMs with deep generative models, improving evaluation pro-
tocols in the RBM literature. Moreover, we show that modified CD and gradient
clipping are enough to robustly train GRBMs with large learning rates, thus re-
moving the necessity of various tricks in the literature. Experiments on Gaussian
Mixtures, MNIST, FashionMNIST, and CelebA show GRBMs can generate good
samples, despite their single-hidden-layer architecture. Our code is released at:
https://github.com/lrjconan/GRBM

1 INTRODUCTION

Restricted Boltzmann machines (RBMs) (Smolensky, 1986; Freund & Haussler, 1991; Hinton,
2002) are energy-based generative models with stochastic binary units. A variant of Boltzmann
machines (Ackley et al., 1985), they have a bipartite graphical structure that enables efficient proba-
bilistic inference, and they can be stacked to form deep belief networks (DBNs) (Hinton & Salakhut-
dinov, 2006; Bengio et al., 2006; Hinton et al., 2006). Gaussian-Bernoulli RBMs (GRBMs) (Welling
et al., 2004; Hinton & Salakhutdinov, 2006) extend RBMs to model continuous data by replacing
the binary visible units of the RBM with Gaussian random variables.

GRBMs remain challenging to learn, however, despite many proposed modifications to the model
or training algorithm. For instance, Lee et al. (2007) add a regularization term to encourage sparsely
activated binary hidden units. Krizhevsky et al. (2009) attribute the difficulties in learning to high-
frequency noise present in natural images. Factorized high-order terms were introduced in (Ranzato
& Hinton, 2010; Ranzato et al., 2010) to allow GRBMs to explicitly learn the covariance structure
among pixels. Nair & Hinton (2010) suggest that binary hidden units are problematic, and proposed
model variants with real-valued hidden units. Cho et al. (2011a; 2013) advocate the use of parallel
tempering sampling (Earl & Deem, 2005), adaptive learning rate, and enhanced gradient (Cho et al.,
2011b) to improve GRBM learning. Melchior et al. (2017) conclude that difficulties in GRBM
training are due to training algorithms rather than the model itself; they advocate the use of gradient
clipping, specialized weight initialization, and contrastive divergence (CD) (Hinton, 2002) rather
than persistent CD (Tieleman, 2008). Upadhya & Sastry (2021) propose a stochastic difference of
convex functions programming (S-DCP) algorithm to replace CD in training GRBMs.

An important motivation for seeking to improve GRBM learning is so that a GRBM can be used to
convert real-valued data to stochastic binary data. This would make it easy for researchers to explore
novel ways of implementing stochastic binary Boltzmann machines to model real-valued data. To
that end, we propose improved GRBM learning methods for image data. Specifically,

• We propose a hybrid Gibbs-Langevin sampling algorithm that outperforms predominant
use of Gibbs sampling. To the best of our knowledge this is the first use of Langevin
sampling for GRBM training (with or without Metropolis adjustment).

⇤Work done partially as a visiting faculty researcher at Google Brain.
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The difficulty of normalization
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360 29 — Monte Carlo Methods

where Z =
∫
dxdy P ∗(x) is the volume of the lake. You are provided with a

boat, a satellite navigation system, and a plumbline. Using the navigator, you
can take your boat to any desired location x on the map; using the plumbline
you can measure P ∗(x) at that point. You can also measure the plankton
concentration there.

Problem 1 is to draw 1 cm3 water samples at random from the lake, in
such a way that each sample is equally likely to come from any point within
the lake. Problem 2 is to find the average plankton concentration.

These are difficult problems to solve because at the outset we know nothing
about the depth P ∗(x). Perhaps much of the volume of the lake is contained

Figure 29.3. A slice through a lake
that includes some canyons.

in narrow, deep underwater canyons (figure 29.3), in which case, to correctly
sample from the lake and correctly estimate Φ our method must implicitly
discover the canyons and find their volume relative to the rest of the lake.
Difficult problems, yes; nevertheless, we’ll see that clever Monte Carlo methods
can solve them.

Uniform sampling

Having accepted that we cannot exhaustively visit every location x in the
state space, we might consider trying to solve the second problem (estimating
the expectation of a function φ(x)) by drawing random samples {x(r)}R

r=1

uniformly from the state space and evaluating P ∗(x) at those points. Then
we could introduce a normalizing constant ZR, defined by

ZR =
R∑

r=1

P ∗(x(r)), (29.16)

and estimate Φ =
∫

dNx φ(x)P (x) by

Φ̂ =
R∑

r=1

φ(x(r))
P ∗(x(r))

ZR
. (29.17)

Is anything wrong with this strategy? Well, it depends on the functions φ(x)
and P ∗(x). Let us assume that φ(x) is a benign, smoothly varying function
and concentrate on the nature of P ∗(x). As we learnt in Chapter 4, a high-
dimensional distribution is often concentrated in a small region of the state
space known as its typical set T , whose volume is given by |T | ≃ 2H(X), where
H(X) is the entropy of the probability distribution P (x). If almost all the
probability mass is located in the typical set and φ(x) is a benign function,
the value of Φ =

∫
dNx φ(x)P (x) will be principally determined by the values

that φ(x) takes on in the typical set. So uniform sampling will only stand
a chance of giving a good estimate of Φ if we make the number of samples
R sufficiently large that we are likely to hit the typical set at least once or
twice. So, how many samples are required? Let us take the case of the Ising
model again. (Strictly, the Ising model may not be a good example, since it
doesn’t necessarily have a typical set, as defined in Chapter 4; the definition
of a typical set was that all states had log probability close to the entropy,
which for an Ising model would mean that the energy is very close to the
mean energy; but in the vicinity of phase transitions, the variance of energy,
also known as the heat capacity, may diverge, which means that the energy
of a random state is not necessarily expected to be very close to the mean
energy.) The total size of the state space is 2N states, and the typical set has
size 2H . So each sample has a chance of 2H/2N of falling in the typical set.

“Intractable” partition function   
appears widely in machine learning and statistical physics (entropy and free energy calculation)

Z

Z = ∑
X

e−E(X)



4 Monte Carlo methods

dom numbers differed, i.e. the pebbles landed at different locations in
each run.

We shall return later to this table when computing the statistical er-
rors to be expected from Monte Carlo calculations. In the meantime, we
intend to show that the Monte Carlo method is a powerful approach for
the calculation of integrals (in mathematics, physics, and other fields).
But let us not get carried away: none of the results in Table 1.1 has
fallen within the tight error bounds already known since Archimedes
from comparing a circle with regular n-gons:

3.141 ≃ 3
10
71

< < 3
1
7
≃ 3.143. (1.1)

The children’s value for is very approximate, but improves and finally
becomes exact in the limit of an infinite number of trials. This is Jacob
Bernoulli’s weak law of large numbers (see Subsection 1.3.2). The chil-
dren also adopt a very sensible rule: they decide on the total number of
throws before starting the game. The other day, in a game of “N=4000”,
they had at some point 355 hits for 452 trials—this gives a very nice ap-

355
452

=
355

4 × 113
= 1

4 × 3.14159292 . . .

/4 = 1
4 × 3.14159265 . . .

proximation to the book value of . Without hesitation, they went on
until the 4000th pebble was cast. They understand that one must not
stop a stochastic calculation simply because the result is just right, nor
should one continue to play because the result is not close enough to
what we think the answer should be.

1.1.2 Markov-chain sampling

In Monte Carlo, it is not only children who play at pebble games. We
can imagine that adults, too, may play their own version at the local
heliport, in the late evenings. After stowing away all their helicopters,
they wander around the square-shaped landing pad (Fig. 1.2), which
looks just like the area in the children’s game, only bigger.

Fig. 1.2 Adults computing the number at the Monte Carlo heliport.

X ∼ p(X)
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Direct sampling is generally difficult in high-dimensional space

The difficulty of sampling
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The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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Deep Unsupervised Learning using Nonequilibrium Thermodynamics

t = 0 t = T
2 t = T

q
�
x(0···T )

�

p
�
x(0···T )

�

fµ
�
x(t)

, t
�
� x(t)

Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q
⇣
x(0···T )

⌘
. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p
⇣
x(0···T )

⌘
. An identity-covariance

Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, fµ

⇣
x(t), t

⌘
� x(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which
uses a Markov chain which slowly converts one distribu-
tion into another to compute a ratio of normalizing con-
stants. In (Burda et al., 2014) it is shown that AIS can also
be performed using the reverse rather than forward trajec-
tory. Langevin dynamics (Langevin, 1908), which are the
stochastic realization of the Fokker-Planck equation, show
how to define a Gaussian diffusion process which has any
target distribution as its equilibrium. In (Suykens & Vande-
walle, 1995) the Fokker-Planck equation is used to perform
stochastic optimization. Finally, the Kolmogorov forward
and backward equations (Feller, 1949) show that for many
forward diffusion processes, the reverse diffusion processes
can be described using the same functional form.

2. Algorithm
Our goal is to define a forward (or inference) diffusion pro-
cess which converts any complex data distribution into a
simple, tractable, distribution, and then learn a finite-time
reversal of this diffusion process which defines our gener-
ative model distribution (See Figure 1). We first describe
the forward, inference diffusion process. We then show

how the reverse, generative diffusion process can be trained
and used to evaluate probabilities. We also derive entropy
bounds for the reverse process, and show how the learned
distributions can be multiplied by any second distribution
(e.g. as would be done to compute a posterior when in-
painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
�
x(0)

�
. The data distribu-

tion is gradually converted into a well behaved (analyti-
cally tractable) distribution ⇡ (y) by repeated application
of a Markov diffusion kernel T⇡ (y|y0;�) for ⇡ (y), where
� is the diffusion rate,

⇡ (y) =

Z
dy0

T⇡ (y|y0;�)⇡ (y0) (1)

q

⇣
x(t)|x(t�1)

⌘
= T⇡

⇣
x(t)|x(t�1);�t

⌘
. (2)

p(X)
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p(X) = p(x1)p(x2 |x1)p(x3 |x1, x2)⋯

Autoregressive model

Autoregressive model

“… the murderer is ___”
p(_ | . . . )

Normalization Sampling 

∑
x1

p(x1)∑
x2

p(x2 |x1)∑
x3

p(x3 |x1, x2)⋯
x1 ∼ p(x1)
x2 ∼ p(x2 |x1)

⋮



Implementation: autoregressive masks
Masked Autoencoder Germain et al, 1502.03509

Solving Quantum Statistical Mechanics with
Variational Autoregressive Networks and Quantum Circuits

Jin-Guo Liu,1 Liang Mao,2 Pan Zhang,3 and Lei Wang1, 4

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Department of Physics, Tsinghua University, Beijing 100084, China

3Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
4Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

We extend the ability of unitary quantum circuits by interfacing it with classical autoregressive neural net-
works. The combined model parametrizes a variational density matrix as a classical mixture of quantum pure
states, where the autoregressive network generates bitstring samples as input states to the quantum circuit. We
devise an e�cient variational algorithm to jointly optimize the classical neural network and the quantum circuit
for quantum statistical mechanics problems. One can obtain thermal observables such as the variational free
energy, entropy, and specific heat. As a by product, the algorithm also gives access to low energy excitation
states. We demonstrate applications to thermal properties and excitation spectra of the quantum Ising model
with resources that are feasible on near-term quantum computers.

Introduction– Quantum statistical mechanics poses two
sets of challenges to classical computational approaches. First
of all, classical algorithms generally encounter the di�culties
of diagonalzing exponentially large Hamiltonians or the sign
problem originates from the quantum nature of the problem.
Moreover, even on the eigenbasis one still faces intractable
partition function which involves summation of exponentially
large number of terms.

A straightforward way to address these di�culties is to di-
rectly realize the physical Hamiltonian on analog quantum de-
vices and study the system at thermal equilibrium, for exam-
ple, see Refs. [1, 2]. On the other hand, a potentially more
general approach would be to study thermal properties with a
universal gate model quantum computer. However, it calls for
algorithmic innovations to prepare thermal quantum states on
quantum circuits given their unitary nature. There have been
quantum algorithms to prepare thermal Gibbs states on quan-
tum computers [3–7]. Unfortunately, these approaches may
not be feasible on near-term noisy quantum computers with
limited circuit depth. While variational quantum algorithm
for preparing thermofield double states [8, 9] requires addi-
tional quantum resources such as ancilla qubits, as well as
measuring and extrapolating Renyi entropies. The quantum
imaginary-time evolution [10] relies on exponentially di�cult
tomography on a growing number of qubits and synthesize of
general multi-qubit unitaries.

Recently, Refs. [11, 12] proposed practical approaches to
prepare the thermal density matrix as a classical mixture of
quantum pure states in the eigenbasis. In these proposals,
the classical probabilistic model is either assumed to be fac-
torized or expressed as an energy-based model [13]. How-
ever, the factorized distribution is generally a crude approx-
imation for the Gibbs distribution in the eigenbasis. While
the energy-based model still faces the problem of intractable
partition function, which inhibits e�cient and unbiased sam-
pling, learning, or even evaluating the model likelihood.

Modern probabilistic generative models o↵er solutions to
the intractable partition function problem [15] since the goals
of generative modeling are exactly to represent, learn and

U�

(a)

p�

(b)

�x1
�x2
�x3

x1
x2
x3

Figure 1. (a) The autoregressive network shown in blue is a classi-
cal probabilistic model that parametrizes a joint distribution in the
form of Eq. (2). The model generates bit string as easy to prepare
input product states to the quantum circuit. The neural network and
the circuit produce a parametrized density matrix Eq. (1). (b) An
implementation of the autoregressive model p� using the masked au-
toencoder [14]. The neural network maps bit strings to real-valued
outputs which parametrizes the conditional probabilities in Eq. (2).

sample from complex high-dimensional probability distribu-
tions e�ciently. Popular generative models include autore-
gressive models [14, 16, 17], variational autoencoders [18],
generative adversarial networks [19], and flow-based mod-
els [20]. For the purpose of this study, the autoregressive mod-
els stand out since they support unbiased gradient estimator
for discrete variables, direct sampling, and tractable likelihood
at the same time. The autoregressive models have reached
state-of-the-art performance in modeling realistic data and
found real-world applications in synthesizing natural speech
and images [16, 17]. Variational optimization of the autore-
gressive network has been used for classical statistical physics
problems [21, 22]. Quantum generalization of the network
was also employed for ground state of quantum many-body
systems [23].

In this paper, we combine quantum circuits with autore-
gressive probabilistic models to solve problems in quantum
statistical mechanics. The resulting model allows one to per-
form variational free energy over density matrices e�ciently.
We demonstrate applications of the approach to thermal prop-
erties and excitations of quantum lattice model.
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Bit strings Probabilities
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Mask convolutional kernel Mask self-attention matrix
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1 1 1 1 1

1 1 0 0 0

0 0 0

0 0 0

0

0

0

0

Blind spot

Horizontal stack

Vertical stack

Figure 1: Left: A visualization of the PixelCNN that maps a neighborhood of pixels to prediction for
the next pixel. To generate pixel xi the model can only condition on the previously generated pixels
x1, . . . xi�1. Middle: an example matrix that is used to mask the 5x5 filters to make sure the model
cannot read pixels below (or strictly to the right) of the current pixel to make its predictions. Right:
Top: PixelCNNs have a blind spot in the receptive field that can not be used to make predictions.
Bottom: Two convolutional stacks (blue and purple) allow to capture the whole receptive field.

combine the strengths of both models by introducing a gated variant of PixelCNN (Gated PixelCNN)
that matches the log-likelihood of PixelRNN on both CIFAR and ImageNet, while requiring less than
half the training time.

We also introduce a conditional variant of the Gated PixelCNN (Conditional PixelCNN) that allows
us to model the complex conditional distributions of natural images given a latent vector embedding.
We show that a single Conditional PixelCNN model can be used to generate images from diverse
classes such as dogs, lawn mowers and coral reefs, by simply conditioning on a one-hot encoding
of the class. Similarly one can use embeddings that capture high level information of an image to
generate a large variety of images with similar features. This gives us insight into the invariances
encoded in the embeddings — e.g., we can generate different poses of the same person based on a
single image. The same framework can also be used to analyse and interpret different layers and
activations in deep neural networks.

2 Gated PixelCNN

PixelCNNs (and PixelRNNs) [30] model the joint distribution of pixels over an image x as the
following product of conditional distributions, where xi is a single pixel:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1). (1)

The ordering of the pixel dependencies is in raster scan order: row by row and pixel by pixel within
every row. Every pixel therefore depends on all the pixels above and to the left of it, and not on any
of other pixels. The dependency field of a pixel is visualized in Figure 1 (left).

A similar setup has been used by other autoregressive models such as NADE [14] and RIDE [26].
The difference lies in the way the conditional distributions p(xi|x1, ..., xi�1) are constructed. In
PixelCNN every conditional distribution is modelled by a convolutional neural network. To make
sure the CNN can only use information about pixels above and to the left of the current pixel, the
filters of the convolution are masked as shown in Figure 1 (middle). For each pixel the three colour
channels (R, G, B) are modelled successively, with B conditioned on (R, G), and G conditioned on R.
This is achieved by splitting the feature maps at every layer of the network into three and adjusting the
centre values of the mask tensors. The 256 possible values for each colour channel are then modelled
using a softmax.

PixelCNN typically consists of a stack of masked convolutional layers that takes an N x N x 3 image
as input and produces N x N x 3 x 256 predictions as output. The use of convolutions allows the
predictions for all the pixels to be made in parallel during training (all conditional distributions from
Equation 1). During sampling the predictions are sequential: every time a pixel is predicted, it is

2

PixelCNN, van den Oord et al, 1601.06759 Causal transformer, Vaswani et al 1706.03762

Implementation: autoregressive masks
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The autoregressive transformer

Masked attention matrix => lower triangular Jacobian matrix => autoregressive model
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attention weights

Self-attention Multi-layer perceptrons
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Electron  
coordinates

Quasi-particle  
coordinates

zi = xi+∑
j≠i

η( |xi − xj | ) (xj − xi)

Feynman & Cohen 1956 
wavefunction for liquid Helium

Feynman’s backflow as an attention layer

Each particle attends to its surrounding 
and dresses up as a quasi-particle

c.f. Lu et al, 1906.02762  transformer as convection-diffusion multi-particle dynamics



GPT2 in 60 lines of numpy 
 https://jaykmody.com/blog/gpt-from-scratch



175B in total 
Independent of the context length (4096) and vocabulary size (50257, almost)  

3Blue1Brown, https://youtu.be/9-Jl0dxWQs8?t=940

Params count in GPT3 Brown et al, 2005.14165

χ × 4χ × 2χ × χ × 4

χ = 12288



An MPS analog

d = 50257

L = 4096

χ = 12288

Vocabulary

Contex length

Model size



Carlini et al, Stealing Part of a Production Language Model, 2403.06634
Finlayson et al, Logits of API-Protected LLMs Leak Proprietary Information, ， 2403.09539

Aside: SVD attack

What is  ?χ
If you only have access to -dim logits  

via the LLM API 
d

svd [ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ]

⋮×d

χ < d



Scaling law of the loss function
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute2 used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Performance depends strongly on scale, weakly on model shape: Model performance depends most
strongly on scale, which consists of three factors: the number of model parameters N (excluding embed-
dings), the size of the dataset D, and the amount of compute C used for training. Within reasonable limits,
performance depends very weakly on other architectural hyperparameters such as depth vs. width. (Section
3)

Smooth power laws: Performance has a power-law relationship with each of the three scale factors
N,D,C when not bottlenecked by the other two, with trends spanning more than six orders of magnitude
(see Figure 1). We observe no signs of deviation from these trends on the upper end, though performance
must flatten out eventually before reaching zero loss. (Section 3)

Universality of overfitting: Performance improves predictably as long as we scale up N and D in tandem,
but enters a regime of diminishing returns if either N or D is held fixed while the other increases. The
performance penalty depends predictably on the ratio N0.74/D, meaning that every time we increase the
model size 8x, we only need to increase the data by roughly 5x to avoid a penalty. (Section 4)

Universality of training: Training curves follow predictable power-laws whose parameters are roughly
independent of the model size. By extrapolating the early part of a training curve, we can roughly predict the
loss that would be achieved if we trained for much longer. (Section 5)

Transfer improves with test performance: When we evaluate models on text with a different distribution
than they were trained on, the results are strongly correlated to those on the training validation set with
a roughly constant offset in the loss – in other words, transfer to a different distribution incurs a constant
penalty but otherwise improves roughly in line with performance on the training set. (Section 3.2.2)

Sample efficiency: Large models are more sample-efficient than small models, reaching the same level of
performance with fewer optimization steps (Figure 2) and using fewer data points (Figure 4).

Convergence is inefficient: When working within a fixed compute budget C but without any other restric-
tions on the model size N or available data D, we attain optimal performance by training very large models
and stopping significantly short of convergence (see Figure 3). Maximally compute-efficient training would
therefore be far more sample efficient than one might expect based on training small models to convergence,
with data requirements growing very slowly as D ⇠ C0.27 with training compute. (Section 6)

Optimal batch size: The ideal batch size for training these models is roughly a power of the loss only,
and continues to be determinable by measuring the gradient noise scale [MKAT18]; it is roughly 1-2 million
tokens at convergence for the largest models we can train. (Section 5.1)

Taken together, these results show that language modeling performance improves smoothly and predictably
as we appropriately scale up model size, data, and compute. We expect that larger language models will
perform better and be more sample efficient than current models.

3

Kaplan et al, 2001.08361ℒ = 𝔼
X∼dataset

[−ln p(X)]

“Predict resouces needed to sovle increasingly difficult tasks” — Sam McCandlish, Aspen talk ’19
https://sites.google.com/view/phys4ml/home
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2018 2019 2020 2022 20232021

GPT-1 GPT-2 GPT-3  GPT-4 GPT-3.5

Scaling Laws for Neural Language Models, Kaplan et al, 2001.08361
Scaling Laws for Autoregressive Generative Modeling, Henighan et al, 2010.14701

A visionary discussion section



Emergent abilities: more is different
Wei et al, 2206.07682

Published in Transactions on Machine Learning Research (08/2022)

1018 1020 1022 1024

0

10

20

30

40

50
A

cc
ur

ac
y

(%
)

(A) Mod. arithmetic

1018 1020 1022 1024

0

10

20

30

40

50

B
LE

U
(%

)

(B) IPA transliterate

1018 1020 1022 1024

0

10

20

30

40

50

E
xa

ct
m

at
ch

(%
)

(C) Word unscramble

LaMDA GPT-3 Gopher Chinchilla PaLM Random

1018 1020 1022 1024

0

10

20

30

40

50

E
xa

ct
m

at
ch

(%
)

(D) Persian QA

1020 1022 1024
0

10
20
30
40
50
60
70

A
cc

ur
ac

y
(%

)

(E) TruthfulQA

1020 1022 1024
0

10
20
30
40
50
60
70

Model scale (training FLOPs)

A
cc

ur
ac

y
(%

)

(F) Grounded mappings

1020 1022 1024
0

10
20
30
40
50
60
70

A
cc

ur
ac

y
(%

)

(G) Multi-task NLU

1020 1022 1024
0

10
20
30
40
50
60
70

A
cc

ur
ac

y
(%

)

(H) Word in context

Figure 2: Eight examples of emergence in the few-shot prompting setting. Each point is a separate model.
The ability to perform a task via few-shot prompting is emergent when a language model achieves random
performance until a certain scale, after which performance significantly increases to well-above random. Note
that models that used more training compute also typically have more parameters—hence, we show an
analogous figure with number of model parameters instead of training FLOPs as the x-axis in Figure 11.
A–D: BIG-Bench (2022), 2-shot. E: Lin et al. (2021) and Rae et al. (2021). F: Patel & Pavlick (2022). G:
Hendrycks et al. (2021a), Rae et al. (2021), and Ho�mann et al. (2022). H: Brown et al. (2020), Ho�mann
et al. (2022), and Chowdhery et al. (2022) on the WiC benchmark (Pilehvar & Camacho-Collados, 2019).

Word in Context. Finally, Figure 2H shows the Word in Context (WiC) benchmark (Pilehvar & Camacho-
Collados, 2019), which is a semantic understanding benchmark. Notably, GPT-3 and Chinchilla fail to
achieve one-shot performance of better than random, even when scaled to their largest model size of ≥5 · 1023

FLOPs. Although these results so far may suggest that scaling alone may not enable models to solve WiC,
above-random performance eventually emerged when PaLM was scaled to 2.5 ·1024 FLOPs (540B parameters),
which was much larger than GPT-3 and Chinchilla.

4 Augmented Prompting Strategies

Although few-shot prompting is perhaps currently the most common way of interacting with large language
models, recent work has proposed several other prompting and finetuning strategies to further augment the
abilities of language models. If a technique shows no improvement or is harmful when compared to the
baseline of not using the technique until applied to a model of a large-enough scale, we also consider the
technique an emergent ability.
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Figure 1: Detailed depiction of a single step of the generation process using two-dimensional toy
data (a). It shows the input and output of our architecture (top row) and steps taken when sampling
the absolute position of a new unplaced fourth atom (bottom row). Starting from the point where two
carbon atoms have been placed, the whole remaining placement process of a real-world C7O2H10

isomer generated by our architecture is documented in (b).

of probabilities of distances d(i+1)j between the new atom position and the positions of all preceding
atoms. Our architecture learns these distributions over distances instead of working with absolute
positions directly. It adheres to the invariance of molecules to rotation and translation by design as the
modeled distributions only depend on nuclear charges Z1, ..., Zi+1 and distances Di of preceding
atoms. This approach improves the scalability of our model as we are able to discretize distances
in one dimension independent from the dimensionality of the underlying positions. Using Eq. 2,
we are able to calculate the probability of absolute atom positions. While the generation process is
sequential, the model can be trained efficiently in parallel, where the distances between atoms in the
training data can be used directly as targets.

3 Adapted SchNet architecture

The feature extraction of our autoregressive architecture is shown in Figure 2. It is similar to
SchNet [24, 25] for the prediction of molecular properties. The embedding characterizing the atom
types is split into feature vector x0

i+1 of the new atom i + 1 and feature vectors (x0
1, ...,x

0
i ) of all

preceding atoms. Here lays the main difference to the predictive SchNet architecture which always
has access to the complete molecule. In contrast, our architecture works with partial molecular
data, namely the positions r1, ..., ri of already placed atoms, their nuclear charges Z1, ..., Z1, and
the nuclear charge Zi+1 of an unplaced, new atom whose position ri+1 shall be sampled using
the output of our network. The information about already placed atoms is processed just as in
the predictive SchNet model, using interaction blocks to update feature vectors depending on the
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Figure 2. Left: To generate pixel xi one conditions on all the pre-
viously generated pixels left and above of xi. Center: To gen-
erate a pixel in the multi-scale case we can also condition on the
subsampled image pixels (in light blue). Right: Diagram of the
connectivity inside a masked convolution. In the first layer, each
of the RGB channels is connected to previous channels and to the
context, but is not connected to itself. In subsequent layers, the
channels are also connected to themselves.

ply them to large-scale modeling of natural images. The
resulting PixelRNNs are composed of up to twelve, fast
two-dimensional Long Short-Term Memory (LSTM) lay-
ers. These layers use LSTM units in their state (Hochreiter
& Schmidhuber, 1997; Graves & Schmidhuber, 2009) and
adopt a convolution to compute at once all the states along
one of the spatial dimensions of the data. We design two
types of these layers. The first type is the Row LSTM layer
where the convolution is applied along each row; a similar
technique is described in (Stollenga et al., 2015). The sec-
ond type is the Diagonal BiLSTM layer where the convolu-
tion is applied in a novel fashion along the diagonals of the
image. The networks also incorporate residual connections
(He et al., 2015) around LSTM layers; we observe that this
helps with training of the PixelRNN for up to twelve layers
of depth.

We also consider a second, simplified architecture which
shares the same core components as the PixelRNN. We ob-
serve that Convolutional Neural Networks (CNN) can also
be used as sequence model with a fixed dependency range,
by using Masked convolutions. The PixelCNN architec-
ture is a fully convolutional network of fifteen layers that
preserves the spatial resolution of its input throughout the
layers and outputs a conditional distribution at each loca-
tion.

Both PixelRNN and PixelCNN capture the full generality
of pixel inter-dependencies without introducing indepen-
dence assumptions as in e.g., latent variable models. The
dependencies are also maintained between the RGB color
values within each individual pixel. Furthermore, in con-
trast to previous approaches that model the pixels as con-
tinuous values (e.g., Theis & Bethge (2015); Gregor et al.
(2014)), we model the pixels as discrete values using a
multinomial distribution implemented with a simple soft-
max layer. We observe that this approach gives both repre-
sentational and training advantages for our models.

The contributions of the paper are as follows. In Section
3 we design two types of PixelRNNs corresponding to the
two types of LSTM layers; we describe the purely convo-
lutional PixelCNN that is our fastest architecture; and we
design a Multi-Scale version of the PixelRNN. In Section 5
we show the relative benefits of using the discrete softmax
distribution in our models and of adopting residual connec-
tions for the LSTM layers. Next we test the models on
MNIST and on CIFAR-10 and show that they obtain log-
likelihood scores that are considerably better than previous
results. We also provide results for the large-scale Ima-
geNet dataset resized to both 32 ⇥ 32 and 64 ⇥ 64 pixels;
to our knowledge likelihood values from generative models
have not previously been reported on this dataset. Finally,
we give a qualitative evaluation of the samples generated
from the PixelRNNs.

2. Model

Our aim is to estimate a distribution over natural images
that can be used to tractably compute the likelihood of im-
ages and to generate new ones. The network scans the im-
age one row at a time and one pixel at a time within each
row. For each pixel it predicts the conditional distribution
over the possible pixel values given the scanned context.
Figure 2 illustrates this process. The joint distribution over
the image pixels is factorized into a product of conditional
distributions. The parameters used in the predictions are
shared across all pixel positions in the image.

To capture the generation process, Theis & Bethge (2015)
propose to use a two-dimensional LSTM network (Graves
& Schmidhuber, 2009) that starts at the top left pixel and
proceeds towards the bottom right pixel. The advantage of
the LSTM network is that it effectively handles long-range
dependencies that are central to object and scene under-
standing. The two-dimensional structure ensures that the
signals are well propagated both in the left-to-right and top-
to-bottom directions.

In this section we first focus on the form of the distribution,
whereas the next section will be devoted to describing the
architectural innovations inside PixelRNN.

2.1. Generating an Image Pixel by Pixel

The goal is to assign a probability p(x) to each image x
formed of n⇥n pixels. We can write the image x as a one-
dimensional sequence x1, ..., xn2 where pixels are taken
from the image row by row. To estimate the joint distri-
bution p(x) we write it as the product of the conditional
distributions over the pixels:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1) (1)

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1⇥1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)
ln (1 + µ)

,
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“Language” => token sequence  => bitstream => ANYTHING  

Autoregressive model is more than language modeling 



Autoregressive models for images
Reed et al, 1703.03664 

Tian et al, 2404.02905, Li et al, 2502.17437Chen et al, PMLR ’20, Esser et al, 2012.09841

Next pixel (patch) prediction Next scale prediction

What is the suitable 1D ordering of 2D images ?  
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Autoregressive model for images

jpeg is a common lossy compression format for digital images 
1) compute weights on predefined high-and-low frequency patches  
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Demo: Generative model of Sycamore data
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100001111011
100110110111
100110100010
010100011000
010001000000
010101101100
100001111000
100101001001
001000001010

Quantum chip Transformer

Can we fake the measurement of the sycamore quantum circuit by training a transformer?
https://colab.research.google.com/drive/11War0qULkudKT3h2i5J6r_EmA4wFKk0Z?usp=sharing

bitstrings ∼ |Ψ(X) |2
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“an image of beautiful crystals in 16:9” 
pixels ∼ p(pixels | texts)
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Large language model Energy-based structure prediction

target

output

input

tokenization

cross-entropy loss

a

b

repeat until terminating 
condition is true

data_K1Br1

data_K1Br1
_symmetry_space_group_name_H-M 'P-1'
_cell_length_a 4.6143

...
Br Br1 0.5000 0.5000 0.5000 1
\n
\n

Figure 1: a Core concepts in training a Large Language Model of CIF files: A CIF file (left)
is converted into a sequence of symbols, through tokenization. The sequence is processed by
the model, which produces a list of probability distributions over the vocabulary, for each cor-
responding symbol in the input. The resulting predicted probability distributions are evaluated
against the target distributions (which contain the entire probability mass on the correct subse-
quent token), using the cross-entropy loss metric. The target tokens are the input tokens shifted
one spot to the left, as the objective is to predict the next token given a sequence of preceding
tokens. The tokens are categorized as CIF tags (blue), atoms (green), numeric digits (gold), and
punctuation (red). Output tokens (not actually sampled during training) represent the tokens
assigned the highest probability by the model. Underlined tokens represent predicted distribu-
tions assigning a relatively low probability to the correct next token. b Generation of a CIF
file: First, a prompt is constructed by concatenating the symbol data with the desired cell
composition, which is then tokenized and processed by the model. Next, a token is sampled from
the predicted distribution for the upcoming token in the sequence. Finally, the sampled token is
added to the accumulating contents of the CIF file. This procedure continues iteratively until a
predefined terminating condition is met (e.g. two consecutive newline tokens are sampled).
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small forces acting on one side of the salt cube can result in a situation, in which ions with 
identical signs are being directly adjacent. In order to realize this, the displacement has to 
be only one ion diameter (see . Fig.  7.20). Since charges with identical sign repel each 
other, a crack forms at this point and finally the cube falls apart. In mineralogy, the term 
cleavage describes the property how easily a crystal can be cleaved. It also specifies in which 

b

a

       . Fig. 7.18 The crystal 
structure of sodium 
chloride (space group 
Fm m3 ),  here shown as a 

2 × 2 × 2 supercell, in 
which two unit cells are 
shown in each of the 
directions x, y, and z. A 
single unit cell is marked 
in blue in the lower right 
corner. The octahedrally 
surrounded sodium ions 
(at the bottom left) and 
chloride ions (at the top 
right) are also highlighted; 
sodium is white, chloride 
green

       . Fig. 7.19 Very large, well-formed, intergrown halite cubes (ca. 
6.7 × 1.9 × 1.7 cm) (Rob Lavinsky, 7 iRocks. com, CC BY-SA-3.0)

7.3 · Rock Salt: A Simply Complicated Structure and the Miracle of a Site …
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“The biggest lesson that can be read from 70 years of AI research is that 
general methods that leverage computation are ultimately the most effective” 

more physics and symmetriesmore data and compute

—Rich Sutton 2019



We have much less crystal data

Data, compute, and parameters need to scale simultaneously Kaplan et al, 2001.08361
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute2 used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Performance depends strongly on scale, weakly on model shape: Model performance depends most
strongly on scale, which consists of three factors: the number of model parameters N (excluding embed-
dings), the size of the dataset D, and the amount of compute C used for training. Within reasonable limits,
performance depends very weakly on other architectural hyperparameters such as depth vs. width. (Section
3)

Smooth power laws: Performance has a power-law relationship with each of the three scale factors
N,D,C when not bottlenecked by the other two, with trends spanning more than six orders of magnitude
(see Figure 1). We observe no signs of deviation from these trends on the upper end, though performance
must flatten out eventually before reaching zero loss. (Section 3)

Universality of overfitting: Performance improves predictably as long as we scale up N and D in tandem,
but enters a regime of diminishing returns if either N or D is held fixed while the other increases. The
performance penalty depends predictably on the ratio N0.74/D, meaning that every time we increase the
model size 8x, we only need to increase the data by roughly 5x to avoid a penalty. (Section 4)

Universality of training: Training curves follow predictable power-laws whose parameters are roughly
independent of the model size. By extrapolating the early part of a training curve, we can roughly predict the
loss that would be achieved if we trained for much longer. (Section 5)

Transfer improves with test performance: When we evaluate models on text with a different distribution
than they were trained on, the results are strongly correlated to those on the training validation set with
a roughly constant offset in the loss – in other words, transfer to a different distribution incurs a constant
penalty but otherwise improves roughly in line with performance on the training set. (Section 3.2.2)

Sample efficiency: Large models are more sample-efficient than small models, reaching the same level of
performance with fewer optimization steps (Figure 2) and using fewer data points (Figure 4).

Convergence is inefficient: When working within a fixed compute budget C but without any other restric-
tions on the model size N or available data D, we attain optimal performance by training very large models
and stopping significantly short of convergence (see Figure 3). Maximally compute-efficient training would
therefore be far more sample efficient than one might expect based on training small models to convergence,
with data requirements growing very slowly as D ⇠ C0.27 with training compute. (Section 6)

Optimal batch size: The ideal batch size for training these models is roughly a power of the loss only,
and continues to be determinable by measuring the gradient noise scale [MKAT18]; it is roughly 1-2 million
tokens at convergence for the largest models we can train. (Section 5.1)

Taken together, these results show that language modeling performance improves smoothly and predictably
as we appropriately scale up model size, data, and compute. We expect that larger language models will
perform better and be more sample efficient than current models.
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the “superhydride” compound LaH10, although only under a pressure of 170 GPa [82].
Nonetheless, this is the highest critical temperature that has been confirmed so far in a
superconducting material. LaH10 crystallizes in the space group Fm!3m (a = 5.1019(5) Å)
and has a very interesting clathrate-like structure, in which the hydrogen atoms form a
net that is identical with the net of the zeolite framework-type AST. The La atoms occupy
the Wyckoff position 4b (0, 0, 0), and the H atoms the 8c (0.25, 0.25, 0.25) and at the 32f
position (0.125, 0.375, 0.125). The atoms at the 32f position constitute the characteristic H8

cubes present in the structure, with their barycentres at the octahedral voids of the ccp
packing of the La atoms. The La atoms are surrounded by a [46612] polyhedron of 32 H
atoms. The structure of LaH10 is shown in Figure 11.10.

In addition to the renaissance taking place in the field of conventional (type I)
superconductors, however, other classes of materials are also opening up new perspec-
tives. Research is already being carried out on a completely new type of superconduc-
tors, the so-called Kagome superconductors, which, in addition to superconductivity,
exhibit other extraordinary quantum phenomena, such as time-reversal symmetry break-
ing, as recently experimentally demonstrated with the metallic compound KV3Sb5 [83].
This class of material is being considered as a hot candidate for room-temperature
superconductors.

Figure 11.10: Crystal structure of LaH10. The La
atoms, shown as green spheres, are surrounded
by 32 H atoms (represented as bonded orange
sticks) in form of [46612] polyhedra, highlighted in
translucent black.

240 11 Superconductivity

LaH10
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more physics and symmetriesmore data and compute

Not a large language model, nor a potential energy surface

CrystalFormer

“Rhythm”～Wyckoff positions
Nature’s codebook for tokenization

discrete, pre-compression

225-a-La-0-0-0-c-H-1/4-1/4-1/4-f-H-0.375-0.375-0.375-X-5.1-5.1-5.1-90-90-90

the “superhydride” compound LaH10, although only under a pressure of 170 GPa [82].
Nonetheless, this is the highest critical temperature that has been confirmed so far in a
superconducting material. LaH10 crystallizes in the space group Fm!3m (a = 5.1019(5) Å)
and has a very interesting clathrate-like structure, in which the hydrogen atoms form a
net that is identical with the net of the zeolite framework-type AST. The La atoms occupy
the Wyckoff position 4b (0, 0, 0), and the H atoms the 8c (0.25, 0.25, 0.25) and at the 32f
position (0.125, 0.375, 0.125). The atoms at the 32f position constitute the characteristic H8

cubes present in the structure, with their barycentres at the octahedral voids of the ccp
packing of the La atoms. The La atoms are surrounded by a [46612] polyhedron of 32 H
atoms. The structure of LaH10 is shown in Figure 11.10.

In addition to the renaissance taking place in the field of conventional (type I)
superconductors, however, other classes of materials are also opening up new perspec-
tives. Research is already being carried out on a completely new type of superconduc-
tors, the so-called Kagome superconductors, which, in addition to superconductivity,
exhibit other extraordinary quantum phenomena, such as time-reversal symmetry break-
ing, as recently experimentally demonstrated with the metallic compound KV3Sb5 [83].
This class of material is being considered as a hot candidate for room-temperature
superconductors.

Figure 11.10: Crystal structure of LaH10. The La
atoms, shown as green spheres, are surrounded
by 32 H atoms (represented as bonded orange
sticks) in form of [46612] polyhedra, highlighted in
translucent black.

240 11 Superconductivity

deepmodeling/CrystalFormer

Zhendong Cao, Xiaoshan Luo,  
Jian Lv, and LW, 2403.15734



Autoregressive sampling of a crystal

Cs2ZnFe(CN)6



Autoregressive sampling of a crystal

225-a-Fe-0-0-0-b-Zn-1/2-1/2-1/2-c-Cs-1/4-1/4-1/4-e-C-0.18-0-0-e-N-0.29-0-0-X-10.45-10.45-10.45-90-90-90

Cs2ZnFe(CN)6



Esser et al, Taming Transformers for High-Resolution Image Synthesis (VQGAN), 2012.09841

Aside: autoregressive transformer for images

Figure 2. Our approach uses a convolutional VQGAN to learn a codebook of context-rich visual parts, whose composition is subsequently
modeled with an autoregressive transformer architecture. A discrete codebook provides the interface between these architectures and a
patch-based discriminator enables strong compression while retaining high perceptual quality. This method introduces the efficiency of
convolutional approaches to transformer based high resolution image synthesis.

decoded to images with a learned generator.
[72] presents the Vector Quantised Variational Autoen-

coder (VQVAE), an approach to learn discrete represen-
tations of images, and models their distribution autore-
gressively with a convolutional architecture. [61] extends
this approach to use a hierarchy of learned representations.
However, these methods still rely on convolutional density
estimation, which makes it difficult to capture long-range
interactions in high-resolution images. [8] models images
autoregressively with transformers in order to evaluate the
suitability of generative pretraining to learn image repre-
sentations for downstream tasks. Since input resolutions of
32⇥ 32 pixels are still quite computationally expensive [8],
a VQVAE is used to encode images up to a resolution of
192 ⇥ 192. In an effort to keep the learned discrete repre-
sentation as spatially invariant as possible with respect to
the pixels, a shallow VQVAE with small receptive field is
employed. In contrast, we demonstrate that a powerful first
stage, which captures as much context as possible in the
learned representation, is critical to enable efficient high-
resolution image synthesis with transformers.

3. Approach
Our goal is to exploit the highly promising learning ca-

pabilities of transformer models [74] and introduce them to
high-resolution image synthesis up to the megapixel range.
Previous work [55, 8] which applied transformers to image
generation demonstrated promising results for images up to
a size of 64 ⇥ 64 pixels but, due to the quadratically in-
creasing cost in sequence length, cannot simply be scaled
to higher resolutions.

High-resolution image synthesis requires a model that

understands the global composition of images, enabling it to
generate locally realistic as well as globally consistent pat-
terns. Therefore, instead of representing an image with pix-
els, we represent it as a composition of perceptually rich im-
age constituents from a codebook. By learning an effective
code, as described in Sec. 3.1, we can significantly reduce
the description length of compositions, which allows us to
efficiently model their global interrelations within images
with a transformer architecture as described in Sec. 3.2.
This approach, summarized in Fig. 2, is able to generate
realistic and consistent high resolution images both in an
unconditional and a conditional setting.

3.1. Learning an Effective Codebook of Image Con-
stituents for Use in Transformers

To utilize the highly expressive transformer architecture for
image synthesis, we need to express the constituents of an
image in the form of a sequence. Instead of building on indi-
vidual pixels, complexity necessitates an approach that uses
a discrete codebook of learned representations, such that
any image x 2 RH⇥W⇥3 can be represented by a spatial
collection of codebook entries zq 2 Rh⇥w⇥nz , where nz is
the dimensionality of codes. An equivalent representation
is a sequence of h · w indices which specify the respective
entries in the learned codebook. To effectively learn such
a discrete spatial codebook, we propose to directly incor-
porate the inductive biases of CNNs and incorporate ideas
from neural discrete representation learning [72]. First, we
learn a convolutional model consisting of an encoder E and
a decoder G, such that taken together, they learn to repre-
sent images with codes from a learned, discrete codebook
Z = {zk}Kk=1 ⇢ Rnz (see Fig. 2 for an overview). More

3

learned codebook, see also Tian et al, 2404.02905

CrystalFormer leverages Nature’s codebook: the Wyckoff position table  



Bayes rule for materials inverse design

How to sample from ? Two approaches originated in physicsp(X |y)

Metropolis et al, 1953, Hastings 1970 Gibbs, Feynman, Bogoliubov,…, Jordan et al 1999
Markov chain Monte Carlo Variational inference

p(X)

p(X |y)

p(y |X)

∇F



MCMC sampling from the posterior
Generate more double perovskites A2BB’O6 

Relationship with other structure types

ReO3 (Strukturbericht type D09)
The prototypical compound ReO3 is closely related to the ideal cubic perovskite struc-
ture of SrTiO3. Instead of the corner-shared TiO6 octahedra in SrTiO3, ReO6 corner-
sharing octahedra are present that build a primitive cubic array; the oxygen atoms
are at the unit cell edge bisectors and are linearly coordinated by two Re atoms. The
only difference is that the centre of the cell, surrounded by eight ReO6 octahedra, is
unoccupied, see Figure 5.37, left. Therefore, as a kind of didactic mnemonic, one could
formulate: “ReO3 = SrTiO3 – Sr”. ReO3 crystallizes in the cubic space group Pm!3m
(no. 221) with one formula per unit cell. ReO3 is a rather unusual oxide compound
with respect to two aspects: (i) it is the only stable trioxide compound of the group 7
elements (Mn, Tc, Re), (ii) it has a very high electrical conductivity (almost as high as
that of Cu) and – typically for a metallic behaviour – the conductivity decreases with
increasing temperature. The formation of the conductivity band results from the over-
lap between the Re 5d (t2g) and O 2p (px/y) orbitals. The metallic-like properties of ReO3

are also reflected in the metallic lustre of the (deep red) crystals it forms.
Compounds that crystallize in the ReO3 structure type are:

– ReO3, UO3, AlF3, ScF3, TiOF2, NbF3, TaF3, TaO2F, MoF3, Na3N, and Cu3N, whereas
the latter two represent compounds with an anti-ReO3 structure.

Some hydroxides of trivalent metals, e.g., In(OH)3 and Sc(OH)3, form structures that
are closely related to the structure of ReO3. As in ReO3, corner-linked metal-oxygen
octahedra are present, but in contrast to those in ReO3, they are strongly tilted with

Figure 5.36: Crystal structure of the ordered double rock salt-type perovskite compound Sr2FeMoO6.
Sr, green; Fe, blue; Mo, orange; O, red.

5.3 Compounds based on a cubic closest packing 99

225-a-[?]-0-0-0-b-[?]-1/2-1/2-1/2-c-[?]-1/4-1/4-1/4-e-O-[?]-0-0

A(X → X′￼) = min [1,
p(X′￼)
p(X) ] MCMC sweep through the “operator 

string” in Sandvik’s SSE algorithm 

Local off-diagonal update (obsolete)
Change type of 2 operators on the same bond
• cannot always be done; check for constraining operators
• no weight change; accept with fixed probability (e.g., P=1)

Solve crystal cloze test via MCMC 
sweep through the “crystal string”



Miao et al, 1811.10996, Zhang et al, 2011.12334 

Aside: Constrained sentence generation in languate modeling
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Language Generation via Combinatorial Constraint Satisfaction:
A Tree Search Enhanced Monte-Carlo Approach

Maosen Zhang†, Nan Jiang†, Lei Li‡, and Yexiang Xue†
†Department of Computer Science, Purdue University, Indiana, USA

‡ByteDance AI Lab
{maosen,jiang631,yexiang}@purdue.edu, lileilab@bytedance.com

Abstract

Generating natural language under complex
constraints is a principled formulation towards
controllable text generation. We present a
framework to allow specification of combina-
torial constraints for sentence generation. We
propose TSMH1, an efficient method to gen-
erate high likelihood sentences with respect
to a pre-trained language model while sat-
isfying the constraints. Our approach is
highly flexible, requires no task-specific train-
ing, and leverages efficient constraint satisfac-
tion solving techniques. To better handle the
combinatorial constraints, a tree search algo-
rithm is embedded into the proposal process
of the Markov chain Monte Carlo (MCMC)
to explore candidates that satisfy more con-
straints. Compared to existing MCMC ap-
proaches, our sampling approach has a bet-
ter mixing performance. Experiments show
that TSMH achieves consistent and significant
improvement on multiple language generation
tasks.

1 Introduction

Supervised techniques still dominate in natural lan-
guage generation tasks. Despite its success, super-
vised approaches need to be trained with massive
datasets of input-output pairs, which is non-trivial
to acquire. In addition, it is hard to guarantee that
the output sentences satisfy constraints. Recent
approaches first pre-train a language model on a
general-purpose dataset, then fine-tune the neural
net on a task-specific dataset (Devlin et al., 2019;
Radford et al., 2019). These approaches partially
mitigate data hunger in training large and flexible
neural networks. Nevertheless, they still require
carefully crafted datasets for fine-tuning.
We present a constraint satisfaction driven ap-

proach for language generation. In particular, we
1https://github.com/Milozms/TSMH
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Figure 1: (a) Natural language generation via con-
straint satisfaction (bottom), comparing to supervised
approach (up). (b) Our proposed tree search enhanced
MCMC (TSMH, pink line) traverses the probabilistic
space of high-quality sentences more effectively than
the baseline (blue line).

sample sentences that attain high likelihoods from
a language model and satisfy task-specific con-
straints. Sampling sentences that attain high likeli-
hoods in the language model ensures the quality of
the generated sentence. Constraints guarantee that
the sentences fit the specific language task. The
constraints can be hard ones such as the grammar
rules, or soft ones such as attaining positive senti-
ment scores.

Our method harnesses constraint satisfaction,

The sequence length for inorganic crystals is ~100 with vocabulary size ~100 
So, even naive Metropolis-Hastings with annealing works fine

“traverses the probabilistic 
space of high-quality sentences 

more effectively”

collective update

local update



Variational inference the posterior
𝕂𝕃 (q(X) ∥ p(X |y)) = 𝔼

X∼q(X)
[−ln p(y |X)] + 𝕂𝕃 (q(X)∥p(X))

Variational  
probability 

Likelihood 
function

Prior

 is easy to sample, e.g. another autoregressive modelq(X)

Variational inference turns a sampling problem into a 
 stochastic optimization problem



𝕂𝕃 (q(X) ∥ p(X |y)) = 𝔼
X∼q(X)

[−r(X)] + 𝕂𝕃 (q(X)∥p(X))

“RL with KL penalties is better viewed as Bayesian inference” Korbar et al, 2205.11275  

Remain close to  
the pretrained model 

Fine-tuned  
model

Reward  
function

Also known as: reinforcement fine-tuning 



Pre-training Post-training

learn from data  
to be a generalist

learn from reward 
to be a specialized generalist 

ℒ = − 𝔼X∼data [ln p(X)]

LLM LLM X ↦ r(X)

ℒ = 𝔼
X∼q(X)

[−r(X)] + 𝕂𝕃 (q(X)∥p(X))
𝕂𝕃(data ∥ p) 𝕂𝕃(q ∥ per)vs

Two sides of the same coin



(a)

(c) 𝜀𝑡𝑜𝑡𝑎𝑙 = 21.32

𝐸𝑔 = 5. 38eV

Cs2BaSrF6

𝜀𝑡𝑜𝑡𝑎𝑙 = 25.19

𝐸𝑔 = 4.64 eV

Li6PbCl8

(b)

𝐸ℎ𝑢𝑙𝑙 = 0.04eV/atom 𝐸ℎ𝑢𝑙𝑙 = 0.08eV/atom

225-a-Sr-b-Ba-c-Cs-e-F 225-a-Pb-c-Cl-d-Li-e-Cl

Reinforcement fine-tuning for materials design

𝔼
X∼q(X)

[r(X)] + 𝕂𝕃 (q(X)∥p(X))
Reward

CrystalFormer-RL, Cao et al, 2504.02367

Pretrained  
Crystalformer

Reward = Band gap x dielectric constant
(Two usually anti-correlated properties)
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Nature tries to minimize free energy

F = E − TS
energy entropy 

 is a cost function given by NatureF
The *same* cost function for training deep generative models



been challenging to conventional MCMC and mean-field
approaches.
Next, to demonstrate the ability of capturing multiple

states at low temperature, we consider the Hopfield
model [32], where N spins are connected to each other.
The couplings composed of P random patterns,
Jij ¼ ð1=NÞ

PP
μ¼1 ξ

μ
i ξ

μ
j , with fξμg ∈ f$1gN denoting a

random pattern. At a low temperature with P small, the
system has a retrieval phase where all P patterns are
remembered by the system; hence there are P pure states
in the system [33,34]. The experiments are carried out on a
Hopfield network with N ¼ 100 spins and P ¼ 2 orthogo-
nal random patterns. At low temperature the energy
(probability) landscape contains four modes, corresponding
to two stored patterns and their mirrors (due to Z2

symmetry). As opposed to models defined on lattices,
there is no topology structure to apply convolution, so we
use a simplest VAN with only one layer and NðN − 1Þ=2
parameters. We start training our network at β ¼ 0.3 and
slowly anneal the temperature to β ¼ 1.5. At each temper-
ature, we sample configurations from the trained VAN, and
show their log probability in Fig. 3.
The figure shows that at high temperature with β ¼ 0.3,

samplings are not correlated with the two stored patterns,
and the system is in the paramagnetic state. The log
probability landscape is quite flat, as the Gibbs measure
is dominated by entropy. When β is increased to 1.5, four
peaks of probability emerge and dominate over other
configurations. These four peaks touch coordinates [1, 0],
[0, 1], ½−1; 0&, and ½0;−1& in the X-Y plane, which
correspond exactly to the two patterns and their mirrors.
This is an evidence that our approach avoids collapsing into
a single mode, and gives samplings capturing the features
of the whole landscape, despite that those modes are
separated by high barriers.
Compared with the landscape of Hopfield model in the

retrieval phase which exhibits several local minima in the
energy and probability landscape, models in the spin glass

phase are considerably more complex [35], because they
have an infinite number of pure states, in the picture of
replica symmetry breaking [36]. Here we apply our method
to the classic Sherrington-Kirkpatrick (SK) model [37],
where N spins are connected to each other by couplings Jij
drawn from Gaussian distribution with variance 1=N. So
far the tensor network approaches do not apply to this
model because of long range interactions and the disorder,
which causes negative Z issue [38]. On the thermodynamic
limit with N → ∞ where the free energy concentrates to its
mean value averaged over disorder, using for example
replica method and cavity method, and replica symmetry
breaking, i.e., the Parisi formula [36]. On a single instance
of SK model, the algorithm version of the cavity method,
belief propagation, or Thouless-Anderson-Paler [6] equa-
tions apply as message passing algorithms. On large
systems in the replica symmetry phase, the message
passing algorithms converge and the obtained Bethe free
energy is a good approximation, but in the replica sym-
metry breaking phase they fail to converge. Also notice that
even in the replica symmetry phase, Bethe free energy is
not an upper bound to the true free energy.
As a proof of concept, we use a small system size

N ¼ 20, so we can enumerate all 2N configurations,
compute the exact value of free energy, then evaluate the
performance of our approach. Again, we use a simple VAN
with only one layer.
In Fig. 4(a) we show the free energy obtained from VAN,

compared with NMF and Bethe approximations. The free
energy from VAN is much better than NMF and Bethe, and
even indistinguishable to the exact value. This is quite
remarkable considering that VAN adopts only NðN − 1Þ=2
parameters, which is even smaller than that used in the
belief propagation, NðN − 1Þ. We also checked that our
approach not only gives a good estimate on free energy, it
also obtains accurate energy, entropy, magnetizations, and
correlations.
The ability of solving ordinary statistical mechanics

problems also gives us the ability to solve inverse statistical
mechanics problems. A prototype problem is the inverse

FIG. 3. Log probability of sampled configurations from VAN
trained for a Hopfield model with N ¼ 100 spins, and P ¼ 2
orthogonal patterns. The sampled configurations are projected
onto the two-dimensional space spanned by the two patterns. X
axis (O1) and Y axis (O2) are the overlap (inner product,
normalized to ½−1; 1&) between each sampled configuration
and the two patterns, respectively. (a) β ¼ 0.3, and the system
is in the paramagnetic phase. (b) β ¼ 1.5, and the system is in the
retrieval phase. Note the different scales in the color bars.
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FIG. 4. (a) Free energy of SK model with N ¼ 20 spins. The
inset shows relative errors to exact values in a larger β regime.
Bethe converges only when β ≤ 1.5. (b) The reconstruction error
in the inverse Ising problem. The underlying model is an SK
model with N ¼ 20 spins. VAN uses a network with two layers (a
hidden layer and an output layer).
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Sherrington-Kirkpatrick spin glass

Naive mean-field 
factorized probability

Bethe approximation 
pairwise interaction

p(X) = ∏
i

p(xi)

p(X) = ∏
i

p(xi) ∏
(i,j)∈E

p(xi, xj)
p(xi)p(xj)

Variational autoregressive network for statistical mechanics

Wu, LW, Zhang, PRL ’19 
github.com/wdphy16/stat-mech-van

Variational autoregressive  
network

p(X) = ∏
i

p(xi |x<i)

Objective function: variational free-energy

F = 𝔼
X∼p(X)

[E(X) + kBT ln p(X)]



Residual entropy  
S/N = 0.323 Wannier 1950

F = 𝔼
X∼p(X)

[E(X) + kBT ln p(X)]

Wu, LW, Zhang, PRL ’19

Hot configuration Cold configuration 

VAN for triangular Ising

= 1/kBT MacKay, 2006 



Entropy 
exploration

Energy 
exploitation

ℒ = 𝔼
X∼q(X)

[−r(X) + ln q(X)]

q(X) = q(x1)q(x2 |x1)…
Policy network

r(X) = {1 if no attack
0 otherwise

Reward

: a sequence of actionsX
a1—b7—c4—d6—e8—f2—g5—h3

VAN (aka RL) for 8-queens problem



Entropy 
exploration

Energy 
exploitation

ℒ = 𝔼
X∼q(X)

[−r(X) + ln q(X)]
VAN (aka RL) for 8-queens problem

Board size Solutions

8 92

12 14,200

16 14,772,512

20 39,029,188,884

24 227,514,171,973,736

28 ???

Can you 
solve it ? 



Variational autoregressive quantum states

Sharir et al, PRL ’20, Hibat-Allah et al, PRResarch ‘20

Ψ(σ) = Ψ(σ1)Ψ(σ2 |σ1)Ψ(σ3 |σ1, σ2)⋯

Barrett et al, Nat. Mach. Intell. ’22
Zhao et al, MLST. ’23 Shang et al, 2307.09343

⟨Ψ | Ĥ |Ψ⟩
⟨Ψ |Ψ⟩

= 𝔼
σ∼|Ψ(σ)|2 [ ĤΨ(σ)

Ψ(σ) ]
McMillan 1965, Carleo & Troyer Science 2017

Objective function: ground state energy

Malyshev et al, 2408.07625Malyshev et al, 2310.04166Ibarra-García-Padilla et al, 2411.07144  Moss et al, 2502.17144 

Heisenberg and Hubbard models Quantum chemistry problems

Humeniuk et al, SciPost ’23



Deep learning for variational calculations

Representation Optimization

Sampling

Liao et al, PRX  ‘19

Wu et al, PRL ’19

Carleo and Troyer, Science ’17 
Pfau et al, PR Research ’20

Turning physics problems into stochastic optimization 
Leverages the deep learning engine

Chen et al, Nat.Phys.  ‘24

Malyshev et al, 2408.07625

RBM, FermiNet,…
Automatic differentiation, 

Wasserstein gradient, KFAC, …

Autoregressive sampling,  
Gumbel-top-k sampling,… 

Neklyudov, et al, 2307.07050

Humeniuk et al, SciPost ’23



: ANY neural network that 
respects physical symmetries
Ψ

McMillan 1965, Carleo & Troyer Science 2017, Pfau et al, FermiNet, … 

Variational ground state energy T = 0

Two kinds of variational Monte Carlo

: probabilistic models with 
tractable normalization

p

Gibbs–Bogolyubov-Feynman, Li and LW, PRL ’18, Wu, LW, Zhang, PRL ’19, …

Variational free energy T > 0

E[Ψ] = 𝔼
X∼|ψ(X)|2 [ ĤΨ(X)

Ψ(X) ] F[p] = 𝔼
X∼p(X)

[E(X) + kBT ln p(X)]



：：：
E[Ψ] = 𝔼

X∼|ψ(X)|2 [ ĤΨ(X)
Ψ(X) ]

McMillan 1965 
 Carleo & Troyer Science 2017, Pfau et al, FermiNet, … 

F[p] = 𝔼
X∼p(X)

[E(X) + kBT ln p(X)]

Gibbs–Bogolyubov-Feynman 
 Li and LW, PRL ’18, Wu, LW, Zhang, PRL ’19, …

ρ
Quantum  

Ground state 
Quantum  
Stat-Mech

Classical  
Stat-Mech

: ANY neural network that 
respects physical symmetries
Ψ : probabilistic models with 

tractable normalization
p

Three kinds of variational Monte Carlo



Gibbs–Bogolyubov-Feynman-Delbrück–Molière

F[ρ] = Tr(Hρ) + kBT Tr(ρ ln ρ)min

Difficulties in Applying the Variational 
Principle to Quantum Field Theories1 

Richard P. Feynman 

California Institute of Technology 
Pasadena, California 91125, U.S.A. 

Introduction 
I'd like to talk on some work I did on the variational principle in field theory. At one 
time I thought that the brute force method of doing arithmetic on the machines will 
never get anywhere and we will probably end with something more old-fashioned, 
i.e. some analysis plus the machines to help us with the analytic equations, and 
so I tried to do something along these lines with quantum chromodynamics. So 
I'm talking on the subject of the application of the variational principle to field 
theoretic problems, but in particular to quantum chromodynamics. 

I'm going to give away what I want to say, which is that I didn't get anywhere! 
I got very discouraged and I think I can see why the variational principle is not 
very useful. So I want to take, for the sake of argument, a very strong view -
which is stronger than I really believe - and argue that it is no damn good at all! 

Let us review why the variational principle has gotten a good reputation. Let's 
say you apply it to something like atoms or to simple problems with a small number 
of variables, using the usual analytic methods to get a quantity called the total 
energy, a quantity which is of direct physical significance. The energy levels of 
atoms are very interesting, measurable quantities and they can be calculated with 
accuracy. It was noted that if one had a wave function which had some measure 
of error, say 10 percent, then the error in the energy would be of order 1 percent. 
The error in the energy is quadratic in the error in the wave function. So, by not 
having a perfect wave function, you can still get very good values for the energy 
and that's why the variational method has gotten a good reputation. But it has 
never been a powerful way of getting, with accuracy, the wave function itself. 

Now I want to turn to the other side, the application of the variational principle 
to quantum field theory in a more or less straightforward way. So you write down 
a Hamiltonian in some kind of scheme and then you try to find a wave functional 

1 Transcript of Professor Feynman's talk, taken by the Editors and corrected by the author 
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ρ ?

The variational free energy principle

≥ F

energy variational density matrix  entropy 

Generative  
models !

😱



ρ = ∑
K

p(K) ΨK⟩⟨ΨK

Normalized probability 
distribution 

Orthonormal  
many-electron basis

∑
K

p(K) = 1 ⟨ΨK |ΨK′￼
⟩ = δK,K′￼

There will also be interesting twists for physics considerations

Example: the variational density matrix of electron gas

Fermi 
sea

Low-energy excited 
states are labeled in 
the same way as the 

ideal Fermi gas
K = {k1, k2, …, kN}

Xie, Zhang, LW, SciPost Physics ’23

flowautoregressive model



Variational autoregressive network for p(K)

p(K) = p(k1)p(k2 |k1)p(k3 |k1, k2)⋯

Pauli exclusion: we are modeling a set of words with no repetitions and no order
We use masked casual self-attention Vaswani et al 1706.03762; Alternative solution: Hibat-Allah et al, 2002.02793, Barrett et al, 2109.12606

N # of fermions # of words

M
Momentum 

cutof
Vocabulary

Fermionic 
occupation 
in k-space

quick
brown fox
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Z

Electron  
coordinates

Quasi-particle  
coordinates

: unitary backflow between particle and quasi-particle coordinates  X ↔ Z

ΨK(X) =
det(eiki⋅zj)

N!
⋅ det ( ∂Z

∂X )
1
2

Orthonormal many-body states

flow for |ΨK⟩

Fermion statistics: permutation equivariant flow We use FermiNet layer Pfau et al, 1909.02487 

Xie, Zhang, LW, SciPost ’23 



Jointly optimize  and  to minimize the variational free energy p(K) ΨK(X)

F = 𝔼
K∼p(K)

kBT ln p(K) + 𝔼
X∼ ΨK(X)

2 [ HΨK(X)
ΨK(X) ]

Boltzmann 
distribution

Born  
probability 

The objective function of variational density matrix 

ρ = ∑
K

p(K) ΨK⟩⟨ΨK



Brown et al, PRL ’13 Restricted PIMC

Benchmarks on uniform electron gas 

rs = 10, T/TF=0.0625, N = 33

Xie, Zhang, LW, SciPost Physics ’23 

metals: 2< rs < 6
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see also Schoof et al PRL ’15, Malone et al PRL ’16 
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Thermal entropy of 2D electron gas
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Quansi-particle effective mass 
contradicting experiments
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m

=
s
s0

< 1Hao Xie et al, SciPost Physics ’23

Application to 2DEG effective mass



Low-temperature properties  
of Coulomb gas 

JML ’22 and SciPost Physics ’23 
(~50 electrons) 

Ideal Fermi gas  
 

 Fermi liquid
↕

Fermi 
sea

Hartree-Fock states 
 

Interacting electrons
↕

(~50 e-p pairs)

Equation of states of  
dense hydrogen

PRL ’23 and ongoing

Deep variational free-energy for electrons and atoms

Vibrational spectra of  
molecules and quantum solids 

JCP ’24 and 2412.12451  
 (~500 atoms) 

Harmonic oscillators  
 

Anharmonic crystal
↕

Poster by Zihang Li Poster by Qi Zhang



F[ρ] = E − TS

Matter inverse design

Nature’s cost function

Exploiting intuitions in data

Variational free energy is finally practical

p(X |y) ∝ p(X)p(y |X)

Generative AI for It



Autoregressive modeling

Ordering Tokenization Objective function 

𝕂𝕃(data ∥ p) 𝕂𝕃(p ∥ e−E/kBT)vs

Inference



Comparision/Connection to MPS

Both require 1D ordering  
Both support direct sampling 
and tractable normaliztion 

MPS is bidirectional 
MPS mediates long range 
correlation via virtual bonds  
Similar to recurrent neural net

Can we tensorize GPT ? What does it good for ? 

Han et al, PRX ’18



Low-Rank Adaptation (LoRA) 
Hu et al, 2106.09685

Tensor network-based compression and finetuning

Gao et al, PRResearch ’20



Tensor  
Networks

Quantum  
Circuits

G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.

21A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996
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Goodfellow,  
NIPS tutorial, 1701.00160

Generative models and their physics genes 

+Diffusion models

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

t = 0 t = T
2 t = T

q
�
x(0···T )

�

p
�
x(0···T )

�

fµ
�
x(t)

, t
�
� x(t)

Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q
⇣
x(0···T )

⌘
. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p
⇣
x(0···T )

⌘
. An identity-covariance

Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, fµ

⇣
x(t), t

⌘
� x(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which
uses a Markov chain which slowly converts one distribu-
tion into another to compute a ratio of normalizing con-
stants. In (Burda et al., 2014) it is shown that AIS can also
be performed using the reverse rather than forward trajec-
tory. Langevin dynamics (Langevin, 1908), which are the
stochastic realization of the Fokker-Planck equation, show
how to define a Gaussian diffusion process which has any
target distribution as its equilibrium. In (Suykens & Vande-
walle, 1995) the Fokker-Planck equation is used to perform
stochastic optimization. Finally, the Kolmogorov forward
and backward equations (Feller, 1949) show that for many
forward diffusion processes, the reverse diffusion processes
can be described using the same functional form.

2. Algorithm
Our goal is to define a forward (or inference) diffusion pro-
cess which converts any complex data distribution into a
simple, tractable, distribution, and then learn a finite-time
reversal of this diffusion process which defines our gener-
ative model distribution (See Figure 1). We first describe
the forward, inference diffusion process. We then show

how the reverse, generative diffusion process can be trained
and used to evaluate probabilities. We also derive entropy
bounds for the reverse process, and show how the learned
distributions can be multiplied by any second distribution
(e.g. as would be done to compute a posterior when in-
painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
�
x(0)

�
. The data distribu-

tion is gradually converted into a well behaved (analyti-
cally tractable) distribution ⇡ (y) by repeated application
of a Markov diffusion kernel T⇡ (y|y0;�) for ⇡ (y), where
� is the diffusion rate,

⇡ (y) =

Z
dy0

T⇡ (y|y0;�)⇡ (y0) (1)

q

⇣
x(t)|x(t�1)

⌘
= T⇡

⇣
x(t)|x(t�1);�t

⌘
. (2)

p(X)

Han et al, PRX ‘18 Liu et al PRA ’18Autoregressive 
model

Flow model 

Generative models and their physics genes



2.23 Overview

3.2 Machine learning practices

3.9
A hitchhiker’s guide to deep 
learning

3.16 Research projects hands-on

3.23 Symmetries in machine learning

3.30 Differentiable programming

4.6 Generative models-I

4.13 Generative models-II

4.20 Research projects presentation

4.27 AI for science: why now ?

 Machine learning for physicists 
https://github.com/wangleiphy/ml4p 

A crash course offerred at IOP 2023 spring


